warp-lang 1.9.0__py3-none-win_amd64.whl → 1.10.0rc2__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (350) hide show
  1. warp/__init__.py +301 -287
  2. warp/__init__.pyi +2220 -313
  3. warp/_src/__init__.py +14 -0
  4. warp/_src/autograd.py +1075 -0
  5. warp/_src/build.py +618 -0
  6. warp/_src/build_dll.py +640 -0
  7. warp/{builtins.py → _src/builtins.py} +1497 -226
  8. warp/_src/codegen.py +4359 -0
  9. warp/{config.py → _src/config.py} +178 -169
  10. warp/_src/constants.py +57 -0
  11. warp/_src/context.py +8294 -0
  12. warp/_src/dlpack.py +462 -0
  13. warp/_src/fabric.py +355 -0
  14. warp/_src/fem/__init__.py +14 -0
  15. warp/_src/fem/adaptivity.py +508 -0
  16. warp/_src/fem/cache.py +687 -0
  17. warp/_src/fem/dirichlet.py +188 -0
  18. warp/{fem → _src/fem}/domain.py +40 -30
  19. warp/_src/fem/field/__init__.py +131 -0
  20. warp/_src/fem/field/field.py +701 -0
  21. warp/{fem → _src/fem}/field/nodal_field.py +30 -15
  22. warp/{fem → _src/fem}/field/restriction.py +1 -1
  23. warp/{fem → _src/fem}/field/virtual.py +53 -27
  24. warp/_src/fem/geometry/__init__.py +32 -0
  25. warp/{fem → _src/fem}/geometry/adaptive_nanogrid.py +77 -163
  26. warp/_src/fem/geometry/closest_point.py +97 -0
  27. warp/{fem → _src/fem}/geometry/deformed_geometry.py +14 -22
  28. warp/{fem → _src/fem}/geometry/element.py +32 -10
  29. warp/{fem → _src/fem}/geometry/geometry.py +48 -20
  30. warp/{fem → _src/fem}/geometry/grid_2d.py +12 -23
  31. warp/{fem → _src/fem}/geometry/grid_3d.py +12 -23
  32. warp/{fem → _src/fem}/geometry/hexmesh.py +40 -63
  33. warp/{fem → _src/fem}/geometry/nanogrid.py +255 -248
  34. warp/{fem → _src/fem}/geometry/partition.py +121 -63
  35. warp/{fem → _src/fem}/geometry/quadmesh.py +26 -45
  36. warp/{fem → _src/fem}/geometry/tetmesh.py +40 -63
  37. warp/{fem → _src/fem}/geometry/trimesh.py +26 -45
  38. warp/{fem → _src/fem}/integrate.py +164 -158
  39. warp/_src/fem/linalg.py +383 -0
  40. warp/_src/fem/operator.py +396 -0
  41. warp/_src/fem/polynomial.py +229 -0
  42. warp/{fem → _src/fem}/quadrature/pic_quadrature.py +15 -20
  43. warp/{fem → _src/fem}/quadrature/quadrature.py +95 -47
  44. warp/_src/fem/space/__init__.py +248 -0
  45. warp/{fem → _src/fem}/space/basis_function_space.py +20 -11
  46. warp/_src/fem/space/basis_space.py +679 -0
  47. warp/{fem → _src/fem}/space/dof_mapper.py +3 -3
  48. warp/{fem → _src/fem}/space/function_space.py +14 -13
  49. warp/{fem → _src/fem}/space/grid_2d_function_space.py +4 -7
  50. warp/{fem → _src/fem}/space/grid_3d_function_space.py +4 -4
  51. warp/{fem → _src/fem}/space/hexmesh_function_space.py +4 -10
  52. warp/{fem → _src/fem}/space/nanogrid_function_space.py +3 -9
  53. warp/{fem → _src/fem}/space/partition.py +117 -60
  54. warp/{fem → _src/fem}/space/quadmesh_function_space.py +4 -10
  55. warp/{fem → _src/fem}/space/restriction.py +66 -33
  56. warp/_src/fem/space/shape/__init__.py +152 -0
  57. warp/{fem → _src/fem}/space/shape/cube_shape_function.py +9 -9
  58. warp/{fem → _src/fem}/space/shape/shape_function.py +8 -9
  59. warp/{fem → _src/fem}/space/shape/square_shape_function.py +6 -6
  60. warp/{fem → _src/fem}/space/shape/tet_shape_function.py +3 -3
  61. warp/{fem → _src/fem}/space/shape/triangle_shape_function.py +3 -3
  62. warp/{fem → _src/fem}/space/tetmesh_function_space.py +3 -9
  63. warp/_src/fem/space/topology.py +459 -0
  64. warp/{fem → _src/fem}/space/trimesh_function_space.py +3 -9
  65. warp/_src/fem/types.py +112 -0
  66. warp/_src/fem/utils.py +486 -0
  67. warp/_src/jax.py +186 -0
  68. warp/_src/jax_experimental/__init__.py +14 -0
  69. warp/_src/jax_experimental/custom_call.py +387 -0
  70. warp/_src/jax_experimental/ffi.py +1284 -0
  71. warp/_src/jax_experimental/xla_ffi.py +656 -0
  72. warp/_src/marching_cubes.py +708 -0
  73. warp/_src/math.py +414 -0
  74. warp/_src/optim/__init__.py +14 -0
  75. warp/_src/optim/adam.py +163 -0
  76. warp/_src/optim/linear.py +1606 -0
  77. warp/_src/optim/sgd.py +112 -0
  78. warp/_src/paddle.py +406 -0
  79. warp/_src/render/__init__.py +14 -0
  80. warp/_src/render/imgui_manager.py +289 -0
  81. warp/_src/render/render_opengl.py +3636 -0
  82. warp/_src/render/render_usd.py +937 -0
  83. warp/_src/render/utils.py +160 -0
  84. warp/_src/sparse.py +2716 -0
  85. warp/_src/tape.py +1206 -0
  86. warp/{thirdparty → _src/thirdparty}/unittest_parallel.py +9 -2
  87. warp/_src/torch.py +391 -0
  88. warp/_src/types.py +5870 -0
  89. warp/_src/utils.py +1693 -0
  90. warp/autograd.py +12 -1054
  91. warp/bin/warp-clang.dll +0 -0
  92. warp/bin/warp.dll +0 -0
  93. warp/build.py +8 -588
  94. warp/build_dll.py +6 -471
  95. warp/codegen.py +6 -4246
  96. warp/constants.py +6 -39
  97. warp/context.py +12 -7851
  98. warp/dlpack.py +6 -444
  99. warp/examples/distributed/example_jacobi_mpi.py +4 -5
  100. warp/examples/fem/example_adaptive_grid.py +1 -1
  101. warp/examples/fem/example_apic_fluid.py +1 -1
  102. warp/examples/fem/example_burgers.py +8 -8
  103. warp/examples/fem/example_diffusion.py +1 -1
  104. warp/examples/fem/example_distortion_energy.py +1 -1
  105. warp/examples/fem/example_mixed_elasticity.py +2 -2
  106. warp/examples/fem/example_navier_stokes.py +1 -1
  107. warp/examples/fem/example_nonconforming_contact.py +7 -7
  108. warp/examples/fem/example_stokes.py +1 -1
  109. warp/examples/fem/example_stokes_transfer.py +1 -1
  110. warp/examples/fem/utils.py +2 -2
  111. warp/examples/interop/example_jax_callable.py +1 -1
  112. warp/examples/interop/example_jax_ffi_callback.py +1 -1
  113. warp/examples/interop/example_jax_kernel.py +3 -2
  114. warp/examples/tile/example_tile_mcgp.py +191 -0
  115. warp/fabric.py +6 -337
  116. warp/fem/__init__.py +159 -97
  117. warp/fem/adaptivity.py +7 -489
  118. warp/fem/cache.py +9 -648
  119. warp/fem/dirichlet.py +6 -184
  120. warp/fem/field/__init__.py +8 -109
  121. warp/fem/field/field.py +7 -652
  122. warp/fem/geometry/__init__.py +7 -18
  123. warp/fem/geometry/closest_point.py +11 -77
  124. warp/fem/linalg.py +18 -366
  125. warp/fem/operator.py +11 -369
  126. warp/fem/polynomial.py +9 -209
  127. warp/fem/space/__init__.py +5 -211
  128. warp/fem/space/basis_space.py +6 -662
  129. warp/fem/space/shape/__init__.py +41 -118
  130. warp/fem/space/topology.py +6 -437
  131. warp/fem/types.py +6 -81
  132. warp/fem/utils.py +11 -444
  133. warp/jax.py +8 -165
  134. warp/jax_experimental/__init__.py +14 -1
  135. warp/jax_experimental/custom_call.py +8 -342
  136. warp/jax_experimental/ffi.py +17 -853
  137. warp/jax_experimental/xla_ffi.py +5 -596
  138. warp/marching_cubes.py +5 -689
  139. warp/math.py +16 -393
  140. warp/native/array.h +385 -37
  141. warp/native/builtin.h +316 -39
  142. warp/native/bvh.cpp +43 -9
  143. warp/native/bvh.cu +62 -27
  144. warp/native/bvh.h +310 -309
  145. warp/native/clang/clang.cpp +102 -97
  146. warp/native/coloring.cpp +0 -1
  147. warp/native/crt.h +208 -0
  148. warp/native/exports.h +156 -0
  149. warp/native/hashgrid.cu +2 -0
  150. warp/native/intersect.h +24 -1
  151. warp/native/intersect_tri.h +44 -35
  152. warp/native/mat.h +1456 -276
  153. warp/native/mesh.cpp +4 -4
  154. warp/native/mesh.cu +4 -2
  155. warp/native/mesh.h +176 -61
  156. warp/native/quat.h +0 -52
  157. warp/native/scan.cu +2 -0
  158. warp/native/sort.cu +22 -13
  159. warp/native/sort.h +2 -0
  160. warp/native/sparse.cu +7 -3
  161. warp/native/spatial.h +12 -0
  162. warp/native/tile.h +837 -70
  163. warp/native/tile_radix_sort.h +1 -1
  164. warp/native/tile_reduce.h +394 -46
  165. warp/native/tile_scan.h +4 -4
  166. warp/native/vec.h +469 -53
  167. warp/native/version.h +23 -0
  168. warp/native/volume.cpp +1 -1
  169. warp/native/volume.cu +1 -0
  170. warp/native/volume.h +1 -1
  171. warp/native/volume_builder.cu +2 -0
  172. warp/native/warp.cpp +60 -32
  173. warp/native/warp.cu +313 -201
  174. warp/native/warp.h +14 -11
  175. warp/optim/__init__.py +6 -3
  176. warp/optim/adam.py +6 -145
  177. warp/optim/linear.py +14 -1585
  178. warp/optim/sgd.py +6 -94
  179. warp/paddle.py +6 -388
  180. warp/render/__init__.py +8 -4
  181. warp/render/imgui_manager.py +7 -267
  182. warp/render/render_opengl.py +6 -3616
  183. warp/render/render_usd.py +6 -918
  184. warp/render/utils.py +6 -142
  185. warp/sparse.py +37 -2563
  186. warp/tape.py +6 -1188
  187. warp/tests/__main__.py +1 -1
  188. warp/tests/cuda/test_async.py +4 -4
  189. warp/tests/cuda/test_conditional_captures.py +1 -1
  190. warp/tests/cuda/test_multigpu.py +1 -1
  191. warp/tests/cuda/test_streams.py +58 -1
  192. warp/tests/geometry/test_bvh.py +157 -22
  193. warp/tests/geometry/test_hash_grid.py +38 -0
  194. warp/tests/geometry/test_marching_cubes.py +0 -1
  195. warp/tests/geometry/test_mesh.py +5 -3
  196. warp/tests/geometry/test_mesh_query_aabb.py +5 -12
  197. warp/tests/geometry/test_mesh_query_point.py +5 -2
  198. warp/tests/geometry/test_mesh_query_ray.py +15 -3
  199. warp/tests/geometry/test_volume_write.py +5 -5
  200. warp/tests/interop/test_dlpack.py +14 -14
  201. warp/tests/interop/test_jax.py +1382 -79
  202. warp/tests/interop/test_paddle.py +1 -1
  203. warp/tests/test_adam.py +0 -1
  204. warp/tests/test_arithmetic.py +9 -9
  205. warp/tests/test_array.py +529 -100
  206. warp/tests/test_array_reduce.py +3 -3
  207. warp/tests/test_atomic.py +12 -8
  208. warp/tests/test_atomic_bitwise.py +209 -0
  209. warp/tests/test_atomic_cas.py +4 -4
  210. warp/tests/test_bool.py +2 -2
  211. warp/tests/test_builtins_resolution.py +5 -571
  212. warp/tests/test_codegen.py +34 -15
  213. warp/tests/test_conditional.py +1 -1
  214. warp/tests/test_context.py +6 -6
  215. warp/tests/test_copy.py +242 -161
  216. warp/tests/test_ctypes.py +3 -3
  217. warp/tests/test_devices.py +24 -2
  218. warp/tests/test_examples.py +16 -84
  219. warp/tests/test_fabricarray.py +35 -35
  220. warp/tests/test_fast_math.py +0 -2
  221. warp/tests/test_fem.py +60 -14
  222. warp/tests/test_fixedarray.py +3 -3
  223. warp/tests/test_func.py +8 -5
  224. warp/tests/test_generics.py +1 -1
  225. warp/tests/test_indexedarray.py +24 -24
  226. warp/tests/test_intersect.py +39 -9
  227. warp/tests/test_large.py +1 -1
  228. warp/tests/test_lerp.py +3 -1
  229. warp/tests/test_linear_solvers.py +1 -1
  230. warp/tests/test_map.py +49 -4
  231. warp/tests/test_mat.py +52 -62
  232. warp/tests/test_mat_constructors.py +4 -5
  233. warp/tests/test_mat_lite.py +1 -1
  234. warp/tests/test_mat_scalar_ops.py +121 -121
  235. warp/tests/test_math.py +34 -0
  236. warp/tests/test_module_aot.py +4 -4
  237. warp/tests/test_modules_lite.py +28 -2
  238. warp/tests/test_print.py +11 -11
  239. warp/tests/test_quat.py +93 -58
  240. warp/tests/test_runlength_encode.py +1 -1
  241. warp/tests/test_scalar_ops.py +38 -10
  242. warp/tests/test_smoothstep.py +1 -1
  243. warp/tests/test_sparse.py +126 -15
  244. warp/tests/test_spatial.py +105 -87
  245. warp/tests/test_special_values.py +6 -6
  246. warp/tests/test_static.py +7 -7
  247. warp/tests/test_struct.py +13 -2
  248. warp/tests/test_triangle_closest_point.py +48 -1
  249. warp/tests/test_tuple.py +96 -0
  250. warp/tests/test_types.py +82 -9
  251. warp/tests/test_utils.py +52 -52
  252. warp/tests/test_vec.py +29 -29
  253. warp/tests/test_vec_constructors.py +5 -5
  254. warp/tests/test_vec_scalar_ops.py +97 -97
  255. warp/tests/test_version.py +75 -0
  256. warp/tests/tile/test_tile.py +239 -0
  257. warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
  258. warp/tests/tile/test_tile_cholesky.py +7 -4
  259. warp/tests/tile/test_tile_load.py +26 -2
  260. warp/tests/tile/test_tile_mathdx.py +3 -3
  261. warp/tests/tile/test_tile_matmul.py +1 -1
  262. warp/tests/tile/test_tile_mlp.py +2 -4
  263. warp/tests/tile/test_tile_reduce.py +214 -13
  264. warp/tests/unittest_suites.py +6 -14
  265. warp/tests/unittest_utils.py +10 -9
  266. warp/tests/walkthrough_debug.py +3 -1
  267. warp/torch.py +6 -373
  268. warp/types.py +29 -5750
  269. warp/utils.py +10 -1659
  270. {warp_lang-1.9.0.dist-info → warp_lang-1.10.0rc2.dist-info}/METADATA +47 -103
  271. warp_lang-1.10.0rc2.dist-info/RECORD +468 -0
  272. warp_lang-1.10.0rc2.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
  273. warp_lang-1.10.0rc2.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
  274. warp_lang-1.10.0rc2.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
  275. warp_lang-1.10.0rc2.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
  276. warp_lang-1.10.0rc2.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
  277. warp_lang-1.10.0rc2.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
  278. warp_lang-1.10.0rc2.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
  279. warp_lang-1.10.0rc2.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
  280. warp_lang-1.10.0rc2.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
  281. warp_lang-1.10.0rc2.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
  282. warp_lang-1.10.0rc2.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
  283. warp_lang-1.10.0rc2.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
  284. warp_lang-1.10.0rc2.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
  285. warp_lang-1.10.0rc2.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
  286. warp_lang-1.10.0rc2.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
  287. warp/examples/assets/cartpole.urdf +0 -110
  288. warp/examples/assets/crazyflie.usd +0 -0
  289. warp/examples/assets/nv_ant.xml +0 -92
  290. warp/examples/assets/nv_humanoid.xml +0 -183
  291. warp/examples/assets/quadruped.urdf +0 -268
  292. warp/examples/optim/example_bounce.py +0 -266
  293. warp/examples/optim/example_cloth_throw.py +0 -228
  294. warp/examples/optim/example_drone.py +0 -870
  295. warp/examples/optim/example_inverse_kinematics.py +0 -182
  296. warp/examples/optim/example_inverse_kinematics_torch.py +0 -191
  297. warp/examples/optim/example_softbody_properties.py +0 -400
  298. warp/examples/optim/example_spring_cage.py +0 -245
  299. warp/examples/optim/example_trajectory.py +0 -227
  300. warp/examples/sim/example_cartpole.py +0 -143
  301. warp/examples/sim/example_cloth.py +0 -225
  302. warp/examples/sim/example_cloth_self_contact.py +0 -316
  303. warp/examples/sim/example_granular.py +0 -130
  304. warp/examples/sim/example_granular_collision_sdf.py +0 -202
  305. warp/examples/sim/example_jacobian_ik.py +0 -244
  306. warp/examples/sim/example_particle_chain.py +0 -124
  307. warp/examples/sim/example_quadruped.py +0 -203
  308. warp/examples/sim/example_rigid_chain.py +0 -203
  309. warp/examples/sim/example_rigid_contact.py +0 -195
  310. warp/examples/sim/example_rigid_force.py +0 -133
  311. warp/examples/sim/example_rigid_gyroscopic.py +0 -115
  312. warp/examples/sim/example_rigid_soft_contact.py +0 -140
  313. warp/examples/sim/example_soft_body.py +0 -196
  314. warp/examples/tile/example_tile_walker.py +0 -327
  315. warp/sim/__init__.py +0 -74
  316. warp/sim/articulation.py +0 -793
  317. warp/sim/collide.py +0 -2570
  318. warp/sim/graph_coloring.py +0 -307
  319. warp/sim/import_mjcf.py +0 -791
  320. warp/sim/import_snu.py +0 -227
  321. warp/sim/import_urdf.py +0 -579
  322. warp/sim/import_usd.py +0 -898
  323. warp/sim/inertia.py +0 -357
  324. warp/sim/integrator.py +0 -245
  325. warp/sim/integrator_euler.py +0 -2000
  326. warp/sim/integrator_featherstone.py +0 -2101
  327. warp/sim/integrator_vbd.py +0 -2487
  328. warp/sim/integrator_xpbd.py +0 -3295
  329. warp/sim/model.py +0 -4821
  330. warp/sim/particles.py +0 -121
  331. warp/sim/render.py +0 -431
  332. warp/sim/utils.py +0 -431
  333. warp/tests/sim/disabled_kinematics.py +0 -244
  334. warp/tests/sim/test_cloth.py +0 -863
  335. warp/tests/sim/test_collision.py +0 -743
  336. warp/tests/sim/test_coloring.py +0 -347
  337. warp/tests/sim/test_inertia.py +0 -161
  338. warp/tests/sim/test_model.py +0 -226
  339. warp/tests/sim/test_sim_grad.py +0 -287
  340. warp/tests/sim/test_sim_grad_bounce_linear.py +0 -212
  341. warp/tests/sim/test_sim_kinematics.py +0 -98
  342. warp/thirdparty/__init__.py +0 -0
  343. warp_lang-1.9.0.dist-info/RECORD +0 -456
  344. /warp/{fem → _src/fem}/quadrature/__init__.py +0 -0
  345. /warp/{tests/sim → _src/thirdparty}/__init__.py +0 -0
  346. /warp/{thirdparty → _src/thirdparty}/appdirs.py +0 -0
  347. /warp/{thirdparty → _src/thirdparty}/dlpack.py +0 -0
  348. {warp_lang-1.9.0.dist-info → warp_lang-1.10.0rc2.dist-info}/WHEEL +0 -0
  349. {warp_lang-1.9.0.dist-info → warp_lang-1.10.0rc2.dist-info}/licenses/LICENSE.md +0 -0
  350. {warp_lang-1.9.0.dist-info → warp_lang-1.10.0rc2.dist-info}/top_level.txt +0 -0
warp/dlpack.py CHANGED
@@ -1,4 +1,4 @@
1
- # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
2
  # SPDX-License-Identifier: Apache-2.0
3
3
  #
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -13,450 +13,12 @@
13
13
  # See the License for the specific language governing permissions and
14
14
  # limitations under the License.
15
15
 
16
- # Python specification for DLpack:
17
- # https://dmlc.github.io/dlpack/latest/python_spec.html
16
+ # TODO: Remove after cleaning up the public API.
18
17
 
19
- import ctypes
18
+ from warp._src import dlpack as _dlpack
20
19
 
21
- import warp
22
- from warp.thirdparty.dlpack import (
23
- DLDataType,
24
- DLDataTypeCode,
25
- DLDevice,
26
- DLDeviceType,
27
- DLManagedTensor,
28
- _c_str_dltensor,
29
- )
30
20
 
31
- _c_str_used_dltensor = b"used_dltensor"
21
+ def __getattr__(name):
22
+ from warp._src.utils import get_deprecated_api
32
23
 
33
- PyMem_RawMalloc = ctypes.pythonapi.PyMem_RawMalloc
34
- PyMem_RawMalloc.argtypes = [ctypes.c_size_t]
35
- PyMem_RawMalloc.restype = ctypes.c_void_p
36
-
37
- PyMem_RawFree = ctypes.pythonapi.PyMem_RawFree
38
- PyMem_RawFree.argtypes = [ctypes.c_void_p]
39
- PyMem_RawFree.restype = None
40
-
41
- Py_IncRef = ctypes.pythonapi.Py_IncRef
42
- Py_IncRef.argtypes = [ctypes.py_object]
43
- Py_IncRef.restype = None
44
-
45
- Py_DecRef = ctypes.pythonapi.Py_DecRef
46
- Py_DecRef.argtypes = [ctypes.py_object]
47
- Py_DecRef.restype = None
48
-
49
- PyCapsule_Destructor = ctypes.CFUNCTYPE(None, ctypes.c_void_p)
50
-
51
- PyCapsule_IsValid = ctypes.pythonapi.PyCapsule_IsValid
52
- PyCapsule_IsValid.argtypes = [ctypes.py_object, ctypes.c_char_p]
53
- PyCapsule_IsValid.restype = ctypes.c_int
54
-
55
- PyCapsule_GetPointer = ctypes.pythonapi.PyCapsule_GetPointer
56
- PyCapsule_GetPointer.argtypes = [ctypes.py_object, ctypes.c_char_p]
57
- PyCapsule_GetPointer.restype = ctypes.c_void_p
58
-
59
- PyCapsule_SetName = ctypes.pythonapi.PyCapsule_SetName
60
- PyCapsule_SetName.argtypes = [ctypes.py_object, ctypes.c_char_p]
61
- PyCapsule_SetName.restype = ctypes.c_int
62
-
63
-
64
- class _DLPackTensorHolder:
65
- """Class responsible for deleting DLManagedTensor memory after ownership is transferred from a capsule."""
66
-
67
- def __new__(cls, *args, **kwargs):
68
- instance = super().__new__(cls)
69
- instance.mem_ptr = None
70
- return instance
71
-
72
- def __init__(self, mem_ptr):
73
- self.mem_ptr = mem_ptr
74
-
75
- def __del__(self):
76
- if not self.mem_ptr:
77
- return
78
-
79
- managed_tensor = DLManagedTensor.from_address(self.mem_ptr)
80
- if managed_tensor.deleter:
81
- managed_tensor.deleter(self.mem_ptr)
82
-
83
-
84
- @ctypes.CFUNCTYPE(None, ctypes.c_void_p)
85
- def _dlpack_tensor_deleter(managed_ptr) -> None:
86
- """A function to deallocate a DLManagedTensor."""
87
-
88
- managed_tensor = DLManagedTensor.from_address(managed_ptr)
89
-
90
- # unreference the source array
91
- manager = ctypes.cast(managed_tensor.manager_ctx, ctypes.py_object)
92
- ctypes.pythonapi.Py_DecRef(manager)
93
-
94
- # free the DLManagedTensor memory, including shape and strides
95
- PyMem_RawFree(ctypes.c_void_p(managed_ptr))
96
-
97
-
98
- @PyCapsule_Destructor
99
- def _dlpack_capsule_deleter(ptr) -> None:
100
- """Destructor for a capsule holding a DLManagedTensor."""
101
-
102
- capsule = ctypes.cast(ptr, ctypes.py_object)
103
-
104
- if PyCapsule_IsValid(capsule, _c_str_dltensor):
105
- managed_ptr = PyCapsule_GetPointer(capsule, _c_str_dltensor)
106
- managed_tensor = DLManagedTensor.from_address(managed_ptr)
107
- if managed_tensor.deleter:
108
- managed_tensor.deleter(managed_ptr)
109
-
110
-
111
- def _device_to_dlpack(wp_device: warp.context.Device) -> DLDevice:
112
- dl_device = DLDevice()
113
-
114
- if wp_device.is_cpu:
115
- dl_device.device_type = DLDeviceType.kDLCPU
116
- dl_device.device_id = 0
117
- elif wp_device.is_cuda:
118
- dl_device.device_type = DLDeviceType.kDLCUDA
119
- dl_device.device_id = wp_device.ordinal
120
- else:
121
- raise RuntimeError(f"Invalid device type converting to DLPack: {wp_device}")
122
-
123
- return dl_device
124
-
125
-
126
- def device_to_dlpack(wp_device) -> DLDevice:
127
- return _device_to_dlpack(warp.get_device(wp_device))
128
-
129
-
130
- def dtype_to_dlpack(wp_dtype) -> DLDataType:
131
- if wp_dtype == warp.bool:
132
- return (DLDataTypeCode.kDLBool, 8, 1)
133
- if wp_dtype == warp.int8:
134
- return (DLDataTypeCode.kDLInt, 8, 1)
135
- elif wp_dtype == warp.uint8:
136
- return (DLDataTypeCode.kDLUInt, 8, 1)
137
- elif wp_dtype == warp.int16:
138
- return (DLDataTypeCode.kDLInt, 16, 1)
139
- elif wp_dtype == warp.uint16:
140
- return (DLDataTypeCode.kDLUInt, 16, 1)
141
- elif wp_dtype == warp.int32:
142
- return (DLDataTypeCode.kDLInt, 32, 1)
143
- elif wp_dtype == warp.uint32:
144
- return (DLDataTypeCode.kDLUInt, 32, 1)
145
- elif wp_dtype == warp.int64:
146
- return (DLDataTypeCode.kDLInt, 64, 1)
147
- elif wp_dtype == warp.uint64:
148
- return (DLDataTypeCode.kDLUInt, 64, 1)
149
- elif wp_dtype == warp.float16:
150
- return (DLDataTypeCode.kDLFloat, 16, 1)
151
- elif wp_dtype == warp.float32:
152
- return (DLDataTypeCode.kDLFloat, 32, 1)
153
- elif wp_dtype == warp.float64:
154
- return (DLDataTypeCode.kDLFloat, 64, 1)
155
- else:
156
- raise RuntimeError(f"No conversion from Warp type {wp_dtype} to DLPack type")
157
-
158
-
159
- def dtype_from_dlpack(dl_dtype):
160
- # unpack to tuple for easier comparison
161
- dl_dtype = (dl_dtype.type_code.value, dl_dtype.bits)
162
-
163
- if dl_dtype == (DLDataTypeCode.kDLUInt, 1):
164
- raise RuntimeError("Warp does not support bit boolean types")
165
- elif dl_dtype == (DLDataTypeCode.kDLInt, 8):
166
- return warp.types.int8
167
- elif dl_dtype == (DLDataTypeCode.kDLInt, 16):
168
- return warp.types.int16
169
- elif dl_dtype == (DLDataTypeCode.kDLInt, 32):
170
- return warp.types.int32
171
- elif dl_dtype == (DLDataTypeCode.kDLInt, 64):
172
- return warp.types.int64
173
- elif dl_dtype == (DLDataTypeCode.kDLUInt, 8):
174
- return warp.types.uint8
175
- elif dl_dtype == (DLDataTypeCode.kDLUInt, 16):
176
- return warp.types.uint16
177
- elif dl_dtype == (DLDataTypeCode.kDLUInt, 32):
178
- return warp.types.uint32
179
- elif dl_dtype == (DLDataTypeCode.kDLUInt, 64):
180
- return warp.types.uint64
181
- elif dl_dtype == (DLDataTypeCode.kDLFloat, 16):
182
- return warp.types.float16
183
- elif dl_dtype == (DLDataTypeCode.kDLFloat, 32):
184
- return warp.types.float32
185
- elif dl_dtype == (DLDataTypeCode.kDLFloat, 64):
186
- return warp.types.float64
187
- elif dl_dtype == (DLDataTypeCode.kDLComplex, 64):
188
- raise RuntimeError("Warp does not support complex types")
189
- elif dl_dtype == (DLDataTypeCode.kDLComplex, 128):
190
- raise RuntimeError("Warp does not support complex types")
191
- else:
192
- raise RuntimeError(f"Unknown DLPack datatype {dl_dtype}")
193
-
194
-
195
- def device_from_dlpack(dl_device):
196
- assert warp.context.runtime is not None, "Warp not initialized, call wp.init() before use"
197
-
198
- if dl_device.device_type.value == DLDeviceType.kDLCPU or dl_device.device_type.value == DLDeviceType.kDLCUDAHost:
199
- return warp.context.runtime.cpu_device
200
- elif (
201
- dl_device.device_type.value == DLDeviceType.kDLCUDA
202
- or dl_device.device_type.value == DLDeviceType.kDLCUDAManaged
203
- ):
204
- return warp.context.runtime.cuda_devices[dl_device.device_id]
205
- else:
206
- raise RuntimeError(f"Unknown device type from DLPack: {dl_device.device_type.value}")
207
-
208
-
209
- def shape_to_dlpack(shape):
210
- a = (ctypes.c_int64 * len(shape))(*shape)
211
- return a
212
-
213
-
214
- def strides_to_dlpack(strides, dtype):
215
- # convert from byte count to element count
216
- ndim = len(strides)
217
- a = (ctypes.c_int64 * ndim)()
218
- dtype_size = warp.types.type_size_in_bytes(dtype)
219
- for i in range(ndim):
220
- a[i] = strides[i] // dtype_size
221
- return a
222
-
223
-
224
- def to_dlpack(wp_array: warp.array):
225
- """Convert a Warp array to another type of DLPack-compatible array.
226
-
227
- Args:
228
- wp_array: The source Warp array that will be converted.
229
-
230
- Returns:
231
- A capsule containing a DLManagedTensor that can be converted
232
- to another array type without copying the underlying memory.
233
- """
234
-
235
- # DLPack does not support structured arrays
236
- if isinstance(wp_array.dtype, warp.codegen.Struct):
237
- raise RuntimeError("Cannot convert structured Warp arrays to DLPack.")
238
-
239
- # handle vector types
240
- if hasattr(wp_array.dtype, "_wp_scalar_type_"):
241
- # vector type, flatten the dimensions into one tuple
242
- target_dtype = wp_array.dtype._wp_scalar_type_
243
- target_ndim = wp_array.ndim + len(wp_array.dtype._shape_)
244
- target_shape = (*wp_array.shape, *wp_array.dtype._shape_)
245
- dtype_strides = warp.types.strides_from_shape(wp_array.dtype._shape_, wp_array.dtype._wp_scalar_type_)
246
- target_strides = (*wp_array.strides, *dtype_strides)
247
- else:
248
- # scalar type
249
- target_dtype = wp_array.dtype
250
- target_ndim = wp_array.ndim
251
- target_shape = wp_array.shape
252
- target_strides = wp_array.strides
253
-
254
- if wp_array.pinned:
255
- dl_device = DLDevice()
256
- dl_device.device_type = DLDeviceType.kDLCUDAHost
257
- dl_device.device_id = 0
258
- else:
259
- dl_device = _device_to_dlpack(wp_array.device)
260
-
261
- # allocate DLManagedTensor, shape, and strides together
262
- managed_tensor_size = ctypes.sizeof(DLManagedTensor)
263
- padding = managed_tensor_size & 7
264
- shape_size = target_ndim * 8
265
- mem_size = managed_tensor_size + padding + 2 * shape_size
266
- mem_ptr = PyMem_RawMalloc(mem_size)
267
- assert mem_ptr, "Failed to allocate memory for DLManagedTensor"
268
-
269
- # set managed tensor attributes
270
- managed_tensor = DLManagedTensor.from_address(mem_ptr)
271
- managed_tensor.dl_tensor.data = wp_array.ptr
272
- managed_tensor.dl_tensor.device = dl_device
273
- managed_tensor.dl_tensor.ndim = target_ndim
274
- managed_tensor.dl_tensor.dtype = dtype_to_dlpack(target_dtype)
275
- managed_tensor.dl_tensor.byte_offset = 0
276
-
277
- # shape
278
- shape_offset = managed_tensor_size + padding
279
- shape_ptr = ctypes.cast(mem_ptr + shape_offset, ctypes.POINTER(ctypes.c_int64))
280
- for i in range(target_ndim):
281
- shape_ptr[i] = target_shape[i]
282
- managed_tensor.dl_tensor.shape = shape_ptr
283
-
284
- # strides, if not contiguous
285
- if wp_array.is_contiguous:
286
- managed_tensor.dl_tensor.strides = None
287
- else:
288
- stride_offset = shape_offset + shape_size
289
- stride_ptr = ctypes.cast(mem_ptr + stride_offset, ctypes.POINTER(ctypes.c_int64))
290
- dtype_size = warp.types.type_size_in_bytes(target_dtype)
291
- for i in range(target_ndim):
292
- stride_ptr[i] = target_strides[i] // dtype_size
293
- managed_tensor.dl_tensor.strides = stride_ptr
294
-
295
- # DLManagedTensor holds a reference to the source array
296
- managed_tensor.manager_ctx = id(wp_array)
297
- Py_IncRef(wp_array)
298
-
299
- managed_tensor.deleter = _dlpack_tensor_deleter
300
-
301
- # NOTE: jax.ffi.pycapsule() defines the PyCapsule_New() argtypes incorrectly, which causes problems.
302
- # Here we make sure that the PyCapsule_Destructor callback is correctly defined.
303
- PyCapsule_New = ctypes.pythonapi.PyCapsule_New
304
- PyCapsule_New.argtypes = [ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor]
305
- PyCapsule_New.restype = ctypes.py_object
306
-
307
- capsule = PyCapsule_New(
308
- ctypes.byref(managed_tensor),
309
- _c_str_dltensor,
310
- _dlpack_capsule_deleter,
311
- )
312
-
313
- return capsule
314
-
315
-
316
- def dtype_is_compatible(dl_dtype, wp_dtype):
317
- if dl_dtype.bits % 8 != 0:
318
- raise RuntimeError("Data types with less than 8 bits are not supported")
319
-
320
- if dl_dtype.type_code.value == DLDataTypeCode.kDLFloat:
321
- if dl_dtype.bits == 16:
322
- return wp_dtype == warp.float16
323
- elif dl_dtype.bits == 32:
324
- return wp_dtype == warp.float32
325
- elif dl_dtype.bits == 64:
326
- return wp_dtype == warp.float64
327
- elif dl_dtype.type_code.value == DLDataTypeCode.kDLInt or dl_dtype.type_code.value == DLDataTypeCode.kDLUInt:
328
- if dl_dtype.bits == 8:
329
- return wp_dtype == warp.int8 or wp_dtype == warp.uint8
330
- elif dl_dtype.bits == 16:
331
- return wp_dtype == warp.int16 or wp_dtype == warp.uint16
332
- elif dl_dtype.bits == 32:
333
- return wp_dtype == warp.int32 or wp_dtype == warp.uint32
334
- elif dl_dtype.bits == 64:
335
- return wp_dtype == warp.int64 or wp_dtype == warp.uint64
336
- elif dl_dtype.type_code.value == DLDataTypeCode.kDLBfloat:
337
- raise RuntimeError("Bfloat data type is not supported")
338
- elif dl_dtype.type_code.value == DLDataTypeCode.kDLComplex:
339
- raise RuntimeError("Complex data types are not supported")
340
- else:
341
- raise RuntimeError(f"Unsupported DLPack dtype {(str(dl_dtype.type_code), dl_dtype.bits)}")
342
-
343
-
344
- def _from_dlpack(capsule, dtype=None) -> warp.array:
345
- """Convert a DLPack capsule into a Warp array without copying.
346
-
347
- Args:
348
- capsule: A DLPack capsule wrapping an external array or tensor.
349
- dtype: An optional Warp data type to interpret the source data.
350
-
351
- Returns:
352
- A new Warp array that uses the same underlying memory as the input capsule.
353
- """
354
-
355
- assert PyCapsule_IsValid(capsule, _c_str_dltensor), "Invalid capsule"
356
- mem_ptr = PyCapsule_GetPointer(capsule, _c_str_dltensor)
357
- managed_tensor = DLManagedTensor.from_address(mem_ptr)
358
-
359
- dlt = managed_tensor.dl_tensor
360
-
361
- device = device_from_dlpack(dlt.device)
362
- pinned = dlt.device.device_type.value == DLDeviceType.kDLCUDAHost
363
- shape = tuple(dlt.shape[dim] for dim in range(dlt.ndim))
364
-
365
- # strides, if not contiguous
366
- itemsize = dlt.dtype.bits // 8
367
- if dlt.strides:
368
- strides = tuple(dlt.strides[dim] * itemsize for dim in range(dlt.ndim))
369
- else:
370
- strides = None
371
-
372
- # handle multi-lane dtypes as another dimension
373
- if dlt.dtype.lanes > 1:
374
- shape = (*shape, dlt.dtype.lanes)
375
- if strides is not None:
376
- strides = (*strides, itemsize)
377
-
378
- if dtype is None:
379
- # automatically detect dtype
380
- dtype = dtype_from_dlpack(dlt.dtype)
381
-
382
- elif hasattr(dtype, "_wp_scalar_type_"):
383
- # handle vector/matrix types
384
-
385
- if not dtype_is_compatible(dlt.dtype, dtype._wp_scalar_type_):
386
- raise RuntimeError(f"Incompatible data types: {dlt.dtype} and {dtype}")
387
-
388
- dtype_shape = dtype._shape_
389
- dtype_dims = len(dtype._shape_)
390
- if dtype_dims > len(shape) or dtype_shape != shape[-dtype_dims:]:
391
- raise RuntimeError(
392
- f"Could not convert DLPack tensor with shape {shape} to Warp array with dtype={dtype}, ensure that source inner shape is {dtype_shape}"
393
- )
394
-
395
- if strides is not None:
396
- # ensure the inner strides are contiguous
397
- stride = itemsize
398
- for i in range(dtype_dims):
399
- if strides[-i - 1] != stride:
400
- raise RuntimeError(
401
- f"Could not convert DLPack tensor with shape {shape} to Warp array with dtype={dtype}, because the source inner strides are not contiguous"
402
- )
403
- stride *= dtype_shape[-i - 1]
404
- strides = tuple(strides[:-dtype_dims]) or (itemsize,)
405
-
406
- shape = tuple(shape[:-dtype_dims]) or (1,)
407
-
408
- elif not dtype_is_compatible(dlt.dtype, dtype):
409
- # incompatible dtype requested
410
- raise RuntimeError(f"Incompatible data types: {dlt.dtype} and {dtype}")
411
-
412
- a = warp.types.array(
413
- ptr=dlt.data, dtype=dtype, shape=shape, strides=strides, copy=False, device=device, pinned=pinned
414
- )
415
-
416
- # take ownership of the DLManagedTensor
417
- a._dlpack_tensor_holder = _DLPackTensorHolder(mem_ptr)
418
-
419
- # rename the capsule so that it no longer owns the DLManagedTensor
420
- PyCapsule_SetName(capsule, _c_str_used_dltensor)
421
-
422
- return a
423
-
424
-
425
- def from_dlpack(source, dtype=None) -> warp.array:
426
- """Convert a source array or DLPack capsule into a Warp array without copying.
427
-
428
- Args:
429
- source: A DLPack-compatible array or PyCapsule
430
- dtype: An optional Warp data type to interpret the source data.
431
-
432
- Returns:
433
- A new Warp array that uses the same underlying memory as the input
434
- pycapsule.
435
- """
436
-
437
- # See https://data-apis.org/array-api/2022.12/API_specification/generated/array_api.array.__dlpack__.html
438
-
439
- if hasattr(source, "__dlpack__"):
440
- device_type, device_id = source.__dlpack_device__()
441
- # Check if the source lives on a CUDA device
442
- if device_type in (DLDeviceType.kDLCUDA, DLDeviceType.kDLCUDAManaged):
443
- # Assume that the caller will use the array on its device's current stream.
444
- # Note that we pass 1 for the null stream, per DLPack spec.
445
- cuda_stream = warp.get_cuda_device(device_id).stream.cuda_stream or 1
446
- elif device_type == DLDeviceType.kDLCPU:
447
- # No stream sync for CPU arrays.
448
- cuda_stream = None
449
- elif device_type == DLDeviceType.kDLCUDAHost:
450
- # For pinned memory, we sync with the current CUDA device's stream.
451
- # Note that we pass 1 for the null stream, per DLPack spec.
452
- cuda_stream = warp.get_cuda_device().stream.cuda_stream or 1
453
- else:
454
- raise TypeError("Unsupported source device")
455
-
456
- capsule = source.__dlpack__(stream=cuda_stream)
457
-
458
- else:
459
- # legacy behaviour, assume source is a capsule
460
- capsule = source
461
-
462
- return _from_dlpack(capsule, dtype=dtype)
24
+ return get_deprecated_api(_dlpack, "wp", name)
@@ -39,7 +39,6 @@ import numpy as np
39
39
  from mpi4py import MPI
40
40
 
41
41
  import warp as wp
42
- import warp.context
43
42
  from warp.types import warp_type_to_np_dtype
44
43
 
45
44
  wp.config.quiet = True # Suppress wp.init() output
@@ -50,7 +49,7 @@ wptype = wp.float32 # Global precision setting, can set wp.float64 here for dou
50
49
  pi = wptype(math.pi) # GitHub #485
51
50
 
52
51
 
53
- def calc_default_device(mpi_comm: "MPI.Comm") -> warp.context.Device:
52
+ def calc_default_device(mpi_comm: "MPI.Comm") -> wp.context.Device:
54
53
  """Return the device that should be used for the current rank.
55
54
 
56
55
  This function is used to ensure that multiple MPI ranks running on the same
@@ -72,7 +71,7 @@ def calc_default_device(mpi_comm: "MPI.Comm") -> warp.context.Device:
72
71
  local_size = local_mpi_comm.Get_size()
73
72
  local_rank = local_mpi_comm.Get_rank()
74
73
 
75
- num_cuda_devices = warp.get_cuda_device_count()
74
+ num_cuda_devices = wp.get_cuda_device_count()
76
75
 
77
76
  if 1 < num_cuda_devices < local_size:
78
77
  raise RuntimeError(
@@ -81,9 +80,9 @@ def calc_default_device(mpi_comm: "MPI.Comm") -> warp.context.Device:
81
80
 
82
81
  if 1 < num_cuda_devices:
83
82
  # Get the device based on local_rank
84
- return warp.get_cuda_device(local_rank)
83
+ return wp.get_cuda_device(local_rank)
85
84
  else:
86
- return warp.get_device()
85
+ return wp.get_device()
87
86
 
88
87
 
89
88
  def calc_decomp_1d(total_points: int, rank: int, total_ranks: int) -> Tuple[int, int]:
@@ -16,7 +16,7 @@
16
16
  ###########################################################################
17
17
  # Example Adaptive Grid
18
18
  #
19
- # Demonstrates using an adaptive grid to increase the simulation resolition
19
+ # Demonstrates using an adaptive grid to increase the simulation resolution
20
20
  # near a collider boundary.
21
21
  #
22
22
  ###########################################################################
@@ -400,7 +400,7 @@ class Example:
400
400
  cell_volume = np.prod(cell_size)
401
401
 
402
402
  radius = np.max(cell_size) * 0.5
403
- volume = np.prod(cell_volume) * packing_fraction
403
+ volume = cell_volume * packing_fraction
404
404
 
405
405
  rng = np.random.default_rng(42)
406
406
  points += 2.0 * radius * (rng.random(points.shape) - 0.5)
@@ -172,7 +172,7 @@ class Example:
172
172
 
173
173
  if self.velocity_field.space.degree > 0:
174
174
  # Integration on cells (if not piecewise-constant)
175
- fem.utils.array_axpy(
175
+ fem.linalg.array_axpy(
176
176
  x=fem.integrate(
177
177
  cell_transport_form,
178
178
  fields={"u": trial_velocity, "v": self._test, "w": trial_velocity},
@@ -196,19 +196,19 @@ class Example:
196
196
 
197
197
  # tmp = v0 - dt * k1
198
198
  tmp = self.velocity_field.space.make_field()
199
- fem.utils.array_axpy(y=tmp.dof_values, x=self.velocity_field.dof_values, alpha=1.0, beta=0.0)
200
- fem.utils.array_axpy(y=tmp.dof_values, x=k1, alpha=-self.sim_dt, beta=1.0)
199
+ fem.linalg.array_axpy(y=tmp.dof_values, x=self.velocity_field.dof_values, alpha=1.0, beta=0.0)
200
+ fem.linalg.array_axpy(y=tmp.dof_values, x=k1, alpha=-self.sim_dt, beta=1.0)
201
201
  k2 = self._velocity_delta(tmp)
202
202
 
203
203
  # tmp = v0 - dt * (0.25 * k1 + 0.25 * k2)
204
- fem.utils.array_axpy(y=tmp.dof_values, x=k1, alpha=0.75 * self.sim_dt, beta=1.0)
205
- fem.utils.array_axpy(y=tmp.dof_values, x=k2, alpha=-0.25 * self.sim_dt, beta=1.0)
204
+ fem.linalg.array_axpy(y=tmp.dof_values, x=k1, alpha=0.75 * self.sim_dt, beta=1.0)
205
+ fem.linalg.array_axpy(y=tmp.dof_values, x=k2, alpha=-0.25 * self.sim_dt, beta=1.0)
206
206
  k3 = self._velocity_delta(tmp)
207
207
 
208
208
  # v = v0 - dt * (1/6 * k1 + 1/6 * k2 + 2/3 * k3)
209
- fem.utils.array_axpy(y=self.velocity_field.dof_values, x=k1, alpha=-1.0 / 6.0 * self.sim_dt, beta=1.0)
210
- fem.utils.array_axpy(y=self.velocity_field.dof_values, x=k2, alpha=-1.0 / 6.0 * self.sim_dt, beta=1.0)
211
- fem.utils.array_axpy(y=self.velocity_field.dof_values, x=k3, alpha=-2.0 / 3.0 * self.sim_dt, beta=1.0)
209
+ fem.linalg.array_axpy(y=self.velocity_field.dof_values, x=k1, alpha=-1.0 / 6.0 * self.sim_dt, beta=1.0)
210
+ fem.linalg.array_axpy(y=self.velocity_field.dof_values, x=k2, alpha=-1.0 / 6.0 * self.sim_dt, beta=1.0)
211
+ fem.linalg.array_axpy(y=self.velocity_field.dof_values, x=k3, alpha=-2.0 / 3.0 * self.sim_dt, beta=1.0)
212
212
 
213
213
  # Apply slope limiter
214
214
  if self.velocity_field.space.degree > 0:
@@ -27,7 +27,7 @@
27
27
  import warp as wp
28
28
  import warp.examples.fem.utils as fem_example_utils
29
29
  import warp.fem as fem
30
- from warp.fem.utils import array_axpy
30
+ from warp.fem.linalg import array_axpy
31
31
 
32
32
 
33
33
  @fem.integrand
@@ -183,7 +183,7 @@ class Example:
183
183
  fem_example_utils.bsr_cg(u_matrix, b=u_rhs, x=du, quiet=self._quiet)
184
184
 
185
185
  # Accumulate to UV field
186
- fem.utils.array_axpy(x=du, y=self._u_field.dof_values, alpha=-1.0, beta=1.0)
186
+ fem.linalg.array_axpy(x=du, y=self._u_field.dof_values, alpha=-1.0, beta=1.0)
187
187
 
188
188
  def render(self):
189
189
  # Visualization
@@ -159,7 +159,7 @@ class Example:
159
159
  self._geo, degree=degree, dtype=wp.vec2, element_basis=fem.ElementBasis.SERENDIPITY
160
160
  )
161
161
 
162
- if isinstance(self._geo.reference_cell(), fem.geometry.element.Triangle):
162
+ if self._geo.reference_cell() == fem.Element.TRIANGLE:
163
163
  # triangle elements
164
164
  tau_basis = fem.ElementBasis.NONCONFORMING_POLYNOMIAL
165
165
  tau_degree = degree - 1
@@ -240,7 +240,7 @@ class Example:
240
240
  # Extract result -- cast to float32 and accumulate to displacement field
241
241
  delta_u = wp.empty_like(self._u_field.dof_values)
242
242
  wp.utils.array_cast(in_array=x, out_array=delta_u)
243
- fem.utils.array_axpy(x=delta_u, y=self._u_field.dof_values)
243
+ fem.linalg.array_axpy(x=delta_u, y=self._u_field.dof_values)
244
244
 
245
245
  # Evaluate area conservation, should converge to 1.0 as Poisson ratio approaches 1.0
246
246
  final_area = fem.integrate(
@@ -28,7 +28,7 @@
28
28
  import warp as wp
29
29
  import warp.examples.fem.utils as fem_example_utils
30
30
  import warp.fem as fem
31
- from warp.fem.utils import array_axpy
31
+ from warp.fem.linalg import array_axpy
32
32
 
33
33
 
34
34
  @wp.func
@@ -123,7 +123,7 @@ class Example:
123
123
  [
124
124
  [1.0, poisson, 0.0],
125
125
  [poisson, 1.0, 0.0],
126
- [0.0, 0.0, (2.0 * (1.0 + poisson)) * (1.0 - poisson * poisson)],
126
+ [0.0, 0.0, (1.0 - poisson * poisson) / (2.0 * (1.0 + poisson))],
127
127
  ]
128
128
  )
129
129
  )
@@ -142,14 +142,14 @@ class Example:
142
142
  # Store stress degrees of freedom as symmetric tensors (3 dof) rather than full 2x2 matrices
143
143
  self._tau1_space = fem.make_polynomial_space(
144
144
  self._geo1,
145
- degree=degree - 1,
145
+ degree=degree,
146
146
  discontinuous=True,
147
147
  element_basis=fem.ElementBasis.LAGRANGE,
148
148
  dof_mapper=fem.SymmetricTensorMapper(wp.mat22),
149
149
  )
150
150
  self._tau2_space = fem.make_polynomial_space(
151
151
  self._geo2,
152
- degree=degree - 1,
152
+ degree=degree,
153
153
  discontinuous=True,
154
154
  element_basis=fem.ElementBasis.LAGRANGE,
155
155
  dof_mapper=fem.SymmetricTensorMapper(wp.mat22),
@@ -173,7 +173,7 @@ class Example:
173
173
 
174
174
  # Damped update of coupling stress (for stability)
175
175
  alpha = 0.1
176
- fem.utils.array_axpy(
176
+ fem.linalg.array_axpy(
177
177
  x=self._sig2_field_new.dof_values, y=self._sig2_field.dof_values, alpha=alpha, beta=1.0 - alpha
178
178
  )
179
179
 
@@ -219,7 +219,7 @@ class Example:
219
219
  u_rhs = fem.integrate(gravity_form, fields={"v": u_test}, values={"gravity": gravity}, output_dtype=wp.vec2d)
220
220
 
221
221
  # Add boundary stress from other solid field
222
- other_stress_field = fem.field.field.NonconformingField(boundary, other_stress_field)
222
+ other_stress_field = fem.NonconformingField(boundary, other_stress_field)
223
223
  fem.integrate(
224
224
  boundary_stress_form,
225
225
  fields={"u": u_bd_test, "tau": other_stress_field},
@@ -232,8 +232,8 @@ class Example:
232
232
  bottom_boundary_projector_form, fields={"u": u_bd_trial, "v": u_bd_test}, assembly="nodal"
233
233
  )
234
234
 
235
- # read displacement from other body set create bottom boundary Dirichlet BC
236
- other_u_field = fem.field.field.NonconformingField(boundary, other_u_field)
235
+ # displacement from other body defines bottom boundary Dirichlet BC
236
+ other_u_field = fem.NonconformingField(boundary, other_u_field)
237
237
  u_bd_rhs = fem.integrate(
238
238
  bottom_boundary_projector_form, fields={"u": other_u_field, "v": u_bd_test}, assembly="nodal"
239
239
  )
@@ -27,7 +27,7 @@
27
27
  import warp as wp
28
28
  import warp.examples.fem.utils as fem_example_utils
29
29
  import warp.fem as fem
30
- from warp.fem.utils import array_axpy
30
+ from warp.fem.linalg import array_axpy
31
31
 
32
32
 
33
33
  @fem.integrand
@@ -29,7 +29,7 @@ import numpy as np
29
29
  import warp as wp
30
30
  import warp.examples.fem.utils as fem_example_utils
31
31
  import warp.fem as fem
32
- from warp.fem.utils import array_axpy
32
+ from warp.fem.linalg import array_axpy
33
33
  from warp.utils import array_cast
34
34
 
35
35