warp-lang 1.0.2__py3-none-manylinux2014_aarch64.whl → 1.1.0__py3-none-manylinux2014_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (346) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/warp-clang.so +0 -0
  4. warp/bin/warp.so +0 -0
  5. warp/build.py +115 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3425 -3354
  8. warp/codegen.py +2878 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +45 -45
  11. warp/context.py +5194 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +383 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
  34. warp/examples/benchmarks/benchmark_launches.py +295 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +234 -219
  37. warp/examples/core/example_fluid.py +293 -267
  38. warp/examples/core/example_graph_capture.py +144 -126
  39. warp/examples/core/example_marching_cubes.py +188 -174
  40. warp/examples/core/example_mesh.py +174 -155
  41. warp/examples/core/example_mesh_intersect.py +205 -193
  42. warp/examples/core/example_nvdb.py +176 -170
  43. warp/examples/core/example_raycast.py +105 -90
  44. warp/examples/core/example_raymarch.py +199 -178
  45. warp/examples/core/example_render_opengl.py +185 -141
  46. warp/examples/core/example_sph.py +405 -387
  47. warp/examples/core/example_torch.py +222 -181
  48. warp/examples/core/example_wave.py +263 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +407 -389
  51. warp/examples/fem/example_convection_diffusion.py +182 -168
  52. warp/examples/fem/example_convection_diffusion_dg.py +219 -209
  53. warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
  54. warp/examples/fem/example_deformed_geometry.py +177 -159
  55. warp/examples/fem/example_diffusion.py +201 -173
  56. warp/examples/fem/example_diffusion_3d.py +177 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +221 -214
  58. warp/examples/fem/example_mixed_elasticity.py +244 -222
  59. warp/examples/fem/example_navier_stokes.py +259 -243
  60. warp/examples/fem/example_stokes.py +220 -192
  61. warp/examples/fem/example_stokes_transfer.py +265 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +260 -246
  65. warp/examples/optim/example_cloth_throw.py +222 -209
  66. warp/examples/optim/example_diffray.py +566 -536
  67. warp/examples/optim/example_drone.py +864 -835
  68. warp/examples/optim/example_inverse_kinematics.py +176 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +185 -169
  70. warp/examples/optim/example_spring_cage.py +239 -231
  71. warp/examples/optim/example_trajectory.py +223 -199
  72. warp/examples/optim/example_walker.py +306 -293
  73. warp/examples/sim/example_cartpole.py +139 -129
  74. warp/examples/sim/example_cloth.py +196 -186
  75. warp/examples/sim/example_granular.py +124 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +197 -186
  77. warp/examples/sim/example_jacobian_ik.py +236 -214
  78. warp/examples/sim/example_particle_chain.py +118 -105
  79. warp/examples/sim/example_quadruped.py +193 -180
  80. warp/examples/sim/example_rigid_chain.py +197 -187
  81. warp/examples/sim/example_rigid_contact.py +189 -177
  82. warp/examples/sim/example_rigid_force.py +127 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +109 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +134 -122
  85. warp/examples/sim/example_soft_body.py +190 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +60 -27
  88. warp/fem/cache.py +401 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +15 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +744 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +441 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/partition.py +374 -376
  106. warp/fem/geometry/quadmesh_2d.py +532 -532
  107. warp/fem/geometry/tetmesh.py +840 -840
  108. warp/fem/geometry/trimesh_2d.py +577 -577
  109. warp/fem/integrate.py +1630 -1615
  110. warp/fem/operator.py +190 -191
  111. warp/fem/polynomial.py +214 -213
  112. warp/fem/quadrature/__init__.py +2 -2
  113. warp/fem/quadrature/pic_quadrature.py +243 -245
  114. warp/fem/quadrature/quadrature.py +295 -294
  115. warp/fem/space/__init__.py +294 -292
  116. warp/fem/space/basis_space.py +488 -489
  117. warp/fem/space/collocated_function_space.py +100 -105
  118. warp/fem/space/dof_mapper.py +236 -236
  119. warp/fem/space/function_space.py +148 -145
  120. warp/fem/space/grid_2d_function_space.py +267 -267
  121. warp/fem/space/grid_3d_function_space.py +305 -306
  122. warp/fem/space/hexmesh_function_space.py +350 -352
  123. warp/fem/space/partition.py +350 -350
  124. warp/fem/space/quadmesh_2d_function_space.py +368 -369
  125. warp/fem/space/restriction.py +158 -160
  126. warp/fem/space/shape/__init__.py +13 -15
  127. warp/fem/space/shape/cube_shape_function.py +738 -738
  128. warp/fem/space/shape/shape_function.py +102 -103
  129. warp/fem/space/shape/square_shape_function.py +611 -611
  130. warp/fem/space/shape/tet_shape_function.py +565 -567
  131. warp/fem/space/shape/triangle_shape_function.py +429 -429
  132. warp/fem/space/tetmesh_function_space.py +294 -292
  133. warp/fem/space/topology.py +297 -295
  134. warp/fem/space/trimesh_2d_function_space.py +223 -221
  135. warp/fem/types.py +77 -77
  136. warp/fem/utils.py +495 -495
  137. warp/jax.py +166 -141
  138. warp/jax_experimental.py +341 -339
  139. warp/native/array.h +1072 -1025
  140. warp/native/builtin.h +1560 -1560
  141. warp/native/bvh.cpp +398 -398
  142. warp/native/bvh.cu +525 -525
  143. warp/native/bvh.h +429 -429
  144. warp/native/clang/clang.cpp +495 -464
  145. warp/native/crt.cpp +31 -31
  146. warp/native/crt.h +334 -334
  147. warp/native/cuda_crt.h +1049 -1049
  148. warp/native/cuda_util.cpp +549 -540
  149. warp/native/cuda_util.h +288 -203
  150. warp/native/cutlass_gemm.cpp +34 -34
  151. warp/native/cutlass_gemm.cu +372 -372
  152. warp/native/error.cpp +66 -66
  153. warp/native/error.h +27 -27
  154. warp/native/fabric.h +228 -228
  155. warp/native/hashgrid.cpp +301 -278
  156. warp/native/hashgrid.cu +78 -77
  157. warp/native/hashgrid.h +227 -227
  158. warp/native/initializer_array.h +32 -32
  159. warp/native/intersect.h +1204 -1204
  160. warp/native/intersect_adj.h +365 -365
  161. warp/native/intersect_tri.h +322 -322
  162. warp/native/marching.cpp +2 -2
  163. warp/native/marching.cu +497 -497
  164. warp/native/marching.h +2 -2
  165. warp/native/mat.h +1498 -1498
  166. warp/native/matnn.h +333 -333
  167. warp/native/mesh.cpp +203 -203
  168. warp/native/mesh.cu +293 -293
  169. warp/native/mesh.h +1887 -1887
  170. warp/native/nanovdb/NanoVDB.h +4782 -4782
  171. warp/native/nanovdb/PNanoVDB.h +2553 -2553
  172. warp/native/nanovdb/PNanoVDBWrite.h +294 -294
  173. warp/native/noise.h +850 -850
  174. warp/native/quat.h +1084 -1084
  175. warp/native/rand.h +299 -299
  176. warp/native/range.h +108 -108
  177. warp/native/reduce.cpp +156 -156
  178. warp/native/reduce.cu +348 -348
  179. warp/native/runlength_encode.cpp +61 -61
  180. warp/native/runlength_encode.cu +46 -46
  181. warp/native/scan.cpp +30 -30
  182. warp/native/scan.cu +36 -36
  183. warp/native/scan.h +7 -7
  184. warp/native/solid_angle.h +442 -442
  185. warp/native/sort.cpp +94 -94
  186. warp/native/sort.cu +97 -97
  187. warp/native/sort.h +14 -14
  188. warp/native/sparse.cpp +337 -337
  189. warp/native/sparse.cu +544 -544
  190. warp/native/spatial.h +630 -630
  191. warp/native/svd.h +562 -562
  192. warp/native/temp_buffer.h +30 -30
  193. warp/native/vec.h +1132 -1132
  194. warp/native/volume.cpp +297 -297
  195. warp/native/volume.cu +32 -32
  196. warp/native/volume.h +538 -538
  197. warp/native/volume_builder.cu +425 -425
  198. warp/native/volume_builder.h +19 -19
  199. warp/native/warp.cpp +1057 -1052
  200. warp/native/warp.cu +2943 -2828
  201. warp/native/warp.h +313 -305
  202. warp/optim/__init__.py +9 -9
  203. warp/optim/adam.py +120 -120
  204. warp/optim/linear.py +1104 -939
  205. warp/optim/sgd.py +104 -92
  206. warp/render/__init__.py +10 -10
  207. warp/render/render_opengl.py +3217 -3204
  208. warp/render/render_usd.py +768 -749
  209. warp/render/utils.py +152 -150
  210. warp/sim/__init__.py +52 -59
  211. warp/sim/articulation.py +685 -685
  212. warp/sim/collide.py +1594 -1590
  213. warp/sim/import_mjcf.py +489 -481
  214. warp/sim/import_snu.py +220 -221
  215. warp/sim/import_urdf.py +536 -516
  216. warp/sim/import_usd.py +887 -881
  217. warp/sim/inertia.py +316 -317
  218. warp/sim/integrator.py +234 -233
  219. warp/sim/integrator_euler.py +1956 -1956
  220. warp/sim/integrator_featherstone.py +1910 -1991
  221. warp/sim/integrator_xpbd.py +3294 -3312
  222. warp/sim/model.py +4473 -4314
  223. warp/sim/particles.py +113 -112
  224. warp/sim/render.py +417 -403
  225. warp/sim/utils.py +413 -410
  226. warp/sparse.py +1227 -1227
  227. warp/stubs.py +2109 -2469
  228. warp/tape.py +1162 -225
  229. warp/tests/__init__.py +1 -1
  230. warp/tests/__main__.py +4 -4
  231. warp/tests/assets/torus.usda +105 -105
  232. warp/tests/aux_test_class_kernel.py +26 -26
  233. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  234. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  235. warp/tests/aux_test_dependent.py +22 -22
  236. warp/tests/aux_test_grad_customs.py +23 -23
  237. warp/tests/aux_test_reference.py +11 -11
  238. warp/tests/aux_test_reference_reference.py +10 -10
  239. warp/tests/aux_test_square.py +17 -17
  240. warp/tests/aux_test_unresolved_func.py +14 -14
  241. warp/tests/aux_test_unresolved_symbol.py +14 -14
  242. warp/tests/disabled_kinematics.py +239 -239
  243. warp/tests/run_coverage_serial.py +31 -31
  244. warp/tests/test_adam.py +157 -157
  245. warp/tests/test_arithmetic.py +1124 -1124
  246. warp/tests/test_array.py +2417 -2326
  247. warp/tests/test_array_reduce.py +150 -150
  248. warp/tests/test_async.py +668 -656
  249. warp/tests/test_atomic.py +141 -141
  250. warp/tests/test_bool.py +204 -149
  251. warp/tests/test_builtins_resolution.py +1292 -1292
  252. warp/tests/test_bvh.py +164 -171
  253. warp/tests/test_closest_point_edge_edge.py +228 -228
  254. warp/tests/test_codegen.py +566 -553
  255. warp/tests/test_compile_consts.py +97 -101
  256. warp/tests/test_conditional.py +246 -246
  257. warp/tests/test_copy.py +232 -215
  258. warp/tests/test_ctypes.py +632 -632
  259. warp/tests/test_dense.py +67 -67
  260. warp/tests/test_devices.py +91 -98
  261. warp/tests/test_dlpack.py +530 -529
  262. warp/tests/test_examples.py +400 -378
  263. warp/tests/test_fabricarray.py +955 -955
  264. warp/tests/test_fast_math.py +62 -54
  265. warp/tests/test_fem.py +1277 -1278
  266. warp/tests/test_fp16.py +130 -130
  267. warp/tests/test_func.py +338 -337
  268. warp/tests/test_generics.py +571 -571
  269. warp/tests/test_grad.py +746 -640
  270. warp/tests/test_grad_customs.py +333 -336
  271. warp/tests/test_hash_grid.py +210 -164
  272. warp/tests/test_import.py +39 -39
  273. warp/tests/test_indexedarray.py +1134 -1134
  274. warp/tests/test_intersect.py +67 -67
  275. warp/tests/test_jax.py +307 -307
  276. warp/tests/test_large.py +167 -164
  277. warp/tests/test_launch.py +354 -354
  278. warp/tests/test_lerp.py +261 -261
  279. warp/tests/test_linear_solvers.py +191 -171
  280. warp/tests/test_lvalue.py +421 -493
  281. warp/tests/test_marching_cubes.py +65 -65
  282. warp/tests/test_mat.py +1801 -1827
  283. warp/tests/test_mat_lite.py +115 -115
  284. warp/tests/test_mat_scalar_ops.py +2907 -2889
  285. warp/tests/test_math.py +126 -193
  286. warp/tests/test_matmul.py +500 -499
  287. warp/tests/test_matmul_lite.py +410 -410
  288. warp/tests/test_mempool.py +188 -190
  289. warp/tests/test_mesh.py +284 -324
  290. warp/tests/test_mesh_query_aabb.py +228 -241
  291. warp/tests/test_mesh_query_point.py +692 -702
  292. warp/tests/test_mesh_query_ray.py +292 -303
  293. warp/tests/test_mlp.py +276 -276
  294. warp/tests/test_model.py +110 -110
  295. warp/tests/test_modules_lite.py +39 -39
  296. warp/tests/test_multigpu.py +163 -163
  297. warp/tests/test_noise.py +248 -248
  298. warp/tests/test_operators.py +250 -250
  299. warp/tests/test_options.py +123 -125
  300. warp/tests/test_peer.py +133 -137
  301. warp/tests/test_pinned.py +78 -78
  302. warp/tests/test_print.py +54 -54
  303. warp/tests/test_quat.py +2086 -2086
  304. warp/tests/test_rand.py +288 -288
  305. warp/tests/test_reload.py +217 -217
  306. warp/tests/test_rounding.py +179 -179
  307. warp/tests/test_runlength_encode.py +190 -190
  308. warp/tests/test_sim_grad.py +243 -0
  309. warp/tests/test_sim_kinematics.py +91 -97
  310. warp/tests/test_smoothstep.py +168 -168
  311. warp/tests/test_snippet.py +305 -266
  312. warp/tests/test_sparse.py +468 -460
  313. warp/tests/test_spatial.py +2148 -2148
  314. warp/tests/test_streams.py +486 -473
  315. warp/tests/test_struct.py +710 -675
  316. warp/tests/test_tape.py +173 -148
  317. warp/tests/test_torch.py +743 -743
  318. warp/tests/test_transient_module.py +87 -87
  319. warp/tests/test_types.py +556 -659
  320. warp/tests/test_utils.py +490 -499
  321. warp/tests/test_vec.py +1264 -1268
  322. warp/tests/test_vec_lite.py +73 -73
  323. warp/tests/test_vec_scalar_ops.py +2099 -2099
  324. warp/tests/test_verify_fp.py +94 -94
  325. warp/tests/test_volume.py +737 -736
  326. warp/tests/test_volume_write.py +255 -265
  327. warp/tests/unittest_serial.py +37 -37
  328. warp/tests/unittest_suites.py +363 -359
  329. warp/tests/unittest_utils.py +603 -578
  330. warp/tests/unused_test_misc.py +71 -71
  331. warp/tests/walkthrough_debug.py +85 -85
  332. warp/thirdparty/appdirs.py +598 -598
  333. warp/thirdparty/dlpack.py +143 -143
  334. warp/thirdparty/unittest_parallel.py +566 -561
  335. warp/torch.py +321 -295
  336. warp/types.py +4504 -4450
  337. warp/utils.py +1008 -821
  338. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
  339. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
  340. warp_lang-1.1.0.dist-info/RECORD +352 -0
  341. warp/examples/assets/cube.usda +0 -42
  342. warp/examples/assets/sphere.usda +0 -56
  343. warp/examples/assets/torus.usda +0 -105
  344. warp_lang-1.0.2.dist-info/RECORD +0 -352
  345. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
@@ -1,373 +1,373 @@
1
- /** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
2
- * NVIDIA CORPORATION and its licensors retain all intellectual property
3
- * and proprietary rights in and to this software, related documentation
4
- * and any modifications thereto. Any use, reproduction, disclosure or
5
- * distribution of this software and related documentation without an express
6
- * license agreement from NVIDIA CORPORATION is strictly prohibited.
7
- */
8
-
9
- #include "builtin.h"
10
- #include "temp_buffer.h"
11
- #include "cuda_util.h"
12
-
13
- #include "cutlass/cutlass.h"
14
- #include "cutlass/gemm/device/gemm_universal.h"
15
- #include "cutlass/util/device_memory.h"
16
-
17
- #define F16_STR "<f2"
18
- #define F32_STR "<f4"
19
- #define F64_STR "<f8"
20
-
21
- namespace wp {
22
-
23
- template <typename Gemm>
24
- bool run_gemm(int m, int n, int k, int batch_count, const void* a, const void* b, const void* c, void* d, float alpha, float beta) {
25
- //
26
- // Initialize arguments
27
- //
28
- typename Gemm::EpilogueOutputOp::Params epilogue_params(
29
- (typename Gemm::EpilogueOutputOp::ElementCompute)alpha,
30
- (typename Gemm::EpilogueOutputOp::ElementCompute)beta);
31
-
32
- typename Gemm::Arguments arguments{
33
- batch_count == 1 ? cutlass::gemm::GemmUniversalMode::kGemm : cutlass::gemm::GemmUniversalMode::kBatched ,
34
- cutlass::gemm::GemmCoord{m, n, k}, // Problem size
35
- batch_count,
36
- epilogue_params,
37
- a, b, c, d,
38
- int64_t(m * k), int64_t(k * n), int64_t(m * n), int64_t(m * n), // Batch strides
39
- Gemm::LayoutA::packed({m, k}).stride(0), Gemm::LayoutB::packed({k, n}).stride(0), n, n
40
- };
41
-
42
- Gemm gemm;
43
- size_t workspace_size = Gemm::get_workspace_size(arguments);
44
- ScopedTemporary<> workspace(WP_CURRENT_CONTEXT, workspace_size);
45
- cudaStream_t stream = static_cast<cudaStream_t>(cuda_stream_get_current());
46
- cutlass::Status status = gemm.initialize(arguments, workspace.buffer(), stream);
47
-
48
- if (status != cutlass::Status::kSuccess) {
49
- cudaError_t error = cudaGetLastError();
50
- std::cerr << "Error initializing GEMM: " << cudaGetErrorString(error) << "\n";
51
- return false;
52
- }
53
-
54
- //
55
- // Run the GEMM
56
- //
57
-
58
- status = gemm(stream);
59
- if (status != cutlass::Status::kSuccess) {
60
- cudaError_t error = cudaGetLastError();
61
- std::cerr << "Runtime error: " << cudaGetErrorString(error) << "\n";
62
- return false;
63
- }
64
-
65
- return true;
66
- }
67
-
68
- template <
69
- int ComputeCapability,
70
- typename Element_,
71
- typename LayoutA,
72
- typename LayoutB
73
- >
74
- struct DefaultGemmConfig;
75
-
76
- //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
77
-
78
- // Partial specialization for SM80 F64 Tensor Cores
79
- template <typename LayoutA, typename LayoutB>
80
- struct DefaultGemmConfig<80, double, LayoutA, LayoutB> {
81
- using Gemm = cutlass::gemm::device::GemmUniversal<
82
- double, LayoutA, // ElementA and LayoutA
83
- double, LayoutB, // ElementB and LayoutB
84
- double, cutlass::layout::RowMajor, // ElementC and LayoutC
85
- double, // ElementAccumulator
86
- cutlass::arch::OpClassTensorOp, // Operation type
87
- cutlass::arch::Sm80, // Architecture
88
- cutlass::gemm::GemmShape<128, 128, 16>, // ThreadblockShape
89
- cutlass::gemm::GemmShape<32, 64, 16>, // WarpShape
90
- cutlass::gemm::GemmShape<8, 8, 4>, // Instruction Shape
91
- cutlass::epilogue::thread::LinearCombination< // Epilogue
92
- double,
93
- 1,
94
- double,
95
- double>,
96
- cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, // Swizzling
97
- 3 // Stages
98
- >;
99
- };
100
-
101
- // Partial specialization for SM80 F32 Tensor Cores
102
- template <typename LayoutA, typename LayoutB>
103
- struct DefaultGemmConfig<80, float, LayoutA, LayoutB> {
104
- using Gemm = cutlass::gemm::device::GemmUniversal<
105
- float, LayoutA, // ElementA and LayoutA
106
- float, LayoutB, // ElementB and LayoutB
107
- float, cutlass::layout::RowMajor, // ElementC and LayoutC
108
- float, // ElementAccumulator
109
- cutlass::arch::OpClassTensorOp, // Operation type
110
- cutlass::arch::Sm80, // Architecture
111
- cutlass::gemm::GemmShape<256, 128, 16>, // ThreadblockShape
112
- cutlass::gemm::GemmShape<64, 64, 16>, // WarpShape
113
- cutlass::gemm::GemmShape<16, 8, 8>, // Instruction Shape
114
- cutlass::epilogue::thread::LinearCombination< // Epilogue
115
- float,
116
- 128 / cutlass::sizeof_bits<float>::value,
117
- float,
118
- float>,
119
- cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, // Swizzling
120
- 3, // Stages
121
- 4, 4, // AlignmentA and AlignmentB
122
- cutlass::arch::OpMultiplyAddFastF32 // Math mode -- use 3xTF32
123
- >;
124
- };
125
-
126
- // Partial specialization for SM80 F16 Tensor Cores
127
- template <typename LayoutA, typename LayoutB>
128
- struct DefaultGemmConfig<80, cutlass::half_t, LayoutA, LayoutB> {
129
- using Gemm = cutlass::gemm::device::GemmUniversal<
130
- cutlass::half_t, LayoutA, // ElementA and LayoutA
131
- cutlass::half_t, LayoutB, // ElementB and LayoutB
132
- cutlass::half_t, cutlass::layout::RowMajor, // ElementC and LayoutC
133
- cutlass::half_t, // ElementAccumulator
134
- cutlass::arch::OpClassTensorOp, // Operation type
135
- cutlass::arch::Sm80, // Architecture
136
- cutlass::gemm::GemmShape<256, 128, 32>, // ThreadblockShape
137
- cutlass::gemm::GemmShape<64, 64, 32>, // WarpShape
138
- cutlass::gemm::GemmShape<16, 8, 16>, // Instruction Shape
139
- cutlass::epilogue::thread::LinearCombination< // Epilogue
140
- cutlass::half_t,
141
- 128 / cutlass::sizeof_bits<cutlass::half_t>::value,
142
- cutlass::half_t,
143
- cutlass::half_t>,
144
- cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, // Swizzling
145
- 3 // Stages
146
- >;
147
- };
148
-
149
- //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
150
-
151
- // Partial specialization for SM75 F16 Tensor Cores
152
- template <typename LayoutA, typename LayoutB>
153
- struct DefaultGemmConfig<75, cutlass::half_t, LayoutA, LayoutB> {
154
- using Gemm = cutlass::gemm::device::GemmUniversal<
155
- cutlass::half_t, LayoutA, // ElementA and LayoutA
156
- cutlass::half_t, LayoutB, // ElementB and LayoutB
157
- cutlass::half_t, cutlass::layout::RowMajor, // ElementC and LayoutC
158
- cutlass::half_t, // ElementAccumulator
159
- cutlass::arch::OpClassTensorOp, // Operation type
160
- cutlass::arch::Sm75, // Architecture
161
- cutlass::gemm::GemmShape<256, 128, 32>, // ThreadblockShape
162
- cutlass::gemm::GemmShape<64, 64, 32>, // WarpShape
163
- cutlass::gemm::GemmShape<16, 8, 8>, // Instruction Shape
164
- cutlass::epilogue::thread::LinearCombination< // Epilogue
165
- cutlass::half_t,
166
- 128 / cutlass::sizeof_bits<cutlass::half_t>::value,
167
- cutlass::half_t,
168
- cutlass::half_t>,
169
- cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, // Swizzling
170
- 2 // Stages
171
- >;
172
- };
173
-
174
- //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
175
-
176
- // Partial specialization for SM70 F16 Tensor Cores
177
- template <typename LayoutA, typename LayoutB>
178
- struct DefaultGemmConfig<70, cutlass::half_t, LayoutA, LayoutB> {
179
- using Gemm = cutlass::gemm::device::GemmUniversal<
180
- cutlass::half_t, LayoutA, // ElementA and LayoutA
181
- cutlass::half_t, LayoutB, // ElementB and LayoutB
182
- cutlass::half_t, cutlass::layout::RowMajor, // ElementC and LayoutC
183
- cutlass::half_t, // ElementAccumulator
184
- cutlass::arch::OpClassTensorOp, // Operation type
185
- cutlass::arch::Sm70, // Architecture
186
- cutlass::gemm::GemmShape<256, 128, 32>, // ThreadblockShape
187
- cutlass::gemm::GemmShape<64, 64, 32>, // WarpShape
188
- cutlass::gemm::GemmShape<8, 8, 4>, // Instruction Shape
189
- cutlass::epilogue::thread::LinearCombination< // Epilogue
190
- cutlass::half_t,
191
- 128 / cutlass::sizeof_bits<cutlass::half_t>::value,
192
- cutlass::half_t,
193
- cutlass::half_t>,
194
- cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, // Swizzling
195
- 2 // Stages
196
- >;
197
- };
198
-
199
- //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
200
-
201
- // Partial specialization for SM50 SIMT
202
- template <typename Element, typename LayoutA, typename LayoutB>
203
- struct DefaultGemmConfig<50, Element, LayoutA, LayoutB> {
204
- using Gemm = cutlass::gemm::device::GemmUniversal<
205
- Element, LayoutA, // ElementA and LayoutA
206
- Element, LayoutB, // ElementB and LayoutB
207
- Element, cutlass::layout::RowMajor, // ElementC and LayoutC
208
- Element, // ElementAccumulator
209
- cutlass::arch::OpClassSimt, // Operation type
210
- cutlass::arch::Sm50, // Architecture
211
- cutlass::gemm::GemmShape<128, 128, 8>, // ThreadblockShape
212
- cutlass::gemm::GemmShape<32, 64, 8>, // WarpShape
213
- cutlass::gemm::GemmShape<1, 1, 1>, // Instruction Shape
214
- cutlass::epilogue::thread::LinearCombination< // Epilogue
215
- Element,
216
- 1,
217
- Element,
218
- Element>,
219
- cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, // Swizzling
220
- 2 // Stages
221
- >;
222
- };
223
-
224
- //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
225
-
226
- extern "C" {
227
-
228
- WP_API
229
- bool cutlass_gemm(
230
- void* context, int compute_capability,
231
- int m, int n, int k,
232
- const char* datatype_str,
233
- const void* a, const void* b, const void* c, void* d,
234
- float alpha, float beta,
235
- bool row_major_a, bool row_major_b,
236
- bool allow_tf32x3_arith,
237
- int batch_count) {
238
-
239
- std::string datatype(datatype_str);
240
-
241
- ContextGuard guard(context);
242
-
243
- // Specializations for using Tensor Cores and A/B RowMajor/ColumnMajor designations
244
- if (compute_capability == 80) {
245
- if (datatype == F64_STR) {
246
- if (row_major_a && row_major_b) {
247
- using Gemm = DefaultGemmConfig<80, double, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
248
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
249
- } else if (!row_major_a && row_major_b) {
250
- using Gemm = DefaultGemmConfig<80, double, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
251
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
252
- } else if (row_major_a && !row_major_b) {
253
- using Gemm = DefaultGemmConfig<80, double, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
254
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
255
- } else if (!row_major_a && !row_major_b) {
256
- using Gemm = DefaultGemmConfig<80, double, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
257
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
258
- }
259
- } else if (datatype == F32_STR && allow_tf32x3_arith) {
260
- if (row_major_a && row_major_b) {
261
- using Gemm = DefaultGemmConfig<80, float, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
262
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
263
- } else if (!row_major_a && row_major_b) {
264
- using Gemm = DefaultGemmConfig<80, float, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
265
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
266
- } else if (row_major_a && !row_major_b) {
267
- using Gemm = DefaultGemmConfig<80, float, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
268
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
269
- } else if (!row_major_a && !row_major_b) {
270
- using Gemm = DefaultGemmConfig<80, float, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
271
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
272
- }
273
- } else if (datatype == F16_STR) {
274
- if (row_major_a && row_major_b) {
275
- using Gemm = DefaultGemmConfig<80, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
276
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
277
- } else if (!row_major_a && row_major_b) {
278
- using Gemm = DefaultGemmConfig<80, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
279
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
280
- } else if (row_major_a && !row_major_b) {
281
- using Gemm = DefaultGemmConfig<80, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
282
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
283
- } else if (!row_major_a && !row_major_b) {
284
- using Gemm = DefaultGemmConfig<80, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
285
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
286
- }
287
- }
288
- } else if (compute_capability == 75) {
289
- if (datatype == F16_STR) {
290
- if (row_major_a && row_major_b) {
291
- using Gemm = DefaultGemmConfig<75, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
292
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
293
- } else if (!row_major_a && row_major_b) {
294
- using Gemm = DefaultGemmConfig<75, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
295
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
296
- } else if (row_major_a && !row_major_b) {
297
- using Gemm = DefaultGemmConfig<75, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
298
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
299
- } else if (!row_major_a && !row_major_b) {
300
- using Gemm = DefaultGemmConfig<75, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
301
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
302
- }
303
- }
304
- } else if (compute_capability == 70) {
305
- if (datatype == F16_STR) {
306
- if (row_major_a && row_major_b) {
307
- using Gemm = DefaultGemmConfig<70, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
308
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
309
- } else if (!row_major_a && row_major_b) {
310
- using Gemm = DefaultGemmConfig<70, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
311
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
312
- } else if (row_major_a && !row_major_b) {
313
- using Gemm = DefaultGemmConfig<70, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
314
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
315
- } else if (!row_major_a && !row_major_b) {
316
- using Gemm = DefaultGemmConfig<70, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
317
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
318
- }
319
- }
320
- }
321
-
322
- // No Tensor Core capability available. Run a SIMT kernel
323
- if (datatype == F64_STR) {
324
- if (row_major_a && row_major_b) {
325
- using Gemm = DefaultGemmConfig<50, double, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
326
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
327
- } else if (!row_major_a && row_major_b) {
328
- using Gemm = DefaultGemmConfig<50, double, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
329
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
330
- } else if (row_major_a && !row_major_b) {
331
- using Gemm = DefaultGemmConfig<50, double, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
332
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
333
- } else if (!row_major_a && !row_major_b) {
334
- using Gemm = DefaultGemmConfig<50, double, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
335
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
336
- }
337
- } else if (datatype == F32_STR) {
338
- if (row_major_a && row_major_b) {
339
- using Gemm = DefaultGemmConfig<50, float, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
340
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
341
- } else if (!row_major_a && row_major_b) {
342
- using Gemm = DefaultGemmConfig<50, float, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
343
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
344
- } else if (row_major_a && !row_major_b) {
345
- using Gemm = DefaultGemmConfig<50, float, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
346
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
347
- } else if (!row_major_a && !row_major_b) {
348
- using Gemm = DefaultGemmConfig<50, float, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
349
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
350
- }
351
- } else if (datatype == F16_STR) {
352
- if (row_major_a && row_major_b) {
353
- using Gemm = DefaultGemmConfig<50, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
354
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
355
- } else if (!row_major_a && row_major_b) {
356
- using Gemm = DefaultGemmConfig<50, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
357
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
358
- } else if (row_major_a && !row_major_b) {
359
- using Gemm = DefaultGemmConfig<50, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
360
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
361
- } else if (!row_major_a && !row_major_b) {
362
- using Gemm = DefaultGemmConfig<50, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
363
- return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
364
- }
365
- }
366
-
367
- std::cerr << "Data type " << datatype << " is not currently supported." << std::endl;
368
- return false;
369
- }
370
-
371
- }
372
-
1
+ /** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
2
+ * NVIDIA CORPORATION and its licensors retain all intellectual property
3
+ * and proprietary rights in and to this software, related documentation
4
+ * and any modifications thereto. Any use, reproduction, disclosure or
5
+ * distribution of this software and related documentation without an express
6
+ * license agreement from NVIDIA CORPORATION is strictly prohibited.
7
+ */
8
+
9
+ #include "builtin.h"
10
+ #include "temp_buffer.h"
11
+ #include "cuda_util.h"
12
+
13
+ #include "cutlass/cutlass.h"
14
+ #include "cutlass/gemm/device/gemm_universal.h"
15
+ #include "cutlass/util/device_memory.h"
16
+
17
+ #define F16_STR "<f2"
18
+ #define F32_STR "<f4"
19
+ #define F64_STR "<f8"
20
+
21
+ namespace wp {
22
+
23
+ template <typename Gemm>
24
+ bool run_gemm(int m, int n, int k, int batch_count, const void* a, const void* b, const void* c, void* d, float alpha, float beta) {
25
+ //
26
+ // Initialize arguments
27
+ //
28
+ typename Gemm::EpilogueOutputOp::Params epilogue_params(
29
+ (typename Gemm::EpilogueOutputOp::ElementCompute)alpha,
30
+ (typename Gemm::EpilogueOutputOp::ElementCompute)beta);
31
+
32
+ typename Gemm::Arguments arguments{
33
+ batch_count == 1 ? cutlass::gemm::GemmUniversalMode::kGemm : cutlass::gemm::GemmUniversalMode::kBatched ,
34
+ cutlass::gemm::GemmCoord{m, n, k}, // Problem size
35
+ batch_count,
36
+ epilogue_params,
37
+ a, b, c, d,
38
+ int64_t(m * k), int64_t(k * n), int64_t(m * n), int64_t(m * n), // Batch strides
39
+ Gemm::LayoutA::packed({m, k}).stride(0), Gemm::LayoutB::packed({k, n}).stride(0), n, n
40
+ };
41
+
42
+ Gemm gemm;
43
+ size_t workspace_size = Gemm::get_workspace_size(arguments);
44
+ ScopedTemporary<> workspace(WP_CURRENT_CONTEXT, workspace_size);
45
+ cudaStream_t stream = static_cast<cudaStream_t>(cuda_stream_get_current());
46
+ cutlass::Status status = gemm.initialize(arguments, workspace.buffer(), stream);
47
+
48
+ if (status != cutlass::Status::kSuccess) {
49
+ cudaError_t error = cudaGetLastError();
50
+ std::cerr << "Error initializing GEMM: " << cudaGetErrorString(error) << "\n";
51
+ return false;
52
+ }
53
+
54
+ //
55
+ // Run the GEMM
56
+ //
57
+
58
+ status = gemm(stream);
59
+ if (status != cutlass::Status::kSuccess) {
60
+ cudaError_t error = cudaGetLastError();
61
+ std::cerr << "Runtime error: " << cudaGetErrorString(error) << "\n";
62
+ return false;
63
+ }
64
+
65
+ return true;
66
+ }
67
+
68
+ template <
69
+ int ComputeCapability,
70
+ typename Element_,
71
+ typename LayoutA,
72
+ typename LayoutB
73
+ >
74
+ struct DefaultGemmConfig;
75
+
76
+ //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
77
+
78
+ // Partial specialization for SM80 F64 Tensor Cores
79
+ template <typename LayoutA, typename LayoutB>
80
+ struct DefaultGemmConfig<80, double, LayoutA, LayoutB> {
81
+ using Gemm = cutlass::gemm::device::GemmUniversal<
82
+ double, LayoutA, // ElementA and LayoutA
83
+ double, LayoutB, // ElementB and LayoutB
84
+ double, cutlass::layout::RowMajor, // ElementC and LayoutC
85
+ double, // ElementAccumulator
86
+ cutlass::arch::OpClassTensorOp, // Operation type
87
+ cutlass::arch::Sm80, // Architecture
88
+ cutlass::gemm::GemmShape<128, 128, 16>, // ThreadblockShape
89
+ cutlass::gemm::GemmShape<32, 64, 16>, // WarpShape
90
+ cutlass::gemm::GemmShape<8, 8, 4>, // Instruction Shape
91
+ cutlass::epilogue::thread::LinearCombination< // Epilogue
92
+ double,
93
+ 1,
94
+ double,
95
+ double>,
96
+ cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, // Swizzling
97
+ 3 // Stages
98
+ >;
99
+ };
100
+
101
+ // Partial specialization for SM80 F32 Tensor Cores
102
+ template <typename LayoutA, typename LayoutB>
103
+ struct DefaultGemmConfig<80, float, LayoutA, LayoutB> {
104
+ using Gemm = cutlass::gemm::device::GemmUniversal<
105
+ float, LayoutA, // ElementA and LayoutA
106
+ float, LayoutB, // ElementB and LayoutB
107
+ float, cutlass::layout::RowMajor, // ElementC and LayoutC
108
+ float, // ElementAccumulator
109
+ cutlass::arch::OpClassTensorOp, // Operation type
110
+ cutlass::arch::Sm80, // Architecture
111
+ cutlass::gemm::GemmShape<256, 128, 16>, // ThreadblockShape
112
+ cutlass::gemm::GemmShape<64, 64, 16>, // WarpShape
113
+ cutlass::gemm::GemmShape<16, 8, 8>, // Instruction Shape
114
+ cutlass::epilogue::thread::LinearCombination< // Epilogue
115
+ float,
116
+ 128 / cutlass::sizeof_bits<float>::value,
117
+ float,
118
+ float>,
119
+ cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, // Swizzling
120
+ 3, // Stages
121
+ 4, 4, // AlignmentA and AlignmentB
122
+ cutlass::arch::OpMultiplyAddFastF32 // Math mode -- use 3xTF32
123
+ >;
124
+ };
125
+
126
+ // Partial specialization for SM80 F16 Tensor Cores
127
+ template <typename LayoutA, typename LayoutB>
128
+ struct DefaultGemmConfig<80, cutlass::half_t, LayoutA, LayoutB> {
129
+ using Gemm = cutlass::gemm::device::GemmUniversal<
130
+ cutlass::half_t, LayoutA, // ElementA and LayoutA
131
+ cutlass::half_t, LayoutB, // ElementB and LayoutB
132
+ cutlass::half_t, cutlass::layout::RowMajor, // ElementC and LayoutC
133
+ cutlass::half_t, // ElementAccumulator
134
+ cutlass::arch::OpClassTensorOp, // Operation type
135
+ cutlass::arch::Sm80, // Architecture
136
+ cutlass::gemm::GemmShape<256, 128, 32>, // ThreadblockShape
137
+ cutlass::gemm::GemmShape<64, 64, 32>, // WarpShape
138
+ cutlass::gemm::GemmShape<16, 8, 16>, // Instruction Shape
139
+ cutlass::epilogue::thread::LinearCombination< // Epilogue
140
+ cutlass::half_t,
141
+ 128 / cutlass::sizeof_bits<cutlass::half_t>::value,
142
+ cutlass::half_t,
143
+ cutlass::half_t>,
144
+ cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, // Swizzling
145
+ 3 // Stages
146
+ >;
147
+ };
148
+
149
+ //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
150
+
151
+ // Partial specialization for SM75 F16 Tensor Cores
152
+ template <typename LayoutA, typename LayoutB>
153
+ struct DefaultGemmConfig<75, cutlass::half_t, LayoutA, LayoutB> {
154
+ using Gemm = cutlass::gemm::device::GemmUniversal<
155
+ cutlass::half_t, LayoutA, // ElementA and LayoutA
156
+ cutlass::half_t, LayoutB, // ElementB and LayoutB
157
+ cutlass::half_t, cutlass::layout::RowMajor, // ElementC and LayoutC
158
+ cutlass::half_t, // ElementAccumulator
159
+ cutlass::arch::OpClassTensorOp, // Operation type
160
+ cutlass::arch::Sm75, // Architecture
161
+ cutlass::gemm::GemmShape<256, 128, 32>, // ThreadblockShape
162
+ cutlass::gemm::GemmShape<64, 64, 32>, // WarpShape
163
+ cutlass::gemm::GemmShape<16, 8, 8>, // Instruction Shape
164
+ cutlass::epilogue::thread::LinearCombination< // Epilogue
165
+ cutlass::half_t,
166
+ 128 / cutlass::sizeof_bits<cutlass::half_t>::value,
167
+ cutlass::half_t,
168
+ cutlass::half_t>,
169
+ cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, // Swizzling
170
+ 2 // Stages
171
+ >;
172
+ };
173
+
174
+ //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
175
+
176
+ // Partial specialization for SM70 F16 Tensor Cores
177
+ template <typename LayoutA, typename LayoutB>
178
+ struct DefaultGemmConfig<70, cutlass::half_t, LayoutA, LayoutB> {
179
+ using Gemm = cutlass::gemm::device::GemmUniversal<
180
+ cutlass::half_t, LayoutA, // ElementA and LayoutA
181
+ cutlass::half_t, LayoutB, // ElementB and LayoutB
182
+ cutlass::half_t, cutlass::layout::RowMajor, // ElementC and LayoutC
183
+ cutlass::half_t, // ElementAccumulator
184
+ cutlass::arch::OpClassTensorOp, // Operation type
185
+ cutlass::arch::Sm70, // Architecture
186
+ cutlass::gemm::GemmShape<256, 128, 32>, // ThreadblockShape
187
+ cutlass::gemm::GemmShape<64, 64, 32>, // WarpShape
188
+ cutlass::gemm::GemmShape<8, 8, 4>, // Instruction Shape
189
+ cutlass::epilogue::thread::LinearCombination< // Epilogue
190
+ cutlass::half_t,
191
+ 128 / cutlass::sizeof_bits<cutlass::half_t>::value,
192
+ cutlass::half_t,
193
+ cutlass::half_t>,
194
+ cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, // Swizzling
195
+ 2 // Stages
196
+ >;
197
+ };
198
+
199
+ //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
200
+
201
+ // Partial specialization for SM50 SIMT
202
+ template <typename Element, typename LayoutA, typename LayoutB>
203
+ struct DefaultGemmConfig<50, Element, LayoutA, LayoutB> {
204
+ using Gemm = cutlass::gemm::device::GemmUniversal<
205
+ Element, LayoutA, // ElementA and LayoutA
206
+ Element, LayoutB, // ElementB and LayoutB
207
+ Element, cutlass::layout::RowMajor, // ElementC and LayoutC
208
+ Element, // ElementAccumulator
209
+ cutlass::arch::OpClassSimt, // Operation type
210
+ cutlass::arch::Sm50, // Architecture
211
+ cutlass::gemm::GemmShape<128, 128, 8>, // ThreadblockShape
212
+ cutlass::gemm::GemmShape<32, 64, 8>, // WarpShape
213
+ cutlass::gemm::GemmShape<1, 1, 1>, // Instruction Shape
214
+ cutlass::epilogue::thread::LinearCombination< // Epilogue
215
+ Element,
216
+ 1,
217
+ Element,
218
+ Element>,
219
+ cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, // Swizzling
220
+ 2 // Stages
221
+ >;
222
+ };
223
+
224
+ //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
225
+
226
+ extern "C" {
227
+
228
+ WP_API
229
+ bool cutlass_gemm(
230
+ void* context, int compute_capability,
231
+ int m, int n, int k,
232
+ const char* datatype_str,
233
+ const void* a, const void* b, const void* c, void* d,
234
+ float alpha, float beta,
235
+ bool row_major_a, bool row_major_b,
236
+ bool allow_tf32x3_arith,
237
+ int batch_count) {
238
+
239
+ std::string datatype(datatype_str);
240
+
241
+ ContextGuard guard(context);
242
+
243
+ // Specializations for using Tensor Cores and A/B RowMajor/ColumnMajor designations
244
+ if (compute_capability == 80) {
245
+ if (datatype == F64_STR) {
246
+ if (row_major_a && row_major_b) {
247
+ using Gemm = DefaultGemmConfig<80, double, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
248
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
249
+ } else if (!row_major_a && row_major_b) {
250
+ using Gemm = DefaultGemmConfig<80, double, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
251
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
252
+ } else if (row_major_a && !row_major_b) {
253
+ using Gemm = DefaultGemmConfig<80, double, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
254
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
255
+ } else if (!row_major_a && !row_major_b) {
256
+ using Gemm = DefaultGemmConfig<80, double, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
257
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
258
+ }
259
+ } else if (datatype == F32_STR && allow_tf32x3_arith) {
260
+ if (row_major_a && row_major_b) {
261
+ using Gemm = DefaultGemmConfig<80, float, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
262
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
263
+ } else if (!row_major_a && row_major_b) {
264
+ using Gemm = DefaultGemmConfig<80, float, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
265
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
266
+ } else if (row_major_a && !row_major_b) {
267
+ using Gemm = DefaultGemmConfig<80, float, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
268
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
269
+ } else if (!row_major_a && !row_major_b) {
270
+ using Gemm = DefaultGemmConfig<80, float, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
271
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
272
+ }
273
+ } else if (datatype == F16_STR) {
274
+ if (row_major_a && row_major_b) {
275
+ using Gemm = DefaultGemmConfig<80, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
276
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
277
+ } else if (!row_major_a && row_major_b) {
278
+ using Gemm = DefaultGemmConfig<80, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
279
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
280
+ } else if (row_major_a && !row_major_b) {
281
+ using Gemm = DefaultGemmConfig<80, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
282
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
283
+ } else if (!row_major_a && !row_major_b) {
284
+ using Gemm = DefaultGemmConfig<80, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
285
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
286
+ }
287
+ }
288
+ } else if (compute_capability == 75) {
289
+ if (datatype == F16_STR) {
290
+ if (row_major_a && row_major_b) {
291
+ using Gemm = DefaultGemmConfig<75, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
292
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
293
+ } else if (!row_major_a && row_major_b) {
294
+ using Gemm = DefaultGemmConfig<75, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
295
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
296
+ } else if (row_major_a && !row_major_b) {
297
+ using Gemm = DefaultGemmConfig<75, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
298
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
299
+ } else if (!row_major_a && !row_major_b) {
300
+ using Gemm = DefaultGemmConfig<75, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
301
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
302
+ }
303
+ }
304
+ } else if (compute_capability == 70) {
305
+ if (datatype == F16_STR) {
306
+ if (row_major_a && row_major_b) {
307
+ using Gemm = DefaultGemmConfig<70, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
308
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
309
+ } else if (!row_major_a && row_major_b) {
310
+ using Gemm = DefaultGemmConfig<70, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
311
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
312
+ } else if (row_major_a && !row_major_b) {
313
+ using Gemm = DefaultGemmConfig<70, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
314
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
315
+ } else if (!row_major_a && !row_major_b) {
316
+ using Gemm = DefaultGemmConfig<70, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
317
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
318
+ }
319
+ }
320
+ }
321
+
322
+ // No Tensor Core capability available. Run a SIMT kernel
323
+ if (datatype == F64_STR) {
324
+ if (row_major_a && row_major_b) {
325
+ using Gemm = DefaultGemmConfig<50, double, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
326
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
327
+ } else if (!row_major_a && row_major_b) {
328
+ using Gemm = DefaultGemmConfig<50, double, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
329
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
330
+ } else if (row_major_a && !row_major_b) {
331
+ using Gemm = DefaultGemmConfig<50, double, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
332
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
333
+ } else if (!row_major_a && !row_major_b) {
334
+ using Gemm = DefaultGemmConfig<50, double, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
335
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
336
+ }
337
+ } else if (datatype == F32_STR) {
338
+ if (row_major_a && row_major_b) {
339
+ using Gemm = DefaultGemmConfig<50, float, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
340
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
341
+ } else if (!row_major_a && row_major_b) {
342
+ using Gemm = DefaultGemmConfig<50, float, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
343
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
344
+ } else if (row_major_a && !row_major_b) {
345
+ using Gemm = DefaultGemmConfig<50, float, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
346
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
347
+ } else if (!row_major_a && !row_major_b) {
348
+ using Gemm = DefaultGemmConfig<50, float, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
349
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
350
+ }
351
+ } else if (datatype == F16_STR) {
352
+ if (row_major_a && row_major_b) {
353
+ using Gemm = DefaultGemmConfig<50, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::RowMajor>::Gemm;
354
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
355
+ } else if (!row_major_a && row_major_b) {
356
+ using Gemm = DefaultGemmConfig<50, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::RowMajor>::Gemm;
357
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
358
+ } else if (row_major_a && !row_major_b) {
359
+ using Gemm = DefaultGemmConfig<50, cutlass::half_t, cutlass::layout::RowMajor, cutlass::layout::ColumnMajor>::Gemm;
360
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
361
+ } else if (!row_major_a && !row_major_b) {
362
+ using Gemm = DefaultGemmConfig<50, cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor>::Gemm;
363
+ return run_gemm<Gemm>(m, n, k, batch_count, a, b, c, d, alpha, beta);
364
+ }
365
+ }
366
+
367
+ std::cerr << "Data type " << datatype << " is not currently supported." << std::endl;
368
+ return false;
369
+ }
370
+
371
+ }
372
+
373
373
  } // namespace wp