warp-lang 1.0.2__py3-none-manylinux2014_x86_64.whl → 1.1.0__py3-none-manylinux2014_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (346) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/warp-clang.so +0 -0
  4. warp/bin/warp.so +0 -0
  5. warp/build.py +115 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3425 -3354
  8. warp/codegen.py +2878 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +45 -45
  11. warp/context.py +5194 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +383 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
  34. warp/examples/benchmarks/benchmark_launches.py +295 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +234 -219
  37. warp/examples/core/example_fluid.py +293 -267
  38. warp/examples/core/example_graph_capture.py +144 -126
  39. warp/examples/core/example_marching_cubes.py +188 -174
  40. warp/examples/core/example_mesh.py +174 -155
  41. warp/examples/core/example_mesh_intersect.py +205 -193
  42. warp/examples/core/example_nvdb.py +176 -170
  43. warp/examples/core/example_raycast.py +105 -90
  44. warp/examples/core/example_raymarch.py +199 -178
  45. warp/examples/core/example_render_opengl.py +185 -141
  46. warp/examples/core/example_sph.py +405 -387
  47. warp/examples/core/example_torch.py +222 -181
  48. warp/examples/core/example_wave.py +263 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +407 -389
  51. warp/examples/fem/example_convection_diffusion.py +182 -168
  52. warp/examples/fem/example_convection_diffusion_dg.py +219 -209
  53. warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
  54. warp/examples/fem/example_deformed_geometry.py +177 -159
  55. warp/examples/fem/example_diffusion.py +201 -173
  56. warp/examples/fem/example_diffusion_3d.py +177 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +221 -214
  58. warp/examples/fem/example_mixed_elasticity.py +244 -222
  59. warp/examples/fem/example_navier_stokes.py +259 -243
  60. warp/examples/fem/example_stokes.py +220 -192
  61. warp/examples/fem/example_stokes_transfer.py +265 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +260 -246
  65. warp/examples/optim/example_cloth_throw.py +222 -209
  66. warp/examples/optim/example_diffray.py +566 -536
  67. warp/examples/optim/example_drone.py +864 -835
  68. warp/examples/optim/example_inverse_kinematics.py +176 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +185 -169
  70. warp/examples/optim/example_spring_cage.py +239 -231
  71. warp/examples/optim/example_trajectory.py +223 -199
  72. warp/examples/optim/example_walker.py +306 -293
  73. warp/examples/sim/example_cartpole.py +139 -129
  74. warp/examples/sim/example_cloth.py +196 -186
  75. warp/examples/sim/example_granular.py +124 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +197 -186
  77. warp/examples/sim/example_jacobian_ik.py +236 -214
  78. warp/examples/sim/example_particle_chain.py +118 -105
  79. warp/examples/sim/example_quadruped.py +193 -180
  80. warp/examples/sim/example_rigid_chain.py +197 -187
  81. warp/examples/sim/example_rigid_contact.py +189 -177
  82. warp/examples/sim/example_rigid_force.py +127 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +109 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +134 -122
  85. warp/examples/sim/example_soft_body.py +190 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +60 -27
  88. warp/fem/cache.py +401 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +15 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +744 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +441 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/partition.py +374 -376
  106. warp/fem/geometry/quadmesh_2d.py +532 -532
  107. warp/fem/geometry/tetmesh.py +840 -840
  108. warp/fem/geometry/trimesh_2d.py +577 -577
  109. warp/fem/integrate.py +1630 -1615
  110. warp/fem/operator.py +190 -191
  111. warp/fem/polynomial.py +214 -213
  112. warp/fem/quadrature/__init__.py +2 -2
  113. warp/fem/quadrature/pic_quadrature.py +243 -245
  114. warp/fem/quadrature/quadrature.py +295 -294
  115. warp/fem/space/__init__.py +294 -292
  116. warp/fem/space/basis_space.py +488 -489
  117. warp/fem/space/collocated_function_space.py +100 -105
  118. warp/fem/space/dof_mapper.py +236 -236
  119. warp/fem/space/function_space.py +148 -145
  120. warp/fem/space/grid_2d_function_space.py +267 -267
  121. warp/fem/space/grid_3d_function_space.py +305 -306
  122. warp/fem/space/hexmesh_function_space.py +350 -352
  123. warp/fem/space/partition.py +350 -350
  124. warp/fem/space/quadmesh_2d_function_space.py +368 -369
  125. warp/fem/space/restriction.py +158 -160
  126. warp/fem/space/shape/__init__.py +13 -15
  127. warp/fem/space/shape/cube_shape_function.py +738 -738
  128. warp/fem/space/shape/shape_function.py +102 -103
  129. warp/fem/space/shape/square_shape_function.py +611 -611
  130. warp/fem/space/shape/tet_shape_function.py +565 -567
  131. warp/fem/space/shape/triangle_shape_function.py +429 -429
  132. warp/fem/space/tetmesh_function_space.py +294 -292
  133. warp/fem/space/topology.py +297 -295
  134. warp/fem/space/trimesh_2d_function_space.py +223 -221
  135. warp/fem/types.py +77 -77
  136. warp/fem/utils.py +495 -495
  137. warp/jax.py +166 -141
  138. warp/jax_experimental.py +341 -339
  139. warp/native/array.h +1072 -1025
  140. warp/native/builtin.h +1560 -1560
  141. warp/native/bvh.cpp +398 -398
  142. warp/native/bvh.cu +525 -525
  143. warp/native/bvh.h +429 -429
  144. warp/native/clang/clang.cpp +495 -464
  145. warp/native/crt.cpp +31 -31
  146. warp/native/crt.h +334 -334
  147. warp/native/cuda_crt.h +1049 -1049
  148. warp/native/cuda_util.cpp +549 -540
  149. warp/native/cuda_util.h +288 -203
  150. warp/native/cutlass_gemm.cpp +34 -34
  151. warp/native/cutlass_gemm.cu +372 -372
  152. warp/native/error.cpp +66 -66
  153. warp/native/error.h +27 -27
  154. warp/native/fabric.h +228 -228
  155. warp/native/hashgrid.cpp +301 -278
  156. warp/native/hashgrid.cu +78 -77
  157. warp/native/hashgrid.h +227 -227
  158. warp/native/initializer_array.h +32 -32
  159. warp/native/intersect.h +1204 -1204
  160. warp/native/intersect_adj.h +365 -365
  161. warp/native/intersect_tri.h +322 -322
  162. warp/native/marching.cpp +2 -2
  163. warp/native/marching.cu +497 -497
  164. warp/native/marching.h +2 -2
  165. warp/native/mat.h +1498 -1498
  166. warp/native/matnn.h +333 -333
  167. warp/native/mesh.cpp +203 -203
  168. warp/native/mesh.cu +293 -293
  169. warp/native/mesh.h +1887 -1887
  170. warp/native/nanovdb/NanoVDB.h +4782 -4782
  171. warp/native/nanovdb/PNanoVDB.h +2553 -2553
  172. warp/native/nanovdb/PNanoVDBWrite.h +294 -294
  173. warp/native/noise.h +850 -850
  174. warp/native/quat.h +1084 -1084
  175. warp/native/rand.h +299 -299
  176. warp/native/range.h +108 -108
  177. warp/native/reduce.cpp +156 -156
  178. warp/native/reduce.cu +348 -348
  179. warp/native/runlength_encode.cpp +61 -61
  180. warp/native/runlength_encode.cu +46 -46
  181. warp/native/scan.cpp +30 -30
  182. warp/native/scan.cu +36 -36
  183. warp/native/scan.h +7 -7
  184. warp/native/solid_angle.h +442 -442
  185. warp/native/sort.cpp +94 -94
  186. warp/native/sort.cu +97 -97
  187. warp/native/sort.h +14 -14
  188. warp/native/sparse.cpp +337 -337
  189. warp/native/sparse.cu +544 -544
  190. warp/native/spatial.h +630 -630
  191. warp/native/svd.h +562 -562
  192. warp/native/temp_buffer.h +30 -30
  193. warp/native/vec.h +1132 -1132
  194. warp/native/volume.cpp +297 -297
  195. warp/native/volume.cu +32 -32
  196. warp/native/volume.h +538 -538
  197. warp/native/volume_builder.cu +425 -425
  198. warp/native/volume_builder.h +19 -19
  199. warp/native/warp.cpp +1057 -1052
  200. warp/native/warp.cu +2943 -2828
  201. warp/native/warp.h +313 -305
  202. warp/optim/__init__.py +9 -9
  203. warp/optim/adam.py +120 -120
  204. warp/optim/linear.py +1104 -939
  205. warp/optim/sgd.py +104 -92
  206. warp/render/__init__.py +10 -10
  207. warp/render/render_opengl.py +3217 -3204
  208. warp/render/render_usd.py +768 -749
  209. warp/render/utils.py +152 -150
  210. warp/sim/__init__.py +52 -59
  211. warp/sim/articulation.py +685 -685
  212. warp/sim/collide.py +1594 -1590
  213. warp/sim/import_mjcf.py +489 -481
  214. warp/sim/import_snu.py +220 -221
  215. warp/sim/import_urdf.py +536 -516
  216. warp/sim/import_usd.py +887 -881
  217. warp/sim/inertia.py +316 -317
  218. warp/sim/integrator.py +234 -233
  219. warp/sim/integrator_euler.py +1956 -1956
  220. warp/sim/integrator_featherstone.py +1910 -1991
  221. warp/sim/integrator_xpbd.py +3294 -3312
  222. warp/sim/model.py +4473 -4314
  223. warp/sim/particles.py +113 -112
  224. warp/sim/render.py +417 -403
  225. warp/sim/utils.py +413 -410
  226. warp/sparse.py +1227 -1227
  227. warp/stubs.py +2109 -2469
  228. warp/tape.py +1162 -225
  229. warp/tests/__init__.py +1 -1
  230. warp/tests/__main__.py +4 -4
  231. warp/tests/assets/torus.usda +105 -105
  232. warp/tests/aux_test_class_kernel.py +26 -26
  233. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  234. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  235. warp/tests/aux_test_dependent.py +22 -22
  236. warp/tests/aux_test_grad_customs.py +23 -23
  237. warp/tests/aux_test_reference.py +11 -11
  238. warp/tests/aux_test_reference_reference.py +10 -10
  239. warp/tests/aux_test_square.py +17 -17
  240. warp/tests/aux_test_unresolved_func.py +14 -14
  241. warp/tests/aux_test_unresolved_symbol.py +14 -14
  242. warp/tests/disabled_kinematics.py +239 -239
  243. warp/tests/run_coverage_serial.py +31 -31
  244. warp/tests/test_adam.py +157 -157
  245. warp/tests/test_arithmetic.py +1124 -1124
  246. warp/tests/test_array.py +2417 -2326
  247. warp/tests/test_array_reduce.py +150 -150
  248. warp/tests/test_async.py +668 -656
  249. warp/tests/test_atomic.py +141 -141
  250. warp/tests/test_bool.py +204 -149
  251. warp/tests/test_builtins_resolution.py +1292 -1292
  252. warp/tests/test_bvh.py +164 -171
  253. warp/tests/test_closest_point_edge_edge.py +228 -228
  254. warp/tests/test_codegen.py +566 -553
  255. warp/tests/test_compile_consts.py +97 -101
  256. warp/tests/test_conditional.py +246 -246
  257. warp/tests/test_copy.py +232 -215
  258. warp/tests/test_ctypes.py +632 -632
  259. warp/tests/test_dense.py +67 -67
  260. warp/tests/test_devices.py +91 -98
  261. warp/tests/test_dlpack.py +530 -529
  262. warp/tests/test_examples.py +400 -378
  263. warp/tests/test_fabricarray.py +955 -955
  264. warp/tests/test_fast_math.py +62 -54
  265. warp/tests/test_fem.py +1277 -1278
  266. warp/tests/test_fp16.py +130 -130
  267. warp/tests/test_func.py +338 -337
  268. warp/tests/test_generics.py +571 -571
  269. warp/tests/test_grad.py +746 -640
  270. warp/tests/test_grad_customs.py +333 -336
  271. warp/tests/test_hash_grid.py +210 -164
  272. warp/tests/test_import.py +39 -39
  273. warp/tests/test_indexedarray.py +1134 -1134
  274. warp/tests/test_intersect.py +67 -67
  275. warp/tests/test_jax.py +307 -307
  276. warp/tests/test_large.py +167 -164
  277. warp/tests/test_launch.py +354 -354
  278. warp/tests/test_lerp.py +261 -261
  279. warp/tests/test_linear_solvers.py +191 -171
  280. warp/tests/test_lvalue.py +421 -493
  281. warp/tests/test_marching_cubes.py +65 -65
  282. warp/tests/test_mat.py +1801 -1827
  283. warp/tests/test_mat_lite.py +115 -115
  284. warp/tests/test_mat_scalar_ops.py +2907 -2889
  285. warp/tests/test_math.py +126 -193
  286. warp/tests/test_matmul.py +500 -499
  287. warp/tests/test_matmul_lite.py +410 -410
  288. warp/tests/test_mempool.py +188 -190
  289. warp/tests/test_mesh.py +284 -324
  290. warp/tests/test_mesh_query_aabb.py +228 -241
  291. warp/tests/test_mesh_query_point.py +692 -702
  292. warp/tests/test_mesh_query_ray.py +292 -303
  293. warp/tests/test_mlp.py +276 -276
  294. warp/tests/test_model.py +110 -110
  295. warp/tests/test_modules_lite.py +39 -39
  296. warp/tests/test_multigpu.py +163 -163
  297. warp/tests/test_noise.py +248 -248
  298. warp/tests/test_operators.py +250 -250
  299. warp/tests/test_options.py +123 -125
  300. warp/tests/test_peer.py +133 -137
  301. warp/tests/test_pinned.py +78 -78
  302. warp/tests/test_print.py +54 -54
  303. warp/tests/test_quat.py +2086 -2086
  304. warp/tests/test_rand.py +288 -288
  305. warp/tests/test_reload.py +217 -217
  306. warp/tests/test_rounding.py +179 -179
  307. warp/tests/test_runlength_encode.py +190 -190
  308. warp/tests/test_sim_grad.py +243 -0
  309. warp/tests/test_sim_kinematics.py +91 -97
  310. warp/tests/test_smoothstep.py +168 -168
  311. warp/tests/test_snippet.py +305 -266
  312. warp/tests/test_sparse.py +468 -460
  313. warp/tests/test_spatial.py +2148 -2148
  314. warp/tests/test_streams.py +486 -473
  315. warp/tests/test_struct.py +710 -675
  316. warp/tests/test_tape.py +173 -148
  317. warp/tests/test_torch.py +743 -743
  318. warp/tests/test_transient_module.py +87 -87
  319. warp/tests/test_types.py +556 -659
  320. warp/tests/test_utils.py +490 -499
  321. warp/tests/test_vec.py +1264 -1268
  322. warp/tests/test_vec_lite.py +73 -73
  323. warp/tests/test_vec_scalar_ops.py +2099 -2099
  324. warp/tests/test_verify_fp.py +94 -94
  325. warp/tests/test_volume.py +737 -736
  326. warp/tests/test_volume_write.py +255 -265
  327. warp/tests/unittest_serial.py +37 -37
  328. warp/tests/unittest_suites.py +363 -359
  329. warp/tests/unittest_utils.py +603 -578
  330. warp/tests/unused_test_misc.py +71 -71
  331. warp/tests/walkthrough_debug.py +85 -85
  332. warp/thirdparty/appdirs.py +598 -598
  333. warp/thirdparty/dlpack.py +143 -143
  334. warp/thirdparty/unittest_parallel.py +566 -561
  335. warp/torch.py +321 -295
  336. warp/types.py +4504 -4450
  337. warp/utils.py +1008 -821
  338. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
  339. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
  340. warp_lang-1.1.0.dist-info/RECORD +352 -0
  341. warp/examples/assets/cube.usda +0 -42
  342. warp/examples/assets/sphere.usda +0 -56
  343. warp/examples/assets/torus.usda +0 -105
  344. warp_lang-1.0.2.dist-info/RECORD +0 -352
  345. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
@@ -1,425 +1,425 @@
1
- #include "volume_builder.h"
2
-
3
- #include <cuda.h>
4
- #include <cuda_runtime_api.h>
5
-
6
- #include <cub/cub.cuh>
7
- #include <cub/util_allocator.cuh>
8
-
9
- // Explanation of key types
10
- // ------------------------
11
- //
12
- // leaf_key:
13
- // .__.__. .... .__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.
14
- // 63 62 .... 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
15
- // XX|< tile key >|< upper offset >|< lower offset >|
16
- //
17
- // tile key (36 bit):
18
- // (uint32(ijk[2]) >> ChildT::TOTAL) |
19
- // (uint64_t(uint32(ijk[1]) >> ChildT::TOTAL)) << 12 |
20
- // (uint64_t(uint32(ijk[0]) >> ChildT::TOTAL)) << 24
21
- //
22
- // lower_key (51 bits) == leaf_key >> 12
23
- //
24
- // upper_key (36 bits) == lower_key >> 15 == leaf_key >> 27 == tile key
25
-
26
- CUDA_CALLABLE inline uint64_t coord_to_full_key(const nanovdb::Coord& ijk)
27
- {
28
- using Tree = nanovdb::FloatTree; // any type is fine at this point
29
- assert((abs(ijk[0]) >> 24) == 0);
30
- assert((abs(ijk[1]) >> 24) == 0);
31
- assert((abs(ijk[2]) >> 24) == 0);
32
- constexpr uint32_t MASK_12BITS = (1u << 12) - 1u;
33
- const uint64_t tile_key36 =
34
- ((uint32_t(ijk[2]) >> 12) & MASK_12BITS) | // z is the lower 12 bits
35
- (uint64_t((uint32_t(ijk[1]) >> 12) & MASK_12BITS) << 12) | // y is the middle 12 bits
36
- (uint64_t((uint32_t(ijk[0]) >> 12) & MASK_12BITS) << 24); // x is the upper 12 bits
37
- const uint32_t upper_offset = Tree::Node2::CoordToOffset(ijk);
38
- const uint32_t lower_offset = Tree::Node1::CoordToOffset(ijk);
39
- return (tile_key36 << 27) | (upper_offset << 12) | lower_offset;
40
- }
41
-
42
- __global__
43
- void generate_keys(size_t num_points, const nanovdb::Coord* points, uint64_t* all_leaf_keys)
44
- {
45
- const int tid = blockIdx.x * blockDim.x + threadIdx.x;
46
- if (tid >= num_points) return;
47
-
48
- all_leaf_keys[tid] = coord_to_full_key(points[tid]);
49
- }
50
-
51
- __global__
52
- void generate_keys(size_t num_points, const nanovdb::Vec3f* points, uint64_t* all_leaf_keys, float one_over_voxel_size, nanovdb::Vec3f translation)
53
- {
54
- const int tid = blockIdx.x * blockDim.x + threadIdx.x;
55
- if (tid >= num_points) return;
56
-
57
- const nanovdb::Coord ijk = ((points[tid] - translation) * one_over_voxel_size).round();
58
- all_leaf_keys[tid] = coord_to_full_key(ijk);
59
- }
60
-
61
- // Convert a 36 bit tile key to the ijk origin of the addressed tile
62
- CUDA_CALLABLE inline nanovdb::Coord tile_key36_to_coord(uint64_t tile_key36) {
63
- auto extend_sign = [](uint32_t i) -> int32_t { return i | ((i>>11 & 1) * 0xFFFFF800);};
64
- constexpr uint32_t MASK_12BITS = (1u << 12) - 1u;
65
- const int32_t i = extend_sign(uint32_t(tile_key36 >> 24) & MASK_12BITS);
66
- const int32_t j = extend_sign(uint32_t(tile_key36 >> 12) & MASK_12BITS);
67
- const int32_t k = extend_sign(uint32_t(tile_key36) & MASK_12BITS);
68
- return nanovdb::Coord(i, j, k) << 12;
69
- }
70
-
71
-
72
- // --- CUB helpers ---
73
- template<uint8_t bits, typename InType, typename OutType>
74
- struct ShiftRight {
75
- CUDA_CALLABLE inline OutType operator()(const InType& v) const {
76
- return static_cast<OutType>(v >> bits);
77
- }
78
- };
79
-
80
- template<uint8_t bits, typename InType = uint64_t, typename OutType = uint64_t>
81
- struct ShiftRightIterator : public cub::TransformInputIterator<OutType, ShiftRight<bits, InType, OutType>, InType*> {
82
- using BASE = cub::TransformInputIterator<OutType, ShiftRight<bits, InType, OutType>, InType*>;
83
- CUDA_CALLABLE inline ShiftRightIterator(uint64_t* input_itr)
84
- : BASE(input_itr, ShiftRight<bits, InType, OutType>()) {}
85
- };
86
-
87
-
88
- // --- Atomic instructions for NanoVDB construction ---
89
- template<typename MaskT>
90
- CUDA_CALLABLE_DEVICE void set_mask_atomic(MaskT& mask, uint32_t n) {
91
- unsigned long long int* words = reinterpret_cast<unsigned long long int*>(&mask);
92
- atomicOr(words + (n / 64), 1ull << (n & 63));
93
- }
94
-
95
- template<typename Vec3T>
96
- CUDA_CALLABLE_DEVICE void expand_cwise_atomic(nanovdb::BBox<Vec3T>& bbox, const Vec3T& v) {
97
- atomicMin(&bbox.mCoord[0][0], v[0]);
98
- atomicMin(&bbox.mCoord[0][1], v[1]);
99
- atomicMin(&bbox.mCoord[0][2], v[2]);
100
- atomicMax(&bbox.mCoord[1][0], v[0]);
101
- atomicMax(&bbox.mCoord[1][1], v[1]);
102
- atomicMax(&bbox.mCoord[1][2], v[2]);
103
- }
104
-
105
- template<typename RootDataType>
106
- __hostdev__ const typename RootDataType::Tile* find_tile(const RootDataType* root_data, const nanovdb::Coord& ijk)
107
- {
108
- using Tile = typename RootDataType::Tile;
109
- const Tile *tiles = reinterpret_cast<const Tile *>(root_data + 1);
110
- const auto key = RootDataType::CoordToKey(ijk);
111
-
112
- for (uint32_t i = 0; i < root_data->mTableSize; ++i)
113
- {
114
- if (tiles[i].key == key)
115
- return &tiles[i];
116
- }
117
- return nullptr;
118
- }
119
-
120
- // --- Wrapper for launching lambda kernels
121
- template<typename Func, typename... Args>
122
- __global__ void kernel(const size_t num_items, Func f, Args... args)
123
- {
124
- const int tid = blockIdx.x * blockDim.x + threadIdx.x;
125
- if (tid >= num_items) return;
126
- f(tid, args...);
127
- }
128
-
129
- template <typename BuildT>
130
- void build_grid_from_tiles(nanovdb::Grid<nanovdb::NanoTree<BuildT>> *&out_grid,
131
- size_t &out_grid_size,
132
- const void *points,
133
- size_t num_points,
134
- bool points_in_world_space,
135
- const BuildGridParams<BuildT> &params)
136
- {
137
- using FloatT = typename nanovdb::FloatTraits<BuildT>::FloatType;
138
- const BuildT ZERO_VAL{0};
139
- const FloatT ZERO_SCALAR{0};
140
-
141
- // Don't want to access "params" in kernels
142
- const double dx = params.voxel_size;
143
- const double Tx = params.translation[0], Ty = params.translation[1], Tz = params.translation[2];
144
- const BuildT background_value = params.background_value;
145
-
146
- const unsigned int num_threads = 256;
147
- unsigned int num_blocks;
148
-
149
- out_grid = nullptr;
150
- out_grid_size = 0;
151
-
152
- cub::CachingDeviceAllocator allocator;
153
-
154
- uint64_t* leaf_keys;
155
- uint64_t* lower_keys;
156
- uint64_t* upper_keys;
157
- uint32_t* node_counts;
158
- uint32_t leaf_count, lower_node_count, upper_node_count;
159
-
160
- allocator.DeviceAllocate((void**)&leaf_keys, sizeof(uint64_t) * num_points);
161
- allocator.DeviceAllocate((void**)&node_counts, sizeof(uint32_t) * 3);
162
-
163
- // Phase 1: counting the nodes
164
- {
165
- // Generating keys from coords
166
- uint64_t* all_leaf_keys;
167
- uint64_t* all_leaf_keys_sorted;
168
- allocator.DeviceAllocate((void**)&all_leaf_keys, sizeof(uint64_t) * num_points);
169
- allocator.DeviceAllocate((void**)&all_leaf_keys_sorted, sizeof(uint64_t) * num_points);
170
-
171
- num_blocks = (static_cast<unsigned int>(num_points) + num_threads - 1) / num_threads;
172
- if (points_in_world_space) {
173
- generate_keys<<<num_blocks, num_threads>>>(num_points, static_cast<const nanovdb::Vec3f*>(points), all_leaf_keys, static_cast<float>(1.0 / dx), nanovdb::Vec3f(params.translation));
174
- } else {
175
- generate_keys<<<num_blocks, num_threads>>>(num_points, static_cast<const nanovdb::Coord*>(points), all_leaf_keys);
176
- }
177
-
178
- void* d_temp_storage = nullptr;
179
- size_t temp_storage_bytes;
180
-
181
- // Sort the keys, then get an array of unique keys
182
- cub::DeviceRadixSort::SortKeys(nullptr, temp_storage_bytes, all_leaf_keys, all_leaf_keys_sorted, static_cast<int>(num_points), /* begin_bit = */ 0, /* end_bit = */ 63);
183
- allocator.DeviceAllocate((void**)&d_temp_storage, temp_storage_bytes);
184
- cub::DeviceRadixSort::SortKeys(d_temp_storage, temp_storage_bytes, all_leaf_keys, all_leaf_keys_sorted, static_cast<int>(num_points), /* begin_bit = */ 0, /* end_bit = */ 63);
185
- allocator.DeviceFree(d_temp_storage);
186
-
187
- cub::DeviceSelect::Unique(nullptr, temp_storage_bytes, all_leaf_keys_sorted, leaf_keys, node_counts, static_cast<int>(num_points));
188
- allocator.DeviceAllocate((void**)&d_temp_storage, temp_storage_bytes);
189
- cub::DeviceSelect::Unique(d_temp_storage, temp_storage_bytes, all_leaf_keys_sorted, leaf_keys, node_counts, static_cast<int>(num_points));
190
- allocator.DeviceFree(d_temp_storage);
191
- check_cuda(cudaMemcpy(&leaf_count, node_counts, sizeof(uint32_t), cudaMemcpyDeviceToHost));
192
-
193
- allocator.DeviceFree(all_leaf_keys);
194
- all_leaf_keys = nullptr;
195
- allocator.DeviceFree(all_leaf_keys_sorted);
196
- all_leaf_keys_sorted = nullptr;
197
-
198
-
199
- // Get the keys unique to lower nodes and the number of them
200
- allocator.DeviceAllocate((void**)&lower_keys, sizeof(uint64_t) * leaf_count);
201
- cub::DeviceSelect::Unique(nullptr, temp_storage_bytes, ShiftRightIterator<12>(leaf_keys), lower_keys, node_counts + 1, leaf_count);
202
- allocator.DeviceAllocate((void**)&d_temp_storage, temp_storage_bytes);
203
- cub::DeviceSelect::Unique(d_temp_storage, temp_storage_bytes, ShiftRightIterator<12>(leaf_keys), lower_keys, node_counts + 1, leaf_count);
204
- allocator.DeviceFree(d_temp_storage);
205
- check_cuda(cudaMemcpy(&lower_node_count, node_counts + 1, sizeof(uint32_t), cudaMemcpyDeviceToHost));
206
-
207
- // Get the keys unique to upper nodes and the number of them
208
- allocator.DeviceAllocate((void**)&upper_keys, sizeof(uint64_t) * lower_node_count);
209
- cub::DeviceSelect::Unique(nullptr, temp_storage_bytes, ShiftRightIterator<15>(lower_keys), upper_keys, node_counts + 2, lower_node_count);
210
- allocator.DeviceAllocate((void**)&d_temp_storage, temp_storage_bytes);
211
- cub::DeviceSelect::Unique(d_temp_storage, temp_storage_bytes, ShiftRightIterator<15>(lower_keys), upper_keys, node_counts + 2, lower_node_count);
212
- allocator.DeviceFree(d_temp_storage);
213
- check_cuda(cudaMemcpy(&upper_node_count, node_counts + 2, sizeof(uint32_t), cudaMemcpyDeviceToHost));
214
- }
215
-
216
- using Tree = nanovdb::NanoTree<BuildT>;
217
- using Grid = nanovdb::Grid<Tree>;
218
-
219
- const size_t total_bytes =
220
- sizeof(Grid) +
221
- sizeof(Tree) +
222
- sizeof(typename Tree::RootType) +
223
- sizeof(typename Tree::RootType::Tile) * upper_node_count +
224
- sizeof(typename Tree::Node2) * upper_node_count +
225
- sizeof(typename Tree::Node1) * lower_node_count +
226
- sizeof(typename Tree::Node0) * leaf_count;
227
-
228
- const int64_t upper_mem_offset =
229
- sizeof(nanovdb::GridData) + sizeof(Tree) + sizeof(typename Tree::RootType) +
230
- sizeof(typename Tree::RootType::Tile) * upper_node_count;
231
- const int64_t lower_mem_offset = upper_mem_offset + sizeof(typename Tree::Node2) * upper_node_count;
232
- const int64_t leaf_mem_offset = lower_mem_offset + sizeof(typename Tree::Node1) * lower_node_count;
233
-
234
- typename Grid::DataType* grid;
235
- check_cuda(cudaMalloc(&grid, total_bytes));
236
-
237
- typename Tree::DataType* const tree = reinterpret_cast<typename Tree::DataType*>(grid + 1); // The tree is immediately after the grid
238
- typename Tree::RootType::DataType* const root = reinterpret_cast<typename Tree::RootType::DataType*>(tree + 1); // The root is immediately after the tree
239
- typename Tree::RootType::Tile* const tiles = reinterpret_cast<typename Tree::RootType::Tile*>(root + 1);
240
- typename Tree::Node2::DataType* const upper_nodes = nanovdb::PtrAdd<typename Tree::Node2::DataType>(grid, upper_mem_offset);
241
- typename Tree::Node1::DataType* const lower_nodes = nanovdb::PtrAdd<typename Tree::Node1::DataType>(grid, lower_mem_offset);
242
- typename Tree::Node0::DataType* const leaf_nodes = nanovdb::PtrAdd<typename Tree::Node0::DataType>(grid, leaf_mem_offset);
243
-
244
- // Phase 2: building the tree
245
- {
246
- // Setting up the tree and root node
247
- kernel<<<1, 1>>>(1, [=] __device__(size_t i) {
248
- tree->mNodeOffset[3] = sizeof(Tree);
249
- tree->mNodeOffset[2] = tree->mNodeOffset[3] + sizeof(typename Tree::RootType) + sizeof(typename Tree::RootType::Tile) * upper_node_count;
250
- tree->mNodeOffset[1] = tree->mNodeOffset[2] + sizeof(typename Tree::Node2) * upper_node_count;
251
- tree->mNodeOffset[0] = tree->mNodeOffset[1] + sizeof(typename Tree::Node1) * lower_node_count;
252
- tree->mNodeCount[2] = tree->mTileCount[2] = upper_node_count;
253
- tree->mNodeCount[1] = tree->mTileCount[1] = lower_node_count;
254
- tree->mNodeCount[0] = tree->mTileCount[0] = leaf_count;
255
- tree->mVoxelCount = Tree::Node0::SIZE * leaf_count; // assuming full leaves
256
-
257
- root->mBBox = nanovdb::CoordBBox(); // init to empty
258
- root->mTableSize = upper_node_count;
259
- root->mBackground = background_value;
260
- root->mMinimum = ZERO_VAL;
261
- root->mMaximum = ZERO_VAL;
262
- root->mAverage = ZERO_SCALAR;
263
- root->mStdDevi = ZERO_SCALAR;
264
- });
265
- }
266
-
267
- // Add tiles and upper nodes
268
- // i : 0 .. upper_node_count-1
269
- num_blocks = (upper_node_count + num_threads - 1) / num_threads;
270
- {
271
- kernel<<<num_blocks, num_threads>>>(upper_node_count, [=] __device__(size_t i) {
272
- tiles[i].key = root->CoordToKey(tile_key36_to_coord(upper_keys[i]));
273
- tiles[i].child = sizeof(typename Tree::RootType) + sizeof(typename Tree::RootType::Tile) * upper_node_count + sizeof(typename Tree::Node2) * i;
274
- tiles[i].state = 0;
275
- tiles[i].value = background_value;
276
-
277
- assert(reinterpret_cast<const char*>(root->getChild(tiles + i)) == reinterpret_cast<const char*>(upper_nodes + i));
278
- auto& node = upper_nodes[i];
279
- node.mBBox = nanovdb::CoordBBox();
280
- node.mFlags = 0;
281
- node.mValueMask.setOff();
282
- node.mChildMask.setOff();
283
- node.mMinimum = ZERO_VAL;
284
- node.mMaximum = ZERO_VAL;
285
- node.mAverage = ZERO_SCALAR;
286
- node.mStdDevi = ZERO_SCALAR;
287
- for (size_t n = 0; n < Tree::Node2::SIZE; ++n) {
288
- node.mTable[n].value = background_value;
289
- }
290
- });
291
- }
292
-
293
- constexpr uint32_t MASK_15BITS = (1u << 15) - 1u;
294
- constexpr uint32_t MASK_12BITS = (1u << 12) - 1u;
295
-
296
- // Init lower nodes and register to parent
297
- // i : 0 .. lower_node_count-1
298
- num_blocks = (lower_node_count + num_threads - 1) / num_threads;
299
- {
300
- kernel<<<num_blocks, num_threads>>>(lower_node_count, [=] __device__(size_t i) {
301
- uint32_t upper_offset = lower_keys[i] & MASK_15BITS;
302
- auto* upper_node = root->getChild(find_tile(root, tile_key36_to_coord(lower_keys[i] >> 15)))->data();
303
- set_mask_atomic(upper_node->mChildMask, upper_offset);
304
- upper_node->setChild(upper_offset, lower_nodes + i);
305
-
306
- auto& node = lower_nodes[i];
307
- node.mBBox = nanovdb::CoordBBox();
308
- node.mFlags = 0;
309
- node.mValueMask.setOff();
310
- node.mChildMask.setOff();
311
- node.mMinimum = ZERO_VAL;
312
- node.mMaximum = ZERO_VAL;
313
- node.mAverage = ZERO_SCALAR;
314
- node.mStdDevi = ZERO_SCALAR;
315
- for (size_t n = 0; n < Tree::Node1::SIZE; ++n) {
316
- node.mTable[n].value = background_value;
317
- }
318
- });
319
- }
320
-
321
- // Init leaf nodes and register to parent
322
- // i : 0 .. leaf_count-1
323
- num_blocks = (leaf_count + num_threads - 1) / num_threads;
324
- {
325
- kernel<<<num_blocks, num_threads>>>(leaf_count, [=] __device__(size_t i) {
326
- uint32_t lower_offset = leaf_keys[i] & MASK_12BITS;
327
- uint32_t upper_offset = (leaf_keys[i] >> 12) & MASK_15BITS;
328
- const nanovdb::Coord ijk = tile_key36_to_coord(leaf_keys[i] >> 27);
329
-
330
- auto* upper_node = root->getChild(find_tile(root, ijk))->data();
331
- auto* lower_node = upper_node->getChild(upper_offset)->data();
332
- set_mask_atomic(lower_node->mChildMask, lower_offset);
333
- lower_node->setChild(lower_offset, leaf_nodes + i);
334
-
335
- const nanovdb::Coord localUpperIjk = Tree::Node2::OffsetToLocalCoord(upper_offset) << Tree::Node1::TOTAL;
336
- const nanovdb::Coord localLowerIjk = Tree::Node1::OffsetToLocalCoord(lower_offset) << Tree::Node0::TOTAL;
337
- const nanovdb::Coord leafOrigin = ijk + localUpperIjk + localLowerIjk;
338
-
339
- auto& node = leaf_nodes[i];
340
- node.mBBoxMin = leafOrigin;
341
- node.mBBoxDif[0] = leaf_nodes[i].mBBoxDif[1] = leaf_nodes[i].mBBoxDif[2] = Tree::Node0::DIM;
342
- node.mFlags = 0;
343
- node.mValueMask.setOn();
344
- node.mMinimum = ZERO_VAL;
345
- node.mMaximum = ZERO_VAL;
346
- node.mAverage = ZERO_SCALAR;
347
- node.mStdDevi = ZERO_SCALAR;
348
- // mValues is undefined
349
-
350
- // propagating bbox up:
351
- expand_cwise_atomic(lower_node->mBBox, leafOrigin);
352
- expand_cwise_atomic(lower_node->mBBox, leafOrigin + nanovdb::Coord(Tree::Node0::DIM));
353
- });
354
- }
355
-
356
- // Propagating bounding boxes from lower nodes to upper nodes
357
- // i : 0 .. lower_node_count-1
358
- num_blocks = (lower_node_count + num_threads - 1) / num_threads;
359
- {
360
- kernel<<<num_blocks, num_threads>>>(lower_node_count, [=] __device__(size_t i) {
361
- auto* upper_node = root->getChild(find_tile(root, tile_key36_to_coord(lower_keys[i] >> 15)))->data();
362
- expand_cwise_atomic(upper_node->mBBox, lower_nodes[i].mBBox.min());
363
- expand_cwise_atomic(upper_node->mBBox, lower_nodes[i].mBBox.max());
364
- });
365
- }
366
-
367
- // Setting up root bounding box and grid
368
- {
369
- kernel<<<1, 1>>>(1, [=] __device__(size_t i) {
370
- for (int i = 0; i < upper_node_count; ++i) {
371
- root->mBBox.expand(upper_nodes[i].mBBox.min());
372
- root->mBBox.expand(upper_nodes[i].mBBox.max());
373
- }
374
-
375
- nanovdb::Map map;
376
- {
377
- const double mat[4][4] = {
378
- {dx, 0.0, 0.0, 0.0}, // row 0
379
- {0.0, dx, 0.0, 0.0}, // row 1
380
- {0.0, 0.0, dx, 0.0}, // row 2
381
- {Tx, Ty, Tz, 1.0}, // row 3
382
- };
383
- const double invMat[4][4] = {
384
- {1 / dx, 0.0, 0.0, 0.0}, // row 0
385
- {0.0, 1 / dx, 0.0, 0.0}, // row 1
386
- {0.0, 0.0, 1 / dx, 0.0}, // row 2
387
- {0.0, 0.0, 0.0, 0.0}, // row 3, ignored by Map::set
388
- };
389
- map.set(mat, invMat, 1.0);
390
- }
391
-
392
- grid->mMagic = NANOVDB_MAGIC_NUMBER;
393
- grid->mChecksum = 0xFFFFFFFFFFFFFFFFull;
394
- grid->mVersion = nanovdb::Version();
395
- grid->mFlags = static_cast<uint32_t>(nanovdb::GridFlags::HasBBox) |
396
- static_cast<uint32_t>(nanovdb::GridFlags::IsBreadthFirst);
397
- grid->mGridIndex = 0;
398
- grid->mGridCount = 1;
399
- grid->mGridSize = total_bytes;
400
- // mGridName is set below
401
- grid->mWorldBBox.mCoord[0] = map.applyMap(nanovdb::Vec3R(root->mBBox.mCoord[0]));
402
- grid->mWorldBBox.mCoord[1] = map.applyMap(nanovdb::Vec3R(root->mBBox.mCoord[1]));
403
- grid->mVoxelSize = nanovdb::Vec3d(dx);
404
- grid->mMap = map;
405
- grid->mGridClass = nanovdb::GridClass::Unknown;
406
- grid->mGridType = nanovdb::mapToGridType<BuildT>();
407
- grid->mBlindMetadataOffset = total_bytes;
408
- grid->mBlindMetadataCount = 0;
409
- });
410
- }
411
-
412
- check_cuda(cudaMemcpy(grid->mGridName, params.name, 256, cudaMemcpyHostToDevice));
413
-
414
- allocator.DeviceFree(lower_keys);
415
- allocator.DeviceFree(upper_keys);
416
- allocator.DeviceFree(leaf_keys);
417
- allocator.DeviceFree(node_counts);
418
-
419
- out_grid = reinterpret_cast<Grid*>(grid);
420
- out_grid_size = total_bytes;
421
- }
422
-
423
- template void build_grid_from_tiles(nanovdb::Grid<nanovdb::NanoTree<float>>*&, size_t&, const void*, size_t, bool, const BuildGridParams<float>&);
424
- template void build_grid_from_tiles(nanovdb::Grid<nanovdb::NanoTree<nanovdb::Vec3f>>*&, size_t&, const void*, size_t, bool, const BuildGridParams<nanovdb::Vec3f>&);
425
- template void build_grid_from_tiles(nanovdb::Grid<nanovdb::NanoTree<int32_t>>*&, size_t&, const void*, size_t, bool, const BuildGridParams<int32_t>&);
1
+ #include "volume_builder.h"
2
+
3
+ #include <cuda.h>
4
+ #include <cuda_runtime_api.h>
5
+
6
+ #include <cub/cub.cuh>
7
+ #include <cub/util_allocator.cuh>
8
+
9
+ // Explanation of key types
10
+ // ------------------------
11
+ //
12
+ // leaf_key:
13
+ // .__.__. .... .__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.__.
14
+ // 63 62 .... 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
15
+ // XX|< tile key >|< upper offset >|< lower offset >|
16
+ //
17
+ // tile key (36 bit):
18
+ // (uint32(ijk[2]) >> ChildT::TOTAL) |
19
+ // (uint64_t(uint32(ijk[1]) >> ChildT::TOTAL)) << 12 |
20
+ // (uint64_t(uint32(ijk[0]) >> ChildT::TOTAL)) << 24
21
+ //
22
+ // lower_key (51 bits) == leaf_key >> 12
23
+ //
24
+ // upper_key (36 bits) == lower_key >> 15 == leaf_key >> 27 == tile key
25
+
26
+ CUDA_CALLABLE inline uint64_t coord_to_full_key(const nanovdb::Coord& ijk)
27
+ {
28
+ using Tree = nanovdb::FloatTree; // any type is fine at this point
29
+ assert((abs(ijk[0]) >> 24) == 0);
30
+ assert((abs(ijk[1]) >> 24) == 0);
31
+ assert((abs(ijk[2]) >> 24) == 0);
32
+ constexpr uint32_t MASK_12BITS = (1u << 12) - 1u;
33
+ const uint64_t tile_key36 =
34
+ ((uint32_t(ijk[2]) >> 12) & MASK_12BITS) | // z is the lower 12 bits
35
+ (uint64_t((uint32_t(ijk[1]) >> 12) & MASK_12BITS) << 12) | // y is the middle 12 bits
36
+ (uint64_t((uint32_t(ijk[0]) >> 12) & MASK_12BITS) << 24); // x is the upper 12 bits
37
+ const uint32_t upper_offset = Tree::Node2::CoordToOffset(ijk);
38
+ const uint32_t lower_offset = Tree::Node1::CoordToOffset(ijk);
39
+ return (tile_key36 << 27) | (upper_offset << 12) | lower_offset;
40
+ }
41
+
42
+ __global__
43
+ void generate_keys(size_t num_points, const nanovdb::Coord* points, uint64_t* all_leaf_keys)
44
+ {
45
+ const int tid = blockIdx.x * blockDim.x + threadIdx.x;
46
+ if (tid >= num_points) return;
47
+
48
+ all_leaf_keys[tid] = coord_to_full_key(points[tid]);
49
+ }
50
+
51
+ __global__
52
+ void generate_keys(size_t num_points, const nanovdb::Vec3f* points, uint64_t* all_leaf_keys, float one_over_voxel_size, nanovdb::Vec3f translation)
53
+ {
54
+ const int tid = blockIdx.x * blockDim.x + threadIdx.x;
55
+ if (tid >= num_points) return;
56
+
57
+ const nanovdb::Coord ijk = ((points[tid] - translation) * one_over_voxel_size).round();
58
+ all_leaf_keys[tid] = coord_to_full_key(ijk);
59
+ }
60
+
61
+ // Convert a 36 bit tile key to the ijk origin of the addressed tile
62
+ CUDA_CALLABLE inline nanovdb::Coord tile_key36_to_coord(uint64_t tile_key36) {
63
+ auto extend_sign = [](uint32_t i) -> int32_t { return i | ((i>>11 & 1) * 0xFFFFF800);};
64
+ constexpr uint32_t MASK_12BITS = (1u << 12) - 1u;
65
+ const int32_t i = extend_sign(uint32_t(tile_key36 >> 24) & MASK_12BITS);
66
+ const int32_t j = extend_sign(uint32_t(tile_key36 >> 12) & MASK_12BITS);
67
+ const int32_t k = extend_sign(uint32_t(tile_key36) & MASK_12BITS);
68
+ return nanovdb::Coord(i, j, k) << 12;
69
+ }
70
+
71
+
72
+ // --- CUB helpers ---
73
+ template<uint8_t bits, typename InType, typename OutType>
74
+ struct ShiftRight {
75
+ CUDA_CALLABLE inline OutType operator()(const InType& v) const {
76
+ return static_cast<OutType>(v >> bits);
77
+ }
78
+ };
79
+
80
+ template<uint8_t bits, typename InType = uint64_t, typename OutType = uint64_t>
81
+ struct ShiftRightIterator : public cub::TransformInputIterator<OutType, ShiftRight<bits, InType, OutType>, InType*> {
82
+ using BASE = cub::TransformInputIterator<OutType, ShiftRight<bits, InType, OutType>, InType*>;
83
+ CUDA_CALLABLE inline ShiftRightIterator(uint64_t* input_itr)
84
+ : BASE(input_itr, ShiftRight<bits, InType, OutType>()) {}
85
+ };
86
+
87
+
88
+ // --- Atomic instructions for NanoVDB construction ---
89
+ template<typename MaskT>
90
+ CUDA_CALLABLE_DEVICE void set_mask_atomic(MaskT& mask, uint32_t n) {
91
+ unsigned long long int* words = reinterpret_cast<unsigned long long int*>(&mask);
92
+ atomicOr(words + (n / 64), 1ull << (n & 63));
93
+ }
94
+
95
+ template<typename Vec3T>
96
+ CUDA_CALLABLE_DEVICE void expand_cwise_atomic(nanovdb::BBox<Vec3T>& bbox, const Vec3T& v) {
97
+ atomicMin(&bbox.mCoord[0][0], v[0]);
98
+ atomicMin(&bbox.mCoord[0][1], v[1]);
99
+ atomicMin(&bbox.mCoord[0][2], v[2]);
100
+ atomicMax(&bbox.mCoord[1][0], v[0]);
101
+ atomicMax(&bbox.mCoord[1][1], v[1]);
102
+ atomicMax(&bbox.mCoord[1][2], v[2]);
103
+ }
104
+
105
+ template<typename RootDataType>
106
+ __hostdev__ const typename RootDataType::Tile* find_tile(const RootDataType* root_data, const nanovdb::Coord& ijk)
107
+ {
108
+ using Tile = typename RootDataType::Tile;
109
+ const Tile *tiles = reinterpret_cast<const Tile *>(root_data + 1);
110
+ const auto key = RootDataType::CoordToKey(ijk);
111
+
112
+ for (uint32_t i = 0; i < root_data->mTableSize; ++i)
113
+ {
114
+ if (tiles[i].key == key)
115
+ return &tiles[i];
116
+ }
117
+ return nullptr;
118
+ }
119
+
120
+ // --- Wrapper for launching lambda kernels
121
+ template<typename Func, typename... Args>
122
+ __global__ void kernel(const size_t num_items, Func f, Args... args)
123
+ {
124
+ const int tid = blockIdx.x * blockDim.x + threadIdx.x;
125
+ if (tid >= num_items) return;
126
+ f(tid, args...);
127
+ }
128
+
129
+ template <typename BuildT>
130
+ void build_grid_from_tiles(nanovdb::Grid<nanovdb::NanoTree<BuildT>> *&out_grid,
131
+ size_t &out_grid_size,
132
+ const void *points,
133
+ size_t num_points,
134
+ bool points_in_world_space,
135
+ const BuildGridParams<BuildT> &params)
136
+ {
137
+ using FloatT = typename nanovdb::FloatTraits<BuildT>::FloatType;
138
+ const BuildT ZERO_VAL{0};
139
+ const FloatT ZERO_SCALAR{0};
140
+
141
+ // Don't want to access "params" in kernels
142
+ const double dx = params.voxel_size;
143
+ const double Tx = params.translation[0], Ty = params.translation[1], Tz = params.translation[2];
144
+ const BuildT background_value = params.background_value;
145
+
146
+ const unsigned int num_threads = 256;
147
+ unsigned int num_blocks;
148
+
149
+ out_grid = nullptr;
150
+ out_grid_size = 0;
151
+
152
+ cub::CachingDeviceAllocator allocator;
153
+
154
+ uint64_t* leaf_keys;
155
+ uint64_t* lower_keys;
156
+ uint64_t* upper_keys;
157
+ uint32_t* node_counts;
158
+ uint32_t leaf_count, lower_node_count, upper_node_count;
159
+
160
+ allocator.DeviceAllocate((void**)&leaf_keys, sizeof(uint64_t) * num_points);
161
+ allocator.DeviceAllocate((void**)&node_counts, sizeof(uint32_t) * 3);
162
+
163
+ // Phase 1: counting the nodes
164
+ {
165
+ // Generating keys from coords
166
+ uint64_t* all_leaf_keys;
167
+ uint64_t* all_leaf_keys_sorted;
168
+ allocator.DeviceAllocate((void**)&all_leaf_keys, sizeof(uint64_t) * num_points);
169
+ allocator.DeviceAllocate((void**)&all_leaf_keys_sorted, sizeof(uint64_t) * num_points);
170
+
171
+ num_blocks = (static_cast<unsigned int>(num_points) + num_threads - 1) / num_threads;
172
+ if (points_in_world_space) {
173
+ generate_keys<<<num_blocks, num_threads>>>(num_points, static_cast<const nanovdb::Vec3f*>(points), all_leaf_keys, static_cast<float>(1.0 / dx), nanovdb::Vec3f(params.translation));
174
+ } else {
175
+ generate_keys<<<num_blocks, num_threads>>>(num_points, static_cast<const nanovdb::Coord*>(points), all_leaf_keys);
176
+ }
177
+
178
+ void* d_temp_storage = nullptr;
179
+ size_t temp_storage_bytes;
180
+
181
+ // Sort the keys, then get an array of unique keys
182
+ cub::DeviceRadixSort::SortKeys(nullptr, temp_storage_bytes, all_leaf_keys, all_leaf_keys_sorted, static_cast<int>(num_points), /* begin_bit = */ 0, /* end_bit = */ 63);
183
+ allocator.DeviceAllocate((void**)&d_temp_storage, temp_storage_bytes);
184
+ cub::DeviceRadixSort::SortKeys(d_temp_storage, temp_storage_bytes, all_leaf_keys, all_leaf_keys_sorted, static_cast<int>(num_points), /* begin_bit = */ 0, /* end_bit = */ 63);
185
+ allocator.DeviceFree(d_temp_storage);
186
+
187
+ cub::DeviceSelect::Unique(nullptr, temp_storage_bytes, all_leaf_keys_sorted, leaf_keys, node_counts, static_cast<int>(num_points));
188
+ allocator.DeviceAllocate((void**)&d_temp_storage, temp_storage_bytes);
189
+ cub::DeviceSelect::Unique(d_temp_storage, temp_storage_bytes, all_leaf_keys_sorted, leaf_keys, node_counts, static_cast<int>(num_points));
190
+ allocator.DeviceFree(d_temp_storage);
191
+ check_cuda(cudaMemcpy(&leaf_count, node_counts, sizeof(uint32_t), cudaMemcpyDeviceToHost));
192
+
193
+ allocator.DeviceFree(all_leaf_keys);
194
+ all_leaf_keys = nullptr;
195
+ allocator.DeviceFree(all_leaf_keys_sorted);
196
+ all_leaf_keys_sorted = nullptr;
197
+
198
+
199
+ // Get the keys unique to lower nodes and the number of them
200
+ allocator.DeviceAllocate((void**)&lower_keys, sizeof(uint64_t) * leaf_count);
201
+ cub::DeviceSelect::Unique(nullptr, temp_storage_bytes, ShiftRightIterator<12>(leaf_keys), lower_keys, node_counts + 1, leaf_count);
202
+ allocator.DeviceAllocate((void**)&d_temp_storage, temp_storage_bytes);
203
+ cub::DeviceSelect::Unique(d_temp_storage, temp_storage_bytes, ShiftRightIterator<12>(leaf_keys), lower_keys, node_counts + 1, leaf_count);
204
+ allocator.DeviceFree(d_temp_storage);
205
+ check_cuda(cudaMemcpy(&lower_node_count, node_counts + 1, sizeof(uint32_t), cudaMemcpyDeviceToHost));
206
+
207
+ // Get the keys unique to upper nodes and the number of them
208
+ allocator.DeviceAllocate((void**)&upper_keys, sizeof(uint64_t) * lower_node_count);
209
+ cub::DeviceSelect::Unique(nullptr, temp_storage_bytes, ShiftRightIterator<15>(lower_keys), upper_keys, node_counts + 2, lower_node_count);
210
+ allocator.DeviceAllocate((void**)&d_temp_storage, temp_storage_bytes);
211
+ cub::DeviceSelect::Unique(d_temp_storage, temp_storage_bytes, ShiftRightIterator<15>(lower_keys), upper_keys, node_counts + 2, lower_node_count);
212
+ allocator.DeviceFree(d_temp_storage);
213
+ check_cuda(cudaMemcpy(&upper_node_count, node_counts + 2, sizeof(uint32_t), cudaMemcpyDeviceToHost));
214
+ }
215
+
216
+ using Tree = nanovdb::NanoTree<BuildT>;
217
+ using Grid = nanovdb::Grid<Tree>;
218
+
219
+ const size_t total_bytes =
220
+ sizeof(Grid) +
221
+ sizeof(Tree) +
222
+ sizeof(typename Tree::RootType) +
223
+ sizeof(typename Tree::RootType::Tile) * upper_node_count +
224
+ sizeof(typename Tree::Node2) * upper_node_count +
225
+ sizeof(typename Tree::Node1) * lower_node_count +
226
+ sizeof(typename Tree::Node0) * leaf_count;
227
+
228
+ const int64_t upper_mem_offset =
229
+ sizeof(nanovdb::GridData) + sizeof(Tree) + sizeof(typename Tree::RootType) +
230
+ sizeof(typename Tree::RootType::Tile) * upper_node_count;
231
+ const int64_t lower_mem_offset = upper_mem_offset + sizeof(typename Tree::Node2) * upper_node_count;
232
+ const int64_t leaf_mem_offset = lower_mem_offset + sizeof(typename Tree::Node1) * lower_node_count;
233
+
234
+ typename Grid::DataType* grid;
235
+ check_cuda(cudaMalloc(&grid, total_bytes));
236
+
237
+ typename Tree::DataType* const tree = reinterpret_cast<typename Tree::DataType*>(grid + 1); // The tree is immediately after the grid
238
+ typename Tree::RootType::DataType* const root = reinterpret_cast<typename Tree::RootType::DataType*>(tree + 1); // The root is immediately after the tree
239
+ typename Tree::RootType::Tile* const tiles = reinterpret_cast<typename Tree::RootType::Tile*>(root + 1);
240
+ typename Tree::Node2::DataType* const upper_nodes = nanovdb::PtrAdd<typename Tree::Node2::DataType>(grid, upper_mem_offset);
241
+ typename Tree::Node1::DataType* const lower_nodes = nanovdb::PtrAdd<typename Tree::Node1::DataType>(grid, lower_mem_offset);
242
+ typename Tree::Node0::DataType* const leaf_nodes = nanovdb::PtrAdd<typename Tree::Node0::DataType>(grid, leaf_mem_offset);
243
+
244
+ // Phase 2: building the tree
245
+ {
246
+ // Setting up the tree and root node
247
+ kernel<<<1, 1>>>(1, [=] __device__(size_t i) {
248
+ tree->mNodeOffset[3] = sizeof(Tree);
249
+ tree->mNodeOffset[2] = tree->mNodeOffset[3] + sizeof(typename Tree::RootType) + sizeof(typename Tree::RootType::Tile) * upper_node_count;
250
+ tree->mNodeOffset[1] = tree->mNodeOffset[2] + sizeof(typename Tree::Node2) * upper_node_count;
251
+ tree->mNodeOffset[0] = tree->mNodeOffset[1] + sizeof(typename Tree::Node1) * lower_node_count;
252
+ tree->mNodeCount[2] = tree->mTileCount[2] = upper_node_count;
253
+ tree->mNodeCount[1] = tree->mTileCount[1] = lower_node_count;
254
+ tree->mNodeCount[0] = tree->mTileCount[0] = leaf_count;
255
+ tree->mVoxelCount = Tree::Node0::SIZE * leaf_count; // assuming full leaves
256
+
257
+ root->mBBox = nanovdb::CoordBBox(); // init to empty
258
+ root->mTableSize = upper_node_count;
259
+ root->mBackground = background_value;
260
+ root->mMinimum = ZERO_VAL;
261
+ root->mMaximum = ZERO_VAL;
262
+ root->mAverage = ZERO_SCALAR;
263
+ root->mStdDevi = ZERO_SCALAR;
264
+ });
265
+ }
266
+
267
+ // Add tiles and upper nodes
268
+ // i : 0 .. upper_node_count-1
269
+ num_blocks = (upper_node_count + num_threads - 1) / num_threads;
270
+ {
271
+ kernel<<<num_blocks, num_threads>>>(upper_node_count, [=] __device__(size_t i) {
272
+ tiles[i].key = root->CoordToKey(tile_key36_to_coord(upper_keys[i]));
273
+ tiles[i].child = sizeof(typename Tree::RootType) + sizeof(typename Tree::RootType::Tile) * upper_node_count + sizeof(typename Tree::Node2) * i;
274
+ tiles[i].state = 0;
275
+ tiles[i].value = background_value;
276
+
277
+ assert(reinterpret_cast<const char*>(root->getChild(tiles + i)) == reinterpret_cast<const char*>(upper_nodes + i));
278
+ auto& node = upper_nodes[i];
279
+ node.mBBox = nanovdb::CoordBBox();
280
+ node.mFlags = 0;
281
+ node.mValueMask.setOff();
282
+ node.mChildMask.setOff();
283
+ node.mMinimum = ZERO_VAL;
284
+ node.mMaximum = ZERO_VAL;
285
+ node.mAverage = ZERO_SCALAR;
286
+ node.mStdDevi = ZERO_SCALAR;
287
+ for (size_t n = 0; n < Tree::Node2::SIZE; ++n) {
288
+ node.mTable[n].value = background_value;
289
+ }
290
+ });
291
+ }
292
+
293
+ constexpr uint32_t MASK_15BITS = (1u << 15) - 1u;
294
+ constexpr uint32_t MASK_12BITS = (1u << 12) - 1u;
295
+
296
+ // Init lower nodes and register to parent
297
+ // i : 0 .. lower_node_count-1
298
+ num_blocks = (lower_node_count + num_threads - 1) / num_threads;
299
+ {
300
+ kernel<<<num_blocks, num_threads>>>(lower_node_count, [=] __device__(size_t i) {
301
+ uint32_t upper_offset = lower_keys[i] & MASK_15BITS;
302
+ auto* upper_node = root->getChild(find_tile(root, tile_key36_to_coord(lower_keys[i] >> 15)))->data();
303
+ set_mask_atomic(upper_node->mChildMask, upper_offset);
304
+ upper_node->setChild(upper_offset, lower_nodes + i);
305
+
306
+ auto& node = lower_nodes[i];
307
+ node.mBBox = nanovdb::CoordBBox();
308
+ node.mFlags = 0;
309
+ node.mValueMask.setOff();
310
+ node.mChildMask.setOff();
311
+ node.mMinimum = ZERO_VAL;
312
+ node.mMaximum = ZERO_VAL;
313
+ node.mAverage = ZERO_SCALAR;
314
+ node.mStdDevi = ZERO_SCALAR;
315
+ for (size_t n = 0; n < Tree::Node1::SIZE; ++n) {
316
+ node.mTable[n].value = background_value;
317
+ }
318
+ });
319
+ }
320
+
321
+ // Init leaf nodes and register to parent
322
+ // i : 0 .. leaf_count-1
323
+ num_blocks = (leaf_count + num_threads - 1) / num_threads;
324
+ {
325
+ kernel<<<num_blocks, num_threads>>>(leaf_count, [=] __device__(size_t i) {
326
+ uint32_t lower_offset = leaf_keys[i] & MASK_12BITS;
327
+ uint32_t upper_offset = (leaf_keys[i] >> 12) & MASK_15BITS;
328
+ const nanovdb::Coord ijk = tile_key36_to_coord(leaf_keys[i] >> 27);
329
+
330
+ auto* upper_node = root->getChild(find_tile(root, ijk))->data();
331
+ auto* lower_node = upper_node->getChild(upper_offset)->data();
332
+ set_mask_atomic(lower_node->mChildMask, lower_offset);
333
+ lower_node->setChild(lower_offset, leaf_nodes + i);
334
+
335
+ const nanovdb::Coord localUpperIjk = Tree::Node2::OffsetToLocalCoord(upper_offset) << Tree::Node1::TOTAL;
336
+ const nanovdb::Coord localLowerIjk = Tree::Node1::OffsetToLocalCoord(lower_offset) << Tree::Node0::TOTAL;
337
+ const nanovdb::Coord leafOrigin = ijk + localUpperIjk + localLowerIjk;
338
+
339
+ auto& node = leaf_nodes[i];
340
+ node.mBBoxMin = leafOrigin;
341
+ node.mBBoxDif[0] = leaf_nodes[i].mBBoxDif[1] = leaf_nodes[i].mBBoxDif[2] = Tree::Node0::DIM;
342
+ node.mFlags = 0;
343
+ node.mValueMask.setOn();
344
+ node.mMinimum = ZERO_VAL;
345
+ node.mMaximum = ZERO_VAL;
346
+ node.mAverage = ZERO_SCALAR;
347
+ node.mStdDevi = ZERO_SCALAR;
348
+ // mValues is undefined
349
+
350
+ // propagating bbox up:
351
+ expand_cwise_atomic(lower_node->mBBox, leafOrigin);
352
+ expand_cwise_atomic(lower_node->mBBox, leafOrigin + nanovdb::Coord(Tree::Node0::DIM));
353
+ });
354
+ }
355
+
356
+ // Propagating bounding boxes from lower nodes to upper nodes
357
+ // i : 0 .. lower_node_count-1
358
+ num_blocks = (lower_node_count + num_threads - 1) / num_threads;
359
+ {
360
+ kernel<<<num_blocks, num_threads>>>(lower_node_count, [=] __device__(size_t i) {
361
+ auto* upper_node = root->getChild(find_tile(root, tile_key36_to_coord(lower_keys[i] >> 15)))->data();
362
+ expand_cwise_atomic(upper_node->mBBox, lower_nodes[i].mBBox.min());
363
+ expand_cwise_atomic(upper_node->mBBox, lower_nodes[i].mBBox.max());
364
+ });
365
+ }
366
+
367
+ // Setting up root bounding box and grid
368
+ {
369
+ kernel<<<1, 1>>>(1, [=] __device__(size_t i) {
370
+ for (int i = 0; i < upper_node_count; ++i) {
371
+ root->mBBox.expand(upper_nodes[i].mBBox.min());
372
+ root->mBBox.expand(upper_nodes[i].mBBox.max());
373
+ }
374
+
375
+ nanovdb::Map map;
376
+ {
377
+ const double mat[4][4] = {
378
+ {dx, 0.0, 0.0, 0.0}, // row 0
379
+ {0.0, dx, 0.0, 0.0}, // row 1
380
+ {0.0, 0.0, dx, 0.0}, // row 2
381
+ {Tx, Ty, Tz, 1.0}, // row 3
382
+ };
383
+ const double invMat[4][4] = {
384
+ {1 / dx, 0.0, 0.0, 0.0}, // row 0
385
+ {0.0, 1 / dx, 0.0, 0.0}, // row 1
386
+ {0.0, 0.0, 1 / dx, 0.0}, // row 2
387
+ {0.0, 0.0, 0.0, 0.0}, // row 3, ignored by Map::set
388
+ };
389
+ map.set(mat, invMat, 1.0);
390
+ }
391
+
392
+ grid->mMagic = NANOVDB_MAGIC_NUMBER;
393
+ grid->mChecksum = 0xFFFFFFFFFFFFFFFFull;
394
+ grid->mVersion = nanovdb::Version();
395
+ grid->mFlags = static_cast<uint32_t>(nanovdb::GridFlags::HasBBox) |
396
+ static_cast<uint32_t>(nanovdb::GridFlags::IsBreadthFirst);
397
+ grid->mGridIndex = 0;
398
+ grid->mGridCount = 1;
399
+ grid->mGridSize = total_bytes;
400
+ // mGridName is set below
401
+ grid->mWorldBBox.mCoord[0] = map.applyMap(nanovdb::Vec3R(root->mBBox.mCoord[0]));
402
+ grid->mWorldBBox.mCoord[1] = map.applyMap(nanovdb::Vec3R(root->mBBox.mCoord[1]));
403
+ grid->mVoxelSize = nanovdb::Vec3d(dx);
404
+ grid->mMap = map;
405
+ grid->mGridClass = nanovdb::GridClass::Unknown;
406
+ grid->mGridType = nanovdb::mapToGridType<BuildT>();
407
+ grid->mBlindMetadataOffset = total_bytes;
408
+ grid->mBlindMetadataCount = 0;
409
+ });
410
+ }
411
+
412
+ check_cuda(cudaMemcpy(grid->mGridName, params.name, 256, cudaMemcpyHostToDevice));
413
+
414
+ allocator.DeviceFree(lower_keys);
415
+ allocator.DeviceFree(upper_keys);
416
+ allocator.DeviceFree(leaf_keys);
417
+ allocator.DeviceFree(node_counts);
418
+
419
+ out_grid = reinterpret_cast<Grid*>(grid);
420
+ out_grid_size = total_bytes;
421
+ }
422
+
423
+ template void build_grid_from_tiles(nanovdb::Grid<nanovdb::NanoTree<float>>*&, size_t&, const void*, size_t, bool, const BuildGridParams<float>&);
424
+ template void build_grid_from_tiles(nanovdb::Grid<nanovdb::NanoTree<nanovdb::Vec3f>>*&, size_t&, const void*, size_t, bool, const BuildGridParams<nanovdb::Vec3f>&);
425
+ template void build_grid_from_tiles(nanovdb::Grid<nanovdb::NanoTree<int32_t>>*&, size_t&, const void*, size_t, bool, const BuildGridParams<int32_t>&);