warp-lang 1.9.0__py3-none-win_amd64.whl → 1.10.0rc2__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (350) hide show
  1. warp/__init__.py +301 -287
  2. warp/__init__.pyi +2220 -313
  3. warp/_src/__init__.py +14 -0
  4. warp/_src/autograd.py +1075 -0
  5. warp/_src/build.py +618 -0
  6. warp/_src/build_dll.py +640 -0
  7. warp/{builtins.py → _src/builtins.py} +1497 -226
  8. warp/_src/codegen.py +4359 -0
  9. warp/{config.py → _src/config.py} +178 -169
  10. warp/_src/constants.py +57 -0
  11. warp/_src/context.py +8294 -0
  12. warp/_src/dlpack.py +462 -0
  13. warp/_src/fabric.py +355 -0
  14. warp/_src/fem/__init__.py +14 -0
  15. warp/_src/fem/adaptivity.py +508 -0
  16. warp/_src/fem/cache.py +687 -0
  17. warp/_src/fem/dirichlet.py +188 -0
  18. warp/{fem → _src/fem}/domain.py +40 -30
  19. warp/_src/fem/field/__init__.py +131 -0
  20. warp/_src/fem/field/field.py +701 -0
  21. warp/{fem → _src/fem}/field/nodal_field.py +30 -15
  22. warp/{fem → _src/fem}/field/restriction.py +1 -1
  23. warp/{fem → _src/fem}/field/virtual.py +53 -27
  24. warp/_src/fem/geometry/__init__.py +32 -0
  25. warp/{fem → _src/fem}/geometry/adaptive_nanogrid.py +77 -163
  26. warp/_src/fem/geometry/closest_point.py +97 -0
  27. warp/{fem → _src/fem}/geometry/deformed_geometry.py +14 -22
  28. warp/{fem → _src/fem}/geometry/element.py +32 -10
  29. warp/{fem → _src/fem}/geometry/geometry.py +48 -20
  30. warp/{fem → _src/fem}/geometry/grid_2d.py +12 -23
  31. warp/{fem → _src/fem}/geometry/grid_3d.py +12 -23
  32. warp/{fem → _src/fem}/geometry/hexmesh.py +40 -63
  33. warp/{fem → _src/fem}/geometry/nanogrid.py +255 -248
  34. warp/{fem → _src/fem}/geometry/partition.py +121 -63
  35. warp/{fem → _src/fem}/geometry/quadmesh.py +26 -45
  36. warp/{fem → _src/fem}/geometry/tetmesh.py +40 -63
  37. warp/{fem → _src/fem}/geometry/trimesh.py +26 -45
  38. warp/{fem → _src/fem}/integrate.py +164 -158
  39. warp/_src/fem/linalg.py +383 -0
  40. warp/_src/fem/operator.py +396 -0
  41. warp/_src/fem/polynomial.py +229 -0
  42. warp/{fem → _src/fem}/quadrature/pic_quadrature.py +15 -20
  43. warp/{fem → _src/fem}/quadrature/quadrature.py +95 -47
  44. warp/_src/fem/space/__init__.py +248 -0
  45. warp/{fem → _src/fem}/space/basis_function_space.py +20 -11
  46. warp/_src/fem/space/basis_space.py +679 -0
  47. warp/{fem → _src/fem}/space/dof_mapper.py +3 -3
  48. warp/{fem → _src/fem}/space/function_space.py +14 -13
  49. warp/{fem → _src/fem}/space/grid_2d_function_space.py +4 -7
  50. warp/{fem → _src/fem}/space/grid_3d_function_space.py +4 -4
  51. warp/{fem → _src/fem}/space/hexmesh_function_space.py +4 -10
  52. warp/{fem → _src/fem}/space/nanogrid_function_space.py +3 -9
  53. warp/{fem → _src/fem}/space/partition.py +117 -60
  54. warp/{fem → _src/fem}/space/quadmesh_function_space.py +4 -10
  55. warp/{fem → _src/fem}/space/restriction.py +66 -33
  56. warp/_src/fem/space/shape/__init__.py +152 -0
  57. warp/{fem → _src/fem}/space/shape/cube_shape_function.py +9 -9
  58. warp/{fem → _src/fem}/space/shape/shape_function.py +8 -9
  59. warp/{fem → _src/fem}/space/shape/square_shape_function.py +6 -6
  60. warp/{fem → _src/fem}/space/shape/tet_shape_function.py +3 -3
  61. warp/{fem → _src/fem}/space/shape/triangle_shape_function.py +3 -3
  62. warp/{fem → _src/fem}/space/tetmesh_function_space.py +3 -9
  63. warp/_src/fem/space/topology.py +459 -0
  64. warp/{fem → _src/fem}/space/trimesh_function_space.py +3 -9
  65. warp/_src/fem/types.py +112 -0
  66. warp/_src/fem/utils.py +486 -0
  67. warp/_src/jax.py +186 -0
  68. warp/_src/jax_experimental/__init__.py +14 -0
  69. warp/_src/jax_experimental/custom_call.py +387 -0
  70. warp/_src/jax_experimental/ffi.py +1284 -0
  71. warp/_src/jax_experimental/xla_ffi.py +656 -0
  72. warp/_src/marching_cubes.py +708 -0
  73. warp/_src/math.py +414 -0
  74. warp/_src/optim/__init__.py +14 -0
  75. warp/_src/optim/adam.py +163 -0
  76. warp/_src/optim/linear.py +1606 -0
  77. warp/_src/optim/sgd.py +112 -0
  78. warp/_src/paddle.py +406 -0
  79. warp/_src/render/__init__.py +14 -0
  80. warp/_src/render/imgui_manager.py +289 -0
  81. warp/_src/render/render_opengl.py +3636 -0
  82. warp/_src/render/render_usd.py +937 -0
  83. warp/_src/render/utils.py +160 -0
  84. warp/_src/sparse.py +2716 -0
  85. warp/_src/tape.py +1206 -0
  86. warp/{thirdparty → _src/thirdparty}/unittest_parallel.py +9 -2
  87. warp/_src/torch.py +391 -0
  88. warp/_src/types.py +5870 -0
  89. warp/_src/utils.py +1693 -0
  90. warp/autograd.py +12 -1054
  91. warp/bin/warp-clang.dll +0 -0
  92. warp/bin/warp.dll +0 -0
  93. warp/build.py +8 -588
  94. warp/build_dll.py +6 -471
  95. warp/codegen.py +6 -4246
  96. warp/constants.py +6 -39
  97. warp/context.py +12 -7851
  98. warp/dlpack.py +6 -444
  99. warp/examples/distributed/example_jacobi_mpi.py +4 -5
  100. warp/examples/fem/example_adaptive_grid.py +1 -1
  101. warp/examples/fem/example_apic_fluid.py +1 -1
  102. warp/examples/fem/example_burgers.py +8 -8
  103. warp/examples/fem/example_diffusion.py +1 -1
  104. warp/examples/fem/example_distortion_energy.py +1 -1
  105. warp/examples/fem/example_mixed_elasticity.py +2 -2
  106. warp/examples/fem/example_navier_stokes.py +1 -1
  107. warp/examples/fem/example_nonconforming_contact.py +7 -7
  108. warp/examples/fem/example_stokes.py +1 -1
  109. warp/examples/fem/example_stokes_transfer.py +1 -1
  110. warp/examples/fem/utils.py +2 -2
  111. warp/examples/interop/example_jax_callable.py +1 -1
  112. warp/examples/interop/example_jax_ffi_callback.py +1 -1
  113. warp/examples/interop/example_jax_kernel.py +3 -2
  114. warp/examples/tile/example_tile_mcgp.py +191 -0
  115. warp/fabric.py +6 -337
  116. warp/fem/__init__.py +159 -97
  117. warp/fem/adaptivity.py +7 -489
  118. warp/fem/cache.py +9 -648
  119. warp/fem/dirichlet.py +6 -184
  120. warp/fem/field/__init__.py +8 -109
  121. warp/fem/field/field.py +7 -652
  122. warp/fem/geometry/__init__.py +7 -18
  123. warp/fem/geometry/closest_point.py +11 -77
  124. warp/fem/linalg.py +18 -366
  125. warp/fem/operator.py +11 -369
  126. warp/fem/polynomial.py +9 -209
  127. warp/fem/space/__init__.py +5 -211
  128. warp/fem/space/basis_space.py +6 -662
  129. warp/fem/space/shape/__init__.py +41 -118
  130. warp/fem/space/topology.py +6 -437
  131. warp/fem/types.py +6 -81
  132. warp/fem/utils.py +11 -444
  133. warp/jax.py +8 -165
  134. warp/jax_experimental/__init__.py +14 -1
  135. warp/jax_experimental/custom_call.py +8 -342
  136. warp/jax_experimental/ffi.py +17 -853
  137. warp/jax_experimental/xla_ffi.py +5 -596
  138. warp/marching_cubes.py +5 -689
  139. warp/math.py +16 -393
  140. warp/native/array.h +385 -37
  141. warp/native/builtin.h +316 -39
  142. warp/native/bvh.cpp +43 -9
  143. warp/native/bvh.cu +62 -27
  144. warp/native/bvh.h +310 -309
  145. warp/native/clang/clang.cpp +102 -97
  146. warp/native/coloring.cpp +0 -1
  147. warp/native/crt.h +208 -0
  148. warp/native/exports.h +156 -0
  149. warp/native/hashgrid.cu +2 -0
  150. warp/native/intersect.h +24 -1
  151. warp/native/intersect_tri.h +44 -35
  152. warp/native/mat.h +1456 -276
  153. warp/native/mesh.cpp +4 -4
  154. warp/native/mesh.cu +4 -2
  155. warp/native/mesh.h +176 -61
  156. warp/native/quat.h +0 -52
  157. warp/native/scan.cu +2 -0
  158. warp/native/sort.cu +22 -13
  159. warp/native/sort.h +2 -0
  160. warp/native/sparse.cu +7 -3
  161. warp/native/spatial.h +12 -0
  162. warp/native/tile.h +837 -70
  163. warp/native/tile_radix_sort.h +1 -1
  164. warp/native/tile_reduce.h +394 -46
  165. warp/native/tile_scan.h +4 -4
  166. warp/native/vec.h +469 -53
  167. warp/native/version.h +23 -0
  168. warp/native/volume.cpp +1 -1
  169. warp/native/volume.cu +1 -0
  170. warp/native/volume.h +1 -1
  171. warp/native/volume_builder.cu +2 -0
  172. warp/native/warp.cpp +60 -32
  173. warp/native/warp.cu +313 -201
  174. warp/native/warp.h +14 -11
  175. warp/optim/__init__.py +6 -3
  176. warp/optim/adam.py +6 -145
  177. warp/optim/linear.py +14 -1585
  178. warp/optim/sgd.py +6 -94
  179. warp/paddle.py +6 -388
  180. warp/render/__init__.py +8 -4
  181. warp/render/imgui_manager.py +7 -267
  182. warp/render/render_opengl.py +6 -3616
  183. warp/render/render_usd.py +6 -918
  184. warp/render/utils.py +6 -142
  185. warp/sparse.py +37 -2563
  186. warp/tape.py +6 -1188
  187. warp/tests/__main__.py +1 -1
  188. warp/tests/cuda/test_async.py +4 -4
  189. warp/tests/cuda/test_conditional_captures.py +1 -1
  190. warp/tests/cuda/test_multigpu.py +1 -1
  191. warp/tests/cuda/test_streams.py +58 -1
  192. warp/tests/geometry/test_bvh.py +157 -22
  193. warp/tests/geometry/test_hash_grid.py +38 -0
  194. warp/tests/geometry/test_marching_cubes.py +0 -1
  195. warp/tests/geometry/test_mesh.py +5 -3
  196. warp/tests/geometry/test_mesh_query_aabb.py +5 -12
  197. warp/tests/geometry/test_mesh_query_point.py +5 -2
  198. warp/tests/geometry/test_mesh_query_ray.py +15 -3
  199. warp/tests/geometry/test_volume_write.py +5 -5
  200. warp/tests/interop/test_dlpack.py +14 -14
  201. warp/tests/interop/test_jax.py +1382 -79
  202. warp/tests/interop/test_paddle.py +1 -1
  203. warp/tests/test_adam.py +0 -1
  204. warp/tests/test_arithmetic.py +9 -9
  205. warp/tests/test_array.py +529 -100
  206. warp/tests/test_array_reduce.py +3 -3
  207. warp/tests/test_atomic.py +12 -8
  208. warp/tests/test_atomic_bitwise.py +209 -0
  209. warp/tests/test_atomic_cas.py +4 -4
  210. warp/tests/test_bool.py +2 -2
  211. warp/tests/test_builtins_resolution.py +5 -571
  212. warp/tests/test_codegen.py +34 -15
  213. warp/tests/test_conditional.py +1 -1
  214. warp/tests/test_context.py +6 -6
  215. warp/tests/test_copy.py +242 -161
  216. warp/tests/test_ctypes.py +3 -3
  217. warp/tests/test_devices.py +24 -2
  218. warp/tests/test_examples.py +16 -84
  219. warp/tests/test_fabricarray.py +35 -35
  220. warp/tests/test_fast_math.py +0 -2
  221. warp/tests/test_fem.py +60 -14
  222. warp/tests/test_fixedarray.py +3 -3
  223. warp/tests/test_func.py +8 -5
  224. warp/tests/test_generics.py +1 -1
  225. warp/tests/test_indexedarray.py +24 -24
  226. warp/tests/test_intersect.py +39 -9
  227. warp/tests/test_large.py +1 -1
  228. warp/tests/test_lerp.py +3 -1
  229. warp/tests/test_linear_solvers.py +1 -1
  230. warp/tests/test_map.py +49 -4
  231. warp/tests/test_mat.py +52 -62
  232. warp/tests/test_mat_constructors.py +4 -5
  233. warp/tests/test_mat_lite.py +1 -1
  234. warp/tests/test_mat_scalar_ops.py +121 -121
  235. warp/tests/test_math.py +34 -0
  236. warp/tests/test_module_aot.py +4 -4
  237. warp/tests/test_modules_lite.py +28 -2
  238. warp/tests/test_print.py +11 -11
  239. warp/tests/test_quat.py +93 -58
  240. warp/tests/test_runlength_encode.py +1 -1
  241. warp/tests/test_scalar_ops.py +38 -10
  242. warp/tests/test_smoothstep.py +1 -1
  243. warp/tests/test_sparse.py +126 -15
  244. warp/tests/test_spatial.py +105 -87
  245. warp/tests/test_special_values.py +6 -6
  246. warp/tests/test_static.py +7 -7
  247. warp/tests/test_struct.py +13 -2
  248. warp/tests/test_triangle_closest_point.py +48 -1
  249. warp/tests/test_tuple.py +96 -0
  250. warp/tests/test_types.py +82 -9
  251. warp/tests/test_utils.py +52 -52
  252. warp/tests/test_vec.py +29 -29
  253. warp/tests/test_vec_constructors.py +5 -5
  254. warp/tests/test_vec_scalar_ops.py +97 -97
  255. warp/tests/test_version.py +75 -0
  256. warp/tests/tile/test_tile.py +239 -0
  257. warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
  258. warp/tests/tile/test_tile_cholesky.py +7 -4
  259. warp/tests/tile/test_tile_load.py +26 -2
  260. warp/tests/tile/test_tile_mathdx.py +3 -3
  261. warp/tests/tile/test_tile_matmul.py +1 -1
  262. warp/tests/tile/test_tile_mlp.py +2 -4
  263. warp/tests/tile/test_tile_reduce.py +214 -13
  264. warp/tests/unittest_suites.py +6 -14
  265. warp/tests/unittest_utils.py +10 -9
  266. warp/tests/walkthrough_debug.py +3 -1
  267. warp/torch.py +6 -373
  268. warp/types.py +29 -5750
  269. warp/utils.py +10 -1659
  270. {warp_lang-1.9.0.dist-info → warp_lang-1.10.0rc2.dist-info}/METADATA +47 -103
  271. warp_lang-1.10.0rc2.dist-info/RECORD +468 -0
  272. warp_lang-1.10.0rc2.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
  273. warp_lang-1.10.0rc2.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
  274. warp_lang-1.10.0rc2.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
  275. warp_lang-1.10.0rc2.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
  276. warp_lang-1.10.0rc2.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
  277. warp_lang-1.10.0rc2.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
  278. warp_lang-1.10.0rc2.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
  279. warp_lang-1.10.0rc2.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
  280. warp_lang-1.10.0rc2.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
  281. warp_lang-1.10.0rc2.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
  282. warp_lang-1.10.0rc2.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
  283. warp_lang-1.10.0rc2.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
  284. warp_lang-1.10.0rc2.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
  285. warp_lang-1.10.0rc2.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
  286. warp_lang-1.10.0rc2.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
  287. warp/examples/assets/cartpole.urdf +0 -110
  288. warp/examples/assets/crazyflie.usd +0 -0
  289. warp/examples/assets/nv_ant.xml +0 -92
  290. warp/examples/assets/nv_humanoid.xml +0 -183
  291. warp/examples/assets/quadruped.urdf +0 -268
  292. warp/examples/optim/example_bounce.py +0 -266
  293. warp/examples/optim/example_cloth_throw.py +0 -228
  294. warp/examples/optim/example_drone.py +0 -870
  295. warp/examples/optim/example_inverse_kinematics.py +0 -182
  296. warp/examples/optim/example_inverse_kinematics_torch.py +0 -191
  297. warp/examples/optim/example_softbody_properties.py +0 -400
  298. warp/examples/optim/example_spring_cage.py +0 -245
  299. warp/examples/optim/example_trajectory.py +0 -227
  300. warp/examples/sim/example_cartpole.py +0 -143
  301. warp/examples/sim/example_cloth.py +0 -225
  302. warp/examples/sim/example_cloth_self_contact.py +0 -316
  303. warp/examples/sim/example_granular.py +0 -130
  304. warp/examples/sim/example_granular_collision_sdf.py +0 -202
  305. warp/examples/sim/example_jacobian_ik.py +0 -244
  306. warp/examples/sim/example_particle_chain.py +0 -124
  307. warp/examples/sim/example_quadruped.py +0 -203
  308. warp/examples/sim/example_rigid_chain.py +0 -203
  309. warp/examples/sim/example_rigid_contact.py +0 -195
  310. warp/examples/sim/example_rigid_force.py +0 -133
  311. warp/examples/sim/example_rigid_gyroscopic.py +0 -115
  312. warp/examples/sim/example_rigid_soft_contact.py +0 -140
  313. warp/examples/sim/example_soft_body.py +0 -196
  314. warp/examples/tile/example_tile_walker.py +0 -327
  315. warp/sim/__init__.py +0 -74
  316. warp/sim/articulation.py +0 -793
  317. warp/sim/collide.py +0 -2570
  318. warp/sim/graph_coloring.py +0 -307
  319. warp/sim/import_mjcf.py +0 -791
  320. warp/sim/import_snu.py +0 -227
  321. warp/sim/import_urdf.py +0 -579
  322. warp/sim/import_usd.py +0 -898
  323. warp/sim/inertia.py +0 -357
  324. warp/sim/integrator.py +0 -245
  325. warp/sim/integrator_euler.py +0 -2000
  326. warp/sim/integrator_featherstone.py +0 -2101
  327. warp/sim/integrator_vbd.py +0 -2487
  328. warp/sim/integrator_xpbd.py +0 -3295
  329. warp/sim/model.py +0 -4821
  330. warp/sim/particles.py +0 -121
  331. warp/sim/render.py +0 -431
  332. warp/sim/utils.py +0 -431
  333. warp/tests/sim/disabled_kinematics.py +0 -244
  334. warp/tests/sim/test_cloth.py +0 -863
  335. warp/tests/sim/test_collision.py +0 -743
  336. warp/tests/sim/test_coloring.py +0 -347
  337. warp/tests/sim/test_inertia.py +0 -161
  338. warp/tests/sim/test_model.py +0 -226
  339. warp/tests/sim/test_sim_grad.py +0 -287
  340. warp/tests/sim/test_sim_grad_bounce_linear.py +0 -212
  341. warp/tests/sim/test_sim_kinematics.py +0 -98
  342. warp/thirdparty/__init__.py +0 -0
  343. warp_lang-1.9.0.dist-info/RECORD +0 -456
  344. /warp/{fem → _src/fem}/quadrature/__init__.py +0 -0
  345. /warp/{tests/sim → _src/thirdparty}/__init__.py +0 -0
  346. /warp/{thirdparty → _src/thirdparty}/appdirs.py +0 -0
  347. /warp/{thirdparty → _src/thirdparty}/dlpack.py +0 -0
  348. {warp_lang-1.9.0.dist-info → warp_lang-1.10.0rc2.dist-info}/WHEEL +0 -0
  349. {warp_lang-1.9.0.dist-info → warp_lang-1.10.0rc2.dist-info}/licenses/LICENSE.md +0 -0
  350. {warp_lang-1.9.0.dist-info → warp_lang-1.10.0rc2.dist-info}/top_level.txt +0 -0
warp/jax.py CHANGED
@@ -1,4 +1,4 @@
1
- # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
2
  # SPDX-License-Identifier: Apache-2.0
3
3
  #
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -13,174 +13,17 @@
13
13
  # See the License for the specific language governing permissions and
14
14
  # limitations under the License.
15
15
 
16
- import warp
16
+ # isort: skip_file
17
17
 
18
+ from warp._src.jax import get_jax_device as get_jax_device
18
19
 
19
- def device_to_jax(warp_device: warp.context.Devicelike):
20
- """Return the Jax device corresponding to a Warp device.
21
20
 
22
- Returns:
23
- :class:`jax.Device`
21
+ # TODO: Remove after cleaning up the public API.
24
22
 
25
- Raises:
26
- RuntimeError: Failed to find the corresponding Jax device.
27
- """
28
- import jax
23
+ from warp._src import jax as _jax
29
24
 
30
- d = warp.get_device(warp_device)
31
25
 
32
- if d.is_cuda:
33
- cuda_devices = jax.devices("cuda")
34
- if d.ordinal >= len(cuda_devices):
35
- raise RuntimeError(f"Jax device corresponding to '{warp_device}' is not available")
36
- return cuda_devices[d.ordinal]
37
- else:
38
- cpu_devices = jax.devices("cpu")
39
- if not cpu_devices:
40
- raise RuntimeError(f"Jax device corresponding to '{warp_device}' is not available")
41
- return cpu_devices[0]
26
+ def __getattr__(name):
27
+ from warp._src.utils import get_deprecated_api
42
28
 
43
-
44
- def device_from_jax(jax_device) -> warp.context.Device:
45
- """Return the Warp device corresponding to a Jax device.
46
-
47
- Args:
48
- jax_device (jax.Device): A Jax device descriptor.
49
-
50
- Raises:
51
- RuntimeError: The Jax device is neither a CPU nor GPU device.
52
- """
53
- if jax_device.platform == "cpu":
54
- return warp.get_device("cpu")
55
- elif jax_device.platform == "gpu":
56
- return warp.get_cuda_device(jax_device.id)
57
- else:
58
- raise RuntimeError(f"Unsupported Jax device platform '{jax_device.platform}'")
59
-
60
-
61
- def get_jax_device():
62
- """Get the current Jax device."""
63
- import jax
64
-
65
- # TODO: is there a simpler way of getting the Jax "current" device?
66
- # check if jax.default_device() context manager is active
67
- device = jax.config.jax_default_device
68
- # if default device is not set, use first device
69
- if device is None:
70
- device = jax.local_devices()[0]
71
- return device
72
-
73
-
74
- def dtype_to_jax(warp_dtype):
75
- """Return the Jax dtype corresponding to a Warp dtype.
76
-
77
- Args:
78
- warp_dtype: A Warp data type that has a corresponding Jax data type.
79
-
80
- Raises:
81
- TypeError: Unable to find a corresponding Jax data type.
82
- """
83
- # initialize lookup table on first call to defer jax import
84
- if dtype_to_jax.type_map is None:
85
- import jax.numpy as jp
86
-
87
- dtype_to_jax.type_map = {
88
- warp.float16: jp.float16,
89
- warp.float32: jp.float32,
90
- warp.float64: jp.float64,
91
- warp.int8: jp.int8,
92
- warp.int16: jp.int16,
93
- warp.int32: jp.int32,
94
- warp.int64: jp.int64,
95
- warp.uint8: jp.uint8,
96
- warp.uint16: jp.uint16,
97
- warp.uint32: jp.uint32,
98
- warp.uint64: jp.uint64,
99
- warp.bool: jp.bool_,
100
- }
101
-
102
- jax_dtype = dtype_to_jax.type_map.get(warp_dtype)
103
- if jax_dtype is not None:
104
- return jax_dtype
105
- else:
106
- raise TypeError(f"Cannot convert {warp_dtype} to a Jax type")
107
-
108
-
109
- def dtype_from_jax(jax_dtype):
110
- """Return the Warp dtype corresponding to a Jax dtype.
111
-
112
- Raises:
113
- TypeError: Unable to find a corresponding Warp data type.
114
- """
115
- # initialize lookup table on first call to defer jax import
116
- if dtype_from_jax.type_map is None:
117
- import jax.numpy as jp
118
-
119
- dtype_from_jax.type_map = {
120
- # Jax scalar types
121
- jp.float16: warp.float16,
122
- jp.float32: warp.float32,
123
- jp.float64: warp.float64,
124
- jp.int8: warp.int8,
125
- jp.int16: warp.int16,
126
- jp.int32: warp.int32,
127
- jp.int64: warp.int64,
128
- jp.uint8: warp.uint8,
129
- jp.uint16: warp.uint16,
130
- jp.uint32: warp.uint32,
131
- jp.uint64: warp.uint64,
132
- jp.bool_: warp.bool,
133
- # Jax dtype objects
134
- jp.dtype(jp.float16): warp.float16,
135
- jp.dtype(jp.float32): warp.float32,
136
- jp.dtype(jp.float64): warp.float64,
137
- jp.dtype(jp.int8): warp.int8,
138
- jp.dtype(jp.int16): warp.int16,
139
- jp.dtype(jp.int32): warp.int32,
140
- jp.dtype(jp.int64): warp.int64,
141
- jp.dtype(jp.uint8): warp.uint8,
142
- jp.dtype(jp.uint16): warp.uint16,
143
- jp.dtype(jp.uint32): warp.uint32,
144
- jp.dtype(jp.uint64): warp.uint64,
145
- jp.dtype(jp.bool_): warp.bool,
146
- }
147
-
148
- wp_dtype = dtype_from_jax.type_map.get(jax_dtype)
149
- if wp_dtype is not None:
150
- return wp_dtype
151
- else:
152
- raise TypeError(f"Cannot convert {jax_dtype} to a Warp type")
153
-
154
-
155
- # lookup tables initialized when needed
156
- dtype_from_jax.type_map = None
157
- dtype_to_jax.type_map = None
158
-
159
-
160
- def to_jax(warp_array):
161
- """
162
- Convert a Warp array to a Jax array without copying the data.
163
-
164
- Args:
165
- warp_array (warp.array): The Warp array to convert.
166
-
167
- Returns:
168
- jax.Array: The converted Jax array.
169
- """
170
- import jax.dlpack
171
-
172
- return jax.dlpack.from_dlpack(warp_array)
173
-
174
-
175
- def from_jax(jax_array, dtype=None) -> warp.array:
176
- """Convert a Jax array to a Warp array without copying the data.
177
-
178
- Args:
179
- jax_array (jax.Array): The Jax array to convert.
180
- dtype (optional): The target data type of the resulting Warp array. Defaults to the Jax array's data type mapped to a Warp data type.
181
-
182
- Returns:
183
- warp.array: The converted Warp array.
184
- """
185
-
186
- return warp.from_dlpack(jax_array, dtype=dtype)
29
+ return get_deprecated_api(_jax, "wp", name)
@@ -13,4 +13,17 @@
13
13
  # See the License for the specific language governing permissions and
14
14
  # limitations under the License.
15
15
 
16
- from .custom_call import jax_kernel
16
+ # isort: skip_file
17
+
18
+ from warp._src.jax_experimental.ffi import GraphMode as GraphMode
19
+ from warp._src.jax_experimental.ffi import jax_kernel as jax_kernel
20
+ from warp._src.jax_experimental.ffi import jax_callable as jax_callable
21
+ from warp._src.jax_experimental.ffi import register_ffi_callback as register_ffi_callback
22
+
23
+ from warp._src.jax_experimental.ffi import (
24
+ get_jax_callable_default_graph_cache_max as get_jax_callable_default_graph_cache_max,
25
+ )
26
+ from warp._src.jax_experimental.ffi import (
27
+ set_jax_callable_default_graph_cache_max as set_jax_callable_default_graph_cache_max,
28
+ )
29
+ from warp._src.jax_experimental.ffi import clear_jax_callable_graph_cache as clear_jax_callable_graph_cache
@@ -1,4 +1,4 @@
1
- # SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
2
  # SPDX-License-Identifier: Apache-2.0
3
3
  #
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -13,351 +13,17 @@
13
13
  # See the License for the specific language governing permissions and
14
14
  # limitations under the License.
15
15
 
16
- import ctypes
16
+ # isort: skip_file
17
17
 
18
- import warp as wp
19
- from warp.context import type_str
20
- from warp.jax import get_jax_device
21
- from warp.types import array_t, launch_bounds_t, strides_from_shape
18
+ from warp._src.jax_experimental.custom_call import jax_kernel as jax_kernel
22
19
 
23
- _jax_warp_p = None
24
20
 
25
- # Holder for the custom callback to keep it alive.
26
- _cc_callback = None
27
- _registered_kernels = [None]
28
- _registered_kernel_to_id = {}
21
+ # TODO: Remove after cleaning up the public API.
29
22
 
23
+ from warp._src.jax_experimental import custom_call as _custom_call
30
24
 
31
- def jax_kernel(kernel, launch_dims=None):
32
- """Create a Jax primitive from a Warp kernel.
33
25
 
34
- NOTE: This is an experimental feature under development.
26
+ def __getattr__(name):
27
+ from warp._src.utils import get_deprecated_api
35
28
 
36
- Args:
37
- kernel: The Warp kernel to be wrapped.
38
- launch_dims: Optional. Specify the kernel launch dimensions. If None,
39
- dimensions are inferred from the shape of the first argument.
40
- This option when set will specify the output dimensions.
41
-
42
- Limitations:
43
- - All kernel arguments must be contiguous arrays.
44
- - Input arguments are followed by output arguments in the Warp kernel definition.
45
- - There must be at least one input argument and at least one output argument.
46
- - Only the CUDA backend is supported.
47
- """
48
-
49
- if _jax_warp_p is None:
50
- # Create and register the primitive
51
- _create_jax_warp_primitive()
52
- if kernel not in _registered_kernel_to_id:
53
- id = len(_registered_kernels)
54
- _registered_kernels.append(kernel)
55
- _registered_kernel_to_id[kernel] = id
56
- else:
57
- id = _registered_kernel_to_id[kernel]
58
-
59
- def bind(*args):
60
- return _jax_warp_p.bind(*args, kernel=id, launch_dims=launch_dims)
61
-
62
- return bind
63
-
64
-
65
- def _warp_custom_callback(stream, buffers, opaque, opaque_len):
66
- # The descriptor is the form
67
- # <kernel-id>|<launch-dims>|<arg-dims-list>
68
- # Example: 42|16,32|16,32;100;16,32
69
- kernel_id_str, dim_str, args_str = opaque.decode().split("|")
70
-
71
- # Get the kernel from the registry.
72
- kernel_id = int(kernel_id_str)
73
- kernel = _registered_kernels[kernel_id]
74
-
75
- # Parse launch dimensions.
76
- dims = [int(d) for d in dim_str.split(",")]
77
- bounds = launch_bounds_t(dims)
78
-
79
- # Parse arguments.
80
- arg_strings = args_str.split(";")
81
- num_args = len(arg_strings)
82
- assert num_args == len(kernel.adj.args), "Incorrect number of arguments"
83
-
84
- # First param is the launch bounds.
85
- kernel_params = (ctypes.c_void_p * (1 + num_args))()
86
- kernel_params[0] = ctypes.addressof(bounds)
87
-
88
- # Parse array descriptors.
89
- args = []
90
- for i in range(num_args):
91
- dtype = kernel.adj.args[i].type.dtype
92
- shape = [int(d) for d in arg_strings[i].split(",")]
93
- strides = strides_from_shape(shape, dtype)
94
-
95
- arr = array_t(buffers[i], 0, len(shape), shape, strides)
96
- args.append(arr) # keep a reference
97
- arg_ptr = ctypes.addressof(arr)
98
-
99
- kernel_params[i + 1] = arg_ptr
100
-
101
- # Get current device.
102
- device = wp.device_from_jax(get_jax_device())
103
-
104
- # Get kernel hooks.
105
- # Note: module was loaded during jit lowering.
106
- hooks = kernel.module.get_kernel_hooks(kernel, device)
107
- assert hooks.forward, "Failed to find kernel entry point"
108
-
109
- # Launch the kernel.
110
- wp.context.runtime.core.wp_cuda_launch_kernel(
111
- device.context, hooks.forward, bounds.size, 0, 256, hooks.forward_smem_bytes, kernel_params, stream
112
- )
113
-
114
-
115
- def _create_jax_warp_primitive():
116
- from functools import reduce
117
-
118
- import jax
119
- from jax._src.interpreters import batching
120
- from jax.interpreters import mlir
121
- from jax.interpreters.mlir import ir
122
- from jaxlib.hlo_helpers import custom_call
123
-
124
- global _jax_warp_p
125
- global _cc_callback
126
-
127
- # Create and register the primitive.
128
- # TODO add default implementation that calls the kernel via warp.
129
- try:
130
- # newer JAX versions
131
- import jax.extend
132
-
133
- _jax_warp_p = jax.extend.core.Primitive("jax_warp")
134
- except (ImportError, AttributeError):
135
- # older JAX versions
136
- _jax_warp_p = jax.core.Primitive("jax_warp")
137
- _jax_warp_p.multiple_results = True
138
-
139
- # TODO Just launch the kernel directly, but make sure the argument
140
- # shapes are massaged the same way as below so that vmap works.
141
- def impl(*args):
142
- raise Exception("Not implemented")
143
-
144
- _jax_warp_p.def_impl(impl)
145
-
146
- # Auto-batching. Make sure all the arguments are fully broadcasted
147
- # so that Warp is not confused about dimensions.
148
- def vectorized_multi_batcher(args, dims, **params):
149
- # Figure out the number of outputs.
150
- wp_kernel = _registered_kernels[params["kernel"]]
151
- output_count = len(wp_kernel.adj.args) - len(args)
152
- shape, dim = next((a.shape, d) for a, d in zip(args, dims) if d is not None)
153
- size = shape[dim]
154
- args = [batching.bdim_at_front(a, d, size) if len(a.shape) else a for a, d in zip(args, dims)]
155
- # Create the batched primitive.
156
- return _jax_warp_p.bind(*args, **params), [dims[0]] * output_count
157
-
158
- batching.primitive_batchers[_jax_warp_p] = vectorized_multi_batcher
159
-
160
- def get_vecmat_shape(warp_type):
161
- if hasattr(warp_type.dtype, "_shape_"):
162
- return warp_type.dtype._shape_
163
- return []
164
-
165
- def strip_vecmat_dimensions(warp_arg, actual_shape):
166
- shape = get_vecmat_shape(warp_arg.type)
167
- for i, s in enumerate(reversed(shape)):
168
- item = actual_shape[-i - 1]
169
- if s != item:
170
- raise Exception(f"The vector/matrix shape for argument {warp_arg.label} does not match")
171
- return actual_shape[: len(actual_shape) - len(shape)]
172
-
173
- def collapse_into_leading_dimension(warp_arg, actual_shape):
174
- if len(actual_shape) < warp_arg.type.ndim:
175
- raise Exception(f"Argument {warp_arg.label} has too few non-matrix/vector dimensions")
176
- index_rest = len(actual_shape) - warp_arg.type.ndim + 1
177
- leading_size = reduce(lambda x, y: x * y, actual_shape[:index_rest])
178
- return [leading_size] + actual_shape[index_rest:]
179
-
180
- # Infer array dimensions from input type.
181
- def infer_dimensions(warp_arg, actual_shape):
182
- actual_shape = strip_vecmat_dimensions(warp_arg, actual_shape)
183
- return collapse_into_leading_dimension(warp_arg, actual_shape)
184
-
185
- def base_type_to_jax(warp_dtype):
186
- if hasattr(warp_dtype, "_wp_scalar_type_"):
187
- return wp.dtype_to_jax(warp_dtype._wp_scalar_type_)
188
- return wp.dtype_to_jax(warp_dtype)
189
-
190
- def base_type_to_jax_ir(warp_dtype):
191
- warp_to_jax_dict = {
192
- wp.float16: ir.F16Type.get(),
193
- wp.float32: ir.F32Type.get(),
194
- wp.float64: ir.F64Type.get(),
195
- wp.int8: ir.IntegerType.get_signless(8),
196
- wp.int16: ir.IntegerType.get_signless(16),
197
- wp.int32: ir.IntegerType.get_signless(32),
198
- wp.int64: ir.IntegerType.get_signless(64),
199
- wp.uint8: ir.IntegerType.get_unsigned(8),
200
- wp.uint16: ir.IntegerType.get_unsigned(16),
201
- wp.uint32: ir.IntegerType.get_unsigned(32),
202
- wp.uint64: ir.IntegerType.get_unsigned(64),
203
- }
204
- if hasattr(warp_dtype, "_wp_scalar_type_"):
205
- warp_dtype = warp_dtype._wp_scalar_type_
206
- jax_dtype = warp_to_jax_dict.get(warp_dtype)
207
- if jax_dtype is None:
208
- raise TypeError(f"Invalid or unsupported data type: {warp_dtype}")
209
- return jax_dtype
210
-
211
- def base_type_is_compatible(warp_type, jax_ir_type):
212
- jax_ir_to_warp = {
213
- "f16": wp.float16,
214
- "f32": wp.float32,
215
- "f64": wp.float64,
216
- "i8": wp.int8,
217
- "i16": wp.int16,
218
- "i32": wp.int32,
219
- "i64": wp.int64,
220
- "ui8": wp.uint8,
221
- "ui16": wp.uint16,
222
- "ui32": wp.uint32,
223
- "ui64": wp.uint64,
224
- }
225
- expected_warp_type = jax_ir_to_warp.get(str(jax_ir_type))
226
- if expected_warp_type is not None:
227
- if hasattr(warp_type, "_wp_scalar_type_"):
228
- return warp_type._wp_scalar_type_ == expected_warp_type
229
- else:
230
- return warp_type == expected_warp_type
231
- else:
232
- raise TypeError(f"Invalid or unsupported data type: {jax_ir_type}")
233
-
234
- # Abstract evaluation.
235
- def jax_warp_abstract(*args, kernel=None, launch_dims=None):
236
- wp_kernel = _registered_kernels[kernel]
237
- # All the extra arguments to the warp kernel are outputs.
238
- warp_outputs = [o.type for o in wp_kernel.adj.args[len(args) :]]
239
-
240
- if launch_dims is None:
241
- # Use the first input dimension to infer the output's dimensions if launch_dims is not provided
242
- dims = strip_vecmat_dimensions(wp_kernel.adj.args[0], list(args[0].shape))
243
- else:
244
- dims = launch_dims
245
-
246
- jax_outputs = []
247
- for o in warp_outputs:
248
- shape = list(dims) + list(get_vecmat_shape(o))
249
- dtype = base_type_to_jax(o.dtype)
250
- jax_outputs.append(jax.core.ShapedArray(shape, dtype))
251
- return jax_outputs
252
-
253
- _jax_warp_p.def_abstract_eval(jax_warp_abstract)
254
-
255
- # Lowering to MLIR.
256
-
257
- # Create python-land custom call target.
258
- CCALLFUNC = ctypes.CFUNCTYPE(
259
- ctypes.c_voidp, ctypes.c_void_p, ctypes.POINTER(ctypes.c_void_p), ctypes.c_char_p, ctypes.c_size_t
260
- )
261
- _cc_callback = CCALLFUNC(_warp_custom_callback)
262
- ccall_address = ctypes.cast(_cc_callback, ctypes.c_void_p)
263
-
264
- # Put the custom call into a capsule, as required by XLA.
265
- PyCapsule_Destructor = ctypes.CFUNCTYPE(None, ctypes.py_object)
266
- PyCapsule_New = ctypes.pythonapi.PyCapsule_New
267
- PyCapsule_New.restype = ctypes.py_object
268
- PyCapsule_New.argtypes = (ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor)
269
- capsule = PyCapsule_New(ccall_address.value, b"xla._CUSTOM_CALL_TARGET", PyCapsule_Destructor(0))
270
-
271
- # Register the callback in XLA.
272
- try:
273
- # newer JAX versions
274
- jax.ffi.register_ffi_target("warp_call", capsule, platform="gpu", api_version=0)
275
- except AttributeError:
276
- # older JAX versions
277
- jax.lib.xla_client.register_custom_call_target("warp_call", capsule, platform="gpu")
278
-
279
- def default_layout(shape):
280
- return range(len(shape) - 1, -1, -1)
281
-
282
- def warp_call_lowering(ctx, *args, kernel=None, launch_dims=None):
283
- if not kernel:
284
- raise Exception("Unknown kernel id " + str(kernel))
285
- wp_kernel = _registered_kernels[kernel]
286
-
287
- # TODO This may not be necessary, but it is perhaps better not to be
288
- # mucking with kernel loading while already running the workload.
289
- module = wp_kernel.module
290
- device = wp.device_from_jax(get_jax_device())
291
- if not module.load(device):
292
- raise Exception("Could not load kernel on device")
293
-
294
- if launch_dims is None:
295
- # Infer dimensions from the first input.
296
- warp_arg0 = wp_kernel.adj.args[0]
297
- actual_shape0 = ir.RankedTensorType(args[0].type).shape
298
- dims = strip_vecmat_dimensions(warp_arg0, actual_shape0)
299
- warp_dims = collapse_into_leading_dimension(warp_arg0, dims)
300
- else:
301
- dims = launch_dims
302
- warp_dims = launch_dims
303
- # Figure out the types and shapes of the input arrays.
304
- arg_strings = []
305
- operand_layouts = []
306
- for actual, warg in zip(args, wp_kernel.adj.args):
307
- wtype = warg.type
308
- rtt = ir.RankedTensorType(actual.type)
309
-
310
- if not isinstance(wtype, wp.array):
311
- raise Exception("Only contiguous arrays are supported for Jax kernel arguments")
312
-
313
- if not base_type_is_compatible(wtype.dtype, rtt.element_type):
314
- raise TypeError(
315
- f"Incompatible data type for argument '{warg.label}', expected {type_str(wtype.dtype)}, got {rtt.element_type}"
316
- )
317
-
318
- # Infer array dimension (by removing the vector/matrix dimensions and
319
- # collapsing the initial dimensions).
320
- shape = infer_dimensions(warg, rtt.shape)
321
-
322
- if len(shape) != wtype.ndim:
323
- raise TypeError(f"Incompatible array dimensionality for argument '{warg.label}'")
324
-
325
- arg_strings.append(",".join([str(d) for d in shape]))
326
- operand_layouts.append(default_layout(rtt.shape))
327
-
328
- # Figure out the types and shapes of the output arrays.
329
- result_types = []
330
- result_layouts = []
331
- for warg in wp_kernel.adj.args[len(args) :]:
332
- wtype = warg.type
333
-
334
- if not isinstance(wtype, wp.array):
335
- raise Exception("Only contiguous arrays are supported for Jax kernel arguments")
336
-
337
- # Infer dimensions from the first input.
338
- arg_strings.append(",".join([str(d) for d in warp_dims]))
339
-
340
- result_shape = list(dims) + list(get_vecmat_shape(wtype))
341
- result_types.append(ir.RankedTensorType.get(result_shape, base_type_to_jax_ir(wtype.dtype)))
342
- result_layouts.append(default_layout(result_shape))
343
-
344
- # Build opaque descriptor for callback.
345
- shape_str = ",".join([str(d) for d in warp_dims])
346
- args_str = ";".join(arg_strings)
347
- descriptor = f"{kernel}|{shape_str}|{args_str}"
348
-
349
- out = custom_call(
350
- b"warp_call",
351
- result_types=result_types,
352
- operands=args,
353
- backend_config=descriptor.encode("utf-8"),
354
- operand_layouts=operand_layouts,
355
- result_layouts=result_layouts,
356
- ).results
357
- return out
358
-
359
- mlir.register_lowering(
360
- _jax_warp_p,
361
- warp_call_lowering,
362
- platform="gpu",
363
- )
29
+ return get_deprecated_api(_custom_call, "wp.jax_experimental", name)