workbench 0.8.174__py3-none-any.whl → 0.8.227__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of workbench might be problematic. Click here for more details.
- workbench/__init__.py +1 -0
- workbench/algorithms/dataframe/__init__.py +1 -2
- workbench/algorithms/dataframe/compound_dataset_overlap.py +321 -0
- workbench/algorithms/dataframe/feature_space_proximity.py +168 -75
- workbench/algorithms/dataframe/fingerprint_proximity.py +422 -86
- workbench/algorithms/dataframe/projection_2d.py +44 -21
- workbench/algorithms/dataframe/proximity.py +259 -305
- workbench/algorithms/graph/light/proximity_graph.py +12 -11
- workbench/algorithms/models/cleanlab_model.py +382 -0
- workbench/algorithms/models/noise_model.py +388 -0
- workbench/algorithms/sql/column_stats.py +0 -1
- workbench/algorithms/sql/correlations.py +0 -1
- workbench/algorithms/sql/descriptive_stats.py +0 -1
- workbench/algorithms/sql/outliers.py +3 -3
- workbench/api/__init__.py +5 -1
- workbench/api/df_store.py +17 -108
- workbench/api/endpoint.py +14 -12
- workbench/api/feature_set.py +117 -11
- workbench/api/meta.py +0 -1
- workbench/api/meta_model.py +289 -0
- workbench/api/model.py +52 -21
- workbench/api/parameter_store.py +3 -52
- workbench/cached/cached_meta.py +0 -1
- workbench/cached/cached_model.py +49 -11
- workbench/core/artifacts/__init__.py +11 -2
- workbench/core/artifacts/artifact.py +7 -7
- workbench/core/artifacts/data_capture_core.py +8 -1
- workbench/core/artifacts/df_store_core.py +114 -0
- workbench/core/artifacts/endpoint_core.py +323 -205
- workbench/core/artifacts/feature_set_core.py +249 -45
- workbench/core/artifacts/model_core.py +133 -101
- workbench/core/artifacts/parameter_store_core.py +98 -0
- workbench/core/cloud_platform/aws/aws_account_clamp.py +48 -2
- workbench/core/cloud_platform/cloud_meta.py +0 -1
- workbench/core/pipelines/pipeline_executor.py +1 -1
- workbench/core/transforms/features_to_model/features_to_model.py +60 -44
- workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +43 -10
- workbench/core/transforms/pandas_transforms/pandas_to_features.py +38 -2
- workbench/core/views/training_view.py +113 -42
- workbench/core/views/view.py +53 -3
- workbench/core/views/view_utils.py +4 -4
- workbench/model_script_utils/model_script_utils.py +339 -0
- workbench/model_script_utils/pytorch_utils.py +405 -0
- workbench/model_script_utils/uq_harness.py +277 -0
- workbench/model_scripts/chemprop/chemprop.template +774 -0
- workbench/model_scripts/chemprop/generated_model_script.py +774 -0
- workbench/model_scripts/chemprop/model_script_utils.py +339 -0
- workbench/model_scripts/chemprop/requirements.txt +3 -0
- workbench/model_scripts/custom_models/chem_info/fingerprints.py +175 -0
- workbench/model_scripts/custom_models/chem_info/mol_descriptors.py +18 -7
- workbench/model_scripts/custom_models/chem_info/mol_standardize.py +80 -58
- workbench/model_scripts/custom_models/chem_info/molecular_descriptors.py +0 -1
- workbench/model_scripts/custom_models/chem_info/morgan_fingerprints.py +1 -2
- workbench/model_scripts/custom_models/proximity/feature_space_proximity.py +194 -0
- workbench/model_scripts/custom_models/proximity/feature_space_proximity.template +8 -10
- workbench/model_scripts/custom_models/uq_models/bayesian_ridge.template +7 -8
- workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template +20 -21
- workbench/model_scripts/custom_models/uq_models/feature_space_proximity.py +194 -0
- workbench/model_scripts/custom_models/uq_models/gaussian_process.template +5 -11
- workbench/model_scripts/custom_models/uq_models/ngboost.template +15 -16
- workbench/model_scripts/ensemble_xgb/ensemble_xgb.template +15 -17
- workbench/model_scripts/meta_model/generated_model_script.py +209 -0
- workbench/model_scripts/meta_model/meta_model.template +209 -0
- workbench/model_scripts/pytorch_model/generated_model_script.py +443 -499
- workbench/model_scripts/pytorch_model/model_script_utils.py +339 -0
- workbench/model_scripts/pytorch_model/pytorch.template +440 -496
- workbench/model_scripts/pytorch_model/pytorch_utils.py +405 -0
- workbench/model_scripts/pytorch_model/requirements.txt +1 -1
- workbench/model_scripts/pytorch_model/uq_harness.py +277 -0
- workbench/model_scripts/scikit_learn/generated_model_script.py +7 -12
- workbench/model_scripts/scikit_learn/scikit_learn.template +4 -9
- workbench/model_scripts/script_generation.py +15 -12
- workbench/model_scripts/uq_models/generated_model_script.py +248 -0
- workbench/model_scripts/xgb_model/generated_model_script.py +371 -403
- workbench/model_scripts/xgb_model/model_script_utils.py +339 -0
- workbench/model_scripts/xgb_model/uq_harness.py +277 -0
- workbench/model_scripts/xgb_model/xgb_model.template +367 -399
- workbench/repl/workbench_shell.py +18 -14
- workbench/resources/open_source_api.key +1 -1
- workbench/scripts/endpoint_test.py +162 -0
- workbench/scripts/lambda_test.py +73 -0
- workbench/scripts/meta_model_sim.py +35 -0
- workbench/scripts/ml_pipeline_sqs.py +122 -6
- workbench/scripts/training_test.py +85 -0
- workbench/themes/dark/custom.css +59 -0
- workbench/themes/dark/plotly.json +5 -5
- workbench/themes/light/custom.css +153 -40
- workbench/themes/light/plotly.json +9 -9
- workbench/themes/midnight_blue/custom.css +59 -0
- workbench/utils/aws_utils.py +0 -1
- workbench/utils/chem_utils/fingerprints.py +87 -46
- workbench/utils/chem_utils/mol_descriptors.py +18 -7
- workbench/utils/chem_utils/mol_standardize.py +80 -58
- workbench/utils/chem_utils/projections.py +16 -6
- workbench/utils/chem_utils/vis.py +25 -27
- workbench/utils/chemprop_utils.py +141 -0
- workbench/utils/config_manager.py +2 -6
- workbench/utils/endpoint_utils.py +5 -7
- workbench/utils/license_manager.py +2 -6
- workbench/utils/markdown_utils.py +57 -0
- workbench/utils/meta_model_simulator.py +499 -0
- workbench/utils/metrics_utils.py +256 -0
- workbench/utils/model_utils.py +274 -87
- workbench/utils/pipeline_utils.py +0 -1
- workbench/utils/plot_utils.py +159 -34
- workbench/utils/pytorch_utils.py +87 -0
- workbench/utils/shap_utils.py +11 -57
- workbench/utils/theme_manager.py +95 -30
- workbench/utils/xgboost_local_crossfold.py +267 -0
- workbench/utils/xgboost_model_utils.py +127 -220
- workbench/web_interface/components/experiments/outlier_plot.py +0 -1
- workbench/web_interface/components/model_plot.py +16 -2
- workbench/web_interface/components/plugin_unit_test.py +5 -3
- workbench/web_interface/components/plugins/ag_table.py +2 -4
- workbench/web_interface/components/plugins/confusion_matrix.py +3 -6
- workbench/web_interface/components/plugins/model_details.py +48 -80
- workbench/web_interface/components/plugins/scatter_plot.py +192 -92
- workbench/web_interface/components/settings_menu.py +184 -0
- workbench/web_interface/page_views/main_page.py +0 -1
- {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/METADATA +31 -17
- {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/RECORD +125 -111
- {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/entry_points.txt +4 -0
- {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/licenses/LICENSE +1 -1
- workbench/core/cloud_platform/aws/aws_df_store.py +0 -404
- workbench/core/cloud_platform/aws/aws_parameter_store.py +0 -280
- workbench/model_scripts/custom_models/meta_endpoints/example.py +0 -53
- workbench/model_scripts/custom_models/proximity/generated_model_script.py +0 -138
- workbench/model_scripts/custom_models/proximity/proximity.py +0 -384
- workbench/model_scripts/custom_models/uq_models/generated_model_script.py +0 -393
- workbench/model_scripts/custom_models/uq_models/mapie.template +0 -502
- workbench/model_scripts/custom_models/uq_models/meta_uq.template +0 -386
- workbench/model_scripts/custom_models/uq_models/proximity.py +0 -384
- workbench/model_scripts/ensemble_xgb/generated_model_script.py +0 -279
- workbench/model_scripts/quant_regression/quant_regression.template +0 -279
- workbench/model_scripts/quant_regression/requirements.txt +0 -1
- workbench/themes/quartz/base_css.url +0 -1
- workbench/themes/quartz/custom.css +0 -117
- workbench/themes/quartz/plotly.json +0 -642
- workbench/themes/quartz_dark/base_css.url +0 -1
- workbench/themes/quartz_dark/custom.css +0 -131
- workbench/themes/quartz_dark/plotly.json +0 -642
- workbench/utils/fast_inference.py +0 -167
- workbench/utils/resource_utils.py +0 -39
- {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/WHEEL +0 -0
- {workbench-0.8.174.dist-info → workbench-0.8.227.dist-info}/top_level.txt +0 -0
|
@@ -1,53 +0,0 @@
|
|
|
1
|
-
# Model: Meta Endpoint Example
|
|
2
|
-
# This script is a template for creating a custom meta endpoint in AWS Workbench.
|
|
3
|
-
from io import StringIO
|
|
4
|
-
import pandas as pd
|
|
5
|
-
import json
|
|
6
|
-
|
|
7
|
-
# Workbench Bridges imports
|
|
8
|
-
try:
|
|
9
|
-
from workbench_bridges.endpoints.fast_inference import fast_inference
|
|
10
|
-
except ImportError:
|
|
11
|
-
print("workbench_bridges not found, this is fine for training...")
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
# Not Used: We need to define this function for SageMaker
|
|
15
|
-
def model_fn(model_dir):
|
|
16
|
-
return None
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
def input_fn(input_data, content_type):
|
|
20
|
-
"""Parse input data and return a DataFrame."""
|
|
21
|
-
if not input_data:
|
|
22
|
-
raise ValueError("Empty input data is not supported!")
|
|
23
|
-
|
|
24
|
-
# Decode bytes to string if necessary
|
|
25
|
-
if isinstance(input_data, bytes):
|
|
26
|
-
input_data = input_data.decode("utf-8")
|
|
27
|
-
|
|
28
|
-
# Support CSV and JSON input formats
|
|
29
|
-
if "text/csv" in content_type:
|
|
30
|
-
return pd.read_csv(StringIO(input_data))
|
|
31
|
-
elif "application/json" in content_type:
|
|
32
|
-
return pd.DataFrame(json.loads(input_data)) # Assumes JSON array of records
|
|
33
|
-
else:
|
|
34
|
-
raise ValueError(f"{content_type} not supported!")
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
def output_fn(output_df, accept_type):
|
|
38
|
-
"""Supports both CSV and JSON output formats."""
|
|
39
|
-
if "text/csv" in accept_type:
|
|
40
|
-
csv_output = output_df.to_csv(index=False)
|
|
41
|
-
return csv_output, "text/csv"
|
|
42
|
-
elif "application/json" in accept_type:
|
|
43
|
-
return output_df.to_json(orient="records"), "application/json" # JSON array of records (NaNs -> null)
|
|
44
|
-
else:
|
|
45
|
-
raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
# Prediction function
|
|
49
|
-
def predict_fn(df, model):
|
|
50
|
-
|
|
51
|
-
# Call inference on an endpoint
|
|
52
|
-
df = fast_inference("abalone-regression", df)
|
|
53
|
-
return df
|
|
@@ -1,138 +0,0 @@
|
|
|
1
|
-
# Model: feature_space_proximity
|
|
2
|
-
#
|
|
3
|
-
# Description: The feature_space_proximity model computes nearest neighbors for the given feature space
|
|
4
|
-
#
|
|
5
|
-
|
|
6
|
-
# Template Placeholders
|
|
7
|
-
TEMPLATE_PARAMS = {
|
|
8
|
-
"id_column": "udm_mol_bat_id",
|
|
9
|
-
"features": ['bcut2d_logplow', 'numradicalelectrons', 'smr_vsa5', 'fr_lactam', 'fr_morpholine', 'fr_aldehyde', 'slogp_vsa1', 'fr_amidine', 'bpol', 'fr_ester', 'fr_azo', 'kappa3', 'peoe_vsa5', 'fr_ketone_topliss', 'vsa_estate9', 'estate_vsa9', 'bcut2d_mrhi', 'fr_ndealkylation1', 'numrotatablebonds', 'minestateindex', 'fr_quatn', 'peoe_vsa3', 'fr_epoxide', 'fr_aniline', 'minpartialcharge', 'fr_nitroso', 'fpdensitymorgan2', 'fr_oxime', 'fr_sulfone', 'smr_vsa1', 'kappa1', 'fr_pyridine', 'numaromaticrings', 'vsa_estate6', 'molmr', 'estate_vsa1', 'fr_dihydropyridine', 'vsa_estate10', 'fr_alkyl_halide', 'chi2n', 'fr_thiocyan', 'fpdensitymorgan1', 'fr_unbrch_alkane', 'slogp_vsa9', 'chi4n', 'fr_nitro_arom', 'fr_al_oh', 'fr_furan', 'fr_c_s', 'peoe_vsa8', 'peoe_vsa14', 'numheteroatoms', 'fr_ndealkylation2', 'maxabspartialcharge', 'vsa_estate2', 'peoe_vsa7', 'apol', 'numhacceptors', 'fr_tetrazole', 'vsa_estate1', 'peoe_vsa9', 'naromatom', 'bcut2d_chghi', 'fr_sh', 'fr_halogen', 'slogp_vsa4', 'fr_benzodiazepine', 'molwt', 'fr_isocyan', 'fr_prisulfonamd', 'maxabsestateindex', 'minabsestateindex', 'peoe_vsa11', 'slogp_vsa12', 'estate_vsa5', 'numaliphaticcarbocycles', 'bcut2d_mwlow', 'slogp_vsa7', 'fr_allylic_oxid', 'fr_methoxy', 'fr_nh0', 'fr_coo2', 'fr_phenol', 'nacid', 'nbase', 'chi3v', 'fr_ar_nh', 'fr_nitrile', 'fr_imidazole', 'fr_urea', 'bcut2d_mrlow', 'chi1', 'smr_vsa6', 'fr_aryl_methyl', 'narombond', 'fr_alkyl_carbamate', 'fr_piperzine', 'exactmolwt', 'qed', 'chi0n', 'fr_sulfonamd', 'fr_thiazole', 'numvalenceelectrons', 'fr_phos_acid', 'peoe_vsa12', 'fr_nh1', 'fr_hdrzine', 'fr_c_o_nocoo', 'fr_lactone', 'estate_vsa6', 'bcut2d_logphi', 'vsa_estate7', 'peoe_vsa13', 'numsaturatedcarbocycles', 'fr_nitro', 'fr_phenol_noorthohbond', 'rotratio', 'fr_barbitur', 'fr_isothiocyan', 'balabanj', 'fr_arn', 'fr_imine', 'maxpartialcharge', 'fr_sulfide', 'slogp_vsa11', 'fr_hoccn', 'fr_n_o', 'peoe_vsa1', 'slogp_vsa6', 'heavyatommolwt', 'fractioncsp3', 'estate_vsa8', 'peoe_vsa10', 'numaliphaticrings', 'fr_thiophene', 'maxestateindex', 'smr_vsa10', 'labuteasa', 'smr_vsa2', 'fpdensitymorgan3', 'smr_vsa9', 'slogp_vsa10', 'numaromaticheterocycles', 'fr_nh2', 'fr_diazo', 'chi3n', 'fr_ar_coo', 'slogp_vsa5', 'fr_bicyclic', 'fr_amide', 'estate_vsa10', 'fr_guanido', 'chi1n', 'numsaturatedrings', 'fr_piperdine', 'fr_term_acetylene', 'estate_vsa4', 'slogp_vsa3', 'fr_coo', 'fr_ether', 'estate_vsa7', 'bcut2d_chglo', 'fr_oxazole', 'peoe_vsa6', 'hallkieralpha', 'peoe_vsa2', 'chi2v', 'nocount', 'vsa_estate5', 'fr_nhpyrrole', 'fr_al_coo', 'bertzct', 'estate_vsa11', 'minabspartialcharge', 'slogp_vsa8', 'fr_imide', 'kappa2', 'numaliphaticheterocycles', 'numsaturatedheterocycles', 'fr_hdrzone', 'smr_vsa4', 'fr_ar_n', 'nrot', 'smr_vsa8', 'slogp_vsa2', 'chi4v', 'fr_phos_ester', 'fr_para_hydroxylation', 'smr_vsa3', 'nhohcount', 'estate_vsa2', 'mollogp', 'tpsa', 'fr_azide', 'peoe_vsa4', 'numhdonors', 'fr_al_oh_notert', 'fr_c_o', 'chi0', 'fr_nitro_arom_nonortho', 'vsa_estate3', 'fr_benzene', 'fr_ketone', 'vsa_estate8', 'smr_vsa7', 'fr_ar_oh', 'fr_priamide', 'ringcount', 'estate_vsa3', 'numaromaticcarbocycles', 'bcut2d_mwhi', 'chi1v', 'heavyatomcount', 'vsa_estate4', 'chi0v'],
|
|
10
|
-
"target": "udm_asy_res_value",
|
|
11
|
-
"track_columns": None
|
|
12
|
-
}
|
|
13
|
-
|
|
14
|
-
from io import StringIO
|
|
15
|
-
import json
|
|
16
|
-
import argparse
|
|
17
|
-
import os
|
|
18
|
-
import pandas as pd
|
|
19
|
-
|
|
20
|
-
# Local Imports
|
|
21
|
-
from proximity import Proximity
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
# Function to check if dataframe is empty
|
|
25
|
-
def check_dataframe(df: pd.DataFrame, df_name: str) -> None:
|
|
26
|
-
"""Check if the DataFrame is empty and raise an error if so."""
|
|
27
|
-
if df.empty:
|
|
28
|
-
msg = f"*** The training data {df_name} has 0 rows! ***STOPPING***"
|
|
29
|
-
print(msg)
|
|
30
|
-
raise ValueError(msg)
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
# Function to match DataFrame columns to model features (case-insensitive)
|
|
34
|
-
def match_features_case_insensitive(df: pd.DataFrame, model_features: list) -> pd.DataFrame:
|
|
35
|
-
"""Match and rename DataFrame columns to match the model's features, case-insensitively."""
|
|
36
|
-
# Create a set of exact matches from the DataFrame columns
|
|
37
|
-
exact_match_set = set(df.columns)
|
|
38
|
-
|
|
39
|
-
# Create a case-insensitive map of DataFrame columns
|
|
40
|
-
column_map = {col.lower(): col for col in df.columns}
|
|
41
|
-
rename_dict = {}
|
|
42
|
-
|
|
43
|
-
# Build a dictionary for renaming columns based on case-insensitive matching
|
|
44
|
-
for feature in model_features:
|
|
45
|
-
if feature in exact_match_set:
|
|
46
|
-
rename_dict[feature] = feature
|
|
47
|
-
elif feature.lower() in column_map:
|
|
48
|
-
rename_dict[column_map[feature.lower()]] = feature
|
|
49
|
-
|
|
50
|
-
# Rename columns in the DataFrame to match model features
|
|
51
|
-
return df.rename(columns=rename_dict)
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
# TRAINING SECTION
|
|
55
|
-
#
|
|
56
|
-
# This section (__main__) is where SageMaker will execute the training job
|
|
57
|
-
# and save the model artifacts to the model directory.
|
|
58
|
-
#
|
|
59
|
-
if __name__ == "__main__":
|
|
60
|
-
# Template Parameters
|
|
61
|
-
id_column = TEMPLATE_PARAMS["id_column"]
|
|
62
|
-
features = TEMPLATE_PARAMS["features"]
|
|
63
|
-
target = TEMPLATE_PARAMS["target"] # Can be None for unsupervised models
|
|
64
|
-
track_columns = TEMPLATE_PARAMS["track_columns"] # Can be None
|
|
65
|
-
|
|
66
|
-
# Script arguments for input/output directories
|
|
67
|
-
parser = argparse.ArgumentParser()
|
|
68
|
-
parser.add_argument("--model-dir", type=str, default=os.environ.get("SM_MODEL_DIR", "/opt/ml/model"))
|
|
69
|
-
parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAIN", "/opt/ml/input/data/train"))
|
|
70
|
-
parser.add_argument(
|
|
71
|
-
"--output-data-dir", type=str, default=os.environ.get("SM_OUTPUT_DATA_DIR", "/opt/ml/output/data")
|
|
72
|
-
)
|
|
73
|
-
args = parser.parse_args()
|
|
74
|
-
|
|
75
|
-
# Load training data from the specified directory
|
|
76
|
-
training_files = [
|
|
77
|
-
os.path.join(args.train, file)
|
|
78
|
-
for file in os.listdir(args.train) if file.endswith(".csv")
|
|
79
|
-
]
|
|
80
|
-
all_df = pd.concat([pd.read_csv(file, engine="python") for file in training_files])
|
|
81
|
-
|
|
82
|
-
# Check if the DataFrame is empty
|
|
83
|
-
check_dataframe(all_df, "training_df")
|
|
84
|
-
|
|
85
|
-
# Create the Proximity model
|
|
86
|
-
model = Proximity(all_df, id_column, features, target, track_columns=track_columns)
|
|
87
|
-
|
|
88
|
-
# Now serialize the model
|
|
89
|
-
model.serialize(args.model_dir)
|
|
90
|
-
|
|
91
|
-
# Model loading and prediction functions
|
|
92
|
-
def model_fn(model_dir):
|
|
93
|
-
|
|
94
|
-
# Deserialize the model
|
|
95
|
-
model = Proximity.deserialize(model_dir)
|
|
96
|
-
return model
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
def input_fn(input_data, content_type):
|
|
100
|
-
"""Parse input data and return a DataFrame."""
|
|
101
|
-
if not input_data:
|
|
102
|
-
raise ValueError("Empty input data is not supported!")
|
|
103
|
-
|
|
104
|
-
# Decode bytes to string if necessary
|
|
105
|
-
if isinstance(input_data, bytes):
|
|
106
|
-
input_data = input_data.decode("utf-8")
|
|
107
|
-
|
|
108
|
-
if "text/csv" in content_type:
|
|
109
|
-
return pd.read_csv(StringIO(input_data))
|
|
110
|
-
elif "application/json" in content_type:
|
|
111
|
-
return pd.DataFrame(json.loads(input_data)) # Assumes JSON array of records
|
|
112
|
-
else:
|
|
113
|
-
raise ValueError(f"{content_type} not supported!")
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
def output_fn(output_df, accept_type):
|
|
117
|
-
"""Supports both CSV and JSON output formats."""
|
|
118
|
-
use_explicit_na = False
|
|
119
|
-
if "text/csv" in accept_type:
|
|
120
|
-
if use_explicit_na:
|
|
121
|
-
csv_output = output_df.fillna("N/A").to_csv(index=False) # CSV with N/A for missing values
|
|
122
|
-
else:
|
|
123
|
-
csv_output = output_df.to_csv(index=False)
|
|
124
|
-
return csv_output, "text/csv"
|
|
125
|
-
elif "application/json" in accept_type:
|
|
126
|
-
return output_df.to_json(orient="records"), "application/json" # JSON array of records (NaNs -> null)
|
|
127
|
-
else:
|
|
128
|
-
raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
# Prediction function
|
|
132
|
-
def predict_fn(df, model):
|
|
133
|
-
# Match column names before prediction if needed
|
|
134
|
-
df = match_features_case_insensitive(df, model.features + [model.id_column])
|
|
135
|
-
|
|
136
|
-
# Compute Nearest neighbors
|
|
137
|
-
df = model.neighbors(df)
|
|
138
|
-
return df
|
|
@@ -1,384 +0,0 @@
|
|
|
1
|
-
import pandas as pd
|
|
2
|
-
import numpy as np
|
|
3
|
-
from sklearn.preprocessing import StandardScaler
|
|
4
|
-
from sklearn.neighbors import NearestNeighbors
|
|
5
|
-
from typing import List, Dict
|
|
6
|
-
import logging
|
|
7
|
-
import pickle
|
|
8
|
-
import os
|
|
9
|
-
import json
|
|
10
|
-
from pathlib import Path
|
|
11
|
-
from enum import Enum
|
|
12
|
-
|
|
13
|
-
# Set up logging
|
|
14
|
-
log = logging.getLogger("workbench")
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
# ^Enumerated^ Proximity Types (distance or similarity)
|
|
18
|
-
class ProximityType(Enum):
|
|
19
|
-
DISTANCE = "distance"
|
|
20
|
-
SIMILARITY = "similarity"
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
class Proximity:
|
|
24
|
-
def __init__(
|
|
25
|
-
self,
|
|
26
|
-
df: pd.DataFrame,
|
|
27
|
-
id_column: str,
|
|
28
|
-
features: List[str],
|
|
29
|
-
target: str = None,
|
|
30
|
-
track_columns: List[str] = None,
|
|
31
|
-
n_neighbors: int = 10,
|
|
32
|
-
):
|
|
33
|
-
"""
|
|
34
|
-
Initialize the Proximity class.
|
|
35
|
-
|
|
36
|
-
Args:
|
|
37
|
-
df (pd.DataFrame): DataFrame containing data for neighbor computations.
|
|
38
|
-
id_column (str): Name of the column used as the identifier.
|
|
39
|
-
features (List[str]): List of feature column names to be used for neighbor computations.
|
|
40
|
-
target (str, optional): Name of the target column. Defaults to None.
|
|
41
|
-
track_columns (List[str], optional): Additional columns to track in results. Defaults to None.
|
|
42
|
-
n_neighbors (int): Number of neighbors to compute. Defaults to 10.
|
|
43
|
-
"""
|
|
44
|
-
self.df = df.dropna(subset=features).copy()
|
|
45
|
-
self.id_column = id_column
|
|
46
|
-
self.n_neighbors = min(n_neighbors, len(self.df) - 1)
|
|
47
|
-
self.target = target
|
|
48
|
-
self.features = features
|
|
49
|
-
self.scaler = None
|
|
50
|
-
self.X = None
|
|
51
|
-
self.nn = None
|
|
52
|
-
self.proximity_type = None
|
|
53
|
-
self.track_columns = track_columns or []
|
|
54
|
-
|
|
55
|
-
# Right now we only support numeric features, so remove any columns that are not numeric
|
|
56
|
-
non_numeric_features = self.df[self.features].select_dtypes(exclude=["number"]).columns.tolist()
|
|
57
|
-
if non_numeric_features:
|
|
58
|
-
log.warning(f"Non-numeric features {non_numeric_features} aren't currently supported...")
|
|
59
|
-
self.features = [f for f in self.features if f not in non_numeric_features]
|
|
60
|
-
|
|
61
|
-
# Build the proximity model
|
|
62
|
-
self.build_proximity_model()
|
|
63
|
-
|
|
64
|
-
def build_proximity_model(self) -> None:
|
|
65
|
-
"""Standardize features and fit Nearest Neighbors model.
|
|
66
|
-
Note: This method can be overridden in subclasses for custom behavior."""
|
|
67
|
-
self.proximity_type = ProximityType.DISTANCE
|
|
68
|
-
self.scaler = StandardScaler()
|
|
69
|
-
self.X = self.scaler.fit_transform(self.df[self.features])
|
|
70
|
-
self.nn = NearestNeighbors(n_neighbors=self.n_neighbors + 1).fit(self.X)
|
|
71
|
-
|
|
72
|
-
def all_neighbors(self) -> pd.DataFrame:
|
|
73
|
-
"""
|
|
74
|
-
Compute nearest neighbors for all rows in the dataset.
|
|
75
|
-
|
|
76
|
-
Returns:
|
|
77
|
-
pd.DataFrame: A DataFrame of neighbors and their distances.
|
|
78
|
-
"""
|
|
79
|
-
distances, indices = self.nn.kneighbors(self.X)
|
|
80
|
-
results = []
|
|
81
|
-
|
|
82
|
-
for i, (dists, nbrs) in enumerate(zip(distances, indices)):
|
|
83
|
-
query_id = self.df.iloc[i][self.id_column]
|
|
84
|
-
|
|
85
|
-
# Process neighbors
|
|
86
|
-
for neighbor_idx, dist in zip(nbrs, dists):
|
|
87
|
-
# Skip self (neighbor index == current row index)
|
|
88
|
-
if neighbor_idx == i:
|
|
89
|
-
continue
|
|
90
|
-
results.append(self._build_neighbor_result(query_id=query_id, neighbor_idx=neighbor_idx, distance=dist))
|
|
91
|
-
|
|
92
|
-
return pd.DataFrame(results)
|
|
93
|
-
|
|
94
|
-
def neighbors(
|
|
95
|
-
self,
|
|
96
|
-
query_df: pd.DataFrame,
|
|
97
|
-
radius: float = None,
|
|
98
|
-
include_self: bool = True,
|
|
99
|
-
) -> pd.DataFrame:
|
|
100
|
-
"""
|
|
101
|
-
Return neighbors for rows in a query DataFrame.
|
|
102
|
-
|
|
103
|
-
Args:
|
|
104
|
-
query_df: DataFrame containing query points
|
|
105
|
-
radius: If provided, find all neighbors within this radius
|
|
106
|
-
include_self: Whether to include self in results (if present)
|
|
107
|
-
|
|
108
|
-
Returns:
|
|
109
|
-
DataFrame containing neighbors and distances
|
|
110
|
-
|
|
111
|
-
Note: The query DataFrame must include the feature columns. The id_column is optional.
|
|
112
|
-
"""
|
|
113
|
-
# Check if all required features are present
|
|
114
|
-
missing = set(self.features) - set(query_df.columns)
|
|
115
|
-
if missing:
|
|
116
|
-
raise ValueError(f"Query DataFrame is missing required feature columns: {missing}")
|
|
117
|
-
|
|
118
|
-
# Check if id_column is present
|
|
119
|
-
id_column_present = self.id_column in query_df.columns
|
|
120
|
-
|
|
121
|
-
# None of the features can be NaNs, so report rows with NaNs and then drop them
|
|
122
|
-
rows_with_nan = query_df[self.features].isna().any(axis=1)
|
|
123
|
-
|
|
124
|
-
# Print the ID column for rows with NaNs
|
|
125
|
-
if rows_with_nan.any():
|
|
126
|
-
log.warning(f"Found {rows_with_nan.sum()} rows with NaNs in feature columns:")
|
|
127
|
-
log.warning(query_df.loc[rows_with_nan, self.id_column])
|
|
128
|
-
|
|
129
|
-
# Drop rows with NaNs in feature columns and reassign to query_df
|
|
130
|
-
query_df = query_df.dropna(subset=self.features)
|
|
131
|
-
|
|
132
|
-
# Transform the query features using the model's scaler
|
|
133
|
-
X_query = self.scaler.transform(query_df[self.features])
|
|
134
|
-
|
|
135
|
-
# Get neighbors using either radius or k-nearest neighbors
|
|
136
|
-
if radius is not None:
|
|
137
|
-
distances, indices = self.nn.radius_neighbors(X_query, radius=radius)
|
|
138
|
-
else:
|
|
139
|
-
distances, indices = self.nn.kneighbors(X_query)
|
|
140
|
-
|
|
141
|
-
# Build results
|
|
142
|
-
all_results = []
|
|
143
|
-
for i, (dists, nbrs) in enumerate(zip(distances, indices)):
|
|
144
|
-
# Use the ID from the query DataFrame if available, otherwise use the row index
|
|
145
|
-
query_id = query_df.iloc[i][self.id_column] if id_column_present else f"query_{i}"
|
|
146
|
-
|
|
147
|
-
for neighbor_idx, dist in zip(nbrs, dists):
|
|
148
|
-
# Skip if the neighbor is the query itself and include_self is False
|
|
149
|
-
neighbor_id = self.df.iloc[neighbor_idx][self.id_column]
|
|
150
|
-
if not include_self and neighbor_id == query_id:
|
|
151
|
-
continue
|
|
152
|
-
|
|
153
|
-
all_results.append(
|
|
154
|
-
self._build_neighbor_result(query_id=query_id, neighbor_idx=neighbor_idx, distance=dist)
|
|
155
|
-
)
|
|
156
|
-
|
|
157
|
-
return pd.DataFrame(all_results)
|
|
158
|
-
|
|
159
|
-
def _build_neighbor_result(self, query_id, neighbor_idx: int, distance: float) -> Dict:
|
|
160
|
-
"""
|
|
161
|
-
Internal: Build a result dictionary for a single neighbor.
|
|
162
|
-
|
|
163
|
-
Args:
|
|
164
|
-
query_id: ID of the query point
|
|
165
|
-
neighbor_idx: Index of the neighbor in the original DataFrame
|
|
166
|
-
distance: Distance between query and neighbor
|
|
167
|
-
|
|
168
|
-
Returns:
|
|
169
|
-
Dictionary containing neighbor information
|
|
170
|
-
"""
|
|
171
|
-
neighbor_id = self.df.iloc[neighbor_idx][self.id_column]
|
|
172
|
-
|
|
173
|
-
# Basic neighbor info
|
|
174
|
-
neighbor_info = {
|
|
175
|
-
self.id_column: query_id,
|
|
176
|
-
"neighbor_id": neighbor_id,
|
|
177
|
-
"distance": distance,
|
|
178
|
-
}
|
|
179
|
-
|
|
180
|
-
# Determine which additional columns to include
|
|
181
|
-
relevant_cols = [self.target, "prediction"] if self.target else []
|
|
182
|
-
relevant_cols += [c for c in self.df.columns if "_proba" in c or "residual" in c]
|
|
183
|
-
relevant_cols += ["outlier"]
|
|
184
|
-
|
|
185
|
-
# Add user-specified columns
|
|
186
|
-
relevant_cols += self.track_columns
|
|
187
|
-
|
|
188
|
-
# Add values for each relevant column that exists in the dataframe
|
|
189
|
-
for col in filter(lambda c: c in self.df.columns, relevant_cols):
|
|
190
|
-
neighbor_info[col] = self.df.iloc[neighbor_idx][col]
|
|
191
|
-
|
|
192
|
-
return neighbor_info
|
|
193
|
-
|
|
194
|
-
def serialize(self, directory: str) -> None:
|
|
195
|
-
"""
|
|
196
|
-
Serialize the Proximity model to a directory.
|
|
197
|
-
|
|
198
|
-
Args:
|
|
199
|
-
directory: Directory path to save the model components
|
|
200
|
-
"""
|
|
201
|
-
# Create directory if it doesn't exist
|
|
202
|
-
os.makedirs(directory, exist_ok=True)
|
|
203
|
-
|
|
204
|
-
# Save metadata
|
|
205
|
-
metadata = {
|
|
206
|
-
"id_column": self.id_column,
|
|
207
|
-
"features": self.features,
|
|
208
|
-
"target": self.target,
|
|
209
|
-
"track_columns": self.track_columns,
|
|
210
|
-
"n_neighbors": self.n_neighbors,
|
|
211
|
-
}
|
|
212
|
-
|
|
213
|
-
with open(os.path.join(directory, "metadata.json"), "w") as f:
|
|
214
|
-
json.dump(metadata, f)
|
|
215
|
-
|
|
216
|
-
# Save the DataFrame
|
|
217
|
-
self.df.to_pickle(os.path.join(directory, "df.pkl"))
|
|
218
|
-
|
|
219
|
-
# Save the scaler and nearest neighbors model
|
|
220
|
-
with open(os.path.join(directory, "scaler.pkl"), "wb") as f:
|
|
221
|
-
pickle.dump(self.scaler, f)
|
|
222
|
-
|
|
223
|
-
with open(os.path.join(directory, "nn_model.pkl"), "wb") as f:
|
|
224
|
-
pickle.dump(self.nn, f)
|
|
225
|
-
|
|
226
|
-
log.info(f"Proximity model serialized to {directory}")
|
|
227
|
-
|
|
228
|
-
@classmethod
|
|
229
|
-
def deserialize(cls, directory: str) -> "Proximity":
|
|
230
|
-
"""
|
|
231
|
-
Deserialize a Proximity model from a directory.
|
|
232
|
-
|
|
233
|
-
Args:
|
|
234
|
-
directory: Directory path containing the serialized model components
|
|
235
|
-
|
|
236
|
-
Returns:
|
|
237
|
-
Proximity: A new Proximity instance
|
|
238
|
-
"""
|
|
239
|
-
directory_path = Path(directory)
|
|
240
|
-
if not directory_path.exists() or not directory_path.is_dir():
|
|
241
|
-
raise ValueError(f"Directory {directory} does not exist or is not a directory")
|
|
242
|
-
|
|
243
|
-
# Load metadata
|
|
244
|
-
with open(os.path.join(directory, "metadata.json"), "r") as f:
|
|
245
|
-
metadata = json.load(f)
|
|
246
|
-
|
|
247
|
-
# Load DataFrame
|
|
248
|
-
df_path = os.path.join(directory, "df.pkl")
|
|
249
|
-
if not os.path.exists(df_path):
|
|
250
|
-
raise FileNotFoundError(f"DataFrame file not found at {df_path}")
|
|
251
|
-
df = pd.read_pickle(df_path)
|
|
252
|
-
|
|
253
|
-
# Create instance but skip _prepare_data
|
|
254
|
-
instance = cls.__new__(cls)
|
|
255
|
-
instance.df = df
|
|
256
|
-
instance.id_column = metadata["id_column"]
|
|
257
|
-
instance.features = metadata["features"]
|
|
258
|
-
instance.target = metadata["target"]
|
|
259
|
-
instance.track_columns = metadata["track_columns"]
|
|
260
|
-
instance.n_neighbors = metadata["n_neighbors"]
|
|
261
|
-
|
|
262
|
-
# Load scaler and nn model
|
|
263
|
-
with open(os.path.join(directory, "scaler.pkl"), "rb") as f:
|
|
264
|
-
instance.scaler = pickle.load(f)
|
|
265
|
-
|
|
266
|
-
with open(os.path.join(directory, "nn_model.pkl"), "rb") as f:
|
|
267
|
-
instance.nn = pickle.load(f)
|
|
268
|
-
|
|
269
|
-
# Load X from scaler transform
|
|
270
|
-
instance.X = instance.scaler.transform(instance.df[instance.features])
|
|
271
|
-
|
|
272
|
-
log.info(f"Proximity model deserialized from {directory}")
|
|
273
|
-
return instance
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
# Testing the Proximity class
|
|
277
|
-
if __name__ == "__main__":
|
|
278
|
-
|
|
279
|
-
pd.set_option("display.max_columns", None)
|
|
280
|
-
pd.set_option("display.width", 1000)
|
|
281
|
-
|
|
282
|
-
# Create a sample DataFrame
|
|
283
|
-
data = {
|
|
284
|
-
"ID": [1, 2, 3, 4, 5],
|
|
285
|
-
"Feature1": [0.1, 0.2, 0.3, 0.4, 0.5],
|
|
286
|
-
"Feature2": [0.5, 0.4, 0.3, 0.2, 0.1],
|
|
287
|
-
"Feature3": [2.5, 2.4, 2.3, 2.3, np.nan],
|
|
288
|
-
}
|
|
289
|
-
df = pd.DataFrame(data)
|
|
290
|
-
|
|
291
|
-
# Test the Proximity class
|
|
292
|
-
features = ["Feature1", "Feature2", "Feature3"]
|
|
293
|
-
prox = Proximity(df, id_column="ID", features=features, n_neighbors=3)
|
|
294
|
-
print(prox.all_neighbors())
|
|
295
|
-
|
|
296
|
-
# Test the neighbors method
|
|
297
|
-
print(prox.neighbors(query_df=df.iloc[[0]]))
|
|
298
|
-
|
|
299
|
-
# Test the neighbors method with radius
|
|
300
|
-
print(prox.neighbors(query_df=df.iloc[0:2], radius=2.0))
|
|
301
|
-
|
|
302
|
-
# Test with data that isn't in the 'train' dataframe
|
|
303
|
-
query_data = {
|
|
304
|
-
"ID": [6],
|
|
305
|
-
"Feature1": [0.31],
|
|
306
|
-
"Feature2": [0.31],
|
|
307
|
-
"Feature3": [2.31],
|
|
308
|
-
}
|
|
309
|
-
query_df = pd.DataFrame(query_data)
|
|
310
|
-
print(prox.neighbors(query_df=query_df))
|
|
311
|
-
|
|
312
|
-
# Test with Features list
|
|
313
|
-
prox = Proximity(df, id_column="ID", features=["Feature1"], n_neighbors=2)
|
|
314
|
-
print(prox.all_neighbors())
|
|
315
|
-
|
|
316
|
-
# Create a sample DataFrame
|
|
317
|
-
data = {
|
|
318
|
-
"foo_id": ["a", "b", "c", "d", "e"], # Testing string IDs
|
|
319
|
-
"Feature1": [0.1, 0.2, 0.3, 0.4, 0.5],
|
|
320
|
-
"Feature2": [0.5, 0.4, 0.3, 0.2, 0.1],
|
|
321
|
-
"target": [1, 0, 1, 0, 5],
|
|
322
|
-
}
|
|
323
|
-
df = pd.DataFrame(data)
|
|
324
|
-
|
|
325
|
-
# Test with String Ids
|
|
326
|
-
prox = Proximity(
|
|
327
|
-
df,
|
|
328
|
-
id_column="foo_id",
|
|
329
|
-
features=["Feature1", "Feature2"],
|
|
330
|
-
target="target",
|
|
331
|
-
track_columns=["Feature1", "Feature2"],
|
|
332
|
-
n_neighbors=3,
|
|
333
|
-
)
|
|
334
|
-
print(prox.all_neighbors())
|
|
335
|
-
|
|
336
|
-
# Test the neighbors method
|
|
337
|
-
print(prox.neighbors(query_df=df.iloc[0:2]))
|
|
338
|
-
|
|
339
|
-
# Time neighbors with all IDs versus calling all_neighbors
|
|
340
|
-
import time
|
|
341
|
-
|
|
342
|
-
start_time = time.time()
|
|
343
|
-
prox_df = prox.neighbors(query_df=df, include_self=False)
|
|
344
|
-
end_time = time.time()
|
|
345
|
-
print(f"Time taken for neighbors: {end_time - start_time:.4f} seconds")
|
|
346
|
-
start_time = time.time()
|
|
347
|
-
prox_df_all = prox.all_neighbors()
|
|
348
|
-
end_time = time.time()
|
|
349
|
-
print(f"Time taken for all_neighbors: {end_time - start_time:.4f} seconds")
|
|
350
|
-
|
|
351
|
-
# Now compare the two dataframes
|
|
352
|
-
print("Neighbors DataFrame:")
|
|
353
|
-
print(prox_df)
|
|
354
|
-
print("\nAll Neighbors DataFrame:")
|
|
355
|
-
print(prox_df_all)
|
|
356
|
-
# Check for any discrepancies
|
|
357
|
-
if prox_df.equals(prox_df_all):
|
|
358
|
-
print("The two DataFrames are equal :)")
|
|
359
|
-
else:
|
|
360
|
-
print("ERROR: The two DataFrames are not equal!")
|
|
361
|
-
|
|
362
|
-
# Test querying without the id_column
|
|
363
|
-
df_no_id = df.drop(columns=["foo_id"])
|
|
364
|
-
print(prox.neighbors(query_df=df_no_id, include_self=False))
|
|
365
|
-
|
|
366
|
-
# Test duplicate IDs
|
|
367
|
-
data = {
|
|
368
|
-
"foo_id": ["a", "b", "c", "d", "d"], # Duplicate ID (d)
|
|
369
|
-
"Feature1": [0.1, 0.2, 0.3, 0.4, 0.5],
|
|
370
|
-
"Feature2": [0.5, 0.4, 0.3, 0.2, 0.1],
|
|
371
|
-
"target": [1, 0, 1, 0, 5],
|
|
372
|
-
}
|
|
373
|
-
df = pd.DataFrame(data)
|
|
374
|
-
prox = Proximity(df, id_column="foo_id", features=["Feature1", "Feature2"], target="target", n_neighbors=3)
|
|
375
|
-
print(df.equals(prox.df))
|
|
376
|
-
|
|
377
|
-
# Test with a categorical feature
|
|
378
|
-
from workbench.api import FeatureSet, Model
|
|
379
|
-
|
|
380
|
-
fs = FeatureSet("abalone_features")
|
|
381
|
-
model = Model("abalone-regression")
|
|
382
|
-
df = fs.pull_dataframe()
|
|
383
|
-
prox = Proximity(df, id_column=fs.id_column, features=model.features(), target=model.target())
|
|
384
|
-
print(prox.neighbors(query_df=df[0:2]))
|