warp-lang 1.0.2__py3-none-manylinux2014_x86_64.whl → 1.1.0__py3-none-manylinux2014_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +108 -97
- warp/__init__.pyi +1 -1
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/build.py +115 -113
- warp/build_dll.py +383 -375
- warp/builtins.py +3425 -3354
- warp/codegen.py +2878 -2792
- warp/config.py +40 -36
- warp/constants.py +45 -45
- warp/context.py +5194 -5102
- warp/dlpack.py +442 -442
- warp/examples/__init__.py +16 -16
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -110
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -92
- warp/examples/assets/nv_humanoid.xml +183 -183
- warp/examples/assets/quadruped.urdf +267 -267
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +383 -383
- warp/examples/benchmarks/benchmark_cloth.py +278 -277
- warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
- warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
- warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
- warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
- warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
- warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
- warp/examples/benchmarks/benchmark_launches.py +295 -295
- warp/examples/browse.py +29 -29
- warp/examples/core/example_dem.py +234 -219
- warp/examples/core/example_fluid.py +293 -267
- warp/examples/core/example_graph_capture.py +144 -126
- warp/examples/core/example_marching_cubes.py +188 -174
- warp/examples/core/example_mesh.py +174 -155
- warp/examples/core/example_mesh_intersect.py +205 -193
- warp/examples/core/example_nvdb.py +176 -170
- warp/examples/core/example_raycast.py +105 -90
- warp/examples/core/example_raymarch.py +199 -178
- warp/examples/core/example_render_opengl.py +185 -141
- warp/examples/core/example_sph.py +405 -387
- warp/examples/core/example_torch.py +222 -181
- warp/examples/core/example_wave.py +263 -248
- warp/examples/fem/bsr_utils.py +378 -380
- warp/examples/fem/example_apic_fluid.py +407 -389
- warp/examples/fem/example_convection_diffusion.py +182 -168
- warp/examples/fem/example_convection_diffusion_dg.py +219 -209
- warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
- warp/examples/fem/example_deformed_geometry.py +177 -159
- warp/examples/fem/example_diffusion.py +201 -173
- warp/examples/fem/example_diffusion_3d.py +177 -152
- warp/examples/fem/example_diffusion_mgpu.py +221 -214
- warp/examples/fem/example_mixed_elasticity.py +244 -222
- warp/examples/fem/example_navier_stokes.py +259 -243
- warp/examples/fem/example_stokes.py +220 -192
- warp/examples/fem/example_stokes_transfer.py +265 -249
- warp/examples/fem/mesh_utils.py +133 -109
- warp/examples/fem/plot_utils.py +292 -287
- warp/examples/optim/example_bounce.py +260 -246
- warp/examples/optim/example_cloth_throw.py +222 -209
- warp/examples/optim/example_diffray.py +566 -536
- warp/examples/optim/example_drone.py +864 -835
- warp/examples/optim/example_inverse_kinematics.py +176 -168
- warp/examples/optim/example_inverse_kinematics_torch.py +185 -169
- warp/examples/optim/example_spring_cage.py +239 -231
- warp/examples/optim/example_trajectory.py +223 -199
- warp/examples/optim/example_walker.py +306 -293
- warp/examples/sim/example_cartpole.py +139 -129
- warp/examples/sim/example_cloth.py +196 -186
- warp/examples/sim/example_granular.py +124 -111
- warp/examples/sim/example_granular_collision_sdf.py +197 -186
- warp/examples/sim/example_jacobian_ik.py +236 -214
- warp/examples/sim/example_particle_chain.py +118 -105
- warp/examples/sim/example_quadruped.py +193 -180
- warp/examples/sim/example_rigid_chain.py +197 -187
- warp/examples/sim/example_rigid_contact.py +189 -177
- warp/examples/sim/example_rigid_force.py +127 -125
- warp/examples/sim/example_rigid_gyroscopic.py +109 -95
- warp/examples/sim/example_rigid_soft_contact.py +134 -122
- warp/examples/sim/example_soft_body.py +190 -177
- warp/fabric.py +337 -335
- warp/fem/__init__.py +60 -27
- warp/fem/cache.py +401 -388
- warp/fem/dirichlet.py +178 -179
- warp/fem/domain.py +262 -263
- warp/fem/field/__init__.py +100 -101
- warp/fem/field/field.py +148 -149
- warp/fem/field/nodal_field.py +298 -299
- warp/fem/field/restriction.py +22 -21
- warp/fem/field/test.py +180 -181
- warp/fem/field/trial.py +183 -183
- warp/fem/geometry/__init__.py +15 -19
- warp/fem/geometry/closest_point.py +69 -70
- warp/fem/geometry/deformed_geometry.py +270 -271
- warp/fem/geometry/element.py +744 -744
- warp/fem/geometry/geometry.py +184 -186
- warp/fem/geometry/grid_2d.py +380 -373
- warp/fem/geometry/grid_3d.py +441 -435
- warp/fem/geometry/hexmesh.py +953 -953
- warp/fem/geometry/partition.py +374 -376
- warp/fem/geometry/quadmesh_2d.py +532 -532
- warp/fem/geometry/tetmesh.py +840 -840
- warp/fem/geometry/trimesh_2d.py +577 -577
- warp/fem/integrate.py +1630 -1615
- warp/fem/operator.py +190 -191
- warp/fem/polynomial.py +214 -213
- warp/fem/quadrature/__init__.py +2 -2
- warp/fem/quadrature/pic_quadrature.py +243 -245
- warp/fem/quadrature/quadrature.py +295 -294
- warp/fem/space/__init__.py +294 -292
- warp/fem/space/basis_space.py +488 -489
- warp/fem/space/collocated_function_space.py +100 -105
- warp/fem/space/dof_mapper.py +236 -236
- warp/fem/space/function_space.py +148 -145
- warp/fem/space/grid_2d_function_space.py +267 -267
- warp/fem/space/grid_3d_function_space.py +305 -306
- warp/fem/space/hexmesh_function_space.py +350 -352
- warp/fem/space/partition.py +350 -350
- warp/fem/space/quadmesh_2d_function_space.py +368 -369
- warp/fem/space/restriction.py +158 -160
- warp/fem/space/shape/__init__.py +13 -15
- warp/fem/space/shape/cube_shape_function.py +738 -738
- warp/fem/space/shape/shape_function.py +102 -103
- warp/fem/space/shape/square_shape_function.py +611 -611
- warp/fem/space/shape/tet_shape_function.py +565 -567
- warp/fem/space/shape/triangle_shape_function.py +429 -429
- warp/fem/space/tetmesh_function_space.py +294 -292
- warp/fem/space/topology.py +297 -295
- warp/fem/space/trimesh_2d_function_space.py +223 -221
- warp/fem/types.py +77 -77
- warp/fem/utils.py +495 -495
- warp/jax.py +166 -141
- warp/jax_experimental.py +341 -339
- warp/native/array.h +1072 -1025
- warp/native/builtin.h +1560 -1560
- warp/native/bvh.cpp +398 -398
- warp/native/bvh.cu +525 -525
- warp/native/bvh.h +429 -429
- warp/native/clang/clang.cpp +495 -464
- warp/native/crt.cpp +31 -31
- warp/native/crt.h +334 -334
- warp/native/cuda_crt.h +1049 -1049
- warp/native/cuda_util.cpp +549 -540
- warp/native/cuda_util.h +288 -203
- warp/native/cutlass_gemm.cpp +34 -34
- warp/native/cutlass_gemm.cu +372 -372
- warp/native/error.cpp +66 -66
- warp/native/error.h +27 -27
- warp/native/fabric.h +228 -228
- warp/native/hashgrid.cpp +301 -278
- warp/native/hashgrid.cu +78 -77
- warp/native/hashgrid.h +227 -227
- warp/native/initializer_array.h +32 -32
- warp/native/intersect.h +1204 -1204
- warp/native/intersect_adj.h +365 -365
- warp/native/intersect_tri.h +322 -322
- warp/native/marching.cpp +2 -2
- warp/native/marching.cu +497 -497
- warp/native/marching.h +2 -2
- warp/native/mat.h +1498 -1498
- warp/native/matnn.h +333 -333
- warp/native/mesh.cpp +203 -203
- warp/native/mesh.cu +293 -293
- warp/native/mesh.h +1887 -1887
- warp/native/nanovdb/NanoVDB.h +4782 -4782
- warp/native/nanovdb/PNanoVDB.h +2553 -2553
- warp/native/nanovdb/PNanoVDBWrite.h +294 -294
- warp/native/noise.h +850 -850
- warp/native/quat.h +1084 -1084
- warp/native/rand.h +299 -299
- warp/native/range.h +108 -108
- warp/native/reduce.cpp +156 -156
- warp/native/reduce.cu +348 -348
- warp/native/runlength_encode.cpp +61 -61
- warp/native/runlength_encode.cu +46 -46
- warp/native/scan.cpp +30 -30
- warp/native/scan.cu +36 -36
- warp/native/scan.h +7 -7
- warp/native/solid_angle.h +442 -442
- warp/native/sort.cpp +94 -94
- warp/native/sort.cu +97 -97
- warp/native/sort.h +14 -14
- warp/native/sparse.cpp +337 -337
- warp/native/sparse.cu +544 -544
- warp/native/spatial.h +630 -630
- warp/native/svd.h +562 -562
- warp/native/temp_buffer.h +30 -30
- warp/native/vec.h +1132 -1132
- warp/native/volume.cpp +297 -297
- warp/native/volume.cu +32 -32
- warp/native/volume.h +538 -538
- warp/native/volume_builder.cu +425 -425
- warp/native/volume_builder.h +19 -19
- warp/native/warp.cpp +1057 -1052
- warp/native/warp.cu +2943 -2828
- warp/native/warp.h +313 -305
- warp/optim/__init__.py +9 -9
- warp/optim/adam.py +120 -120
- warp/optim/linear.py +1104 -939
- warp/optim/sgd.py +104 -92
- warp/render/__init__.py +10 -10
- warp/render/render_opengl.py +3217 -3204
- warp/render/render_usd.py +768 -749
- warp/render/utils.py +152 -150
- warp/sim/__init__.py +52 -59
- warp/sim/articulation.py +685 -685
- warp/sim/collide.py +1594 -1590
- warp/sim/import_mjcf.py +489 -481
- warp/sim/import_snu.py +220 -221
- warp/sim/import_urdf.py +536 -516
- warp/sim/import_usd.py +887 -881
- warp/sim/inertia.py +316 -317
- warp/sim/integrator.py +234 -233
- warp/sim/integrator_euler.py +1956 -1956
- warp/sim/integrator_featherstone.py +1910 -1991
- warp/sim/integrator_xpbd.py +3294 -3312
- warp/sim/model.py +4473 -4314
- warp/sim/particles.py +113 -112
- warp/sim/render.py +417 -403
- warp/sim/utils.py +413 -410
- warp/sparse.py +1227 -1227
- warp/stubs.py +2109 -2469
- warp/tape.py +1162 -225
- warp/tests/__init__.py +1 -1
- warp/tests/__main__.py +4 -4
- warp/tests/assets/torus.usda +105 -105
- warp/tests/aux_test_class_kernel.py +26 -26
- warp/tests/aux_test_compile_consts_dummy.py +10 -10
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
- warp/tests/aux_test_dependent.py +22 -22
- warp/tests/aux_test_grad_customs.py +23 -23
- warp/tests/aux_test_reference.py +11 -11
- warp/tests/aux_test_reference_reference.py +10 -10
- warp/tests/aux_test_square.py +17 -17
- warp/tests/aux_test_unresolved_func.py +14 -14
- warp/tests/aux_test_unresolved_symbol.py +14 -14
- warp/tests/disabled_kinematics.py +239 -239
- warp/tests/run_coverage_serial.py +31 -31
- warp/tests/test_adam.py +157 -157
- warp/tests/test_arithmetic.py +1124 -1124
- warp/tests/test_array.py +2417 -2326
- warp/tests/test_array_reduce.py +150 -150
- warp/tests/test_async.py +668 -656
- warp/tests/test_atomic.py +141 -141
- warp/tests/test_bool.py +204 -149
- warp/tests/test_builtins_resolution.py +1292 -1292
- warp/tests/test_bvh.py +164 -171
- warp/tests/test_closest_point_edge_edge.py +228 -228
- warp/tests/test_codegen.py +566 -553
- warp/tests/test_compile_consts.py +97 -101
- warp/tests/test_conditional.py +246 -246
- warp/tests/test_copy.py +232 -215
- warp/tests/test_ctypes.py +632 -632
- warp/tests/test_dense.py +67 -67
- warp/tests/test_devices.py +91 -98
- warp/tests/test_dlpack.py +530 -529
- warp/tests/test_examples.py +400 -378
- warp/tests/test_fabricarray.py +955 -955
- warp/tests/test_fast_math.py +62 -54
- warp/tests/test_fem.py +1277 -1278
- warp/tests/test_fp16.py +130 -130
- warp/tests/test_func.py +338 -337
- warp/tests/test_generics.py +571 -571
- warp/tests/test_grad.py +746 -640
- warp/tests/test_grad_customs.py +333 -336
- warp/tests/test_hash_grid.py +210 -164
- warp/tests/test_import.py +39 -39
- warp/tests/test_indexedarray.py +1134 -1134
- warp/tests/test_intersect.py +67 -67
- warp/tests/test_jax.py +307 -307
- warp/tests/test_large.py +167 -164
- warp/tests/test_launch.py +354 -354
- warp/tests/test_lerp.py +261 -261
- warp/tests/test_linear_solvers.py +191 -171
- warp/tests/test_lvalue.py +421 -493
- warp/tests/test_marching_cubes.py +65 -65
- warp/tests/test_mat.py +1801 -1827
- warp/tests/test_mat_lite.py +115 -115
- warp/tests/test_mat_scalar_ops.py +2907 -2889
- warp/tests/test_math.py +126 -193
- warp/tests/test_matmul.py +500 -499
- warp/tests/test_matmul_lite.py +410 -410
- warp/tests/test_mempool.py +188 -190
- warp/tests/test_mesh.py +284 -324
- warp/tests/test_mesh_query_aabb.py +228 -241
- warp/tests/test_mesh_query_point.py +692 -702
- warp/tests/test_mesh_query_ray.py +292 -303
- warp/tests/test_mlp.py +276 -276
- warp/tests/test_model.py +110 -110
- warp/tests/test_modules_lite.py +39 -39
- warp/tests/test_multigpu.py +163 -163
- warp/tests/test_noise.py +248 -248
- warp/tests/test_operators.py +250 -250
- warp/tests/test_options.py +123 -125
- warp/tests/test_peer.py +133 -137
- warp/tests/test_pinned.py +78 -78
- warp/tests/test_print.py +54 -54
- warp/tests/test_quat.py +2086 -2086
- warp/tests/test_rand.py +288 -288
- warp/tests/test_reload.py +217 -217
- warp/tests/test_rounding.py +179 -179
- warp/tests/test_runlength_encode.py +190 -190
- warp/tests/test_sim_grad.py +243 -0
- warp/tests/test_sim_kinematics.py +91 -97
- warp/tests/test_smoothstep.py +168 -168
- warp/tests/test_snippet.py +305 -266
- warp/tests/test_sparse.py +468 -460
- warp/tests/test_spatial.py +2148 -2148
- warp/tests/test_streams.py +486 -473
- warp/tests/test_struct.py +710 -675
- warp/tests/test_tape.py +173 -148
- warp/tests/test_torch.py +743 -743
- warp/tests/test_transient_module.py +87 -87
- warp/tests/test_types.py +556 -659
- warp/tests/test_utils.py +490 -499
- warp/tests/test_vec.py +1264 -1268
- warp/tests/test_vec_lite.py +73 -73
- warp/tests/test_vec_scalar_ops.py +2099 -2099
- warp/tests/test_verify_fp.py +94 -94
- warp/tests/test_volume.py +737 -736
- warp/tests/test_volume_write.py +255 -265
- warp/tests/unittest_serial.py +37 -37
- warp/tests/unittest_suites.py +363 -359
- warp/tests/unittest_utils.py +603 -578
- warp/tests/unused_test_misc.py +71 -71
- warp/tests/walkthrough_debug.py +85 -85
- warp/thirdparty/appdirs.py +598 -598
- warp/thirdparty/dlpack.py +143 -143
- warp/thirdparty/unittest_parallel.py +566 -561
- warp/torch.py +321 -295
- warp/types.py +4504 -4450
- warp/utils.py +1008 -821
- {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
- {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
- warp_lang-1.1.0.dist-info/RECORD +352 -0
- warp/examples/assets/cube.usda +0 -42
- warp/examples/assets/sphere.usda +0 -56
- warp/examples/assets/torus.usda +0 -105
- warp_lang-1.0.2.dist-info/RECORD +0 -352
- {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
- {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
warp/native/rand.h
CHANGED
|
@@ -1,300 +1,300 @@
|
|
|
1
|
-
/** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
-
* NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
-
* and proprietary rights in and to this software, related documentation
|
|
4
|
-
* and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
-
* distribution of this software and related documentation without an express
|
|
6
|
-
* license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
-
*/
|
|
8
|
-
|
|
9
|
-
# pragma once
|
|
10
|
-
#include "array.h"
|
|
11
|
-
|
|
12
|
-
#ifndef M_PI_F
|
|
13
|
-
#define M_PI_F 3.14159265358979323846f
|
|
14
|
-
#endif
|
|
15
|
-
|
|
16
|
-
namespace wp
|
|
17
|
-
{
|
|
18
|
-
|
|
19
|
-
inline CUDA_CALLABLE uint32 rand_pcg(uint32 state)
|
|
20
|
-
{
|
|
21
|
-
uint32 b = state * 747796405u + 2891336453u;
|
|
22
|
-
uint32 c = ((b >> ((b >> 28u) + 4u)) ^ b) * 277803737u;
|
|
23
|
-
return (c >> 22u) ^ c;
|
|
24
|
-
}
|
|
25
|
-
|
|
26
|
-
inline CUDA_CALLABLE uint32 rand_init(int seed) { return rand_pcg(uint32(seed)); }
|
|
27
|
-
inline CUDA_CALLABLE uint32 rand_init(int seed, int offset) { return rand_pcg(uint32(seed) + rand_pcg(uint32(offset))); }
|
|
28
|
-
|
|
29
|
-
inline CUDA_CALLABLE int randi(uint32& state) { state = rand_pcg(state); return int(state); }
|
|
30
|
-
inline CUDA_CALLABLE int randi(uint32& state, int min, int max) { state = rand_pcg(state); return state % (max - min) + min; }
|
|
31
|
-
|
|
32
|
-
inline CUDA_CALLABLE float randf(uint32& state) { state = rand_pcg(state); return (state >> 8) * (1.0f / 16777216.0f); }
|
|
33
|
-
inline CUDA_CALLABLE float randf(uint32& state, float min, float max) { return (max - min) * randf(state) + min; }
|
|
34
|
-
|
|
35
|
-
// Box-Muller method
|
|
36
|
-
inline CUDA_CALLABLE float randn(uint32& state) { return sqrt(-2.f * log(randf(state))) * cos(2.f * M_PI_F * randf(state)); }
|
|
37
|
-
|
|
38
|
-
inline CUDA_CALLABLE void adj_rand_init(int seed, int& adj_seed, float adj_ret) {}
|
|
39
|
-
inline CUDA_CALLABLE void adj_rand_init(int seed, int offset, int& adj_seed, int& adj_offset, float adj_ret) {}
|
|
40
|
-
|
|
41
|
-
inline CUDA_CALLABLE void adj_randi(uint32& state, uint32& adj_state, float adj_ret) {}
|
|
42
|
-
inline CUDA_CALLABLE void adj_randi(uint32& state, int min, int max, uint32& adj_state, int& adj_min, int& adj_max, float adj_ret) {}
|
|
43
|
-
|
|
44
|
-
inline CUDA_CALLABLE void adj_randf(uint32& state, uint32& adj_state, float adj_ret) {}
|
|
45
|
-
inline CUDA_CALLABLE void adj_randf(uint32& state, float min, float max, uint32& adj_state, float& adj_min, float& adj_max, float adj_ret) {}
|
|
46
|
-
|
|
47
|
-
inline CUDA_CALLABLE void adj_randn(uint32& state, uint32& adj_state, float adj_ret) {}
|
|
48
|
-
|
|
49
|
-
inline CUDA_CALLABLE int sample_cdf(uint32& state, const array_t<float>& cdf)
|
|
50
|
-
{
|
|
51
|
-
float u = randf(state);
|
|
52
|
-
return lower_bound<float>(cdf, u);
|
|
53
|
-
}
|
|
54
|
-
|
|
55
|
-
inline CUDA_CALLABLE vec2 sample_triangle(uint32& state)
|
|
56
|
-
{
|
|
57
|
-
float r = sqrt(randf(state));
|
|
58
|
-
float u = 1.f - r;
|
|
59
|
-
float v = randf(state) * r;
|
|
60
|
-
return vec2(u, v);
|
|
61
|
-
}
|
|
62
|
-
|
|
63
|
-
inline CUDA_CALLABLE vec2 sample_unit_ring(uint32& state)
|
|
64
|
-
{
|
|
65
|
-
float theta = randf(state, 0.f, 2.f*M_PI_F);
|
|
66
|
-
float x = cos(theta);
|
|
67
|
-
float y = sin(theta);
|
|
68
|
-
return vec2(x, y);
|
|
69
|
-
}
|
|
70
|
-
|
|
71
|
-
inline CUDA_CALLABLE vec2 sample_unit_disk(uint32& state)
|
|
72
|
-
{
|
|
73
|
-
float r = sqrt(randf(state));
|
|
74
|
-
float theta = randf(state, 0.f, 2.f*M_PI_F);
|
|
75
|
-
float x = r * cos(theta);
|
|
76
|
-
float y = r * sin(theta);
|
|
77
|
-
return vec2(x, y);
|
|
78
|
-
}
|
|
79
|
-
|
|
80
|
-
inline CUDA_CALLABLE vec3 sample_unit_sphere_surface(uint32& state)
|
|
81
|
-
{
|
|
82
|
-
float phi = acos(1.f - 2.f * randf(state));
|
|
83
|
-
float theta = randf(state, 0.f, 2.f*M_PI_F);
|
|
84
|
-
float x = cos(theta) * sin(phi);
|
|
85
|
-
float y = sin(theta) * sin(phi);
|
|
86
|
-
float z = cos(phi);
|
|
87
|
-
return vec3(x, y, z);
|
|
88
|
-
}
|
|
89
|
-
|
|
90
|
-
inline CUDA_CALLABLE vec3 sample_unit_sphere(uint32& state)
|
|
91
|
-
{
|
|
92
|
-
float phi = acos(1.f - 2.f * randf(state));
|
|
93
|
-
float theta = randf(state, 0.f, 2.f*M_PI_F);
|
|
94
|
-
float r = pow(randf(state), 1.f/3.f);
|
|
95
|
-
float x = r * cos(theta) * sin(phi);
|
|
96
|
-
float y = r * sin(theta) * sin(phi);
|
|
97
|
-
float z = r * cos(phi);
|
|
98
|
-
return vec3(x, y, z);
|
|
99
|
-
}
|
|
100
|
-
|
|
101
|
-
inline CUDA_CALLABLE vec3 sample_unit_hemisphere_surface(uint32& state)
|
|
102
|
-
{
|
|
103
|
-
float phi = acos(1.f - randf(state));
|
|
104
|
-
float theta = randf(state, 0.f, 2.f*M_PI_F);
|
|
105
|
-
float x = cos(theta) * sin(phi);
|
|
106
|
-
float y = sin(theta) * sin(phi);
|
|
107
|
-
float z = cos(phi);
|
|
108
|
-
return vec3(x, y, z);
|
|
109
|
-
}
|
|
110
|
-
|
|
111
|
-
inline CUDA_CALLABLE vec3 sample_unit_hemisphere(uint32& state)
|
|
112
|
-
{
|
|
113
|
-
float phi = acos(1.f - randf(state));
|
|
114
|
-
float theta = randf(state, 0.f, 2.f*M_PI_F);
|
|
115
|
-
float r = pow(randf(state), 1.f/3.f);
|
|
116
|
-
float x = r * cos(theta) * sin(phi);
|
|
117
|
-
float y = r * sin(theta) * sin(phi);
|
|
118
|
-
float z = r * cos(phi);
|
|
119
|
-
return vec3(x, y, z);
|
|
120
|
-
}
|
|
121
|
-
|
|
122
|
-
inline CUDA_CALLABLE vec2 sample_unit_square(uint32& state)
|
|
123
|
-
{
|
|
124
|
-
float x = randf(state) - 0.5f;
|
|
125
|
-
float y = randf(state) - 0.5f;
|
|
126
|
-
return vec2(x, y);
|
|
127
|
-
}
|
|
128
|
-
|
|
129
|
-
inline CUDA_CALLABLE vec3 sample_unit_cube(uint32& state)
|
|
130
|
-
{
|
|
131
|
-
float x = randf(state) - 0.5f;
|
|
132
|
-
float y = randf(state) - 0.5f;
|
|
133
|
-
float z = randf(state) - 0.5f;
|
|
134
|
-
return vec3(x, y, z);
|
|
135
|
-
}
|
|
136
|
-
|
|
137
|
-
inline CUDA_CALLABLE vec4 sample_unit_hypercube(uint32& state)
|
|
138
|
-
{
|
|
139
|
-
float a = randf(state) - 0.5f;
|
|
140
|
-
float b = randf(state) - 0.5f;
|
|
141
|
-
float c = randf(state) - 0.5f;
|
|
142
|
-
float d = randf(state) - 0.5f;
|
|
143
|
-
return vec4(a, b, c, d);
|
|
144
|
-
}
|
|
145
|
-
|
|
146
|
-
inline CUDA_CALLABLE void adj_sample_cdf(uint32& state, const array_t<float>& cdf, uint32& adj_state, array_t<float>& adj_cdf, const int& adj_ret) {}
|
|
147
|
-
inline CUDA_CALLABLE void adj_sample_triangle(uint32& state, uint32& adj_state, const vec2& adj_ret) {}
|
|
148
|
-
inline CUDA_CALLABLE void adj_sample_unit_ring(uint32& state, uint32& adj_state, const vec2& adj_ret) {}
|
|
149
|
-
inline CUDA_CALLABLE void adj_sample_unit_disk(uint32& state, uint32& adj_state, const vec2& adj_ret) {}
|
|
150
|
-
inline CUDA_CALLABLE void adj_sample_unit_sphere_surface(uint32& state, uint32& adj_state, const vec3& adj_ret) {}
|
|
151
|
-
inline CUDA_CALLABLE void adj_sample_unit_sphere(uint32& state, uint32& adj_state, const vec3& adj_ret) {}
|
|
152
|
-
inline CUDA_CALLABLE void adj_sample_unit_hemisphere_surface(uint32& state, uint32& adj_state, const vec3& adj_ret) {}
|
|
153
|
-
inline CUDA_CALLABLE void adj_sample_unit_hemisphere(uint32& state, uint32& adj_state, const vec3& adj_ret) {}
|
|
154
|
-
inline CUDA_CALLABLE void adj_sample_unit_square(uint32& state, uint32& adj_state, const vec2& adj_ret) {}
|
|
155
|
-
inline CUDA_CALLABLE void adj_sample_unit_cube(uint32& state, uint32& adj_state, const vec3& adj_ret) {}
|
|
156
|
-
inline CUDA_CALLABLE void adj_sample_unit_hypercube(uint32& state, uint32& adj_state, const vec3& adj_ret) {}
|
|
157
|
-
|
|
158
|
-
/*
|
|
159
|
-
* log-gamma function to support some of these distributions. The
|
|
160
|
-
* algorithm comes from SPECFUN by Shanjie Zhang and Jianming Jin and their
|
|
161
|
-
* book "Computation of Special Functions", 1996, John Wiley & Sons, Inc.
|
|
162
|
-
*
|
|
163
|
-
* If random_loggam(k+1) is being used to compute log(k!) for an integer k, consider
|
|
164
|
-
* using logfactorial(k) instead.
|
|
165
|
-
*/
|
|
166
|
-
inline CUDA_CALLABLE float random_loggam(float x)
|
|
167
|
-
{
|
|
168
|
-
float x0, x2, lg2pi, gl, gl0;
|
|
169
|
-
uint32 n;
|
|
170
|
-
|
|
171
|
-
const float a[10] = {8.333333333333333e-02f, -2.777777777777778e-03f,
|
|
172
|
-
7.936507936507937e-04f, -5.952380952380952e-04f,
|
|
173
|
-
8.417508417508418e-04f, -1.917526917526918e-03f,
|
|
174
|
-
6.410256410256410e-03f, -2.955065359477124e-02f,
|
|
175
|
-
1.796443723688307e-01f, -1.39243221690590e+00f};
|
|
176
|
-
|
|
177
|
-
if ((x == 1.f) || (x == 2.f))
|
|
178
|
-
{
|
|
179
|
-
return 0.f;
|
|
180
|
-
}
|
|
181
|
-
else if (x < 7.f)
|
|
182
|
-
{
|
|
183
|
-
n = uint32((7 - x));
|
|
184
|
-
}
|
|
185
|
-
else
|
|
186
|
-
{
|
|
187
|
-
n = 0;
|
|
188
|
-
}
|
|
189
|
-
|
|
190
|
-
x0 = x + float(n);
|
|
191
|
-
x2 = (1.f / x0) * (1.f / x0);
|
|
192
|
-
// log(2 * M_PI_F)
|
|
193
|
-
lg2pi = 1.8378770664093453f;
|
|
194
|
-
gl0 = a[9];
|
|
195
|
-
for (int i = 8; i >= 0; i--)
|
|
196
|
-
{
|
|
197
|
-
gl0 *= x2;
|
|
198
|
-
gl0 += a[i];
|
|
199
|
-
}
|
|
200
|
-
gl = gl0 / x0 + 0.5f * lg2pi + (x0 - 0.5f) * log(x0) - x0;
|
|
201
|
-
if (x < 7.f)
|
|
202
|
-
{
|
|
203
|
-
for (uint32 k = 1; k <= n; k++)
|
|
204
|
-
{
|
|
205
|
-
gl -= log(x0 - 1.f);
|
|
206
|
-
x0 -= 1.f;
|
|
207
|
-
}
|
|
208
|
-
}
|
|
209
|
-
return gl;
|
|
210
|
-
}
|
|
211
|
-
|
|
212
|
-
inline CUDA_CALLABLE uint32 random_poisson_mult(uint32& state, float lam) {
|
|
213
|
-
uint32 X;
|
|
214
|
-
float prod, U, enlam;
|
|
215
|
-
|
|
216
|
-
enlam = exp(-lam);
|
|
217
|
-
X = 0;
|
|
218
|
-
prod = 1.f;
|
|
219
|
-
|
|
220
|
-
while (1)
|
|
221
|
-
{
|
|
222
|
-
U = randf(state);
|
|
223
|
-
prod *= U;
|
|
224
|
-
if (prod > enlam)
|
|
225
|
-
{
|
|
226
|
-
X += 1;
|
|
227
|
-
}
|
|
228
|
-
else
|
|
229
|
-
{
|
|
230
|
-
return X;
|
|
231
|
-
}
|
|
232
|
-
}
|
|
233
|
-
}
|
|
234
|
-
|
|
235
|
-
/*
|
|
236
|
-
* The transformed rejection method for generating Poisson random variables
|
|
237
|
-
* W. Hoermann
|
|
238
|
-
* Insurance: Mathematics and Economics 12, 39-45 (1993)
|
|
239
|
-
*/
|
|
240
|
-
inline CUDA_CALLABLE uint32 random_poisson(uint32& state, float lam)
|
|
241
|
-
{
|
|
242
|
-
uint32 k;
|
|
243
|
-
float U, V, slam, loglam, a, b, invalpha, vr, us;
|
|
244
|
-
|
|
245
|
-
slam = sqrt(lam);
|
|
246
|
-
loglam = log(lam);
|
|
247
|
-
b = 0.931f + 2.53f * slam;
|
|
248
|
-
a = -0.059f + 0.02483f * b;
|
|
249
|
-
invalpha = 1.1239f + 1.1328f / (b - 3.4f);
|
|
250
|
-
vr = 0.9277f - 3.6224f / (b - 2.f);
|
|
251
|
-
|
|
252
|
-
while (1)
|
|
253
|
-
{
|
|
254
|
-
U = randf(state) - 0.5f;
|
|
255
|
-
V = randf(state);
|
|
256
|
-
us = 0.5f - abs(U);
|
|
257
|
-
k = uint32(floor((2.f * a / us + b) * U + lam + 0.43f));
|
|
258
|
-
if ((us >= 0.07f) && (V <= vr))
|
|
259
|
-
{
|
|
260
|
-
return k;
|
|
261
|
-
}
|
|
262
|
-
if ((us < 0.013f) && (V > us))
|
|
263
|
-
{
|
|
264
|
-
continue;
|
|
265
|
-
}
|
|
266
|
-
if ((log(V) + log(invalpha) - log(a / (us * us) + b)) <= (-lam + k * loglam - random_loggam(k + 1)))
|
|
267
|
-
{
|
|
268
|
-
return k;
|
|
269
|
-
}
|
|
270
|
-
}
|
|
271
|
-
}
|
|
272
|
-
|
|
273
|
-
/*
|
|
274
|
-
* Adapted from NumPy's implementation
|
|
275
|
-
* Warp's state variable is half the precision of NumPy's so
|
|
276
|
-
* poisson implementation uses half the precision used in NumPy's implementation
|
|
277
|
-
* both precisions appear to converge in the statistical limit
|
|
278
|
-
*/
|
|
279
|
-
inline CUDA_CALLABLE uint32 poisson(uint32& state, float lam)
|
|
280
|
-
{
|
|
281
|
-
if (lam >= 10.f)
|
|
282
|
-
{
|
|
283
|
-
return random_poisson(state, lam);
|
|
284
|
-
}
|
|
285
|
-
else if (lam == 0.f)
|
|
286
|
-
{
|
|
287
|
-
return 0;
|
|
288
|
-
}
|
|
289
|
-
else
|
|
290
|
-
{
|
|
291
|
-
return random_poisson_mult(state, lam);
|
|
292
|
-
}
|
|
293
|
-
}
|
|
294
|
-
|
|
295
|
-
inline CUDA_CALLABLE void adj_random_loggam(float x, float& adj_x, const float adj_ret) {}
|
|
296
|
-
inline CUDA_CALLABLE void random_poisson_mult(uint32& state, float lam, uint32& adj_state, float& adj_lam, const uint32& adj_ret) {}
|
|
297
|
-
inline CUDA_CALLABLE void adj_random_poisson(uint32& state, float lam, uint32& adj_state, float& adj_lam, const uint32& adj_ret) {}
|
|
298
|
-
inline CUDA_CALLABLE void adj_poisson(uint32& state, float lam, uint32& adj_state, float& adj_lam, const uint32& adj_ret) {}
|
|
299
|
-
|
|
1
|
+
/** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
* NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
* and proprietary rights in and to this software, related documentation
|
|
4
|
+
* and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
* distribution of this software and related documentation without an express
|
|
6
|
+
* license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
*/
|
|
8
|
+
|
|
9
|
+
# pragma once
|
|
10
|
+
#include "array.h"
|
|
11
|
+
|
|
12
|
+
#ifndef M_PI_F
|
|
13
|
+
#define M_PI_F 3.14159265358979323846f
|
|
14
|
+
#endif
|
|
15
|
+
|
|
16
|
+
namespace wp
|
|
17
|
+
{
|
|
18
|
+
|
|
19
|
+
inline CUDA_CALLABLE uint32 rand_pcg(uint32 state)
|
|
20
|
+
{
|
|
21
|
+
uint32 b = state * 747796405u + 2891336453u;
|
|
22
|
+
uint32 c = ((b >> ((b >> 28u) + 4u)) ^ b) * 277803737u;
|
|
23
|
+
return (c >> 22u) ^ c;
|
|
24
|
+
}
|
|
25
|
+
|
|
26
|
+
inline CUDA_CALLABLE uint32 rand_init(int seed) { return rand_pcg(uint32(seed)); }
|
|
27
|
+
inline CUDA_CALLABLE uint32 rand_init(int seed, int offset) { return rand_pcg(uint32(seed) + rand_pcg(uint32(offset))); }
|
|
28
|
+
|
|
29
|
+
inline CUDA_CALLABLE int randi(uint32& state) { state = rand_pcg(state); return int(state); }
|
|
30
|
+
inline CUDA_CALLABLE int randi(uint32& state, int min, int max) { state = rand_pcg(state); return state % (max - min) + min; }
|
|
31
|
+
|
|
32
|
+
inline CUDA_CALLABLE float randf(uint32& state) { state = rand_pcg(state); return (state >> 8) * (1.0f / 16777216.0f); }
|
|
33
|
+
inline CUDA_CALLABLE float randf(uint32& state, float min, float max) { return (max - min) * randf(state) + min; }
|
|
34
|
+
|
|
35
|
+
// Box-Muller method
|
|
36
|
+
inline CUDA_CALLABLE float randn(uint32& state) { return sqrt(-2.f * log(randf(state))) * cos(2.f * M_PI_F * randf(state)); }
|
|
37
|
+
|
|
38
|
+
inline CUDA_CALLABLE void adj_rand_init(int seed, int& adj_seed, float adj_ret) {}
|
|
39
|
+
inline CUDA_CALLABLE void adj_rand_init(int seed, int offset, int& adj_seed, int& adj_offset, float adj_ret) {}
|
|
40
|
+
|
|
41
|
+
inline CUDA_CALLABLE void adj_randi(uint32& state, uint32& adj_state, float adj_ret) {}
|
|
42
|
+
inline CUDA_CALLABLE void adj_randi(uint32& state, int min, int max, uint32& adj_state, int& adj_min, int& adj_max, float adj_ret) {}
|
|
43
|
+
|
|
44
|
+
inline CUDA_CALLABLE void adj_randf(uint32& state, uint32& adj_state, float adj_ret) {}
|
|
45
|
+
inline CUDA_CALLABLE void adj_randf(uint32& state, float min, float max, uint32& adj_state, float& adj_min, float& adj_max, float adj_ret) {}
|
|
46
|
+
|
|
47
|
+
inline CUDA_CALLABLE void adj_randn(uint32& state, uint32& adj_state, float adj_ret) {}
|
|
48
|
+
|
|
49
|
+
inline CUDA_CALLABLE int sample_cdf(uint32& state, const array_t<float>& cdf)
|
|
50
|
+
{
|
|
51
|
+
float u = randf(state);
|
|
52
|
+
return lower_bound<float>(cdf, u);
|
|
53
|
+
}
|
|
54
|
+
|
|
55
|
+
inline CUDA_CALLABLE vec2 sample_triangle(uint32& state)
|
|
56
|
+
{
|
|
57
|
+
float r = sqrt(randf(state));
|
|
58
|
+
float u = 1.f - r;
|
|
59
|
+
float v = randf(state) * r;
|
|
60
|
+
return vec2(u, v);
|
|
61
|
+
}
|
|
62
|
+
|
|
63
|
+
inline CUDA_CALLABLE vec2 sample_unit_ring(uint32& state)
|
|
64
|
+
{
|
|
65
|
+
float theta = randf(state, 0.f, 2.f*M_PI_F);
|
|
66
|
+
float x = cos(theta);
|
|
67
|
+
float y = sin(theta);
|
|
68
|
+
return vec2(x, y);
|
|
69
|
+
}
|
|
70
|
+
|
|
71
|
+
inline CUDA_CALLABLE vec2 sample_unit_disk(uint32& state)
|
|
72
|
+
{
|
|
73
|
+
float r = sqrt(randf(state));
|
|
74
|
+
float theta = randf(state, 0.f, 2.f*M_PI_F);
|
|
75
|
+
float x = r * cos(theta);
|
|
76
|
+
float y = r * sin(theta);
|
|
77
|
+
return vec2(x, y);
|
|
78
|
+
}
|
|
79
|
+
|
|
80
|
+
inline CUDA_CALLABLE vec3 sample_unit_sphere_surface(uint32& state)
|
|
81
|
+
{
|
|
82
|
+
float phi = acos(1.f - 2.f * randf(state));
|
|
83
|
+
float theta = randf(state, 0.f, 2.f*M_PI_F);
|
|
84
|
+
float x = cos(theta) * sin(phi);
|
|
85
|
+
float y = sin(theta) * sin(phi);
|
|
86
|
+
float z = cos(phi);
|
|
87
|
+
return vec3(x, y, z);
|
|
88
|
+
}
|
|
89
|
+
|
|
90
|
+
inline CUDA_CALLABLE vec3 sample_unit_sphere(uint32& state)
|
|
91
|
+
{
|
|
92
|
+
float phi = acos(1.f - 2.f * randf(state));
|
|
93
|
+
float theta = randf(state, 0.f, 2.f*M_PI_F);
|
|
94
|
+
float r = pow(randf(state), 1.f/3.f);
|
|
95
|
+
float x = r * cos(theta) * sin(phi);
|
|
96
|
+
float y = r * sin(theta) * sin(phi);
|
|
97
|
+
float z = r * cos(phi);
|
|
98
|
+
return vec3(x, y, z);
|
|
99
|
+
}
|
|
100
|
+
|
|
101
|
+
inline CUDA_CALLABLE vec3 sample_unit_hemisphere_surface(uint32& state)
|
|
102
|
+
{
|
|
103
|
+
float phi = acos(1.f - randf(state));
|
|
104
|
+
float theta = randf(state, 0.f, 2.f*M_PI_F);
|
|
105
|
+
float x = cos(theta) * sin(phi);
|
|
106
|
+
float y = sin(theta) * sin(phi);
|
|
107
|
+
float z = cos(phi);
|
|
108
|
+
return vec3(x, y, z);
|
|
109
|
+
}
|
|
110
|
+
|
|
111
|
+
inline CUDA_CALLABLE vec3 sample_unit_hemisphere(uint32& state)
|
|
112
|
+
{
|
|
113
|
+
float phi = acos(1.f - randf(state));
|
|
114
|
+
float theta = randf(state, 0.f, 2.f*M_PI_F);
|
|
115
|
+
float r = pow(randf(state), 1.f/3.f);
|
|
116
|
+
float x = r * cos(theta) * sin(phi);
|
|
117
|
+
float y = r * sin(theta) * sin(phi);
|
|
118
|
+
float z = r * cos(phi);
|
|
119
|
+
return vec3(x, y, z);
|
|
120
|
+
}
|
|
121
|
+
|
|
122
|
+
inline CUDA_CALLABLE vec2 sample_unit_square(uint32& state)
|
|
123
|
+
{
|
|
124
|
+
float x = randf(state) - 0.5f;
|
|
125
|
+
float y = randf(state) - 0.5f;
|
|
126
|
+
return vec2(x, y);
|
|
127
|
+
}
|
|
128
|
+
|
|
129
|
+
inline CUDA_CALLABLE vec3 sample_unit_cube(uint32& state)
|
|
130
|
+
{
|
|
131
|
+
float x = randf(state) - 0.5f;
|
|
132
|
+
float y = randf(state) - 0.5f;
|
|
133
|
+
float z = randf(state) - 0.5f;
|
|
134
|
+
return vec3(x, y, z);
|
|
135
|
+
}
|
|
136
|
+
|
|
137
|
+
inline CUDA_CALLABLE vec4 sample_unit_hypercube(uint32& state)
|
|
138
|
+
{
|
|
139
|
+
float a = randf(state) - 0.5f;
|
|
140
|
+
float b = randf(state) - 0.5f;
|
|
141
|
+
float c = randf(state) - 0.5f;
|
|
142
|
+
float d = randf(state) - 0.5f;
|
|
143
|
+
return vec4(a, b, c, d);
|
|
144
|
+
}
|
|
145
|
+
|
|
146
|
+
inline CUDA_CALLABLE void adj_sample_cdf(uint32& state, const array_t<float>& cdf, uint32& adj_state, array_t<float>& adj_cdf, const int& adj_ret) {}
|
|
147
|
+
inline CUDA_CALLABLE void adj_sample_triangle(uint32& state, uint32& adj_state, const vec2& adj_ret) {}
|
|
148
|
+
inline CUDA_CALLABLE void adj_sample_unit_ring(uint32& state, uint32& adj_state, const vec2& adj_ret) {}
|
|
149
|
+
inline CUDA_CALLABLE void adj_sample_unit_disk(uint32& state, uint32& adj_state, const vec2& adj_ret) {}
|
|
150
|
+
inline CUDA_CALLABLE void adj_sample_unit_sphere_surface(uint32& state, uint32& adj_state, const vec3& adj_ret) {}
|
|
151
|
+
inline CUDA_CALLABLE void adj_sample_unit_sphere(uint32& state, uint32& adj_state, const vec3& adj_ret) {}
|
|
152
|
+
inline CUDA_CALLABLE void adj_sample_unit_hemisphere_surface(uint32& state, uint32& adj_state, const vec3& adj_ret) {}
|
|
153
|
+
inline CUDA_CALLABLE void adj_sample_unit_hemisphere(uint32& state, uint32& adj_state, const vec3& adj_ret) {}
|
|
154
|
+
inline CUDA_CALLABLE void adj_sample_unit_square(uint32& state, uint32& adj_state, const vec2& adj_ret) {}
|
|
155
|
+
inline CUDA_CALLABLE void adj_sample_unit_cube(uint32& state, uint32& adj_state, const vec3& adj_ret) {}
|
|
156
|
+
inline CUDA_CALLABLE void adj_sample_unit_hypercube(uint32& state, uint32& adj_state, const vec3& adj_ret) {}
|
|
157
|
+
|
|
158
|
+
/*
|
|
159
|
+
* log-gamma function to support some of these distributions. The
|
|
160
|
+
* algorithm comes from SPECFUN by Shanjie Zhang and Jianming Jin and their
|
|
161
|
+
* book "Computation of Special Functions", 1996, John Wiley & Sons, Inc.
|
|
162
|
+
*
|
|
163
|
+
* If random_loggam(k+1) is being used to compute log(k!) for an integer k, consider
|
|
164
|
+
* using logfactorial(k) instead.
|
|
165
|
+
*/
|
|
166
|
+
inline CUDA_CALLABLE float random_loggam(float x)
|
|
167
|
+
{
|
|
168
|
+
float x0, x2, lg2pi, gl, gl0;
|
|
169
|
+
uint32 n;
|
|
170
|
+
|
|
171
|
+
const float a[10] = {8.333333333333333e-02f, -2.777777777777778e-03f,
|
|
172
|
+
7.936507936507937e-04f, -5.952380952380952e-04f,
|
|
173
|
+
8.417508417508418e-04f, -1.917526917526918e-03f,
|
|
174
|
+
6.410256410256410e-03f, -2.955065359477124e-02f,
|
|
175
|
+
1.796443723688307e-01f, -1.39243221690590e+00f};
|
|
176
|
+
|
|
177
|
+
if ((x == 1.f) || (x == 2.f))
|
|
178
|
+
{
|
|
179
|
+
return 0.f;
|
|
180
|
+
}
|
|
181
|
+
else if (x < 7.f)
|
|
182
|
+
{
|
|
183
|
+
n = uint32((7 - x));
|
|
184
|
+
}
|
|
185
|
+
else
|
|
186
|
+
{
|
|
187
|
+
n = 0;
|
|
188
|
+
}
|
|
189
|
+
|
|
190
|
+
x0 = x + float(n);
|
|
191
|
+
x2 = (1.f / x0) * (1.f / x0);
|
|
192
|
+
// log(2 * M_PI_F)
|
|
193
|
+
lg2pi = 1.8378770664093453f;
|
|
194
|
+
gl0 = a[9];
|
|
195
|
+
for (int i = 8; i >= 0; i--)
|
|
196
|
+
{
|
|
197
|
+
gl0 *= x2;
|
|
198
|
+
gl0 += a[i];
|
|
199
|
+
}
|
|
200
|
+
gl = gl0 / x0 + 0.5f * lg2pi + (x0 - 0.5f) * log(x0) - x0;
|
|
201
|
+
if (x < 7.f)
|
|
202
|
+
{
|
|
203
|
+
for (uint32 k = 1; k <= n; k++)
|
|
204
|
+
{
|
|
205
|
+
gl -= log(x0 - 1.f);
|
|
206
|
+
x0 -= 1.f;
|
|
207
|
+
}
|
|
208
|
+
}
|
|
209
|
+
return gl;
|
|
210
|
+
}
|
|
211
|
+
|
|
212
|
+
inline CUDA_CALLABLE uint32 random_poisson_mult(uint32& state, float lam) {
|
|
213
|
+
uint32 X;
|
|
214
|
+
float prod, U, enlam;
|
|
215
|
+
|
|
216
|
+
enlam = exp(-lam);
|
|
217
|
+
X = 0;
|
|
218
|
+
prod = 1.f;
|
|
219
|
+
|
|
220
|
+
while (1)
|
|
221
|
+
{
|
|
222
|
+
U = randf(state);
|
|
223
|
+
prod *= U;
|
|
224
|
+
if (prod > enlam)
|
|
225
|
+
{
|
|
226
|
+
X += 1;
|
|
227
|
+
}
|
|
228
|
+
else
|
|
229
|
+
{
|
|
230
|
+
return X;
|
|
231
|
+
}
|
|
232
|
+
}
|
|
233
|
+
}
|
|
234
|
+
|
|
235
|
+
/*
|
|
236
|
+
* The transformed rejection method for generating Poisson random variables
|
|
237
|
+
* W. Hoermann
|
|
238
|
+
* Insurance: Mathematics and Economics 12, 39-45 (1993)
|
|
239
|
+
*/
|
|
240
|
+
inline CUDA_CALLABLE uint32 random_poisson(uint32& state, float lam)
|
|
241
|
+
{
|
|
242
|
+
uint32 k;
|
|
243
|
+
float U, V, slam, loglam, a, b, invalpha, vr, us;
|
|
244
|
+
|
|
245
|
+
slam = sqrt(lam);
|
|
246
|
+
loglam = log(lam);
|
|
247
|
+
b = 0.931f + 2.53f * slam;
|
|
248
|
+
a = -0.059f + 0.02483f * b;
|
|
249
|
+
invalpha = 1.1239f + 1.1328f / (b - 3.4f);
|
|
250
|
+
vr = 0.9277f - 3.6224f / (b - 2.f);
|
|
251
|
+
|
|
252
|
+
while (1)
|
|
253
|
+
{
|
|
254
|
+
U = randf(state) - 0.5f;
|
|
255
|
+
V = randf(state);
|
|
256
|
+
us = 0.5f - abs(U);
|
|
257
|
+
k = uint32(floor((2.f * a / us + b) * U + lam + 0.43f));
|
|
258
|
+
if ((us >= 0.07f) && (V <= vr))
|
|
259
|
+
{
|
|
260
|
+
return k;
|
|
261
|
+
}
|
|
262
|
+
if ((us < 0.013f) && (V > us))
|
|
263
|
+
{
|
|
264
|
+
continue;
|
|
265
|
+
}
|
|
266
|
+
if ((log(V) + log(invalpha) - log(a / (us * us) + b)) <= (-lam + k * loglam - random_loggam(k + 1)))
|
|
267
|
+
{
|
|
268
|
+
return k;
|
|
269
|
+
}
|
|
270
|
+
}
|
|
271
|
+
}
|
|
272
|
+
|
|
273
|
+
/*
|
|
274
|
+
* Adapted from NumPy's implementation
|
|
275
|
+
* Warp's state variable is half the precision of NumPy's so
|
|
276
|
+
* poisson implementation uses half the precision used in NumPy's implementation
|
|
277
|
+
* both precisions appear to converge in the statistical limit
|
|
278
|
+
*/
|
|
279
|
+
inline CUDA_CALLABLE uint32 poisson(uint32& state, float lam)
|
|
280
|
+
{
|
|
281
|
+
if (lam >= 10.f)
|
|
282
|
+
{
|
|
283
|
+
return random_poisson(state, lam);
|
|
284
|
+
}
|
|
285
|
+
else if (lam == 0.f)
|
|
286
|
+
{
|
|
287
|
+
return 0;
|
|
288
|
+
}
|
|
289
|
+
else
|
|
290
|
+
{
|
|
291
|
+
return random_poisson_mult(state, lam);
|
|
292
|
+
}
|
|
293
|
+
}
|
|
294
|
+
|
|
295
|
+
inline CUDA_CALLABLE void adj_random_loggam(float x, float& adj_x, const float adj_ret) {}
|
|
296
|
+
inline CUDA_CALLABLE void random_poisson_mult(uint32& state, float lam, uint32& adj_state, float& adj_lam, const uint32& adj_ret) {}
|
|
297
|
+
inline CUDA_CALLABLE void adj_random_poisson(uint32& state, float lam, uint32& adj_state, float& adj_lam, const uint32& adj_ret) {}
|
|
298
|
+
inline CUDA_CALLABLE void adj_poisson(uint32& state, float lam, uint32& adj_state, float& adj_lam, const uint32& adj_ret) {}
|
|
299
|
+
|
|
300
300
|
} // namespace wp
|