warp-lang 1.0.0b2__py3-none-win_amd64.whl → 1.0.0b6__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- docs/conf.py +17 -5
- examples/env/env_ant.py +1 -1
- examples/env/env_cartpole.py +1 -1
- examples/env/env_humanoid.py +1 -1
- examples/env/env_usd.py +4 -1
- examples/env/environment.py +8 -9
- examples/example_dem.py +34 -33
- examples/example_diffray.py +364 -337
- examples/example_fluid.py +32 -23
- examples/example_jacobian_ik.py +97 -93
- examples/example_marching_cubes.py +6 -16
- examples/example_mesh.py +6 -16
- examples/example_mesh_intersect.py +16 -14
- examples/example_nvdb.py +14 -16
- examples/example_raycast.py +14 -13
- examples/example_raymarch.py +16 -23
- examples/example_render_opengl.py +19 -10
- examples/example_sim_cartpole.py +82 -78
- examples/example_sim_cloth.py +45 -48
- examples/example_sim_fk_grad.py +51 -44
- examples/example_sim_fk_grad_torch.py +47 -40
- examples/example_sim_grad_bounce.py +108 -133
- examples/example_sim_grad_cloth.py +99 -113
- examples/example_sim_granular.py +5 -6
- examples/{example_sim_sdf_shape.py → example_sim_granular_collision_sdf.py} +37 -26
- examples/example_sim_neo_hookean.py +51 -55
- examples/example_sim_particle_chain.py +4 -4
- examples/example_sim_quadruped.py +126 -81
- examples/example_sim_rigid_chain.py +54 -61
- examples/example_sim_rigid_contact.py +66 -70
- examples/example_sim_rigid_fem.py +3 -3
- examples/example_sim_rigid_force.py +1 -1
- examples/example_sim_rigid_gyroscopic.py +3 -4
- examples/example_sim_rigid_kinematics.py +28 -39
- examples/example_sim_trajopt.py +112 -110
- examples/example_sph.py +9 -8
- examples/example_wave.py +7 -7
- examples/fem/bsr_utils.py +30 -17
- examples/fem/example_apic_fluid.py +85 -69
- examples/fem/example_convection_diffusion.py +97 -93
- examples/fem/example_convection_diffusion_dg.py +142 -149
- examples/fem/example_convection_diffusion_dg0.py +141 -136
- examples/fem/example_deformed_geometry.py +146 -0
- examples/fem/example_diffusion.py +115 -84
- examples/fem/example_diffusion_3d.py +116 -86
- examples/fem/example_diffusion_mgpu.py +102 -79
- examples/fem/example_mixed_elasticity.py +139 -100
- examples/fem/example_navier_stokes.py +175 -162
- examples/fem/example_stokes.py +143 -111
- examples/fem/example_stokes_transfer.py +186 -157
- examples/fem/mesh_utils.py +59 -97
- examples/fem/plot_utils.py +138 -17
- tools/ci/publishing/build_nodes_info.py +54 -0
- warp/__init__.py +4 -3
- warp/__init__.pyi +1 -0
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +5 -3
- warp/build_dll.py +29 -9
- warp/builtins.py +836 -492
- warp/codegen.py +864 -553
- warp/config.py +3 -1
- warp/context.py +389 -172
- warp/fem/__init__.py +24 -6
- warp/fem/cache.py +318 -25
- warp/fem/dirichlet.py +7 -3
- warp/fem/domain.py +14 -0
- warp/fem/field/__init__.py +30 -38
- warp/fem/field/field.py +149 -0
- warp/fem/field/nodal_field.py +244 -138
- warp/fem/field/restriction.py +8 -6
- warp/fem/field/test.py +127 -59
- warp/fem/field/trial.py +117 -60
- warp/fem/geometry/__init__.py +5 -1
- warp/fem/geometry/deformed_geometry.py +271 -0
- warp/fem/geometry/element.py +24 -1
- warp/fem/geometry/geometry.py +86 -14
- warp/fem/geometry/grid_2d.py +112 -54
- warp/fem/geometry/grid_3d.py +134 -65
- warp/fem/geometry/hexmesh.py +953 -0
- warp/fem/geometry/partition.py +85 -33
- warp/fem/geometry/quadmesh_2d.py +532 -0
- warp/fem/geometry/tetmesh.py +451 -115
- warp/fem/geometry/trimesh_2d.py +197 -92
- warp/fem/integrate.py +534 -268
- warp/fem/operator.py +58 -31
- warp/fem/polynomial.py +11 -0
- warp/fem/quadrature/__init__.py +1 -1
- warp/fem/quadrature/pic_quadrature.py +150 -58
- warp/fem/quadrature/quadrature.py +209 -57
- warp/fem/space/__init__.py +230 -53
- warp/fem/space/basis_space.py +489 -0
- warp/fem/space/collocated_function_space.py +105 -0
- warp/fem/space/dof_mapper.py +49 -2
- warp/fem/space/function_space.py +90 -39
- warp/fem/space/grid_2d_function_space.py +149 -496
- warp/fem/space/grid_3d_function_space.py +173 -538
- warp/fem/space/hexmesh_function_space.py +352 -0
- warp/fem/space/partition.py +129 -76
- warp/fem/space/quadmesh_2d_function_space.py +369 -0
- warp/fem/space/restriction.py +46 -34
- warp/fem/space/shape/__init__.py +15 -0
- warp/fem/space/shape/cube_shape_function.py +738 -0
- warp/fem/space/shape/shape_function.py +103 -0
- warp/fem/space/shape/square_shape_function.py +611 -0
- warp/fem/space/shape/tet_shape_function.py +567 -0
- warp/fem/space/shape/triangle_shape_function.py +429 -0
- warp/fem/space/tetmesh_function_space.py +132 -1039
- warp/fem/space/topology.py +295 -0
- warp/fem/space/trimesh_2d_function_space.py +104 -742
- warp/fem/types.py +13 -11
- warp/fem/utils.py +335 -60
- warp/native/array.h +120 -34
- warp/native/builtin.h +101 -72
- warp/native/bvh.cpp +73 -325
- warp/native/bvh.cu +406 -23
- warp/native/bvh.h +22 -40
- warp/native/clang/clang.cpp +1 -0
- warp/native/crt.h +2 -0
- warp/native/cuda_util.cpp +8 -3
- warp/native/cuda_util.h +1 -0
- warp/native/exports.h +1522 -1243
- warp/native/intersect.h +19 -4
- warp/native/intersect_adj.h +8 -8
- warp/native/mat.h +76 -17
- warp/native/mesh.cpp +33 -108
- warp/native/mesh.cu +114 -18
- warp/native/mesh.h +395 -40
- warp/native/noise.h +272 -329
- warp/native/quat.h +51 -8
- warp/native/rand.h +44 -34
- warp/native/reduce.cpp +1 -1
- warp/native/sparse.cpp +4 -4
- warp/native/sparse.cu +163 -155
- warp/native/spatial.h +2 -2
- warp/native/temp_buffer.h +18 -14
- warp/native/vec.h +103 -21
- warp/native/warp.cpp +2 -1
- warp/native/warp.cu +28 -3
- warp/native/warp.h +4 -3
- warp/render/render_opengl.py +261 -109
- warp/sim/__init__.py +1 -2
- warp/sim/articulation.py +385 -185
- warp/sim/import_mjcf.py +59 -48
- warp/sim/import_urdf.py +15 -15
- warp/sim/import_usd.py +174 -102
- warp/sim/inertia.py +17 -18
- warp/sim/integrator_xpbd.py +4 -3
- warp/sim/model.py +330 -250
- warp/sim/render.py +1 -1
- warp/sparse.py +625 -152
- warp/stubs.py +341 -309
- warp/tape.py +9 -6
- warp/tests/__main__.py +3 -6
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/{test_class_kernel.py → aux_test_class_kernel.py} +9 -1
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -0
- warp/tests/{test_dependent.py → aux_test_dependent.py} +2 -2
- warp/tests/{test_reference.py → aux_test_reference.py} +1 -1
- warp/tests/aux_test_unresolved_func.py +14 -0
- warp/tests/aux_test_unresolved_symbol.py +14 -0
- warp/tests/disabled_kinematics.py +239 -0
- warp/tests/run_coverage_serial.py +31 -0
- warp/tests/test_adam.py +103 -106
- warp/tests/test_arithmetic.py +94 -74
- warp/tests/test_array.py +82 -101
- warp/tests/test_array_reduce.py +57 -23
- warp/tests/test_atomic.py +64 -28
- warp/tests/test_bool.py +22 -12
- warp/tests/test_builtins_resolution.py +1292 -0
- warp/tests/test_bvh.py +18 -18
- warp/tests/test_closest_point_edge_edge.py +54 -57
- warp/tests/test_codegen.py +165 -134
- warp/tests/test_compile_consts.py +28 -20
- warp/tests/test_conditional.py +108 -24
- warp/tests/test_copy.py +10 -12
- warp/tests/test_ctypes.py +112 -88
- warp/tests/test_dense.py +21 -14
- warp/tests/test_devices.py +98 -0
- warp/tests/test_dlpack.py +75 -75
- warp/tests/test_examples.py +237 -0
- warp/tests/test_fabricarray.py +22 -24
- warp/tests/test_fast_math.py +15 -11
- warp/tests/test_fem.py +1034 -124
- warp/tests/test_fp16.py +23 -16
- warp/tests/test_func.py +187 -86
- warp/tests/test_generics.py +194 -49
- warp/tests/test_grad.py +123 -181
- warp/tests/test_grad_customs.py +176 -0
- warp/tests/test_hash_grid.py +35 -34
- warp/tests/test_import.py +10 -23
- warp/tests/test_indexedarray.py +24 -25
- warp/tests/test_intersect.py +18 -9
- warp/tests/test_large.py +141 -0
- warp/tests/test_launch.py +14 -41
- warp/tests/test_lerp.py +64 -65
- warp/tests/test_lvalue.py +493 -0
- warp/tests/test_marching_cubes.py +12 -13
- warp/tests/test_mat.py +517 -2898
- warp/tests/test_mat_lite.py +115 -0
- warp/tests/test_mat_scalar_ops.py +2889 -0
- warp/tests/test_math.py +103 -9
- warp/tests/test_matmul.py +304 -69
- warp/tests/test_matmul_lite.py +410 -0
- warp/tests/test_mesh.py +60 -22
- warp/tests/test_mesh_query_aabb.py +21 -25
- warp/tests/test_mesh_query_point.py +111 -22
- warp/tests/test_mesh_query_ray.py +12 -24
- warp/tests/test_mlp.py +30 -22
- warp/tests/test_model.py +92 -89
- warp/tests/test_modules_lite.py +39 -0
- warp/tests/test_multigpu.py +88 -114
- warp/tests/test_noise.py +12 -11
- warp/tests/test_operators.py +16 -20
- warp/tests/test_options.py +11 -11
- warp/tests/test_pinned.py +17 -18
- warp/tests/test_print.py +32 -11
- warp/tests/test_quat.py +275 -129
- warp/tests/test_rand.py +18 -16
- warp/tests/test_reload.py +38 -34
- warp/tests/test_rounding.py +50 -43
- warp/tests/test_runlength_encode.py +168 -20
- warp/tests/test_smoothstep.py +9 -11
- warp/tests/test_snippet.py +143 -0
- warp/tests/test_sparse.py +261 -63
- warp/tests/test_spatial.py +276 -243
- warp/tests/test_streams.py +110 -85
- warp/tests/test_struct.py +268 -63
- warp/tests/test_tape.py +39 -21
- warp/tests/test_torch.py +90 -86
- warp/tests/test_transient_module.py +10 -12
- warp/tests/test_types.py +363 -0
- warp/tests/test_utils.py +451 -0
- warp/tests/test_vec.py +354 -2050
- warp/tests/test_vec_lite.py +73 -0
- warp/tests/test_vec_scalar_ops.py +2099 -0
- warp/tests/test_volume.py +418 -376
- warp/tests/test_volume_write.py +124 -134
- warp/tests/unittest_serial.py +35 -0
- warp/tests/unittest_suites.py +291 -0
- warp/tests/unittest_utils.py +342 -0
- warp/tests/{test_misc.py → unused_test_misc.py} +13 -5
- warp/tests/{test_debug.py → walkthough_debug.py} +3 -17
- warp/thirdparty/appdirs.py +36 -45
- warp/thirdparty/unittest_parallel.py +589 -0
- warp/types.py +622 -211
- warp/utils.py +54 -393
- warp_lang-1.0.0b6.dist-info/METADATA +238 -0
- warp_lang-1.0.0b6.dist-info/RECORD +409 -0
- {warp_lang-1.0.0b2.dist-info → warp_lang-1.0.0b6.dist-info}/WHEEL +1 -1
- examples/example_cache_management.py +0 -40
- examples/example_multigpu.py +0 -54
- examples/example_struct.py +0 -65
- examples/fem/example_stokes_transfer_3d.py +0 -210
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/fem/field/discrete_field.py +0 -80
- warp/fem/space/nodal_function_space.py +0 -233
- warp/tests/test_all.py +0 -223
- warp/tests/test_array_scan.py +0 -60
- warp/tests/test_base.py +0 -208
- warp/tests/test_unresolved_func.py +0 -7
- warp/tests/test_unresolved_symbol.py +0 -7
- warp_lang-1.0.0b2.dist-info/METADATA +0 -26
- warp_lang-1.0.0b2.dist-info/RECORD +0 -380
- /warp/tests/{test_compile_consts_dummy.py → aux_test_compile_consts_dummy.py} +0 -0
- /warp/tests/{test_reference_reference.py → aux_test_reference_reference.py} +0 -0
- /warp/tests/{test_square.py → aux_test_square.py} +0 -0
- {warp_lang-1.0.0b2.dist-info → warp_lang-1.0.0b6.dist-info}/LICENSE.md +0 -0
- {warp_lang-1.0.0b2.dist-info → warp_lang-1.0.0b6.dist-info}/top_level.txt +0 -0
warp/tests/test_vec.py
CHANGED
|
@@ -5,9 +5,12 @@
|
|
|
5
5
|
# distribution of this software and related documentation without an express
|
|
6
6
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
7
|
|
|
8
|
+
import unittest
|
|
9
|
+
|
|
8
10
|
import numpy as np
|
|
11
|
+
|
|
9
12
|
import warp as wp
|
|
10
|
-
from warp.tests.
|
|
13
|
+
from warp.tests.unittest_utils import *
|
|
11
14
|
|
|
12
15
|
wp.init()
|
|
13
16
|
|
|
@@ -27,1635 +30,184 @@ np_unsigned_int_types = [
|
|
|
27
30
|
np.ubyte,
|
|
28
31
|
]
|
|
29
32
|
|
|
30
|
-
np_int_types = np_signed_int_types + np_unsigned_int_types
|
|
31
|
-
|
|
32
33
|
np_float_types = [np.float16, np.float32, np.float64]
|
|
33
34
|
|
|
34
|
-
np_scalar_types = np_int_types + np_float_types
|
|
35
|
-
|
|
36
35
|
|
|
37
|
-
def randvals(shape, dtype):
|
|
36
|
+
def randvals(rng, shape, dtype):
|
|
38
37
|
if dtype in np_float_types:
|
|
39
|
-
return
|
|
38
|
+
return rng.standard_normal(size=shape).astype(dtype)
|
|
40
39
|
elif dtype in [np.int8, np.uint8, np.byte, np.ubyte]:
|
|
41
|
-
return
|
|
42
|
-
return
|
|
40
|
+
return rng.integers(1, high=3, size=shape, dtype=dtype)
|
|
41
|
+
return rng.integers(1, high=5, size=shape, dtype=dtype)
|
|
43
42
|
|
|
44
43
|
|
|
45
44
|
kernel_cache = dict()
|
|
46
45
|
|
|
47
46
|
|
|
48
47
|
def getkernel(func, suffix=""):
|
|
49
|
-
module = wp.get_module(func.__module__)
|
|
50
48
|
key = func.__name__ + "_" + suffix
|
|
51
49
|
if key not in kernel_cache:
|
|
52
|
-
kernel_cache[key] = wp.Kernel(func=func, key=key
|
|
50
|
+
kernel_cache[key] = wp.Kernel(func=func, key=key)
|
|
53
51
|
return kernel_cache[key]
|
|
54
52
|
|
|
55
53
|
|
|
56
|
-
def
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
out: wp.array(dtype=dtype),
|
|
61
|
-
):
|
|
62
|
-
out[0] = input[index]
|
|
63
|
-
|
|
64
|
-
return getkernel(output_select_kernel_fn, suffix=dtype.__name__)
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
def get_select_kernel2(dtype):
|
|
68
|
-
def output_select_kernel2_fn(
|
|
69
|
-
input: wp.array(dtype=dtype, ndim=2),
|
|
70
|
-
index0: int,
|
|
71
|
-
index1: int,
|
|
72
|
-
out: wp.array(dtype=dtype),
|
|
73
|
-
):
|
|
74
|
-
out[0] = input[index0, index1]
|
|
75
|
-
|
|
76
|
-
return getkernel(output_select_kernel2_fn, suffix=dtype.__name__)
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
def test_arrays(test, device, dtype):
|
|
80
|
-
np.random.seed(123)
|
|
81
|
-
|
|
82
|
-
tol = {
|
|
83
|
-
np.float16: 1.0e-3,
|
|
84
|
-
np.float32: 1.0e-6,
|
|
85
|
-
np.float64: 1.0e-8,
|
|
86
|
-
}.get(dtype, 0)
|
|
87
|
-
|
|
88
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
89
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
90
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
91
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
92
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
93
|
-
|
|
94
|
-
v2_np = randvals((10, 2), dtype)
|
|
95
|
-
v3_np = randvals((10, 3), dtype)
|
|
96
|
-
v4_np = randvals((10, 4), dtype)
|
|
97
|
-
v5_np = randvals((10, 5), dtype)
|
|
98
|
-
|
|
99
|
-
v2 = wp.array(v2_np, dtype=vec2, requires_grad=True, device=device)
|
|
100
|
-
v3 = wp.array(v3_np, dtype=vec3, requires_grad=True, device=device)
|
|
101
|
-
v4 = wp.array(v4_np, dtype=vec4, requires_grad=True, device=device)
|
|
102
|
-
v5 = wp.array(v5_np, dtype=vec5, requires_grad=True, device=device)
|
|
103
|
-
|
|
104
|
-
assert_np_equal(v2.numpy(), v2_np, tol=1.0e-6)
|
|
105
|
-
assert_np_equal(v3.numpy(), v3_np, tol=1.0e-6)
|
|
106
|
-
assert_np_equal(v4.numpy(), v4_np, tol=1.0e-6)
|
|
107
|
-
assert_np_equal(v5.numpy(), v5_np, tol=1.0e-6)
|
|
108
|
-
|
|
109
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
110
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
111
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
112
|
-
|
|
113
|
-
v2 = wp.array(v2_np, dtype=vec2, requires_grad=True, device=device)
|
|
114
|
-
v3 = wp.array(v3_np, dtype=vec3, requires_grad=True, device=device)
|
|
115
|
-
v4 = wp.array(v4_np, dtype=vec4, requires_grad=True, device=device)
|
|
116
|
-
|
|
117
|
-
assert_np_equal(v2.numpy(), v2_np, tol=1.0e-6)
|
|
118
|
-
assert_np_equal(v3.numpy(), v3_np, tol=1.0e-6)
|
|
119
|
-
assert_np_equal(v4.numpy(), v4_np, tol=1.0e-6)
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
def test_components(test, device, dtype):
|
|
123
|
-
# test accessing vector components from Python - this is especially important
|
|
124
|
-
# for float16, which requires special handling internally
|
|
125
|
-
|
|
126
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
127
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
128
|
-
|
|
129
|
-
v = vec3(1, 2, 3)
|
|
130
|
-
|
|
131
|
-
# test __getitem__ for individual components
|
|
132
|
-
test.assertEqual(v[0], 1)
|
|
133
|
-
test.assertEqual(v[1], 2)
|
|
134
|
-
test.assertEqual(v[2], 3)
|
|
135
|
-
|
|
136
|
-
# test __getitem__ for slices
|
|
137
|
-
s = v[:]
|
|
138
|
-
test.assertEqual(s[0], 1)
|
|
139
|
-
test.assertEqual(s[1], 2)
|
|
140
|
-
test.assertEqual(s[2], 3)
|
|
141
|
-
|
|
142
|
-
s = v[1:]
|
|
143
|
-
test.assertEqual(s[0], 2)
|
|
144
|
-
test.assertEqual(s[1], 3)
|
|
145
|
-
|
|
146
|
-
s = v[:2]
|
|
147
|
-
test.assertEqual(s[0], 1)
|
|
148
|
-
test.assertEqual(s[1], 2)
|
|
149
|
-
|
|
150
|
-
s = v[::2]
|
|
151
|
-
test.assertEqual(s[0], 1)
|
|
152
|
-
test.assertEqual(s[1], 3)
|
|
153
|
-
|
|
154
|
-
# test __setitem__ for individual components
|
|
155
|
-
v[0] = 4
|
|
156
|
-
v[1] = 5
|
|
157
|
-
v[2] = 6
|
|
158
|
-
test.assertEqual(v[0], 4)
|
|
159
|
-
test.assertEqual(v[1], 5)
|
|
160
|
-
test.assertEqual(v[2], 6)
|
|
161
|
-
|
|
162
|
-
# test __setitem__ for slices
|
|
163
|
-
v[:] = [7, 8, 9]
|
|
164
|
-
test.assertEqual(v[0], 7)
|
|
165
|
-
test.assertEqual(v[1], 8)
|
|
166
|
-
test.assertEqual(v[2], 9)
|
|
167
|
-
|
|
168
|
-
v[1:] = [10, 11]
|
|
169
|
-
test.assertEqual(v[0], 7)
|
|
170
|
-
test.assertEqual(v[1], 10)
|
|
171
|
-
test.assertEqual(v[2], 11)
|
|
172
|
-
|
|
173
|
-
v[:2] = [12, 13]
|
|
174
|
-
test.assertEqual(v[0], 12)
|
|
175
|
-
test.assertEqual(v[1], 13)
|
|
176
|
-
test.assertEqual(v[2], 11)
|
|
54
|
+
def test_anon_constructor_error_dtype_keyword_missing(test, device):
|
|
55
|
+
@wp.kernel
|
|
56
|
+
def kernel():
|
|
57
|
+
wp.vector(length=123)
|
|
177
58
|
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
test.assertEqual(v[2], 15)
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
def test_anon_type_instance(test, device, dtype, register_kernels=False):
|
|
185
|
-
np.random.seed(123)
|
|
186
|
-
|
|
187
|
-
tol = {
|
|
188
|
-
np.float16: 5.0e-3,
|
|
189
|
-
np.float32: 1.0e-6,
|
|
190
|
-
np.float64: 1.0e-8,
|
|
191
|
-
}.get(dtype, 0)
|
|
192
|
-
|
|
193
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
194
|
-
|
|
195
|
-
def check_scalar_init(
|
|
196
|
-
input: wp.array(dtype=wptype),
|
|
197
|
-
output: wp.array(dtype=wptype),
|
|
198
|
-
):
|
|
199
|
-
v2result = wp.vector(input[0], length=2)
|
|
200
|
-
v3result = wp.vector(input[1], length=3)
|
|
201
|
-
v4result = wp.vector(input[2], length=4)
|
|
202
|
-
v5result = wp.vector(input[3], length=5)
|
|
203
|
-
|
|
204
|
-
idx = 0
|
|
205
|
-
for i in range(2):
|
|
206
|
-
output[idx] = wptype(2) * v2result[i]
|
|
207
|
-
idx = idx + 1
|
|
208
|
-
for i in range(3):
|
|
209
|
-
output[idx] = wptype(2) * v3result[i]
|
|
210
|
-
idx = idx + 1
|
|
211
|
-
for i in range(4):
|
|
212
|
-
output[idx] = wptype(2) * v4result[i]
|
|
213
|
-
idx = idx + 1
|
|
214
|
-
for i in range(5):
|
|
215
|
-
output[idx] = wptype(2) * v5result[i]
|
|
216
|
-
idx = idx + 1
|
|
217
|
-
|
|
218
|
-
def check_component_init(
|
|
219
|
-
input: wp.array(dtype=wptype),
|
|
220
|
-
output: wp.array(dtype=wptype),
|
|
59
|
+
with test.assertRaisesRegex(
|
|
60
|
+
RuntimeError,
|
|
61
|
+
r"vec\(\) must have dtype as a keyword argument if it has no positional arguments, e.g.: wp.vector\(length=5, dtype=wp.float32\)$",
|
|
221
62
|
):
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
for i in range(2):
|
|
229
|
-
output[idx] = wptype(2) * v2result[i]
|
|
230
|
-
idx = idx + 1
|
|
231
|
-
for i in range(3):
|
|
232
|
-
output[idx] = wptype(2) * v3result[i]
|
|
233
|
-
idx = idx + 1
|
|
234
|
-
for i in range(4):
|
|
235
|
-
output[idx] = wptype(2) * v4result[i]
|
|
236
|
-
idx = idx + 1
|
|
237
|
-
for i in range(5):
|
|
238
|
-
output[idx] = wptype(2) * v5result[i]
|
|
239
|
-
idx = idx + 1
|
|
240
|
-
|
|
241
|
-
scalar_kernel = getkernel(check_scalar_init, suffix=dtype.__name__)
|
|
242
|
-
component_kernel = getkernel(check_component_init, suffix=dtype.__name__)
|
|
243
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
244
|
-
|
|
245
|
-
if register_kernels:
|
|
246
|
-
return
|
|
247
|
-
|
|
248
|
-
input = wp.array(randvals([4], dtype), requires_grad=True, device=device)
|
|
249
|
-
output = wp.zeros(2 + 3 + 4 + 5, dtype=wptype, requires_grad=True, device=device)
|
|
250
|
-
|
|
251
|
-
wp.launch(scalar_kernel, dim=1, inputs=[input], outputs=[output], device=device)
|
|
252
|
-
|
|
253
|
-
assert_np_equal(output.numpy()[:2], 2 * np.array([input.numpy()[0]] * 2), tol=1.0e-6)
|
|
254
|
-
assert_np_equal(output.numpy()[2:5], 2 * np.array([input.numpy()[1]] * 3), tol=1.0e-6)
|
|
255
|
-
assert_np_equal(output.numpy()[5:9], 2 * np.array([input.numpy()[2]] * 4), tol=1.0e-6)
|
|
256
|
-
assert_np_equal(output.numpy()[9:], 2 * np.array([input.numpy()[3]] * 5), tol=1.0e-6)
|
|
257
|
-
|
|
258
|
-
if dtype in np_float_types:
|
|
259
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
260
|
-
for i in range(len(output)):
|
|
261
|
-
tape = wp.Tape()
|
|
262
|
-
with tape:
|
|
263
|
-
wp.launch(scalar_kernel, dim=1, inputs=[input], outputs=[output], device=device)
|
|
264
|
-
wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[out], device=device)
|
|
265
|
-
|
|
266
|
-
tape.backward(loss=out)
|
|
267
|
-
expected = np.zeros_like(input.numpy())
|
|
268
|
-
if i < 2:
|
|
269
|
-
expected[0] = 2
|
|
270
|
-
elif i < 5:
|
|
271
|
-
expected[1] = 2
|
|
272
|
-
elif i < 9:
|
|
273
|
-
expected[2] = 2
|
|
274
|
-
else:
|
|
275
|
-
expected[3] = 2
|
|
276
|
-
|
|
277
|
-
assert_np_equal(tape.gradients[input].numpy(), expected, tol=tol)
|
|
278
|
-
|
|
279
|
-
tape.reset()
|
|
280
|
-
tape.zero()
|
|
281
|
-
|
|
282
|
-
input = wp.array(randvals([2 + 3 + 4 + 5], dtype), requires_grad=True, device=device)
|
|
283
|
-
output = wp.zeros(2 + 3 + 4 + 5, dtype=wptype, requires_grad=True, device=device)
|
|
284
|
-
|
|
285
|
-
wp.launch(component_kernel, dim=1, inputs=[input], outputs=[output], device=device)
|
|
286
|
-
|
|
287
|
-
assert_np_equal(output.numpy(), 2 * input.numpy(), tol=1.0e-6)
|
|
288
|
-
|
|
289
|
-
if dtype in np_float_types:
|
|
290
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
291
|
-
for i in range(len(output)):
|
|
292
|
-
tape = wp.Tape()
|
|
293
|
-
with tape:
|
|
294
|
-
wp.launch(component_kernel, dim=1, inputs=[input], outputs=[output], device=device)
|
|
295
|
-
wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[out], device=device)
|
|
296
|
-
|
|
297
|
-
tape.backward(loss=out)
|
|
298
|
-
expected = np.zeros_like(input.numpy())
|
|
299
|
-
expected[i] = 2
|
|
300
|
-
|
|
301
|
-
assert_np_equal(tape.gradients[input].numpy(), expected, tol=tol)
|
|
302
|
-
|
|
303
|
-
tape.reset()
|
|
304
|
-
tape.zero()
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
def test_constants(test, device, dtype, register_kernels=False):
|
|
308
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
309
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
310
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
311
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
312
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
313
|
-
|
|
314
|
-
cv2 = wp.constant(vec2(1, 2))
|
|
315
|
-
cv3 = wp.constant(vec3(1, 2, 3))
|
|
316
|
-
cv4 = wp.constant(vec4(1, 2, 3, 4))
|
|
317
|
-
cv5 = wp.constant(vec5(1, 2, 3, 4, 5))
|
|
318
|
-
|
|
319
|
-
def check_vector_constants():
|
|
320
|
-
wp.expect_eq(cv2, vec2(wptype(1), wptype(2)))
|
|
321
|
-
wp.expect_eq(cv3, vec3(wptype(1), wptype(2), wptype(3)))
|
|
322
|
-
wp.expect_eq(cv4, vec4(wptype(1), wptype(2), wptype(3), wptype(4)))
|
|
323
|
-
wp.expect_eq(cv5, vec5(wptype(1), wptype(2), wptype(3), wptype(4), wptype(5)))
|
|
324
|
-
|
|
325
|
-
kernel = getkernel(check_vector_constants, suffix=dtype.__name__)
|
|
326
|
-
|
|
327
|
-
if register_kernels:
|
|
328
|
-
return
|
|
329
|
-
|
|
330
|
-
wp.launch(kernel, dim=1, inputs=[])
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
def test_constructors(test, device, dtype, register_kernels=False):
|
|
334
|
-
np.random.seed(123)
|
|
63
|
+
wp.launch(
|
|
64
|
+
kernel,
|
|
65
|
+
dim=1,
|
|
66
|
+
inputs=[],
|
|
67
|
+
device=device,
|
|
68
|
+
)
|
|
335
69
|
|
|
336
|
-
tol = {
|
|
337
|
-
np.float16: 5.0e-3,
|
|
338
|
-
np.float32: 1.0e-6,
|
|
339
|
-
np.float64: 1.0e-8,
|
|
340
|
-
}.get(dtype, 0)
|
|
341
70
|
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
71
|
+
def test_anon_constructor_error_length_mismatch(test, device):
|
|
72
|
+
@wp.kernel
|
|
73
|
+
def kernel():
|
|
74
|
+
wp.vector(
|
|
75
|
+
wp.vector(length=2, dtype=float),
|
|
76
|
+
length=3,
|
|
77
|
+
dtype=float,
|
|
78
|
+
)
|
|
347
79
|
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
v3: wp.array(dtype=vec3),
|
|
352
|
-
v4: wp.array(dtype=vec4),
|
|
353
|
-
v5: wp.array(dtype=vec5),
|
|
354
|
-
v20: wp.array(dtype=wptype),
|
|
355
|
-
v21: wp.array(dtype=wptype),
|
|
356
|
-
v30: wp.array(dtype=wptype),
|
|
357
|
-
v31: wp.array(dtype=wptype),
|
|
358
|
-
v32: wp.array(dtype=wptype),
|
|
359
|
-
v40: wp.array(dtype=wptype),
|
|
360
|
-
v41: wp.array(dtype=wptype),
|
|
361
|
-
v42: wp.array(dtype=wptype),
|
|
362
|
-
v43: wp.array(dtype=wptype),
|
|
363
|
-
v50: wp.array(dtype=wptype),
|
|
364
|
-
v51: wp.array(dtype=wptype),
|
|
365
|
-
v52: wp.array(dtype=wptype),
|
|
366
|
-
v53: wp.array(dtype=wptype),
|
|
367
|
-
v54: wp.array(dtype=wptype),
|
|
80
|
+
with test.assertRaisesRegex(
|
|
81
|
+
RuntimeError,
|
|
82
|
+
r"Incompatible vector lengths for casting copy constructor, 3 vs 2$",
|
|
368
83
|
):
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
v3[0] = v3result
|
|
376
|
-
v4[0] = v4result
|
|
377
|
-
v5[0] = v5result
|
|
378
|
-
|
|
379
|
-
# multiply outputs by 2 so we've got something to backpropagate
|
|
380
|
-
v20[0] = wptype(2) * v2result[0]
|
|
381
|
-
v21[0] = wptype(2) * v2result[1]
|
|
382
|
-
|
|
383
|
-
v30[0] = wptype(2) * v3result[0]
|
|
384
|
-
v31[0] = wptype(2) * v3result[1]
|
|
385
|
-
v32[0] = wptype(2) * v3result[2]
|
|
84
|
+
wp.launch(
|
|
85
|
+
kernel,
|
|
86
|
+
dim=1,
|
|
87
|
+
inputs=[],
|
|
88
|
+
device=device,
|
|
89
|
+
)
|
|
386
90
|
|
|
387
|
-
v40[0] = wptype(2) * v4result[0]
|
|
388
|
-
v41[0] = wptype(2) * v4result[1]
|
|
389
|
-
v42[0] = wptype(2) * v4result[2]
|
|
390
|
-
v43[0] = wptype(2) * v4result[3]
|
|
391
91
|
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
|
|
396
|
-
v54[0] = wptype(2) * v5result[4]
|
|
92
|
+
def test_anon_constructor_error_numeric_arg_missing_1(test, device):
|
|
93
|
+
@wp.kernel
|
|
94
|
+
def kernel():
|
|
95
|
+
wp.vector(1.0, 2.0, length=12345)
|
|
397
96
|
|
|
398
|
-
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
v3: wp.array(dtype=vec3),
|
|
402
|
-
v4: wp.array(dtype=vec4),
|
|
403
|
-
v5: wp.array(dtype=vec5),
|
|
404
|
-
v20: wp.array(dtype=wptype),
|
|
405
|
-
v21: wp.array(dtype=wptype),
|
|
406
|
-
v30: wp.array(dtype=wptype),
|
|
407
|
-
v31: wp.array(dtype=wptype),
|
|
408
|
-
v32: wp.array(dtype=wptype),
|
|
409
|
-
v40: wp.array(dtype=wptype),
|
|
410
|
-
v41: wp.array(dtype=wptype),
|
|
411
|
-
v42: wp.array(dtype=wptype),
|
|
412
|
-
v43: wp.array(dtype=wptype),
|
|
413
|
-
v50: wp.array(dtype=wptype),
|
|
414
|
-
v51: wp.array(dtype=wptype),
|
|
415
|
-
v52: wp.array(dtype=wptype),
|
|
416
|
-
v53: wp.array(dtype=wptype),
|
|
417
|
-
v54: wp.array(dtype=wptype),
|
|
97
|
+
with test.assertRaisesRegex(
|
|
98
|
+
RuntimeError,
|
|
99
|
+
r"vec\(\) must have one scalar argument or the dtype keyword argument if the length keyword argument is specified, e.g.: wp.vec\(1.0, length=5\)$",
|
|
418
100
|
):
|
|
419
|
-
v2result = vec2(input[0], input[1])
|
|
420
|
-
v3result = vec3(input[2], input[3], input[4])
|
|
421
|
-
v4result = vec4(input[5], input[6], input[7], input[8])
|
|
422
|
-
v5result = vec5(input[9], input[10], input[11], input[12], input[13])
|
|
423
|
-
|
|
424
|
-
v2[0] = v2result
|
|
425
|
-
v3[0] = v3result
|
|
426
|
-
v4[0] = v4result
|
|
427
|
-
v5[0] = v5result
|
|
428
|
-
|
|
429
|
-
# multiply the output by 2 so we've got something to backpropagate:
|
|
430
|
-
v20[0] = wptype(2) * v2result[0]
|
|
431
|
-
v21[0] = wptype(2) * v2result[1]
|
|
432
|
-
|
|
433
|
-
v30[0] = wptype(2) * v3result[0]
|
|
434
|
-
v31[0] = wptype(2) * v3result[1]
|
|
435
|
-
v32[0] = wptype(2) * v3result[2]
|
|
436
|
-
|
|
437
|
-
v40[0] = wptype(2) * v4result[0]
|
|
438
|
-
v41[0] = wptype(2) * v4result[1]
|
|
439
|
-
v42[0] = wptype(2) * v4result[2]
|
|
440
|
-
v43[0] = wptype(2) * v4result[3]
|
|
441
|
-
|
|
442
|
-
v50[0] = wptype(2) * v5result[0]
|
|
443
|
-
v51[0] = wptype(2) * v5result[1]
|
|
444
|
-
v52[0] = wptype(2) * v5result[2]
|
|
445
|
-
v53[0] = wptype(2) * v5result[3]
|
|
446
|
-
v54[0] = wptype(2) * v5result[4]
|
|
447
|
-
|
|
448
|
-
vec_kernel = getkernel(check_vector_constructors, suffix=dtype.__name__)
|
|
449
|
-
kernel = getkernel(check_scalar_constructor, suffix=dtype.__name__)
|
|
450
|
-
|
|
451
|
-
if register_kernels:
|
|
452
|
-
return
|
|
453
|
-
|
|
454
|
-
input = wp.array(randvals([1], dtype), requires_grad=True, device=device)
|
|
455
|
-
v2 = wp.zeros(1, dtype=vec2, device=device)
|
|
456
|
-
v3 = wp.zeros(1, dtype=vec3, device=device)
|
|
457
|
-
v4 = wp.zeros(1, dtype=vec4, device=device)
|
|
458
|
-
v5 = wp.zeros(1, dtype=vec5, device=device)
|
|
459
|
-
v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
460
|
-
v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
461
|
-
v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
462
|
-
v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
463
|
-
v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
464
|
-
v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
465
|
-
v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
466
|
-
v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
467
|
-
v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
468
|
-
v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
469
|
-
v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
470
|
-
v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
471
|
-
v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
472
|
-
v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
473
|
-
|
|
474
|
-
tape = wp.Tape()
|
|
475
|
-
with tape:
|
|
476
101
|
wp.launch(
|
|
477
102
|
kernel,
|
|
478
103
|
dim=1,
|
|
479
|
-
inputs=[
|
|
480
|
-
outputs=[v2, v3, v4, v5, v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54],
|
|
104
|
+
inputs=[],
|
|
481
105
|
device=device,
|
|
482
106
|
)
|
|
483
107
|
|
|
484
|
-
if dtype in np_float_types:
|
|
485
|
-
for l in [v20, v21]:
|
|
486
|
-
tape.backward(loss=l)
|
|
487
|
-
test.assertEqual(tape.gradients[input].numpy()[0], 2.0)
|
|
488
|
-
tape.zero()
|
|
489
|
-
|
|
490
|
-
for l in [v30, v31, v32]:
|
|
491
|
-
tape.backward(loss=l)
|
|
492
|
-
test.assertEqual(tape.gradients[input].numpy()[0], 2.0)
|
|
493
|
-
tape.zero()
|
|
494
|
-
|
|
495
|
-
for l in [v40, v41, v42, v43]:
|
|
496
|
-
tape.backward(loss=l)
|
|
497
|
-
test.assertEqual(tape.gradients[input].numpy()[0], 2.0)
|
|
498
|
-
tape.zero()
|
|
499
108
|
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
|
|
109
|
+
def test_anon_constructor_error_numeric_arg_missing_2(test, device):
|
|
110
|
+
@wp.kernel
|
|
111
|
+
def kernel():
|
|
112
|
+
wp.vector()
|
|
504
113
|
|
|
505
|
-
|
|
506
|
-
|
|
507
|
-
|
|
508
|
-
|
|
509
|
-
assert_np_equal(v5.numpy()[0], np.array([val, val, val, val, val]), tol=1.0e-6)
|
|
510
|
-
|
|
511
|
-
assert_np_equal(v20.numpy()[0], 2 * val, tol=1.0e-6)
|
|
512
|
-
assert_np_equal(v21.numpy()[0], 2 * val, tol=1.0e-6)
|
|
513
|
-
assert_np_equal(v30.numpy()[0], 2 * val, tol=1.0e-6)
|
|
514
|
-
assert_np_equal(v31.numpy()[0], 2 * val, tol=1.0e-6)
|
|
515
|
-
assert_np_equal(v32.numpy()[0], 2 * val, tol=1.0e-6)
|
|
516
|
-
assert_np_equal(v40.numpy()[0], 2 * val, tol=1.0e-6)
|
|
517
|
-
assert_np_equal(v41.numpy()[0], 2 * val, tol=1.0e-6)
|
|
518
|
-
assert_np_equal(v42.numpy()[0], 2 * val, tol=1.0e-6)
|
|
519
|
-
assert_np_equal(v43.numpy()[0], 2 * val, tol=1.0e-6)
|
|
520
|
-
assert_np_equal(v50.numpy()[0], 2 * val, tol=1.0e-6)
|
|
521
|
-
assert_np_equal(v51.numpy()[0], 2 * val, tol=1.0e-6)
|
|
522
|
-
assert_np_equal(v52.numpy()[0], 2 * val, tol=1.0e-6)
|
|
523
|
-
assert_np_equal(v53.numpy()[0], 2 * val, tol=1.0e-6)
|
|
524
|
-
assert_np_equal(v54.numpy()[0], 2 * val, tol=1.0e-6)
|
|
525
|
-
|
|
526
|
-
input = wp.array(randvals([14], dtype), requires_grad=True, device=device)
|
|
527
|
-
tape = wp.Tape()
|
|
528
|
-
with tape:
|
|
114
|
+
with test.assertRaisesRegex(
|
|
115
|
+
RuntimeError,
|
|
116
|
+
r"vec\(\) must have at least one numeric argument, if it's length, dtype is not specified$",
|
|
117
|
+
):
|
|
529
118
|
wp.launch(
|
|
530
|
-
|
|
119
|
+
kernel,
|
|
531
120
|
dim=1,
|
|
532
|
-
inputs=[
|
|
533
|
-
outputs=[v2, v3, v4, v5, v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54],
|
|
121
|
+
inputs=[],
|
|
534
122
|
device=device,
|
|
535
123
|
)
|
|
536
124
|
|
|
537
|
-
if dtype in np_float_types:
|
|
538
|
-
for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]):
|
|
539
|
-
tape.backward(loss=l)
|
|
540
|
-
grad = tape.gradients[input].numpy()
|
|
541
|
-
expected_grad = np.zeros_like(grad)
|
|
542
|
-
expected_grad[i] = 2
|
|
543
|
-
assert_np_equal(grad, expected_grad, tol=tol)
|
|
544
|
-
tape.zero()
|
|
545
|
-
|
|
546
|
-
assert_np_equal(v2.numpy()[0, 0], input.numpy()[0], tol=tol)
|
|
547
|
-
assert_np_equal(v2.numpy()[0, 1], input.numpy()[1], tol=tol)
|
|
548
|
-
assert_np_equal(v3.numpy()[0, 0], input.numpy()[2], tol=tol)
|
|
549
|
-
assert_np_equal(v3.numpy()[0, 1], input.numpy()[3], tol=tol)
|
|
550
|
-
assert_np_equal(v3.numpy()[0, 2], input.numpy()[4], tol=tol)
|
|
551
|
-
assert_np_equal(v4.numpy()[0, 0], input.numpy()[5], tol=tol)
|
|
552
|
-
assert_np_equal(v4.numpy()[0, 1], input.numpy()[6], tol=tol)
|
|
553
|
-
assert_np_equal(v4.numpy()[0, 2], input.numpy()[7], tol=tol)
|
|
554
|
-
assert_np_equal(v4.numpy()[0, 3], input.numpy()[8], tol=tol)
|
|
555
|
-
assert_np_equal(v5.numpy()[0, 0], input.numpy()[9], tol=tol)
|
|
556
|
-
assert_np_equal(v5.numpy()[0, 1], input.numpy()[10], tol=tol)
|
|
557
|
-
assert_np_equal(v5.numpy()[0, 2], input.numpy()[11], tol=tol)
|
|
558
|
-
assert_np_equal(v5.numpy()[0, 3], input.numpy()[12], tol=tol)
|
|
559
|
-
assert_np_equal(v5.numpy()[0, 4], input.numpy()[13], tol=tol)
|
|
560
|
-
|
|
561
|
-
assert_np_equal(v20.numpy()[0], 2 * input.numpy()[0], tol=tol)
|
|
562
|
-
assert_np_equal(v21.numpy()[0], 2 * input.numpy()[1], tol=tol)
|
|
563
|
-
assert_np_equal(v30.numpy()[0], 2 * input.numpy()[2], tol=tol)
|
|
564
|
-
assert_np_equal(v31.numpy()[0], 2 * input.numpy()[3], tol=tol)
|
|
565
|
-
assert_np_equal(v32.numpy()[0], 2 * input.numpy()[4], tol=tol)
|
|
566
|
-
assert_np_equal(v40.numpy()[0], 2 * input.numpy()[5], tol=tol)
|
|
567
|
-
assert_np_equal(v41.numpy()[0], 2 * input.numpy()[6], tol=tol)
|
|
568
|
-
assert_np_equal(v42.numpy()[0], 2 * input.numpy()[7], tol=tol)
|
|
569
|
-
assert_np_equal(v43.numpy()[0], 2 * input.numpy()[8], tol=tol)
|
|
570
|
-
assert_np_equal(v50.numpy()[0], 2 * input.numpy()[9], tol=tol)
|
|
571
|
-
assert_np_equal(v51.numpy()[0], 2 * input.numpy()[10], tol=tol)
|
|
572
|
-
assert_np_equal(v52.numpy()[0], 2 * input.numpy()[11], tol=tol)
|
|
573
|
-
assert_np_equal(v53.numpy()[0], 2 * input.numpy()[12], tol=tol)
|
|
574
|
-
assert_np_equal(v54.numpy()[0], 2 * input.numpy()[13], tol=tol)
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
def test_indexing(test, device, dtype, register_kernels=False):
|
|
578
|
-
np.random.seed(123)
|
|
579
|
-
|
|
580
|
-
tol = {
|
|
581
|
-
np.float16: 5.0e-3,
|
|
582
|
-
np.float32: 1.0e-6,
|
|
583
|
-
np.float64: 1.0e-8,
|
|
584
|
-
}.get(dtype, 0)
|
|
585
125
|
|
|
586
|
-
|
|
587
|
-
|
|
588
|
-
|
|
589
|
-
|
|
590
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
126
|
+
def test_anon_constructor_error_dtype_keyword_extraneous(test, device):
|
|
127
|
+
@wp.kernel
|
|
128
|
+
def kernel():
|
|
129
|
+
wp.vector(1.0, 2.0, 3.0, dtype=float)
|
|
591
130
|
|
|
592
|
-
|
|
593
|
-
|
|
594
|
-
|
|
595
|
-
v4: wp.array(dtype=vec4),
|
|
596
|
-
v5: wp.array(dtype=vec5),
|
|
597
|
-
v20: wp.array(dtype=wptype),
|
|
598
|
-
v21: wp.array(dtype=wptype),
|
|
599
|
-
v30: wp.array(dtype=wptype),
|
|
600
|
-
v31: wp.array(dtype=wptype),
|
|
601
|
-
v32: wp.array(dtype=wptype),
|
|
602
|
-
v40: wp.array(dtype=wptype),
|
|
603
|
-
v41: wp.array(dtype=wptype),
|
|
604
|
-
v42: wp.array(dtype=wptype),
|
|
605
|
-
v43: wp.array(dtype=wptype),
|
|
606
|
-
v50: wp.array(dtype=wptype),
|
|
607
|
-
v51: wp.array(dtype=wptype),
|
|
608
|
-
v52: wp.array(dtype=wptype),
|
|
609
|
-
v53: wp.array(dtype=wptype),
|
|
610
|
-
v54: wp.array(dtype=wptype),
|
|
611
|
-
):
|
|
612
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
613
|
-
v20[0] = wptype(2) * v2[0][0]
|
|
614
|
-
v21[0] = wptype(2) * v2[0][1]
|
|
615
|
-
|
|
616
|
-
v30[0] = wptype(2) * v3[0][0]
|
|
617
|
-
v31[0] = wptype(2) * v3[0][1]
|
|
618
|
-
v32[0] = wptype(2) * v3[0][2]
|
|
619
|
-
|
|
620
|
-
v40[0] = wptype(2) * v4[0][0]
|
|
621
|
-
v41[0] = wptype(2) * v4[0][1]
|
|
622
|
-
v42[0] = wptype(2) * v4[0][2]
|
|
623
|
-
v43[0] = wptype(2) * v4[0][3]
|
|
624
|
-
|
|
625
|
-
v50[0] = wptype(2) * v5[0][0]
|
|
626
|
-
v51[0] = wptype(2) * v5[0][1]
|
|
627
|
-
v52[0] = wptype(2) * v5[0][2]
|
|
628
|
-
v53[0] = wptype(2) * v5[0][3]
|
|
629
|
-
v54[0] = wptype(2) * v5[0][4]
|
|
630
|
-
|
|
631
|
-
kernel = getkernel(check_indexing, suffix=dtype.__name__)
|
|
632
|
-
|
|
633
|
-
if register_kernels:
|
|
634
|
-
return
|
|
635
|
-
|
|
636
|
-
v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
637
|
-
v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
638
|
-
v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
639
|
-
v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
640
|
-
v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
641
|
-
v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
642
|
-
v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
643
|
-
v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
644
|
-
v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
645
|
-
v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
646
|
-
v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
647
|
-
v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
648
|
-
v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
649
|
-
v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
650
|
-
v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
651
|
-
v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
652
|
-
v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
653
|
-
v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
654
|
-
|
|
655
|
-
tape = wp.Tape()
|
|
656
|
-
with tape:
|
|
657
|
-
wp.launch(
|
|
658
|
-
kernel,
|
|
659
|
-
dim=1,
|
|
660
|
-
inputs=[v2, v3, v4, v5],
|
|
661
|
-
outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54],
|
|
662
|
-
device=device,
|
|
663
|
-
)
|
|
664
|
-
|
|
665
|
-
if dtype in np_float_types:
|
|
666
|
-
for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]):
|
|
667
|
-
tape.backward(loss=l)
|
|
668
|
-
allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]])
|
|
669
|
-
expected_grads = np.zeros_like(allgrads)
|
|
670
|
-
expected_grads[i] = 2
|
|
671
|
-
assert_np_equal(allgrads, expected_grads, tol=tol)
|
|
672
|
-
tape.zero()
|
|
673
|
-
|
|
674
|
-
assert_np_equal(v20.numpy()[0], 2.0 * v2.numpy()[0, 0], tol=tol)
|
|
675
|
-
assert_np_equal(v21.numpy()[0], 2.0 * v2.numpy()[0, 1], tol=tol)
|
|
676
|
-
assert_np_equal(v30.numpy()[0], 2.0 * v3.numpy()[0, 0], tol=tol)
|
|
677
|
-
assert_np_equal(v31.numpy()[0], 2.0 * v3.numpy()[0, 1], tol=tol)
|
|
678
|
-
assert_np_equal(v32.numpy()[0], 2.0 * v3.numpy()[0, 2], tol=tol)
|
|
679
|
-
assert_np_equal(v40.numpy()[0], 2.0 * v4.numpy()[0, 0], tol=tol)
|
|
680
|
-
assert_np_equal(v41.numpy()[0], 2.0 * v4.numpy()[0, 1], tol=tol)
|
|
681
|
-
assert_np_equal(v42.numpy()[0], 2.0 * v4.numpy()[0, 2], tol=tol)
|
|
682
|
-
assert_np_equal(v43.numpy()[0], 2.0 * v4.numpy()[0, 3], tol=tol)
|
|
683
|
-
assert_np_equal(v50.numpy()[0], 2.0 * v5.numpy()[0, 0], tol=tol)
|
|
684
|
-
assert_np_equal(v51.numpy()[0], 2.0 * v5.numpy()[0, 1], tol=tol)
|
|
685
|
-
assert_np_equal(v52.numpy()[0], 2.0 * v5.numpy()[0, 2], tol=tol)
|
|
686
|
-
assert_np_equal(v53.numpy()[0], 2.0 * v5.numpy()[0, 3], tol=tol)
|
|
687
|
-
assert_np_equal(v54.numpy()[0], 2.0 * v5.numpy()[0, 4], tol=tol)
|
|
688
|
-
|
|
689
|
-
|
|
690
|
-
def test_equality(test, device, dtype, register_kernels=False):
|
|
691
|
-
np.random.seed(123)
|
|
692
|
-
|
|
693
|
-
tol = {
|
|
694
|
-
np.float16: 1.0e-3,
|
|
695
|
-
np.float32: 1.0e-6,
|
|
696
|
-
np.float64: 1.0e-8,
|
|
697
|
-
}.get(dtype, 0)
|
|
698
|
-
|
|
699
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
700
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
701
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
702
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
703
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
704
|
-
|
|
705
|
-
def check_equality(
|
|
706
|
-
v20: wp.array(dtype=vec2),
|
|
707
|
-
v21: wp.array(dtype=vec2),
|
|
708
|
-
v22: wp.array(dtype=vec2),
|
|
709
|
-
v30: wp.array(dtype=vec3),
|
|
710
|
-
v31: wp.array(dtype=vec3),
|
|
711
|
-
v32: wp.array(dtype=vec3),
|
|
712
|
-
v33: wp.array(dtype=vec3),
|
|
713
|
-
v40: wp.array(dtype=vec4),
|
|
714
|
-
v41: wp.array(dtype=vec4),
|
|
715
|
-
v42: wp.array(dtype=vec4),
|
|
716
|
-
v43: wp.array(dtype=vec4),
|
|
717
|
-
v44: wp.array(dtype=vec4),
|
|
718
|
-
v50: wp.array(dtype=vec5),
|
|
719
|
-
v51: wp.array(dtype=vec5),
|
|
720
|
-
v52: wp.array(dtype=vec5),
|
|
721
|
-
v53: wp.array(dtype=vec5),
|
|
722
|
-
v54: wp.array(dtype=vec5),
|
|
723
|
-
v55: wp.array(dtype=vec5),
|
|
724
|
-
):
|
|
725
|
-
wp.expect_eq(v20[0], v20[0])
|
|
726
|
-
wp.expect_neq(v21[0], v20[0])
|
|
727
|
-
wp.expect_neq(v22[0], v20[0])
|
|
728
|
-
|
|
729
|
-
wp.expect_eq(v30[0], v30[0])
|
|
730
|
-
wp.expect_neq(v31[0], v30[0])
|
|
731
|
-
wp.expect_neq(v32[0], v30[0])
|
|
732
|
-
wp.expect_neq(v33[0], v30[0])
|
|
733
|
-
|
|
734
|
-
wp.expect_eq(v40[0], v40[0])
|
|
735
|
-
wp.expect_neq(v41[0], v40[0])
|
|
736
|
-
wp.expect_neq(v42[0], v40[0])
|
|
737
|
-
wp.expect_neq(v43[0], v40[0])
|
|
738
|
-
wp.expect_neq(v44[0], v40[0])
|
|
739
|
-
|
|
740
|
-
wp.expect_eq(v50[0], v50[0])
|
|
741
|
-
wp.expect_neq(v51[0], v50[0])
|
|
742
|
-
wp.expect_neq(v52[0], v50[0])
|
|
743
|
-
wp.expect_neq(v53[0], v50[0])
|
|
744
|
-
wp.expect_neq(v54[0], v50[0])
|
|
745
|
-
wp.expect_neq(v55[0], v50[0])
|
|
746
|
-
|
|
747
|
-
kernel = getkernel(check_equality, suffix=dtype.__name__)
|
|
748
|
-
|
|
749
|
-
if register_kernels:
|
|
750
|
-
return
|
|
751
|
-
|
|
752
|
-
v20 = wp.array([1.0, 2.0], dtype=vec2, requires_grad=True, device=device)
|
|
753
|
-
v21 = wp.array([1.0, 3.0], dtype=vec2, requires_grad=True, device=device)
|
|
754
|
-
v22 = wp.array([3.0, 2.0], dtype=vec2, requires_grad=True, device=device)
|
|
755
|
-
|
|
756
|
-
v30 = wp.array([1.0, 2.0, 3.0], dtype=vec3, requires_grad=True, device=device)
|
|
757
|
-
v31 = wp.array([-1.0, 2.0, 3.0], dtype=vec3, requires_grad=True, device=device)
|
|
758
|
-
v32 = wp.array([1.0, -2.0, 3.0], dtype=vec3, requires_grad=True, device=device)
|
|
759
|
-
v33 = wp.array([1.0, 2.0, -3.0], dtype=vec3, requires_grad=True, device=device)
|
|
760
|
-
|
|
761
|
-
v40 = wp.array([1.0, 2.0, 3.0, 4.0], dtype=vec4, requires_grad=True, device=device)
|
|
762
|
-
v41 = wp.array([-1.0, 2.0, 3.0, 4.0], dtype=vec4, requires_grad=True, device=device)
|
|
763
|
-
v42 = wp.array([1.0, -2.0, 3.0, 4.0], dtype=vec4, requires_grad=True, device=device)
|
|
764
|
-
v43 = wp.array([1.0, 2.0, -3.0, 4.0], dtype=vec4, requires_grad=True, device=device)
|
|
765
|
-
v44 = wp.array([1.0, 2.0, 3.0, -4.0], dtype=vec4, requires_grad=True, device=device)
|
|
766
|
-
|
|
767
|
-
v50 = wp.array([1.0, 2.0, 3.0, 4.0, 5.0], dtype=vec5, requires_grad=True, device=device)
|
|
768
|
-
v51 = wp.array([-1.0, 2.0, 3.0, 4.0, 5.0], dtype=vec5, requires_grad=True, device=device)
|
|
769
|
-
v52 = wp.array([1.0, -2.0, 3.0, 4.0, 5.0], dtype=vec5, requires_grad=True, device=device)
|
|
770
|
-
v53 = wp.array([1.0, 2.0, -3.0, 4.0, 5.0], dtype=vec5, requires_grad=True, device=device)
|
|
771
|
-
v54 = wp.array([1.0, 2.0, 3.0, -4.0, 5.0], dtype=vec5, requires_grad=True, device=device)
|
|
772
|
-
v55 = wp.array([1.0, 2.0, 3.0, 4.0, -5.0], dtype=vec5, requires_grad=True, device=device)
|
|
773
|
-
wp.launch(
|
|
774
|
-
kernel,
|
|
775
|
-
dim=1,
|
|
776
|
-
inputs=[
|
|
777
|
-
v20,
|
|
778
|
-
v21,
|
|
779
|
-
v22,
|
|
780
|
-
v30,
|
|
781
|
-
v31,
|
|
782
|
-
v32,
|
|
783
|
-
v33,
|
|
784
|
-
v40,
|
|
785
|
-
v41,
|
|
786
|
-
v42,
|
|
787
|
-
v43,
|
|
788
|
-
v44,
|
|
789
|
-
v50,
|
|
790
|
-
v51,
|
|
791
|
-
v52,
|
|
792
|
-
v53,
|
|
793
|
-
v54,
|
|
794
|
-
v55,
|
|
795
|
-
],
|
|
796
|
-
outputs=[],
|
|
797
|
-
device=device,
|
|
798
|
-
)
|
|
799
|
-
|
|
800
|
-
|
|
801
|
-
def test_negation(test, device, dtype, register_kernels=False):
|
|
802
|
-
np.random.seed(123)
|
|
803
|
-
|
|
804
|
-
tol = {
|
|
805
|
-
np.float16: 5.0e-3,
|
|
806
|
-
np.float32: 1.0e-6,
|
|
807
|
-
np.float64: 1.0e-8,
|
|
808
|
-
}.get(dtype, 0)
|
|
809
|
-
|
|
810
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
811
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
812
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
813
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
814
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
815
|
-
|
|
816
|
-
def check_negation(
|
|
817
|
-
v2: wp.array(dtype=vec2),
|
|
818
|
-
v3: wp.array(dtype=vec3),
|
|
819
|
-
v4: wp.array(dtype=vec4),
|
|
820
|
-
v5: wp.array(dtype=vec5),
|
|
821
|
-
v2out: wp.array(dtype=vec2),
|
|
822
|
-
v3out: wp.array(dtype=vec3),
|
|
823
|
-
v4out: wp.array(dtype=vec4),
|
|
824
|
-
v5out: wp.array(dtype=vec5),
|
|
825
|
-
v20: wp.array(dtype=wptype),
|
|
826
|
-
v21: wp.array(dtype=wptype),
|
|
827
|
-
v30: wp.array(dtype=wptype),
|
|
828
|
-
v31: wp.array(dtype=wptype),
|
|
829
|
-
v32: wp.array(dtype=wptype),
|
|
830
|
-
v40: wp.array(dtype=wptype),
|
|
831
|
-
v41: wp.array(dtype=wptype),
|
|
832
|
-
v42: wp.array(dtype=wptype),
|
|
833
|
-
v43: wp.array(dtype=wptype),
|
|
834
|
-
v50: wp.array(dtype=wptype),
|
|
835
|
-
v51: wp.array(dtype=wptype),
|
|
836
|
-
v52: wp.array(dtype=wptype),
|
|
837
|
-
v53: wp.array(dtype=wptype),
|
|
838
|
-
v54: wp.array(dtype=wptype),
|
|
839
|
-
):
|
|
840
|
-
v2result = -v2[0]
|
|
841
|
-
v3result = -v3[0]
|
|
842
|
-
v4result = -v4[0]
|
|
843
|
-
v5result = -v5[0]
|
|
844
|
-
|
|
845
|
-
v2out[0] = v2result
|
|
846
|
-
v3out[0] = v3result
|
|
847
|
-
v4out[0] = v4result
|
|
848
|
-
v5out[0] = v5result
|
|
849
|
-
|
|
850
|
-
# multiply these outputs by 2 so we've got something to backpropagate:
|
|
851
|
-
v20[0] = wptype(2) * v2result[0]
|
|
852
|
-
v21[0] = wptype(2) * v2result[1]
|
|
853
|
-
|
|
854
|
-
v30[0] = wptype(2) * v3result[0]
|
|
855
|
-
v31[0] = wptype(2) * v3result[1]
|
|
856
|
-
v32[0] = wptype(2) * v3result[2]
|
|
857
|
-
|
|
858
|
-
v40[0] = wptype(2) * v4result[0]
|
|
859
|
-
v41[0] = wptype(2) * v4result[1]
|
|
860
|
-
v42[0] = wptype(2) * v4result[2]
|
|
861
|
-
v43[0] = wptype(2) * v4result[3]
|
|
862
|
-
|
|
863
|
-
v50[0] = wptype(2) * v5result[0]
|
|
864
|
-
v51[0] = wptype(2) * v5result[1]
|
|
865
|
-
v52[0] = wptype(2) * v5result[2]
|
|
866
|
-
v53[0] = wptype(2) * v5result[3]
|
|
867
|
-
v54[0] = wptype(2) * v5result[4]
|
|
868
|
-
|
|
869
|
-
kernel = getkernel(check_negation, suffix=dtype.__name__)
|
|
870
|
-
|
|
871
|
-
if register_kernels:
|
|
872
|
-
return
|
|
873
|
-
|
|
874
|
-
v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
875
|
-
v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
876
|
-
v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
877
|
-
v5_np = randvals((1, 5), dtype)
|
|
878
|
-
v5 = wp.array(v5_np, dtype=vec5, requires_grad=True, device=device)
|
|
879
|
-
|
|
880
|
-
v2out = wp.zeros(1, dtype=vec2, device=device)
|
|
881
|
-
v3out = wp.zeros(1, dtype=vec3, device=device)
|
|
882
|
-
v4out = wp.zeros(1, dtype=vec4, device=device)
|
|
883
|
-
v5out = wp.zeros(1, dtype=vec5, device=device)
|
|
884
|
-
v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
885
|
-
v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
886
|
-
v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
887
|
-
v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
888
|
-
v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
889
|
-
v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
890
|
-
v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
891
|
-
v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
892
|
-
v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
893
|
-
v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
894
|
-
v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
895
|
-
v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
896
|
-
v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
897
|
-
v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
898
|
-
|
|
899
|
-
tape = wp.Tape()
|
|
900
|
-
with tape:
|
|
901
|
-
wp.launch(
|
|
902
|
-
kernel,
|
|
903
|
-
dim=1,
|
|
904
|
-
inputs=[v2, v3, v4, v5],
|
|
905
|
-
outputs=[v2out, v3out, v4out, v5out, v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54],
|
|
906
|
-
device=device,
|
|
907
|
-
)
|
|
908
|
-
|
|
909
|
-
if dtype in np_float_types:
|
|
910
|
-
for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]):
|
|
911
|
-
tape.backward(loss=l)
|
|
912
|
-
allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]])
|
|
913
|
-
expected_grads = np.zeros_like(allgrads)
|
|
914
|
-
expected_grads[i] = -2
|
|
915
|
-
assert_np_equal(allgrads, expected_grads, tol=tol)
|
|
916
|
-
tape.zero()
|
|
917
|
-
|
|
918
|
-
assert_np_equal(v2out.numpy()[0], -v2.numpy()[0], tol=tol)
|
|
919
|
-
assert_np_equal(v3out.numpy()[0], -v3.numpy()[0], tol=tol)
|
|
920
|
-
assert_np_equal(v4out.numpy()[0], -v4.numpy()[0], tol=tol)
|
|
921
|
-
assert_np_equal(v5out.numpy()[0], -v5.numpy()[0], tol=tol)
|
|
922
|
-
|
|
923
|
-
|
|
924
|
-
def test_scalar_multiplication(test, device, dtype, register_kernels=False):
|
|
925
|
-
np.random.seed(123)
|
|
926
|
-
|
|
927
|
-
tol = {
|
|
928
|
-
np.float16: 5.0e-3,
|
|
929
|
-
np.float32: 1.0e-6,
|
|
930
|
-
np.float64: 1.0e-8,
|
|
931
|
-
}.get(dtype, 0)
|
|
932
|
-
|
|
933
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
934
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
935
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
936
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
937
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
938
|
-
|
|
939
|
-
def check_mul(
|
|
940
|
-
s: wp.array(dtype=wptype),
|
|
941
|
-
v2: wp.array(dtype=vec2),
|
|
942
|
-
v3: wp.array(dtype=vec3),
|
|
943
|
-
v4: wp.array(dtype=vec4),
|
|
944
|
-
v5: wp.array(dtype=vec5),
|
|
945
|
-
v20: wp.array(dtype=wptype),
|
|
946
|
-
v21: wp.array(dtype=wptype),
|
|
947
|
-
v30: wp.array(dtype=wptype),
|
|
948
|
-
v31: wp.array(dtype=wptype),
|
|
949
|
-
v32: wp.array(dtype=wptype),
|
|
950
|
-
v40: wp.array(dtype=wptype),
|
|
951
|
-
v41: wp.array(dtype=wptype),
|
|
952
|
-
v42: wp.array(dtype=wptype),
|
|
953
|
-
v43: wp.array(dtype=wptype),
|
|
954
|
-
v50: wp.array(dtype=wptype),
|
|
955
|
-
v51: wp.array(dtype=wptype),
|
|
956
|
-
v52: wp.array(dtype=wptype),
|
|
957
|
-
v53: wp.array(dtype=wptype),
|
|
958
|
-
v54: wp.array(dtype=wptype),
|
|
959
|
-
):
|
|
960
|
-
v2result = s[0] * v2[0]
|
|
961
|
-
v3result = s[0] * v3[0]
|
|
962
|
-
v4result = s[0] * v4[0]
|
|
963
|
-
v5result = s[0] * v5[0]
|
|
964
|
-
|
|
965
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
966
|
-
v20[0] = wptype(2) * v2result[0]
|
|
967
|
-
v21[0] = wptype(2) * v2result[1]
|
|
968
|
-
|
|
969
|
-
v30[0] = wptype(2) * v3result[0]
|
|
970
|
-
v31[0] = wptype(2) * v3result[1]
|
|
971
|
-
v32[0] = wptype(2) * v3result[2]
|
|
972
|
-
|
|
973
|
-
v40[0] = wptype(2) * v4result[0]
|
|
974
|
-
v41[0] = wptype(2) * v4result[1]
|
|
975
|
-
v42[0] = wptype(2) * v4result[2]
|
|
976
|
-
v43[0] = wptype(2) * v4result[3]
|
|
977
|
-
|
|
978
|
-
v50[0] = wptype(2) * v5result[0]
|
|
979
|
-
v51[0] = wptype(2) * v5result[1]
|
|
980
|
-
v52[0] = wptype(2) * v5result[2]
|
|
981
|
-
v53[0] = wptype(2) * v5result[3]
|
|
982
|
-
v54[0] = wptype(2) * v5result[4]
|
|
983
|
-
|
|
984
|
-
kernel = getkernel(check_mul, suffix=dtype.__name__)
|
|
985
|
-
|
|
986
|
-
if register_kernels:
|
|
987
|
-
return
|
|
988
|
-
|
|
989
|
-
s = wp.array(randvals([1], dtype), requires_grad=True, device=device)
|
|
990
|
-
v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
991
|
-
v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
992
|
-
v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
993
|
-
v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
994
|
-
v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
995
|
-
v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
996
|
-
v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
997
|
-
v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
998
|
-
v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
999
|
-
v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1000
|
-
v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1001
|
-
v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1002
|
-
v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1003
|
-
v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1004
|
-
v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1005
|
-
v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1006
|
-
v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1007
|
-
v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1008
|
-
tape = wp.Tape()
|
|
1009
|
-
with tape:
|
|
1010
|
-
wp.launch(
|
|
1011
|
-
kernel,
|
|
1012
|
-
dim=1,
|
|
1013
|
-
inputs=[
|
|
1014
|
-
s,
|
|
1015
|
-
v2,
|
|
1016
|
-
v3,
|
|
1017
|
-
v4,
|
|
1018
|
-
v5,
|
|
1019
|
-
],
|
|
1020
|
-
outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54],
|
|
1021
|
-
device=device,
|
|
1022
|
-
)
|
|
1023
|
-
|
|
1024
|
-
assert_np_equal(v20.numpy()[0], 2 * s.numpy()[0] * v2.numpy()[0, 0], tol=tol)
|
|
1025
|
-
assert_np_equal(v21.numpy()[0], 2 * s.numpy()[0] * v2.numpy()[0, 1], tol=tol)
|
|
1026
|
-
|
|
1027
|
-
assert_np_equal(v30.numpy()[0], 2 * s.numpy()[0] * v3.numpy()[0, 0], tol=10 * tol)
|
|
1028
|
-
assert_np_equal(v31.numpy()[0], 2 * s.numpy()[0] * v3.numpy()[0, 1], tol=10 * tol)
|
|
1029
|
-
assert_np_equal(v32.numpy()[0], 2 * s.numpy()[0] * v3.numpy()[0, 2], tol=10 * tol)
|
|
1030
|
-
|
|
1031
|
-
assert_np_equal(v40.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 0], tol=10 * tol)
|
|
1032
|
-
assert_np_equal(v41.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 1], tol=10 * tol)
|
|
1033
|
-
assert_np_equal(v42.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 2], tol=10 * tol)
|
|
1034
|
-
assert_np_equal(v43.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 3], tol=10 * tol)
|
|
1035
|
-
|
|
1036
|
-
assert_np_equal(v50.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 0], tol=10 * tol)
|
|
1037
|
-
assert_np_equal(v51.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 1], tol=10 * tol)
|
|
1038
|
-
assert_np_equal(v52.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 2], tol=10 * tol)
|
|
1039
|
-
assert_np_equal(v53.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 3], tol=10 * tol)
|
|
1040
|
-
assert_np_equal(v54.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 4], tol=10 * tol)
|
|
1041
|
-
|
|
1042
|
-
incmps = np.concatenate([v.numpy()[0] for v in [v2, v3, v4, v5]])
|
|
1043
|
-
|
|
1044
|
-
if dtype in np_float_types:
|
|
1045
|
-
for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43]):
|
|
1046
|
-
tape.backward(loss=l)
|
|
1047
|
-
sgrad = tape.gradients[s].numpy()[0]
|
|
1048
|
-
assert_np_equal(sgrad, 2 * incmps[i], tol=10 * tol)
|
|
1049
|
-
allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4]])
|
|
1050
|
-
expected_grads = np.zeros_like(allgrads)
|
|
1051
|
-
expected_grads[i] = s.numpy()[0] * 2
|
|
1052
|
-
assert_np_equal(allgrads, expected_grads, tol=10 * tol)
|
|
1053
|
-
tape.zero()
|
|
1054
|
-
|
|
1055
|
-
|
|
1056
|
-
def test_scalar_multiplication_rightmul(test, device, dtype, register_kernels=False):
|
|
1057
|
-
np.random.seed(123)
|
|
1058
|
-
|
|
1059
|
-
tol = {
|
|
1060
|
-
np.float16: 5.0e-3,
|
|
1061
|
-
np.float32: 1.0e-6,
|
|
1062
|
-
np.float64: 1.0e-8,
|
|
1063
|
-
}.get(dtype, 0)
|
|
1064
|
-
|
|
1065
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
1066
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
1067
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
1068
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
1069
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
1070
|
-
|
|
1071
|
-
def check_rightmul(
|
|
1072
|
-
s: wp.array(dtype=wptype),
|
|
1073
|
-
v2: wp.array(dtype=vec2),
|
|
1074
|
-
v3: wp.array(dtype=vec3),
|
|
1075
|
-
v4: wp.array(dtype=vec4),
|
|
1076
|
-
v5: wp.array(dtype=vec5),
|
|
1077
|
-
v20: wp.array(dtype=wptype),
|
|
1078
|
-
v21: wp.array(dtype=wptype),
|
|
1079
|
-
v30: wp.array(dtype=wptype),
|
|
1080
|
-
v31: wp.array(dtype=wptype),
|
|
1081
|
-
v32: wp.array(dtype=wptype),
|
|
1082
|
-
v40: wp.array(dtype=wptype),
|
|
1083
|
-
v41: wp.array(dtype=wptype),
|
|
1084
|
-
v42: wp.array(dtype=wptype),
|
|
1085
|
-
v43: wp.array(dtype=wptype),
|
|
1086
|
-
v50: wp.array(dtype=wptype),
|
|
1087
|
-
v51: wp.array(dtype=wptype),
|
|
1088
|
-
v52: wp.array(dtype=wptype),
|
|
1089
|
-
v53: wp.array(dtype=wptype),
|
|
1090
|
-
v54: wp.array(dtype=wptype),
|
|
1091
|
-
):
|
|
1092
|
-
v2result = v2[0] * s[0]
|
|
1093
|
-
v3result = v3[0] * s[0]
|
|
1094
|
-
v4result = v4[0] * s[0]
|
|
1095
|
-
v5result = v5[0] * s[0]
|
|
1096
|
-
|
|
1097
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
1098
|
-
v20[0] = wptype(2) * v2result[0]
|
|
1099
|
-
v21[0] = wptype(2) * v2result[1]
|
|
1100
|
-
|
|
1101
|
-
v30[0] = wptype(2) * v3result[0]
|
|
1102
|
-
v31[0] = wptype(2) * v3result[1]
|
|
1103
|
-
v32[0] = wptype(2) * v3result[2]
|
|
1104
|
-
|
|
1105
|
-
v40[0] = wptype(2) * v4result[0]
|
|
1106
|
-
v41[0] = wptype(2) * v4result[1]
|
|
1107
|
-
v42[0] = wptype(2) * v4result[2]
|
|
1108
|
-
v43[0] = wptype(2) * v4result[3]
|
|
1109
|
-
|
|
1110
|
-
v50[0] = wptype(2) * v5result[0]
|
|
1111
|
-
v51[0] = wptype(2) * v5result[1]
|
|
1112
|
-
v52[0] = wptype(2) * v5result[2]
|
|
1113
|
-
v53[0] = wptype(2) * v5result[3]
|
|
1114
|
-
v54[0] = wptype(2) * v5result[4]
|
|
1115
|
-
|
|
1116
|
-
kernel = getkernel(check_rightmul, suffix=dtype.__name__)
|
|
1117
|
-
|
|
1118
|
-
if register_kernels:
|
|
1119
|
-
return
|
|
1120
|
-
|
|
1121
|
-
s = wp.array(randvals([1], dtype), requires_grad=True, device=device)
|
|
1122
|
-
v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
1123
|
-
v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
1124
|
-
v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
1125
|
-
v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
1126
|
-
v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1127
|
-
v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1128
|
-
v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1129
|
-
v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1130
|
-
v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1131
|
-
v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1132
|
-
v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1133
|
-
v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1134
|
-
v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1135
|
-
v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1136
|
-
v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1137
|
-
v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1138
|
-
v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1139
|
-
v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1140
|
-
tape = wp.Tape()
|
|
1141
|
-
with tape:
|
|
1142
|
-
wp.launch(
|
|
1143
|
-
kernel,
|
|
1144
|
-
dim=1,
|
|
1145
|
-
inputs=[
|
|
1146
|
-
s,
|
|
1147
|
-
v2,
|
|
1148
|
-
v3,
|
|
1149
|
-
v4,
|
|
1150
|
-
v5,
|
|
1151
|
-
],
|
|
1152
|
-
outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54],
|
|
1153
|
-
device=device,
|
|
1154
|
-
)
|
|
1155
|
-
|
|
1156
|
-
assert_np_equal(v20.numpy()[0], 2 * s.numpy()[0] * v2.numpy()[0, 0], tol=tol)
|
|
1157
|
-
assert_np_equal(v21.numpy()[0], 2 * s.numpy()[0] * v2.numpy()[0, 1], tol=tol)
|
|
1158
|
-
|
|
1159
|
-
assert_np_equal(v30.numpy()[0], 2 * s.numpy()[0] * v3.numpy()[0, 0], tol=10 * tol)
|
|
1160
|
-
assert_np_equal(v31.numpy()[0], 2 * s.numpy()[0] * v3.numpy()[0, 1], tol=10 * tol)
|
|
1161
|
-
assert_np_equal(v32.numpy()[0], 2 * s.numpy()[0] * v3.numpy()[0, 2], tol=10 * tol)
|
|
1162
|
-
|
|
1163
|
-
assert_np_equal(v40.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 0], tol=10 * tol)
|
|
1164
|
-
assert_np_equal(v41.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 1], tol=10 * tol)
|
|
1165
|
-
assert_np_equal(v42.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 2], tol=10 * tol)
|
|
1166
|
-
assert_np_equal(v43.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 3], tol=10 * tol)
|
|
1167
|
-
|
|
1168
|
-
assert_np_equal(v50.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 0], tol=10 * tol)
|
|
1169
|
-
assert_np_equal(v51.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 1], tol=10 * tol)
|
|
1170
|
-
assert_np_equal(v52.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 2], tol=10 * tol)
|
|
1171
|
-
assert_np_equal(v53.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 3], tol=10 * tol)
|
|
1172
|
-
assert_np_equal(v54.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 4], tol=10 * tol)
|
|
1173
|
-
|
|
1174
|
-
incmps = np.concatenate([v.numpy()[0] for v in [v2, v3, v4, v5]])
|
|
1175
|
-
|
|
1176
|
-
if dtype in np_float_types:
|
|
1177
|
-
for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43]):
|
|
1178
|
-
tape.backward(loss=l)
|
|
1179
|
-
sgrad = tape.gradients[s].numpy()[0]
|
|
1180
|
-
assert_np_equal(sgrad, 2 * incmps[i], tol=10 * tol)
|
|
1181
|
-
allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4]])
|
|
1182
|
-
expected_grads = np.zeros_like(allgrads)
|
|
1183
|
-
expected_grads[i] = s.numpy()[0] * 2
|
|
1184
|
-
assert_np_equal(allgrads, expected_grads, tol=10 * tol)
|
|
1185
|
-
tape.zero()
|
|
1186
|
-
|
|
1187
|
-
|
|
1188
|
-
def test_cw_multiplication(test, device, dtype, register_kernels=False):
|
|
1189
|
-
np.random.seed(123)
|
|
1190
|
-
|
|
1191
|
-
tol = {
|
|
1192
|
-
np.float16: 5.0e-3,
|
|
1193
|
-
np.float32: 1.0e-6,
|
|
1194
|
-
np.float64: 1.0e-8,
|
|
1195
|
-
}.get(dtype, 0)
|
|
1196
|
-
|
|
1197
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
1198
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
1199
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
1200
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
1201
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
1202
|
-
|
|
1203
|
-
def check_cw_mul(
|
|
1204
|
-
s2: wp.array(dtype=vec2),
|
|
1205
|
-
s3: wp.array(dtype=vec3),
|
|
1206
|
-
s4: wp.array(dtype=vec4),
|
|
1207
|
-
s5: wp.array(dtype=vec5),
|
|
1208
|
-
v2: wp.array(dtype=vec2),
|
|
1209
|
-
v3: wp.array(dtype=vec3),
|
|
1210
|
-
v4: wp.array(dtype=vec4),
|
|
1211
|
-
v5: wp.array(dtype=vec5),
|
|
1212
|
-
v20: wp.array(dtype=wptype),
|
|
1213
|
-
v21: wp.array(dtype=wptype),
|
|
1214
|
-
v30: wp.array(dtype=wptype),
|
|
1215
|
-
v31: wp.array(dtype=wptype),
|
|
1216
|
-
v32: wp.array(dtype=wptype),
|
|
1217
|
-
v40: wp.array(dtype=wptype),
|
|
1218
|
-
v41: wp.array(dtype=wptype),
|
|
1219
|
-
v42: wp.array(dtype=wptype),
|
|
1220
|
-
v43: wp.array(dtype=wptype),
|
|
1221
|
-
v50: wp.array(dtype=wptype),
|
|
1222
|
-
v51: wp.array(dtype=wptype),
|
|
1223
|
-
v52: wp.array(dtype=wptype),
|
|
1224
|
-
v53: wp.array(dtype=wptype),
|
|
1225
|
-
v54: wp.array(dtype=wptype),
|
|
1226
|
-
):
|
|
1227
|
-
v2result = wp.cw_mul(s2[0], v2[0])
|
|
1228
|
-
v3result = wp.cw_mul(s3[0], v3[0])
|
|
1229
|
-
v4result = wp.cw_mul(s4[0], v4[0])
|
|
1230
|
-
v5result = wp.cw_mul(s5[0], v5[0])
|
|
1231
|
-
|
|
1232
|
-
v20[0] = wptype(2) * v2result[0]
|
|
1233
|
-
v21[0] = wptype(2) * v2result[1]
|
|
1234
|
-
|
|
1235
|
-
v30[0] = wptype(2) * v3result[0]
|
|
1236
|
-
v31[0] = wptype(2) * v3result[1]
|
|
1237
|
-
v32[0] = wptype(2) * v3result[2]
|
|
1238
|
-
|
|
1239
|
-
v40[0] = wptype(2) * v4result[0]
|
|
1240
|
-
v41[0] = wptype(2) * v4result[1]
|
|
1241
|
-
v42[0] = wptype(2) * v4result[2]
|
|
1242
|
-
v43[0] = wptype(2) * v4result[3]
|
|
1243
|
-
|
|
1244
|
-
v50[0] = wptype(2) * v5result[0]
|
|
1245
|
-
v51[0] = wptype(2) * v5result[1]
|
|
1246
|
-
v52[0] = wptype(2) * v5result[2]
|
|
1247
|
-
v53[0] = wptype(2) * v5result[3]
|
|
1248
|
-
v54[0] = wptype(2) * v5result[4]
|
|
1249
|
-
|
|
1250
|
-
kernel = getkernel(check_cw_mul, suffix=dtype.__name__)
|
|
1251
|
-
|
|
1252
|
-
if register_kernels:
|
|
1253
|
-
return
|
|
1254
|
-
|
|
1255
|
-
s2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
1256
|
-
s3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
1257
|
-
s4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
1258
|
-
s5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
1259
|
-
v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
1260
|
-
v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
1261
|
-
v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
1262
|
-
v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
1263
|
-
v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1264
|
-
v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1265
|
-
v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1266
|
-
v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1267
|
-
v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1268
|
-
v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1269
|
-
v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1270
|
-
v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1271
|
-
v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1272
|
-
v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1273
|
-
v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1274
|
-
v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1275
|
-
v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1276
|
-
v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1277
|
-
tape = wp.Tape()
|
|
1278
|
-
with tape:
|
|
1279
|
-
wp.launch(
|
|
1280
|
-
kernel,
|
|
1281
|
-
dim=1,
|
|
1282
|
-
inputs=[
|
|
1283
|
-
s2,
|
|
1284
|
-
s3,
|
|
1285
|
-
s4,
|
|
1286
|
-
s5,
|
|
1287
|
-
v2,
|
|
1288
|
-
v3,
|
|
1289
|
-
v4,
|
|
1290
|
-
v5,
|
|
1291
|
-
],
|
|
1292
|
-
outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54],
|
|
1293
|
-
device=device,
|
|
1294
|
-
)
|
|
1295
|
-
|
|
1296
|
-
assert_np_equal(v20.numpy()[0], 2 * s2.numpy()[0, 0] * v2.numpy()[0, 0], tol=10 * tol)
|
|
1297
|
-
assert_np_equal(v21.numpy()[0], 2 * s2.numpy()[0, 1] * v2.numpy()[0, 1], tol=10 * tol)
|
|
1298
|
-
|
|
1299
|
-
assert_np_equal(v30.numpy()[0], 2 * s3.numpy()[0, 0] * v3.numpy()[0, 0], tol=10 * tol)
|
|
1300
|
-
assert_np_equal(v31.numpy()[0], 2 * s3.numpy()[0, 1] * v3.numpy()[0, 1], tol=10 * tol)
|
|
1301
|
-
assert_np_equal(v32.numpy()[0], 2 * s3.numpy()[0, 2] * v3.numpy()[0, 2], tol=10 * tol)
|
|
1302
|
-
|
|
1303
|
-
assert_np_equal(v40.numpy()[0], 2 * s4.numpy()[0, 0] * v4.numpy()[0, 0], tol=10 * tol)
|
|
1304
|
-
assert_np_equal(v41.numpy()[0], 2 * s4.numpy()[0, 1] * v4.numpy()[0, 1], tol=10 * tol)
|
|
1305
|
-
assert_np_equal(v42.numpy()[0], 2 * s4.numpy()[0, 2] * v4.numpy()[0, 2], tol=10 * tol)
|
|
1306
|
-
assert_np_equal(v43.numpy()[0], 2 * s4.numpy()[0, 3] * v4.numpy()[0, 3], tol=10 * tol)
|
|
1307
|
-
|
|
1308
|
-
assert_np_equal(v50.numpy()[0], 2 * s5.numpy()[0, 0] * v5.numpy()[0, 0], tol=10 * tol)
|
|
1309
|
-
assert_np_equal(v51.numpy()[0], 2 * s5.numpy()[0, 1] * v5.numpy()[0, 1], tol=10 * tol)
|
|
1310
|
-
assert_np_equal(v52.numpy()[0], 2 * s5.numpy()[0, 2] * v5.numpy()[0, 2], tol=10 * tol)
|
|
1311
|
-
assert_np_equal(v53.numpy()[0], 2 * s5.numpy()[0, 3] * v5.numpy()[0, 3], tol=10 * tol)
|
|
1312
|
-
assert_np_equal(v54.numpy()[0], 2 * s5.numpy()[0, 4] * v5.numpy()[0, 4], tol=10 * tol)
|
|
1313
|
-
|
|
1314
|
-
incmps = np.concatenate([v.numpy()[0] for v in [v2, v3, v4, v5]])
|
|
1315
|
-
scmps = np.concatenate([v.numpy()[0] for v in [s2, s3, s4, s5]])
|
|
1316
|
-
|
|
1317
|
-
if dtype in np_float_types:
|
|
1318
|
-
for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]):
|
|
1319
|
-
tape.backward(loss=l)
|
|
1320
|
-
sgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [s2, s3, s4, s5]])
|
|
1321
|
-
expected_grads = np.zeros_like(sgrads)
|
|
1322
|
-
expected_grads[i] = incmps[i] * 2
|
|
1323
|
-
assert_np_equal(sgrads, expected_grads, tol=10 * tol)
|
|
1324
|
-
|
|
1325
|
-
allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]])
|
|
1326
|
-
expected_grads = np.zeros_like(allgrads)
|
|
1327
|
-
expected_grads[i] = scmps[i] * 2
|
|
1328
|
-
assert_np_equal(allgrads, expected_grads, tol=10 * tol)
|
|
1329
|
-
|
|
1330
|
-
tape.zero()
|
|
1331
|
-
|
|
1332
|
-
|
|
1333
|
-
def test_scalar_division(test, device, dtype, register_kernels=False):
|
|
1334
|
-
np.random.seed(123)
|
|
1335
|
-
|
|
1336
|
-
tol = {
|
|
1337
|
-
np.float16: 5.0e-3,
|
|
1338
|
-
np.float32: 1.0e-6,
|
|
1339
|
-
np.float64: 1.0e-8,
|
|
1340
|
-
}.get(dtype, 0)
|
|
1341
|
-
|
|
1342
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
1343
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
1344
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
1345
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
1346
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
1347
|
-
|
|
1348
|
-
def check_div(
|
|
1349
|
-
s: wp.array(dtype=wptype),
|
|
1350
|
-
v2: wp.array(dtype=vec2),
|
|
1351
|
-
v3: wp.array(dtype=vec3),
|
|
1352
|
-
v4: wp.array(dtype=vec4),
|
|
1353
|
-
v5: wp.array(dtype=vec5),
|
|
1354
|
-
v20: wp.array(dtype=wptype),
|
|
1355
|
-
v21: wp.array(dtype=wptype),
|
|
1356
|
-
v30: wp.array(dtype=wptype),
|
|
1357
|
-
v31: wp.array(dtype=wptype),
|
|
1358
|
-
v32: wp.array(dtype=wptype),
|
|
1359
|
-
v40: wp.array(dtype=wptype),
|
|
1360
|
-
v41: wp.array(dtype=wptype),
|
|
1361
|
-
v42: wp.array(dtype=wptype),
|
|
1362
|
-
v43: wp.array(dtype=wptype),
|
|
1363
|
-
v50: wp.array(dtype=wptype),
|
|
1364
|
-
v51: wp.array(dtype=wptype),
|
|
1365
|
-
v52: wp.array(dtype=wptype),
|
|
1366
|
-
v53: wp.array(dtype=wptype),
|
|
1367
|
-
v54: wp.array(dtype=wptype),
|
|
131
|
+
with test.assertRaisesRegex(
|
|
132
|
+
RuntimeError,
|
|
133
|
+
r"vec\(\) should not have dtype specified if numeric arguments are given, the dtype will be inferred from the argument types$",
|
|
1368
134
|
):
|
|
1369
|
-
v2result = v2[0] / s[0]
|
|
1370
|
-
v3result = v3[0] / s[0]
|
|
1371
|
-
v4result = v4[0] / s[0]
|
|
1372
|
-
v5result = v5[0] / s[0]
|
|
1373
|
-
|
|
1374
|
-
v20[0] = wptype(2) * v2result[0]
|
|
1375
|
-
v21[0] = wptype(2) * v2result[1]
|
|
1376
|
-
|
|
1377
|
-
v30[0] = wptype(2) * v3result[0]
|
|
1378
|
-
v31[0] = wptype(2) * v3result[1]
|
|
1379
|
-
v32[0] = wptype(2) * v3result[2]
|
|
1380
|
-
|
|
1381
|
-
v40[0] = wptype(2) * v4result[0]
|
|
1382
|
-
v41[0] = wptype(2) * v4result[1]
|
|
1383
|
-
v42[0] = wptype(2) * v4result[2]
|
|
1384
|
-
v43[0] = wptype(2) * v4result[3]
|
|
1385
|
-
|
|
1386
|
-
v50[0] = wptype(2) * v5result[0]
|
|
1387
|
-
v51[0] = wptype(2) * v5result[1]
|
|
1388
|
-
v52[0] = wptype(2) * v5result[2]
|
|
1389
|
-
v53[0] = wptype(2) * v5result[3]
|
|
1390
|
-
v54[0] = wptype(2) * v5result[4]
|
|
1391
|
-
|
|
1392
|
-
kernel = getkernel(check_div, suffix=dtype.__name__)
|
|
1393
|
-
|
|
1394
|
-
if register_kernels:
|
|
1395
|
-
return
|
|
1396
|
-
|
|
1397
|
-
s = wp.array(randvals([1], dtype), requires_grad=True, device=device)
|
|
1398
|
-
v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
1399
|
-
v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
1400
|
-
v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
1401
|
-
v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
1402
|
-
v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1403
|
-
v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1404
|
-
v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1405
|
-
v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1406
|
-
v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1407
|
-
v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1408
|
-
v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1409
|
-
v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1410
|
-
v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1411
|
-
v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1412
|
-
v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1413
|
-
v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1414
|
-
v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1415
|
-
v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1416
|
-
tape = wp.Tape()
|
|
1417
|
-
with tape:
|
|
1418
135
|
wp.launch(
|
|
1419
136
|
kernel,
|
|
1420
137
|
dim=1,
|
|
1421
|
-
inputs=[
|
|
1422
|
-
s,
|
|
1423
|
-
v2,
|
|
1424
|
-
v3,
|
|
1425
|
-
v4,
|
|
1426
|
-
v5,
|
|
1427
|
-
],
|
|
1428
|
-
outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54],
|
|
138
|
+
inputs=[],
|
|
1429
139
|
device=device,
|
|
1430
|
-
)
|
|
1431
|
-
|
|
1432
|
-
if dtype in np_int_types:
|
|
1433
|
-
assert_np_equal(v20.numpy()[0], 2 * (v2.numpy()[0, 0] // (s.numpy()[0])), tol=tol)
|
|
1434
|
-
assert_np_equal(v21.numpy()[0], 2 * (v2.numpy()[0, 1] // (s.numpy()[0])), tol=tol)
|
|
1435
|
-
|
|
1436
|
-
assert_np_equal(v30.numpy()[0], 2 * (v3.numpy()[0, 0] // (s.numpy()[0])), tol=10 * tol)
|
|
1437
|
-
assert_np_equal(v31.numpy()[0], 2 * (v3.numpy()[0, 1] // (s.numpy()[0])), tol=10 * tol)
|
|
1438
|
-
assert_np_equal(v32.numpy()[0], 2 * (v3.numpy()[0, 2] // (s.numpy()[0])), tol=10 * tol)
|
|
1439
|
-
|
|
1440
|
-
assert_np_equal(v40.numpy()[0], 2 * (v4.numpy()[0, 0] // (s.numpy()[0])), tol=10 * tol)
|
|
1441
|
-
assert_np_equal(v41.numpy()[0], 2 * (v4.numpy()[0, 1] // (s.numpy()[0])), tol=10 * tol)
|
|
1442
|
-
assert_np_equal(v42.numpy()[0], 2 * (v4.numpy()[0, 2] // (s.numpy()[0])), tol=10 * tol)
|
|
1443
|
-
assert_np_equal(v43.numpy()[0], 2 * (v4.numpy()[0, 3] // (s.numpy()[0])), tol=10 * tol)
|
|
1444
|
-
|
|
1445
|
-
assert_np_equal(v50.numpy()[0], 2 * (v5.numpy()[0, 0] // (s.numpy()[0])), tol=10 * tol)
|
|
1446
|
-
assert_np_equal(v51.numpy()[0], 2 * (v5.numpy()[0, 1] // (s.numpy()[0])), tol=10 * tol)
|
|
1447
|
-
assert_np_equal(v52.numpy()[0], 2 * (v5.numpy()[0, 2] // (s.numpy()[0])), tol=10 * tol)
|
|
1448
|
-
assert_np_equal(v53.numpy()[0], 2 * (v5.numpy()[0, 3] // (s.numpy()[0])), tol=10 * tol)
|
|
1449
|
-
assert_np_equal(v54.numpy()[0], 2 * (v5.numpy()[0, 4] // (s.numpy()[0])), tol=10 * tol)
|
|
1450
|
-
|
|
1451
|
-
else:
|
|
1452
|
-
assert_np_equal(v20.numpy()[0], 2 * v2.numpy()[0, 0] / (s.numpy()[0]), tol=tol)
|
|
1453
|
-
assert_np_equal(v21.numpy()[0], 2 * v2.numpy()[0, 1] / (s.numpy()[0]), tol=tol)
|
|
1454
|
-
|
|
1455
|
-
assert_np_equal(v30.numpy()[0], 2 * v3.numpy()[0, 0] / (s.numpy()[0]), tol=10 * tol)
|
|
1456
|
-
assert_np_equal(v31.numpy()[0], 2 * v3.numpy()[0, 1] / (s.numpy()[0]), tol=10 * tol)
|
|
1457
|
-
assert_np_equal(v32.numpy()[0], 2 * v3.numpy()[0, 2] / (s.numpy()[0]), tol=10 * tol)
|
|
1458
|
-
|
|
1459
|
-
assert_np_equal(v40.numpy()[0], 2 * v4.numpy()[0, 0] / (s.numpy()[0]), tol=10 * tol)
|
|
1460
|
-
assert_np_equal(v41.numpy()[0], 2 * v4.numpy()[0, 1] / (s.numpy()[0]), tol=10 * tol)
|
|
1461
|
-
assert_np_equal(v42.numpy()[0], 2 * v4.numpy()[0, 2] / (s.numpy()[0]), tol=10 * tol)
|
|
1462
|
-
assert_np_equal(v43.numpy()[0], 2 * v4.numpy()[0, 3] / (s.numpy()[0]), tol=10 * tol)
|
|
1463
|
-
|
|
1464
|
-
assert_np_equal(v50.numpy()[0], 2 * v5.numpy()[0, 0] / (s.numpy()[0]), tol=10 * tol)
|
|
1465
|
-
assert_np_equal(v51.numpy()[0], 2 * v5.numpy()[0, 1] / (s.numpy()[0]), tol=10 * tol)
|
|
1466
|
-
assert_np_equal(v52.numpy()[0], 2 * v5.numpy()[0, 2] / (s.numpy()[0]), tol=10 * tol)
|
|
1467
|
-
assert_np_equal(v53.numpy()[0], 2 * v5.numpy()[0, 3] / (s.numpy()[0]), tol=10 * tol)
|
|
1468
|
-
assert_np_equal(v54.numpy()[0], 2 * v5.numpy()[0, 4] / (s.numpy()[0]), tol=10 * tol)
|
|
1469
|
-
|
|
1470
|
-
incmps = np.concatenate([v.numpy()[0] for v in [v2, v3, v4, v5]])
|
|
1471
|
-
|
|
1472
|
-
if dtype in np_float_types:
|
|
1473
|
-
for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]):
|
|
1474
|
-
tape.backward(loss=l)
|
|
1475
|
-
sgrad = tape.gradients[s].numpy()[0]
|
|
1476
|
-
|
|
1477
|
-
# d/ds v/s = -v/s^2
|
|
1478
|
-
assert_np_equal(sgrad, -2 * incmps[i] / (s.numpy()[0] * s.numpy()[0]), tol=10 * tol)
|
|
1479
|
-
|
|
1480
|
-
allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]])
|
|
1481
|
-
expected_grads = np.zeros_like(allgrads)
|
|
1482
|
-
expected_grads[i] = 2 / s.numpy()[0]
|
|
1483
|
-
|
|
1484
|
-
# d/dv v/s = 1/s
|
|
1485
|
-
assert_np_equal(allgrads, expected_grads, tol=tol)
|
|
1486
|
-
tape.zero()
|
|
1487
|
-
|
|
1488
|
-
|
|
1489
|
-
def test_cw_division(test, device, dtype, register_kernels=False):
|
|
1490
|
-
np.random.seed(123)
|
|
1491
|
-
|
|
1492
|
-
tol = {
|
|
1493
|
-
np.float16: 1.0e-2,
|
|
1494
|
-
np.float32: 1.0e-6,
|
|
1495
|
-
np.float64: 1.0e-8,
|
|
1496
|
-
}.get(dtype, 0)
|
|
1497
|
-
|
|
1498
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
1499
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
1500
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
1501
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
1502
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
1503
|
-
|
|
1504
|
-
def check_cw_div(
|
|
1505
|
-
s2: wp.array(dtype=vec2),
|
|
1506
|
-
s3: wp.array(dtype=vec3),
|
|
1507
|
-
s4: wp.array(dtype=vec4),
|
|
1508
|
-
s5: wp.array(dtype=vec5),
|
|
1509
|
-
v2: wp.array(dtype=vec2),
|
|
1510
|
-
v3: wp.array(dtype=vec3),
|
|
1511
|
-
v4: wp.array(dtype=vec4),
|
|
1512
|
-
v5: wp.array(dtype=vec5),
|
|
1513
|
-
v20: wp.array(dtype=wptype),
|
|
1514
|
-
v21: wp.array(dtype=wptype),
|
|
1515
|
-
v30: wp.array(dtype=wptype),
|
|
1516
|
-
v31: wp.array(dtype=wptype),
|
|
1517
|
-
v32: wp.array(dtype=wptype),
|
|
1518
|
-
v40: wp.array(dtype=wptype),
|
|
1519
|
-
v41: wp.array(dtype=wptype),
|
|
1520
|
-
v42: wp.array(dtype=wptype),
|
|
1521
|
-
v43: wp.array(dtype=wptype),
|
|
1522
|
-
v50: wp.array(dtype=wptype),
|
|
1523
|
-
v51: wp.array(dtype=wptype),
|
|
1524
|
-
v52: wp.array(dtype=wptype),
|
|
1525
|
-
v53: wp.array(dtype=wptype),
|
|
1526
|
-
v54: wp.array(dtype=wptype),
|
|
1527
|
-
):
|
|
1528
|
-
v2result = wp.cw_div(v2[0], s2[0])
|
|
1529
|
-
v3result = wp.cw_div(v3[0], s3[0])
|
|
1530
|
-
v4result = wp.cw_div(v4[0], s4[0])
|
|
1531
|
-
v5result = wp.cw_div(v5[0], s5[0])
|
|
1532
|
-
|
|
1533
|
-
v20[0] = wptype(2) * v2result[0]
|
|
1534
|
-
v21[0] = wptype(2) * v2result[1]
|
|
1535
|
-
|
|
1536
|
-
v30[0] = wptype(2) * v3result[0]
|
|
1537
|
-
v31[0] = wptype(2) * v3result[1]
|
|
1538
|
-
v32[0] = wptype(2) * v3result[2]
|
|
140
|
+
)
|
|
1539
141
|
|
|
1540
|
-
v40[0] = wptype(2) * v4result[0]
|
|
1541
|
-
v41[0] = wptype(2) * v4result[1]
|
|
1542
|
-
v42[0] = wptype(2) * v4result[2]
|
|
1543
|
-
v43[0] = wptype(2) * v4result[3]
|
|
1544
142
|
|
|
1545
|
-
|
|
1546
|
-
|
|
1547
|
-
|
|
1548
|
-
|
|
1549
|
-
v54[0] = wptype(2) * v5result[4]
|
|
143
|
+
def test_anon_constructor_error_numeric_args_mismatch(test, device):
|
|
144
|
+
@wp.kernel
|
|
145
|
+
def kernel():
|
|
146
|
+
wp.vector(1.0, 2)
|
|
1550
147
|
|
|
1551
|
-
|
|
148
|
+
with test.assertRaisesRegex(
|
|
149
|
+
RuntimeError,
|
|
150
|
+
r"All numeric arguments to vec\(\) constructor should have the same "
|
|
151
|
+
r"type, expected 2 arg_types of type <class 'warp.types.float32'>, "
|
|
152
|
+
r"received <class 'warp.types.float32'>,<class 'warp.types.int32'>$",
|
|
153
|
+
):
|
|
154
|
+
wp.launch(
|
|
155
|
+
kernel,
|
|
156
|
+
dim=1,
|
|
157
|
+
inputs=[],
|
|
158
|
+
device=device,
|
|
159
|
+
)
|
|
1552
160
|
|
|
1553
|
-
if register_kernels:
|
|
1554
|
-
return
|
|
1555
161
|
|
|
1556
|
-
|
|
1557
|
-
|
|
1558
|
-
|
|
1559
|
-
|
|
1560
|
-
|
|
1561
|
-
|
|
1562
|
-
v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
1563
|
-
v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
1564
|
-
v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1565
|
-
v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1566
|
-
v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1567
|
-
v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1568
|
-
v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1569
|
-
v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1570
|
-
v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1571
|
-
v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1572
|
-
v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1573
|
-
v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1574
|
-
v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1575
|
-
v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1576
|
-
v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1577
|
-
v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1578
|
-
tape = wp.Tape()
|
|
1579
|
-
with tape:
|
|
162
|
+
def test_tpl_constructor_error_incompatible_sizes(test, device):
|
|
163
|
+
@wp.kernel
|
|
164
|
+
def kernel():
|
|
165
|
+
wp.vec3(wp.vec2(1.0, 2.0))
|
|
166
|
+
|
|
167
|
+
with test.assertRaisesRegex(RuntimeError, r"Incompatible matrix sizes for casting copy constructor, 3 vs 2"):
|
|
1580
168
|
wp.launch(
|
|
1581
169
|
kernel,
|
|
1582
170
|
dim=1,
|
|
1583
|
-
inputs=[
|
|
1584
|
-
s2,
|
|
1585
|
-
s3,
|
|
1586
|
-
s4,
|
|
1587
|
-
s5,
|
|
1588
|
-
v2,
|
|
1589
|
-
v3,
|
|
1590
|
-
v4,
|
|
1591
|
-
v5,
|
|
1592
|
-
],
|
|
1593
|
-
outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54],
|
|
171
|
+
inputs=[],
|
|
1594
172
|
device=device,
|
|
1595
173
|
)
|
|
1596
174
|
|
|
1597
|
-
if dtype in np_int_types:
|
|
1598
|
-
assert_np_equal(v20.numpy()[0], 2 * (v2.numpy()[0, 0] // s2.numpy()[0, 0]), tol=tol)
|
|
1599
|
-
assert_np_equal(v21.numpy()[0], 2 * (v2.numpy()[0, 1] // s2.numpy()[0, 1]), tol=tol)
|
|
1600
|
-
|
|
1601
|
-
assert_np_equal(v30.numpy()[0], 2 * (v3.numpy()[0, 0] // s3.numpy()[0, 0]), tol=tol)
|
|
1602
|
-
assert_np_equal(v31.numpy()[0], 2 * (v3.numpy()[0, 1] // s3.numpy()[0, 1]), tol=tol)
|
|
1603
|
-
assert_np_equal(v32.numpy()[0], 2 * (v3.numpy()[0, 2] // s3.numpy()[0, 2]), tol=tol)
|
|
1604
|
-
|
|
1605
|
-
assert_np_equal(v40.numpy()[0], 2 * (v4.numpy()[0, 0] // s4.numpy()[0, 0]), tol=tol)
|
|
1606
|
-
assert_np_equal(v41.numpy()[0], 2 * (v4.numpy()[0, 1] // s4.numpy()[0, 1]), tol=tol)
|
|
1607
|
-
assert_np_equal(v42.numpy()[0], 2 * (v4.numpy()[0, 2] // s4.numpy()[0, 2]), tol=tol)
|
|
1608
|
-
assert_np_equal(v43.numpy()[0], 2 * (v4.numpy()[0, 3] // s4.numpy()[0, 3]), tol=tol)
|
|
1609
|
-
|
|
1610
|
-
assert_np_equal(v50.numpy()[0], 2 * (v5.numpy()[0, 0] // s5.numpy()[0, 0]), tol=tol)
|
|
1611
|
-
assert_np_equal(v51.numpy()[0], 2 * (v5.numpy()[0, 1] // s5.numpy()[0, 1]), tol=tol)
|
|
1612
|
-
assert_np_equal(v52.numpy()[0], 2 * (v5.numpy()[0, 2] // s5.numpy()[0, 2]), tol=tol)
|
|
1613
|
-
assert_np_equal(v53.numpy()[0], 2 * (v5.numpy()[0, 3] // s5.numpy()[0, 3]), tol=tol)
|
|
1614
|
-
assert_np_equal(v54.numpy()[0], 2 * (v5.numpy()[0, 4] // s5.numpy()[0, 4]), tol=tol)
|
|
1615
|
-
else:
|
|
1616
|
-
assert_np_equal(v20.numpy()[0], 2 * v2.numpy()[0, 0] / s2.numpy()[0, 0], tol=tol)
|
|
1617
|
-
assert_np_equal(v21.numpy()[0], 2 * v2.numpy()[0, 1] / s2.numpy()[0, 1], tol=tol)
|
|
1618
|
-
|
|
1619
|
-
assert_np_equal(v30.numpy()[0], 2 * v3.numpy()[0, 0] / s3.numpy()[0, 0], tol=tol)
|
|
1620
|
-
assert_np_equal(v31.numpy()[0], 2 * v3.numpy()[0, 1] / s3.numpy()[0, 1], tol=tol)
|
|
1621
|
-
assert_np_equal(v32.numpy()[0], 2 * v3.numpy()[0, 2] / s3.numpy()[0, 2], tol=tol)
|
|
1622
|
-
|
|
1623
|
-
assert_np_equal(v40.numpy()[0], 2 * v4.numpy()[0, 0] / s4.numpy()[0, 0], tol=tol)
|
|
1624
|
-
assert_np_equal(v41.numpy()[0], 2 * v4.numpy()[0, 1] / s4.numpy()[0, 1], tol=tol)
|
|
1625
|
-
assert_np_equal(v42.numpy()[0], 2 * v4.numpy()[0, 2] / s4.numpy()[0, 2], tol=tol)
|
|
1626
|
-
assert_np_equal(v43.numpy()[0], 2 * v4.numpy()[0, 3] / s4.numpy()[0, 3], tol=tol)
|
|
1627
|
-
|
|
1628
|
-
assert_np_equal(v50.numpy()[0], 2 * v5.numpy()[0, 0] / s5.numpy()[0, 0], tol=tol)
|
|
1629
|
-
assert_np_equal(v51.numpy()[0], 2 * v5.numpy()[0, 1] / s5.numpy()[0, 1], tol=tol)
|
|
1630
|
-
assert_np_equal(v52.numpy()[0], 2 * v5.numpy()[0, 2] / s5.numpy()[0, 2], tol=tol)
|
|
1631
|
-
assert_np_equal(v53.numpy()[0], 2 * v5.numpy()[0, 3] / s5.numpy()[0, 3], tol=tol)
|
|
1632
|
-
assert_np_equal(v54.numpy()[0], 2 * v5.numpy()[0, 4] / s5.numpy()[0, 4], tol=tol)
|
|
1633
175
|
|
|
1634
|
-
|
|
1635
|
-
|
|
1636
|
-
|
|
176
|
+
def test_tpl_constructor_error_numeric_args_mismatch(test, device):
|
|
177
|
+
@wp.kernel
|
|
178
|
+
def kernel():
|
|
179
|
+
wp.vec2(1.0, 2)
|
|
1637
180
|
|
|
1638
|
-
|
|
1639
|
-
|
|
1640
|
-
|
|
1641
|
-
|
|
181
|
+
with test.assertRaisesRegex(
|
|
182
|
+
RuntimeError,
|
|
183
|
+
r"All numeric arguments to vec\(\) constructor should have the same "
|
|
184
|
+
r"type, expected 2 arg_types of type <class 'warp.types.float32'>, "
|
|
185
|
+
r"received <class 'warp.types.float32'>,<class 'warp.types.int32'>$",
|
|
186
|
+
):
|
|
187
|
+
wp.launch(
|
|
188
|
+
kernel,
|
|
189
|
+
dim=1,
|
|
190
|
+
inputs=[],
|
|
191
|
+
device=device,
|
|
192
|
+
)
|
|
1642
193
|
|
|
1643
|
-
# d/ds v/s = -v/s^2
|
|
1644
|
-
expected_grads[i] = -incmps[i] * 2 / (scmps[i] * scmps[i])
|
|
1645
|
-
assert_np_equal(sgrads, expected_grads, tol=20 * tol)
|
|
1646
194
|
|
|
1647
|
-
|
|
1648
|
-
|
|
195
|
+
def test_tpl_ops_with_anon(test, device):
|
|
196
|
+
vec3i = wp.vec(3, dtype=int)
|
|
1649
197
|
|
|
1650
|
-
|
|
1651
|
-
|
|
1652
|
-
|
|
198
|
+
v = wp.vec3i(1, 2, 3)
|
|
199
|
+
v += vec3i(2, 3, 4)
|
|
200
|
+
v -= vec3i(3, 4, 5)
|
|
201
|
+
test.assertSequenceEqual(v, (0, 1, 2))
|
|
1653
202
|
|
|
1654
|
-
|
|
203
|
+
v = vec3i(1, 2, 3)
|
|
204
|
+
v += wp.vec3i(2, 3, 4)
|
|
205
|
+
v -= wp.vec3i(3, 4, 5)
|
|
206
|
+
test.assertSequenceEqual(v, (0, 1, 2))
|
|
1655
207
|
|
|
1656
208
|
|
|
1657
|
-
def
|
|
1658
|
-
np.random.
|
|
209
|
+
def test_negation(test, device, dtype, register_kernels=False):
|
|
210
|
+
rng = np.random.default_rng(123)
|
|
1659
211
|
|
|
1660
212
|
tol = {
|
|
1661
213
|
np.float16: 5.0e-3,
|
|
@@ -1669,15 +221,15 @@ def test_addition(test, device, dtype, register_kernels=False):
|
|
|
1669
221
|
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
1670
222
|
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
1671
223
|
|
|
1672
|
-
def
|
|
1673
|
-
s2: wp.array(dtype=vec2),
|
|
1674
|
-
s3: wp.array(dtype=vec3),
|
|
1675
|
-
s4: wp.array(dtype=vec4),
|
|
1676
|
-
s5: wp.array(dtype=vec5),
|
|
224
|
+
def check_negation(
|
|
1677
225
|
v2: wp.array(dtype=vec2),
|
|
1678
226
|
v3: wp.array(dtype=vec3),
|
|
1679
227
|
v4: wp.array(dtype=vec4),
|
|
1680
228
|
v5: wp.array(dtype=vec5),
|
|
229
|
+
v2out: wp.array(dtype=vec2),
|
|
230
|
+
v3out: wp.array(dtype=vec3),
|
|
231
|
+
v4out: wp.array(dtype=vec4),
|
|
232
|
+
v5out: wp.array(dtype=vec5),
|
|
1681
233
|
v20: wp.array(dtype=wptype),
|
|
1682
234
|
v21: wp.array(dtype=wptype),
|
|
1683
235
|
v30: wp.array(dtype=wptype),
|
|
@@ -1693,11 +245,17 @@ def test_addition(test, device, dtype, register_kernels=False):
|
|
|
1693
245
|
v53: wp.array(dtype=wptype),
|
|
1694
246
|
v54: wp.array(dtype=wptype),
|
|
1695
247
|
):
|
|
1696
|
-
v2result = v2[0]
|
|
1697
|
-
v3result = v3[0]
|
|
1698
|
-
v4result = v4[0]
|
|
1699
|
-
v5result = v5[0]
|
|
248
|
+
v2result = -v2[0]
|
|
249
|
+
v3result = -v3[0]
|
|
250
|
+
v4result = -v4[0]
|
|
251
|
+
v5result = -v5[0]
|
|
252
|
+
|
|
253
|
+
v2out[0] = v2result
|
|
254
|
+
v3out[0] = v3result
|
|
255
|
+
v4out[0] = v4result
|
|
256
|
+
v5out[0] = v5result
|
|
1700
257
|
|
|
258
|
+
# multiply these outputs by 2 so we've got something to backpropagate:
|
|
1701
259
|
v20[0] = wptype(2) * v2result[0]
|
|
1702
260
|
v21[0] = wptype(2) * v2result[1]
|
|
1703
261
|
|
|
@@ -1716,19 +274,21 @@ def test_addition(test, device, dtype, register_kernels=False):
|
|
|
1716
274
|
v53[0] = wptype(2) * v5result[3]
|
|
1717
275
|
v54[0] = wptype(2) * v5result[4]
|
|
1718
276
|
|
|
1719
|
-
kernel = getkernel(
|
|
277
|
+
kernel = getkernel(check_negation, suffix=dtype.__name__)
|
|
1720
278
|
|
|
1721
279
|
if register_kernels:
|
|
1722
280
|
return
|
|
1723
281
|
|
|
1724
|
-
|
|
1725
|
-
|
|
1726
|
-
|
|
1727
|
-
|
|
1728
|
-
|
|
1729
|
-
|
|
1730
|
-
|
|
1731
|
-
|
|
282
|
+
v2 = wp.array(randvals(rng, (1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
283
|
+
v3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
284
|
+
v4 = wp.array(randvals(rng, (1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
285
|
+
v5_np = randvals(rng, (1, 5), dtype)
|
|
286
|
+
v5 = wp.array(v5_np, dtype=vec5, requires_grad=True, device=device)
|
|
287
|
+
|
|
288
|
+
v2out = wp.zeros(1, dtype=vec2, device=device)
|
|
289
|
+
v3out = wp.zeros(1, dtype=vec3, device=device)
|
|
290
|
+
v4out = wp.zeros(1, dtype=vec4, device=device)
|
|
291
|
+
v5out = wp.zeros(1, dtype=vec5, device=device)
|
|
1732
292
|
v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1733
293
|
v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1734
294
|
v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
@@ -1743,67 +303,33 @@ def test_addition(test, device, dtype, register_kernels=False):
|
|
|
1743
303
|
v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1744
304
|
v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1745
305
|
v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
306
|
+
|
|
1746
307
|
tape = wp.Tape()
|
|
1747
308
|
with tape:
|
|
1748
309
|
wp.launch(
|
|
1749
310
|
kernel,
|
|
1750
311
|
dim=1,
|
|
1751
|
-
inputs=[
|
|
1752
|
-
|
|
1753
|
-
s3,
|
|
1754
|
-
s4,
|
|
1755
|
-
s5,
|
|
1756
|
-
v2,
|
|
1757
|
-
v3,
|
|
1758
|
-
v4,
|
|
1759
|
-
v5,
|
|
1760
|
-
],
|
|
1761
|
-
outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54],
|
|
312
|
+
inputs=[v2, v3, v4, v5],
|
|
313
|
+
outputs=[v2out, v3out, v4out, v5out, v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54],
|
|
1762
314
|
device=device,
|
|
1763
315
|
)
|
|
1764
316
|
|
|
1765
|
-
assert_np_equal(v20.numpy()[0], 2 * (v2.numpy()[0, 0] + s2.numpy()[0, 0]), tol=tol)
|
|
1766
|
-
assert_np_equal(v21.numpy()[0], 2 * (v2.numpy()[0, 1] + s2.numpy()[0, 1]), tol=tol)
|
|
1767
|
-
|
|
1768
|
-
assert_np_equal(v30.numpy()[0], 2 * (v3.numpy()[0, 0] + s3.numpy()[0, 0]), tol=tol)
|
|
1769
|
-
assert_np_equal(v31.numpy()[0], 2 * (v3.numpy()[0, 1] + s3.numpy()[0, 1]), tol=tol)
|
|
1770
|
-
assert_np_equal(v32.numpy()[0], 2 * (v3.numpy()[0, 2] + s3.numpy()[0, 2]), tol=tol)
|
|
1771
|
-
|
|
1772
|
-
assert_np_equal(v40.numpy()[0], 2 * (v4.numpy()[0, 0] + s4.numpy()[0, 0]), tol=tol)
|
|
1773
|
-
assert_np_equal(v41.numpy()[0], 2 * (v4.numpy()[0, 1] + s4.numpy()[0, 1]), tol=tol)
|
|
1774
|
-
assert_np_equal(v42.numpy()[0], 2 * (v4.numpy()[0, 2] + s4.numpy()[0, 2]), tol=tol)
|
|
1775
|
-
assert_np_equal(v43.numpy()[0], 2 * (v4.numpy()[0, 3] + s4.numpy()[0, 3]), tol=tol)
|
|
1776
|
-
|
|
1777
|
-
assert_np_equal(v50.numpy()[0], 2 * (v5.numpy()[0, 0] + s5.numpy()[0, 0]), tol=tol)
|
|
1778
|
-
assert_np_equal(v51.numpy()[0], 2 * (v5.numpy()[0, 1] + s5.numpy()[0, 1]), tol=tol)
|
|
1779
|
-
assert_np_equal(v52.numpy()[0], 2 * (v5.numpy()[0, 2] + s5.numpy()[0, 2]), tol=tol)
|
|
1780
|
-
assert_np_equal(v53.numpy()[0], 2 * (v5.numpy()[0, 3] + s5.numpy()[0, 3]), tol=tol)
|
|
1781
|
-
assert_np_equal(v54.numpy()[0], 2 * (v5.numpy()[0, 4] + s5.numpy()[0, 4]), tol=2 * tol)
|
|
1782
|
-
|
|
1783
317
|
if dtype in np_float_types:
|
|
1784
318
|
for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]):
|
|
1785
319
|
tape.backward(loss=l)
|
|
1786
|
-
sgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [s2, s3, s4, s5]])
|
|
1787
|
-
expected_grads = np.zeros_like(sgrads)
|
|
1788
|
-
|
|
1789
|
-
expected_grads[i] = 2
|
|
1790
|
-
assert_np_equal(sgrads, expected_grads, tol=10 * tol)
|
|
1791
|
-
|
|
1792
320
|
allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]])
|
|
321
|
+
expected_grads = np.zeros_like(allgrads)
|
|
322
|
+
expected_grads[i] = -2
|
|
1793
323
|
assert_np_equal(allgrads, expected_grads, tol=tol)
|
|
1794
|
-
|
|
1795
324
|
tape.zero()
|
|
1796
325
|
|
|
326
|
+
assert_np_equal(v2out.numpy()[0], -v2.numpy()[0], tol=tol)
|
|
327
|
+
assert_np_equal(v3out.numpy()[0], -v3.numpy()[0], tol=tol)
|
|
328
|
+
assert_np_equal(v4out.numpy()[0], -v4.numpy()[0], tol=tol)
|
|
329
|
+
assert_np_equal(v5out.numpy()[0], -v5.numpy()[0], tol=tol)
|
|
1797
330
|
|
|
1798
|
-
def test_subtraction_unsigned(test, device, dtype, register_kernels=False):
|
|
1799
|
-
np.random.seed(123)
|
|
1800
|
-
|
|
1801
|
-
tol = {
|
|
1802
|
-
np.float16: 1.0e-3,
|
|
1803
|
-
np.float32: 1.0e-6,
|
|
1804
|
-
np.float64: 1.0e-8,
|
|
1805
|
-
}.get(dtype, 0)
|
|
1806
331
|
|
|
332
|
+
def test_subtraction_unsigned(test, device, dtype, register_kernels=False):
|
|
1807
333
|
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
1808
334
|
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
1809
335
|
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
@@ -1852,7 +378,7 @@ def test_subtraction_unsigned(test, device, dtype, register_kernels=False):
|
|
|
1852
378
|
|
|
1853
379
|
|
|
1854
380
|
def test_subtraction(test, device, dtype, register_kernels=False):
|
|
1855
|
-
np.random.
|
|
381
|
+
rng = np.random.default_rng(123)
|
|
1856
382
|
|
|
1857
383
|
tol = {
|
|
1858
384
|
np.float16: 5.0e-3,
|
|
@@ -1919,14 +445,14 @@ def test_subtraction(test, device, dtype, register_kernels=False):
|
|
|
1919
445
|
if register_kernels:
|
|
1920
446
|
return
|
|
1921
447
|
|
|
1922
|
-
s2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
1923
|
-
s3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
1924
|
-
s4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
1925
|
-
s5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
1926
|
-
v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
1927
|
-
v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
1928
|
-
v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
1929
|
-
v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
448
|
+
s2 = wp.array(randvals(rng, (1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
449
|
+
s3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
450
|
+
s4 = wp.array(randvals(rng, (1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
451
|
+
s5 = wp.array(randvals(rng, (1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
452
|
+
v2 = wp.array(randvals(rng, (1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
453
|
+
v3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
454
|
+
v4 = wp.array(randvals(rng, (1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
455
|
+
v5 = wp.array(randvals(rng, (1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
1930
456
|
v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1931
457
|
v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1932
458
|
v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
@@ -1997,129 +523,8 @@ def test_subtraction(test, device, dtype, register_kernels=False):
|
|
|
1997
523
|
tape.zero()
|
|
1998
524
|
|
|
1999
525
|
|
|
2000
|
-
def test_dotproduct(test, device, dtype, register_kernels=False):
|
|
2001
|
-
np.random.seed(123)
|
|
2002
|
-
|
|
2003
|
-
tol = {
|
|
2004
|
-
np.float16: 1.0e-2,
|
|
2005
|
-
np.float32: 1.0e-6,
|
|
2006
|
-
np.float64: 1.0e-8,
|
|
2007
|
-
}.get(dtype, 0)
|
|
2008
|
-
|
|
2009
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
2010
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
2011
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
2012
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
2013
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
2014
|
-
|
|
2015
|
-
def check_dot(
|
|
2016
|
-
s2: wp.array(dtype=vec2),
|
|
2017
|
-
s3: wp.array(dtype=vec3),
|
|
2018
|
-
s4: wp.array(dtype=vec4),
|
|
2019
|
-
s5: wp.array(dtype=vec5),
|
|
2020
|
-
v2: wp.array(dtype=vec2),
|
|
2021
|
-
v3: wp.array(dtype=vec3),
|
|
2022
|
-
v4: wp.array(dtype=vec4),
|
|
2023
|
-
v5: wp.array(dtype=vec5),
|
|
2024
|
-
dot2: wp.array(dtype=wptype),
|
|
2025
|
-
dot3: wp.array(dtype=wptype),
|
|
2026
|
-
dot4: wp.array(dtype=wptype),
|
|
2027
|
-
dot5: wp.array(dtype=wptype),
|
|
2028
|
-
):
|
|
2029
|
-
dot2[0] = wptype(2) * wp.dot(v2[0], s2[0])
|
|
2030
|
-
dot3[0] = wptype(2) * wp.dot(v3[0], s3[0])
|
|
2031
|
-
dot4[0] = wptype(2) * wp.dot(v4[0], s4[0])
|
|
2032
|
-
dot5[0] = wptype(2) * wp.dot(v5[0], s5[0])
|
|
2033
|
-
|
|
2034
|
-
kernel = getkernel(check_dot, suffix=dtype.__name__)
|
|
2035
|
-
|
|
2036
|
-
if register_kernels:
|
|
2037
|
-
return
|
|
2038
|
-
|
|
2039
|
-
s2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
2040
|
-
s3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
2041
|
-
s4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
2042
|
-
s5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
2043
|
-
v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
2044
|
-
v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
2045
|
-
v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
2046
|
-
v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
2047
|
-
dot2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2048
|
-
dot3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2049
|
-
dot4 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2050
|
-
dot5 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2051
|
-
tape = wp.Tape()
|
|
2052
|
-
with tape:
|
|
2053
|
-
wp.launch(
|
|
2054
|
-
kernel,
|
|
2055
|
-
dim=1,
|
|
2056
|
-
inputs=[
|
|
2057
|
-
s2,
|
|
2058
|
-
s3,
|
|
2059
|
-
s4,
|
|
2060
|
-
s5,
|
|
2061
|
-
v2,
|
|
2062
|
-
v3,
|
|
2063
|
-
v4,
|
|
2064
|
-
v5,
|
|
2065
|
-
],
|
|
2066
|
-
outputs=[dot2, dot3, dot4, dot5],
|
|
2067
|
-
device=device,
|
|
2068
|
-
)
|
|
2069
|
-
|
|
2070
|
-
assert_np_equal(dot2.numpy()[0], 2.0 * (v2.numpy() * s2.numpy()).sum(), tol=10 * tol)
|
|
2071
|
-
assert_np_equal(dot3.numpy()[0], 2.0 * (v3.numpy() * s3.numpy()).sum(), tol=10 * tol)
|
|
2072
|
-
assert_np_equal(dot4.numpy()[0], 2.0 * (v4.numpy() * s4.numpy()).sum(), tol=10 * tol)
|
|
2073
|
-
assert_np_equal(dot5.numpy()[0], 2.0 * (v5.numpy() * s5.numpy()).sum(), tol=10 * tol)
|
|
2074
|
-
|
|
2075
|
-
if dtype in np_float_types:
|
|
2076
|
-
tape.backward(loss=dot2)
|
|
2077
|
-
sgrads = tape.gradients[s2].numpy()[0]
|
|
2078
|
-
expected_grads = 2.0 * v2.numpy()[0]
|
|
2079
|
-
assert_np_equal(sgrads, expected_grads, tol=10 * tol)
|
|
2080
|
-
|
|
2081
|
-
vgrads = tape.gradients[v2].numpy()[0]
|
|
2082
|
-
expected_grads = 2.0 * s2.numpy()[0]
|
|
2083
|
-
assert_np_equal(vgrads, expected_grads, tol=tol)
|
|
2084
|
-
|
|
2085
|
-
tape.zero()
|
|
2086
|
-
|
|
2087
|
-
tape.backward(loss=dot3)
|
|
2088
|
-
sgrads = tape.gradients[s3].numpy()[0]
|
|
2089
|
-
expected_grads = 2.0 * v3.numpy()[0]
|
|
2090
|
-
assert_np_equal(sgrads, expected_grads, tol=10 * tol)
|
|
2091
|
-
|
|
2092
|
-
vgrads = tape.gradients[v3].numpy()[0]
|
|
2093
|
-
expected_grads = 2.0 * s3.numpy()[0]
|
|
2094
|
-
assert_np_equal(vgrads, expected_grads, tol=tol)
|
|
2095
|
-
|
|
2096
|
-
tape.zero()
|
|
2097
|
-
|
|
2098
|
-
tape.backward(loss=dot4)
|
|
2099
|
-
sgrads = tape.gradients[s4].numpy()[0]
|
|
2100
|
-
expected_grads = 2.0 * v4.numpy()[0]
|
|
2101
|
-
assert_np_equal(sgrads, expected_grads, tol=10 * tol)
|
|
2102
|
-
|
|
2103
|
-
vgrads = tape.gradients[v4].numpy()[0]
|
|
2104
|
-
expected_grads = 2.0 * s4.numpy()[0]
|
|
2105
|
-
assert_np_equal(vgrads, expected_grads, tol=tol)
|
|
2106
|
-
|
|
2107
|
-
tape.zero()
|
|
2108
|
-
|
|
2109
|
-
tape.backward(loss=dot5)
|
|
2110
|
-
sgrads = tape.gradients[s5].numpy()[0]
|
|
2111
|
-
expected_grads = 2.0 * v5.numpy()[0]
|
|
2112
|
-
assert_np_equal(sgrads, expected_grads, tol=10 * tol)
|
|
2113
|
-
|
|
2114
|
-
vgrads = tape.gradients[v5].numpy()[0]
|
|
2115
|
-
expected_grads = 2.0 * s5.numpy()[0]
|
|
2116
|
-
assert_np_equal(vgrads, expected_grads, tol=10 * tol)
|
|
2117
|
-
|
|
2118
|
-
tape.zero()
|
|
2119
|
-
|
|
2120
|
-
|
|
2121
526
|
def test_length(test, device, dtype, register_kernels=False):
|
|
2122
|
-
np.random.
|
|
527
|
+
rng = np.random.default_rng(123)
|
|
2123
528
|
|
|
2124
529
|
tol = {
|
|
2125
530
|
np.float16: 5.0e-3,
|
|
@@ -2162,10 +567,10 @@ def test_length(test, device, dtype, register_kernels=False):
|
|
|
2162
567
|
if register_kernels:
|
|
2163
568
|
return
|
|
2164
569
|
|
|
2165
|
-
v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
2166
|
-
v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
2167
|
-
v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
2168
|
-
v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
570
|
+
v2 = wp.array(randvals(rng, (1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
571
|
+
v3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
572
|
+
v4 = wp.array(randvals(rng, (1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
573
|
+
v5 = wp.array(randvals(rng, (1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
2169
574
|
|
|
2170
575
|
l2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2171
576
|
l3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
@@ -2252,7 +657,7 @@ def test_length(test, device, dtype, register_kernels=False):
|
|
|
2252
657
|
|
|
2253
658
|
|
|
2254
659
|
def test_normalize(test, device, dtype, register_kernels=False):
|
|
2255
|
-
np.random.
|
|
660
|
+
rng = np.random.default_rng(123)
|
|
2256
661
|
|
|
2257
662
|
tol = {
|
|
2258
663
|
np.float16: 5.0e-3,
|
|
@@ -2360,10 +765,10 @@ def test_normalize(test, device, dtype, register_kernels=False):
|
|
|
2360
765
|
|
|
2361
766
|
# I've already tested the things I'm using in check_normalize_alt, so I'll just
|
|
2362
767
|
# make sure the two are giving the same results/gradients
|
|
2363
|
-
v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
2364
|
-
v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
2365
|
-
v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
2366
|
-
v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
768
|
+
v2 = wp.array(randvals(rng, (1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
769
|
+
v3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
770
|
+
v4 = wp.array(randvals(rng, (1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
771
|
+
v5 = wp.array(randvals(rng, (1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
2367
772
|
|
|
2368
773
|
n20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2369
774
|
n21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
@@ -2485,7 +890,7 @@ def test_normalize(test, device, dtype, register_kernels=False):
|
|
|
2485
890
|
|
|
2486
891
|
|
|
2487
892
|
def test_crossproduct(test, device, dtype, register_kernels=False):
|
|
2488
|
-
np.random.
|
|
893
|
+
rng = np.random.default_rng(123)
|
|
2489
894
|
|
|
2490
895
|
tol = {
|
|
2491
896
|
np.float16: 5.0e-3,
|
|
@@ -2515,8 +920,8 @@ def test_crossproduct(test, device, dtype, register_kernels=False):
|
|
|
2515
920
|
if register_kernels:
|
|
2516
921
|
return
|
|
2517
922
|
|
|
2518
|
-
s3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
2519
|
-
v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
923
|
+
s3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
924
|
+
v3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
2520
925
|
c0 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2521
926
|
c1 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2522
927
|
c2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
@@ -2579,216 +984,115 @@ def test_crossproduct(test, device, dtype, register_kernels=False):
|
|
|
2579
984
|
tape.zero()
|
|
2580
985
|
|
|
2581
986
|
|
|
2582
|
-
def
|
|
2583
|
-
np.
|
|
987
|
+
def test_casting_constructors(test, device, dtype, register_kernels=False):
|
|
988
|
+
np_type = np.dtype(dtype)
|
|
989
|
+
wp_type = wp.types.np_dtype_to_warp_type[np_type]
|
|
990
|
+
vec3 = wp.types.vector(length=3, dtype=wp_type)
|
|
2584
991
|
|
|
2585
|
-
|
|
2586
|
-
|
|
2587
|
-
# arithmetic I implemented to get all this stuff working, so
|
|
2588
|
-
# hopefully that can be fixed when we do that correctly.
|
|
2589
|
-
tol = {
|
|
2590
|
-
np.float16: 1.0e-2,
|
|
2591
|
-
}.get(dtype, 0)
|
|
992
|
+
np16 = np.dtype(np.float16)
|
|
993
|
+
wp16 = wp.types.np_dtype_to_warp_type[np16]
|
|
2592
994
|
|
|
2593
|
-
|
|
2594
|
-
|
|
2595
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
2596
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
2597
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
995
|
+
np32 = np.dtype(np.float32)
|
|
996
|
+
wp32 = wp.types.np_dtype_to_warp_type[np32]
|
|
2598
997
|
|
|
2599
|
-
|
|
2600
|
-
|
|
2601
|
-
def check_vec_min_max(
|
|
2602
|
-
a: wp.array(dtype=wptype, ndim=2),
|
|
2603
|
-
b: wp.array(dtype=wptype, ndim=2),
|
|
2604
|
-
mins: wp.array(dtype=wptype, ndim=2),
|
|
2605
|
-
maxs: wp.array(dtype=wptype, ndim=2),
|
|
2606
|
-
):
|
|
2607
|
-
for i in range(10):
|
|
2608
|
-
# multiplying by 2 so we've got something to backpropagate:
|
|
2609
|
-
a2read = vec2(a[i, 0], a[i, 1])
|
|
2610
|
-
b2read = vec2(b[i, 0], b[i, 1])
|
|
2611
|
-
c2 = wptype(2) * wp.min(a2read, b2read)
|
|
2612
|
-
d2 = wptype(2) * wp.max(a2read, b2read)
|
|
2613
|
-
|
|
2614
|
-
a3read = vec3(a[i, 2], a[i, 3], a[i, 4])
|
|
2615
|
-
b3read = vec3(b[i, 2], b[i, 3], b[i, 4])
|
|
2616
|
-
c3 = wptype(2) * wp.min(a3read, b3read)
|
|
2617
|
-
d3 = wptype(2) * wp.max(a3read, b3read)
|
|
2618
|
-
|
|
2619
|
-
a4read = vec4(a[i, 5], a[i, 6], a[i, 7], a[i, 8])
|
|
2620
|
-
b4read = vec4(b[i, 5], b[i, 6], b[i, 7], b[i, 8])
|
|
2621
|
-
c4 = wptype(2) * wp.min(a4read, b4read)
|
|
2622
|
-
d4 = wptype(2) * wp.max(a4read, b4read)
|
|
2623
|
-
|
|
2624
|
-
a5read = vec5(a[i, 9], a[i, 10], a[i, 11], a[i, 12], a[i, 13])
|
|
2625
|
-
b5read = vec5(b[i, 9], b[i, 10], b[i, 11], b[i, 12], b[i, 13])
|
|
2626
|
-
c5 = wptype(2) * wp.min(a5read, b5read)
|
|
2627
|
-
d5 = wptype(2) * wp.max(a5read, b5read)
|
|
2628
|
-
|
|
2629
|
-
mins[i, 0] = c2[0]
|
|
2630
|
-
mins[i, 1] = c2[1]
|
|
2631
|
-
|
|
2632
|
-
mins[i, 2] = c3[0]
|
|
2633
|
-
mins[i, 3] = c3[1]
|
|
2634
|
-
mins[i, 4] = c3[2]
|
|
2635
|
-
|
|
2636
|
-
mins[i, 5] = c4[0]
|
|
2637
|
-
mins[i, 6] = c4[1]
|
|
2638
|
-
mins[i, 7] = c4[2]
|
|
2639
|
-
mins[i, 8] = c4[3]
|
|
2640
|
-
|
|
2641
|
-
mins[i, 9] = c5[0]
|
|
2642
|
-
mins[i, 10] = c5[1]
|
|
2643
|
-
mins[i, 11] = c5[2]
|
|
2644
|
-
mins[i, 12] = c5[3]
|
|
2645
|
-
mins[i, 13] = c5[4]
|
|
2646
|
-
|
|
2647
|
-
maxs[i, 0] = d2[0]
|
|
2648
|
-
maxs[i, 1] = d2[1]
|
|
2649
|
-
|
|
2650
|
-
maxs[i, 2] = d3[0]
|
|
2651
|
-
maxs[i, 3] = d3[1]
|
|
2652
|
-
maxs[i, 4] = d3[2]
|
|
2653
|
-
|
|
2654
|
-
maxs[i, 5] = d4[0]
|
|
2655
|
-
maxs[i, 6] = d4[1]
|
|
2656
|
-
maxs[i, 7] = d4[2]
|
|
2657
|
-
maxs[i, 8] = d4[3]
|
|
2658
|
-
|
|
2659
|
-
maxs[i, 9] = d5[0]
|
|
2660
|
-
maxs[i, 10] = d5[1]
|
|
2661
|
-
maxs[i, 11] = d5[2]
|
|
2662
|
-
maxs[i, 12] = d5[3]
|
|
2663
|
-
maxs[i, 13] = d5[4]
|
|
2664
|
-
|
|
2665
|
-
kernel = getkernel(check_vec_min_max, suffix=dtype.__name__)
|
|
2666
|
-
output_select_kernel = get_select_kernel2(wptype)
|
|
998
|
+
np64 = np.dtype(np.float64)
|
|
999
|
+
wp64 = wp.types.np_dtype_to_warp_type[np64]
|
|
2667
1000
|
|
|
2668
|
-
|
|
2669
|
-
|
|
1001
|
+
def cast_float16(a: wp.array(dtype=wp_type, ndim=2), b: wp.array(dtype=wp16, ndim=2)):
|
|
1002
|
+
tid = wp.tid()
|
|
2670
1003
|
|
|
2671
|
-
|
|
2672
|
-
|
|
1004
|
+
v1 = vec3(a[tid, 0], a[tid, 1], a[tid, 2])
|
|
1005
|
+
v2 = wp.vector(v1, dtype=wp16)
|
|
2673
1006
|
|
|
2674
|
-
|
|
2675
|
-
|
|
1007
|
+
b[tid, 0] = v2[0]
|
|
1008
|
+
b[tid, 1] = v2[1]
|
|
1009
|
+
b[tid, 2] = v2[2]
|
|
2676
1010
|
|
|
2677
|
-
|
|
2678
|
-
|
|
2679
|
-
wp.launch(kernel, dim=1, inputs=[a, b], outputs=[mins, maxs], device=device)
|
|
1011
|
+
def cast_float32(a: wp.array(dtype=wp_type, ndim=2), b: wp.array(dtype=wp32, ndim=2)):
|
|
1012
|
+
tid = wp.tid()
|
|
2680
1013
|
|
|
2681
|
-
|
|
2682
|
-
|
|
1014
|
+
v1 = vec3(a[tid, 0], a[tid, 1], a[tid, 2])
|
|
1015
|
+
v2 = wp.vector(v1, dtype=wp32)
|
|
2683
1016
|
|
|
2684
|
-
|
|
2685
|
-
|
|
2686
|
-
|
|
2687
|
-
for j in range(14):
|
|
2688
|
-
tape = wp.Tape()
|
|
2689
|
-
with tape:
|
|
2690
|
-
wp.launch(kernel, dim=1, inputs=[a, b], outputs=[mins, maxs], device=device)
|
|
2691
|
-
wp.launch(output_select_kernel, dim=1, inputs=[mins, i, j], outputs=[out], device=device)
|
|
2692
|
-
|
|
2693
|
-
tape.backward(loss=out)
|
|
2694
|
-
expected = np.zeros_like(a.numpy())
|
|
2695
|
-
expected[i, j] = 2 if (a.numpy()[i, j] < b.numpy()[i, j]) else 0
|
|
2696
|
-
assert_np_equal(tape.gradients[a].numpy(), expected, tol=tol)
|
|
2697
|
-
expected[i, j] = 2 if (b.numpy()[i, j] < a.numpy()[i, j]) else 0
|
|
2698
|
-
assert_np_equal(tape.gradients[b].numpy(), expected, tol=tol)
|
|
2699
|
-
tape.zero()
|
|
2700
|
-
|
|
2701
|
-
tape = wp.Tape()
|
|
2702
|
-
with tape:
|
|
2703
|
-
wp.launch(kernel, dim=1, inputs=[a, b], outputs=[mins, maxs], device=device)
|
|
2704
|
-
wp.launch(output_select_kernel, dim=1, inputs=[maxs, i, j], outputs=[out], device=device)
|
|
2705
|
-
|
|
2706
|
-
tape.backward(loss=out)
|
|
2707
|
-
expected = np.zeros_like(a.numpy())
|
|
2708
|
-
expected[i, j] = 2 if (a.numpy()[i, j] > b.numpy()[i, j]) else 0
|
|
2709
|
-
assert_np_equal(tape.gradients[a].numpy(), expected, tol=tol)
|
|
2710
|
-
expected[i, j] = 2 if (b.numpy()[i, j] > a.numpy()[i, j]) else 0
|
|
2711
|
-
assert_np_equal(tape.gradients[b].numpy(), expected, tol=tol)
|
|
2712
|
-
tape.zero()
|
|
2713
|
-
|
|
2714
|
-
|
|
2715
|
-
def test_equivalent_types(test, device, dtype, register_kernels=False):
|
|
2716
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
1017
|
+
b[tid, 0] = v2[0]
|
|
1018
|
+
b[tid, 1] = v2[1]
|
|
1019
|
+
b[tid, 2] = v2[2]
|
|
2717
1020
|
|
|
2718
|
-
|
|
2719
|
-
|
|
2720
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
2721
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
2722
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
1021
|
+
def cast_float64(a: wp.array(dtype=wp_type, ndim=2), b: wp.array(dtype=wp64, ndim=2)):
|
|
1022
|
+
tid = wp.tid()
|
|
2723
1023
|
|
|
2724
|
-
|
|
2725
|
-
|
|
2726
|
-
vec3_equiv = wp.types.vector(length=3, dtype=wptype)
|
|
2727
|
-
vec4_equiv = wp.types.vector(length=4, dtype=wptype)
|
|
2728
|
-
vec5_equiv = wp.types.vector(length=5, dtype=wptype)
|
|
2729
|
-
|
|
2730
|
-
# declare kernel with original types
|
|
2731
|
-
def check_equivalence(
|
|
2732
|
-
v2: vec2,
|
|
2733
|
-
v3: vec3,
|
|
2734
|
-
v4: vec4,
|
|
2735
|
-
v5: vec5,
|
|
2736
|
-
):
|
|
2737
|
-
wp.expect_eq(v2, vec2(wptype(1), wptype(2)))
|
|
2738
|
-
wp.expect_eq(v3, vec3(wptype(1), wptype(2), wptype(3)))
|
|
2739
|
-
wp.expect_eq(v4, vec4(wptype(1), wptype(2), wptype(3), wptype(4)))
|
|
2740
|
-
wp.expect_eq(v5, vec5(wptype(1), wptype(2), wptype(3), wptype(4), wptype(5)))
|
|
1024
|
+
v1 = vec3(a[tid, 0], a[tid, 1], a[tid, 2])
|
|
1025
|
+
v2 = wp.vector(v1, dtype=wp64)
|
|
2741
1026
|
|
|
2742
|
-
|
|
2743
|
-
|
|
2744
|
-
|
|
2745
|
-
wp.expect_eq(v5, vec5_equiv(wptype(1), wptype(2), wptype(3), wptype(4), wptype(5)))
|
|
1027
|
+
b[tid, 0] = v2[0]
|
|
1028
|
+
b[tid, 1] = v2[1]
|
|
1029
|
+
b[tid, 2] = v2[2]
|
|
2746
1030
|
|
|
2747
|
-
|
|
1031
|
+
kernel_16 = getkernel(cast_float16, suffix=dtype.__name__)
|
|
1032
|
+
kernel_32 = getkernel(cast_float32, suffix=dtype.__name__)
|
|
1033
|
+
kernel_64 = getkernel(cast_float64, suffix=dtype.__name__)
|
|
2748
1034
|
|
|
2749
1035
|
if register_kernels:
|
|
2750
1036
|
return
|
|
2751
1037
|
|
|
2752
|
-
#
|
|
2753
|
-
|
|
2754
|
-
|
|
2755
|
-
|
|
2756
|
-
|
|
1038
|
+
# check casting to float 16
|
|
1039
|
+
a = wp.array(np.ones((1, 3), dtype=np_type), dtype=wp_type, requires_grad=True, device=device)
|
|
1040
|
+
b = wp.array(np.zeros((1, 3), dtype=np16), dtype=wp16, requires_grad=True, device=device)
|
|
1041
|
+
b_result = np.ones((1, 3), dtype=np16)
|
|
1042
|
+
b_grad = wp.array(np.ones((1, 3), dtype=np16), dtype=wp16, device=device)
|
|
1043
|
+
a_grad = wp.array(np.ones((1, 3), dtype=np_type), dtype=wp_type, device=device)
|
|
2757
1044
|
|
|
2758
|
-
wp.
|
|
1045
|
+
tape = wp.Tape()
|
|
1046
|
+
with tape:
|
|
1047
|
+
wp.launch(kernel=kernel_16, dim=1, inputs=[a, b], device=device)
|
|
2759
1048
|
|
|
1049
|
+
tape.backward(grads={b: b_grad})
|
|
1050
|
+
out = tape.gradients[a].numpy()
|
|
2760
1051
|
|
|
2761
|
-
|
|
2762
|
-
|
|
2763
|
-
v0: wp.vec3,
|
|
2764
|
-
v1: wp.vec3,
|
|
2765
|
-
v2: wp.vec3,
|
|
2766
|
-
v3: wp.vec3,
|
|
2767
|
-
):
|
|
2768
|
-
wp.expect_eq(v1, v0)
|
|
2769
|
-
wp.expect_eq(v2, v0)
|
|
2770
|
-
wp.expect_eq(v3, v0)
|
|
1052
|
+
assert_np_equal(b.numpy(), b_result)
|
|
1053
|
+
assert_np_equal(out, a_grad.numpy())
|
|
2771
1054
|
|
|
2772
|
-
|
|
1055
|
+
# check casting to float 32
|
|
1056
|
+
a = wp.array(np.ones((1, 3), dtype=np_type), dtype=wp_type, requires_grad=True, device=device)
|
|
1057
|
+
b = wp.array(np.zeros((1, 3), dtype=np32), dtype=wp32, requires_grad=True, device=device)
|
|
1058
|
+
b_result = np.ones((1, 3), dtype=np32)
|
|
1059
|
+
b_grad = wp.array(np.ones((1, 3), dtype=np32), dtype=wp32, device=device)
|
|
1060
|
+
a_grad = wp.array(np.ones((1, 3), dtype=np_type), dtype=wp_type, device=device)
|
|
2773
1061
|
|
|
2774
|
-
|
|
2775
|
-
|
|
1062
|
+
tape = wp.Tape()
|
|
1063
|
+
with tape:
|
|
1064
|
+
wp.launch(kernel=kernel_32, dim=1, inputs=[a, b], device=device)
|
|
2776
1065
|
|
|
2777
|
-
|
|
1066
|
+
tape.backward(grads={b: b_grad})
|
|
1067
|
+
out = tape.gradients[a].numpy()
|
|
2778
1068
|
|
|
2779
|
-
|
|
2780
|
-
|
|
2781
|
-
v2 = wp.vec3([1, 2, 3])
|
|
2782
|
-
v3 = wp.vec3(np.array([1, 2, 3], dtype=dtype))
|
|
1069
|
+
assert_np_equal(b.numpy(), b_result)
|
|
1070
|
+
assert_np_equal(out, a_grad.numpy())
|
|
2783
1071
|
|
|
2784
|
-
|
|
1072
|
+
# check casting to float 64
|
|
1073
|
+
a = wp.array(np.ones((1, 3), dtype=np_type), dtype=wp_type, requires_grad=True, device=device)
|
|
1074
|
+
b = wp.array(np.zeros((1, 3), dtype=np64), dtype=wp64, requires_grad=True, device=device)
|
|
1075
|
+
b_result = np.ones((1, 3), dtype=np64)
|
|
1076
|
+
b_grad = wp.array(np.ones((1, 3), dtype=np64), dtype=wp64, device=device)
|
|
1077
|
+
a_grad = wp.array(np.ones((1, 3), dtype=np_type), dtype=wp_type, device=device)
|
|
2785
1078
|
|
|
2786
|
-
|
|
2787
|
-
|
|
2788
|
-
|
|
2789
|
-
|
|
1079
|
+
tape = wp.Tape()
|
|
1080
|
+
with tape:
|
|
1081
|
+
wp.launch(kernel=kernel_64, dim=1, inputs=[a, b], device=device)
|
|
1082
|
+
|
|
1083
|
+
tape.backward(grads={b: b_grad})
|
|
1084
|
+
out = tape.gradients[a].numpy()
|
|
1085
|
+
|
|
1086
|
+
assert_np_equal(b.numpy(), b_result)
|
|
1087
|
+
assert_np_equal(out, a_grad.numpy())
|
|
2790
1088
|
|
|
2791
|
-
|
|
1089
|
+
|
|
1090
|
+
@wp.kernel
|
|
1091
|
+
def test_vector_constructor_value_func():
|
|
1092
|
+
a = wp.vec2()
|
|
1093
|
+
b = wp.vector(a, dtype=wp.float16)
|
|
1094
|
+
c = wp.vector(a)
|
|
1095
|
+
d = wp.vector(a, length=2)
|
|
2792
1096
|
|
|
2793
1097
|
|
|
2794
1098
|
# Test matrix constructors using explicit type (float16)
|
|
@@ -2852,113 +1156,113 @@ def test_constructors_constant_length():
|
|
|
2852
1156
|
v[i] = float(i)
|
|
2853
1157
|
|
|
2854
1158
|
|
|
2855
|
-
|
|
2856
|
-
devices = get_test_devices()
|
|
1159
|
+
devices = get_test_devices()
|
|
2857
1160
|
|
|
2858
|
-
class TestVec(parent):
|
|
2859
|
-
pass
|
|
2860
1161
|
|
|
2861
|
-
|
|
2862
|
-
|
|
2863
|
-
add_kernel_test(TestVec, test_constructors_constant_length, dim=1, devices=devices)
|
|
1162
|
+
class TestVec(unittest.TestCase):
|
|
1163
|
+
pass
|
|
2864
1164
|
|
|
2865
|
-
vec10 = wp.types.vector(length=10, dtype=float)
|
|
2866
|
-
add_kernel_test(
|
|
2867
|
-
TestVec,
|
|
2868
|
-
test_vector_mutation,
|
|
2869
|
-
dim=1,
|
|
2870
|
-
inputs=[vec10(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0)],
|
|
2871
|
-
devices=devices,
|
|
2872
|
-
)
|
|
2873
1165
|
|
|
2874
|
-
|
|
2875
|
-
|
|
2876
|
-
|
|
2877
|
-
|
|
2878
|
-
test_subtraction_unsigned,
|
|
2879
|
-
devices=devices,
|
|
2880
|
-
dtype=dtype,
|
|
2881
|
-
)
|
|
1166
|
+
add_kernel_test(TestVec, test_vector_constructor_value_func, dim=1, devices=devices)
|
|
1167
|
+
add_kernel_test(TestVec, test_constructors_explicit_precision, dim=1, devices=devices)
|
|
1168
|
+
add_kernel_test(TestVec, test_constructors_default_precision, dim=1, devices=devices)
|
|
1169
|
+
add_kernel_test(TestVec, test_constructors_constant_length, dim=1, devices=devices)
|
|
2882
1170
|
|
|
2883
|
-
|
|
2884
|
-
|
|
2885
|
-
|
|
2886
|
-
|
|
2887
|
-
|
|
2888
|
-
|
|
2889
|
-
|
|
1171
|
+
vec10 = wp.types.vector(length=10, dtype=float)
|
|
1172
|
+
add_kernel_test(
|
|
1173
|
+
TestVec,
|
|
1174
|
+
test_vector_mutation,
|
|
1175
|
+
dim=1,
|
|
1176
|
+
inputs=[vec10(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0)],
|
|
1177
|
+
devices=devices,
|
|
1178
|
+
)
|
|
2890
1179
|
|
|
2891
|
-
|
|
2892
|
-
|
|
2893
|
-
|
|
2894
|
-
|
|
2895
|
-
|
|
2896
|
-
|
|
2897
|
-
|
|
2898
|
-
|
|
2899
|
-
TestVec, f"test_normalize_{dtype.__name__}", test_normalize, devices=devices, dtype=dtype
|
|
2900
|
-
)
|
|
1180
|
+
for dtype in np_unsigned_int_types:
|
|
1181
|
+
add_function_test_register_kernel(
|
|
1182
|
+
TestVec,
|
|
1183
|
+
f"test_subtraction_unsigned_{dtype.__name__}",
|
|
1184
|
+
test_subtraction_unsigned,
|
|
1185
|
+
devices=devices,
|
|
1186
|
+
dtype=dtype,
|
|
1187
|
+
)
|
|
2901
1188
|
|
|
2902
|
-
|
|
2903
|
-
|
|
2904
|
-
|
|
2905
|
-
|
|
2906
|
-
|
|
2907
|
-
|
|
2908
|
-
|
|
2909
|
-
TestVec, f"test_anon_type_instance_{dtype.__name__}", test_anon_type_instance, devices=devices, dtype=dtype
|
|
2910
|
-
)
|
|
2911
|
-
add_function_test_register_kernel(
|
|
2912
|
-
TestVec, f"test_indexing_{dtype.__name__}", test_indexing, devices=devices, dtype=dtype
|
|
2913
|
-
)
|
|
2914
|
-
add_function_test_register_kernel(
|
|
2915
|
-
TestVec, f"test_equality_{dtype.__name__}", test_equality, devices=devices, dtype=dtype
|
|
2916
|
-
)
|
|
2917
|
-
add_function_test_register_kernel(
|
|
2918
|
-
TestVec,
|
|
2919
|
-
f"test_scalar_multiplication_{dtype.__name__}",
|
|
2920
|
-
test_scalar_multiplication,
|
|
2921
|
-
devices=devices,
|
|
2922
|
-
dtype=dtype,
|
|
2923
|
-
)
|
|
2924
|
-
add_function_test_register_kernel(
|
|
2925
|
-
TestVec,
|
|
2926
|
-
f"test_scalar_multiplication_rightmul_{dtype.__name__}",
|
|
2927
|
-
test_scalar_multiplication_rightmul,
|
|
2928
|
-
devices=devices,
|
|
2929
|
-
dtype=dtype,
|
|
2930
|
-
)
|
|
2931
|
-
add_function_test_register_kernel(
|
|
2932
|
-
TestVec, f"test_cw_multiplication_{dtype.__name__}", test_cw_multiplication, devices=devices, dtype=dtype
|
|
2933
|
-
)
|
|
2934
|
-
add_function_test_register_kernel(
|
|
2935
|
-
TestVec, f"test_scalar_division_{dtype.__name__}", test_scalar_division, devices=devices, dtype=dtype
|
|
2936
|
-
)
|
|
2937
|
-
add_function_test_register_kernel(
|
|
2938
|
-
TestVec, f"test_cw_division_{dtype.__name__}", test_cw_division, devices=devices, dtype=dtype
|
|
2939
|
-
)
|
|
2940
|
-
add_function_test_register_kernel(
|
|
2941
|
-
TestVec, f"test_addition_{dtype.__name__}", test_addition, devices=devices, dtype=dtype
|
|
2942
|
-
)
|
|
2943
|
-
add_function_test_register_kernel(
|
|
2944
|
-
TestVec, f"test_dotproduct_{dtype.__name__}", test_dotproduct, devices=devices, dtype=dtype
|
|
2945
|
-
)
|
|
2946
|
-
add_function_test_register_kernel(
|
|
2947
|
-
TestVec, f"test_equivalent_types_{dtype.__name__}", test_equivalent_types, devices=devices, dtype=dtype
|
|
2948
|
-
)
|
|
2949
|
-
add_function_test_register_kernel(
|
|
2950
|
-
TestVec, f"test_conversions_{dtype.__name__}", test_conversions, devices=devices, dtype=dtype
|
|
2951
|
-
)
|
|
2952
|
-
add_function_test_register_kernel(
|
|
2953
|
-
TestVec, f"test_constants_{dtype.__name__}", test_constants, devices=devices, dtype=dtype
|
|
2954
|
-
)
|
|
1189
|
+
for dtype in np_signed_int_types + np_float_types:
|
|
1190
|
+
add_function_test_register_kernel(
|
|
1191
|
+
TestVec, f"test_negation_{dtype.__name__}", test_negation, devices=devices, dtype=dtype
|
|
1192
|
+
)
|
|
1193
|
+
add_function_test_register_kernel(
|
|
1194
|
+
TestVec, f"test_subtraction_{dtype.__name__}", test_subtraction, devices=devices, dtype=dtype
|
|
1195
|
+
)
|
|
2955
1196
|
|
|
2956
|
-
|
|
2957
|
-
|
|
1197
|
+
for dtype in np_float_types:
|
|
1198
|
+
add_function_test_register_kernel(
|
|
1199
|
+
TestVec, f"test_crossproduct_{dtype.__name__}", test_crossproduct, devices=devices, dtype=dtype
|
|
1200
|
+
)
|
|
1201
|
+
add_function_test_register_kernel(
|
|
1202
|
+
TestVec, f"test_length_{dtype.__name__}", test_length, devices=devices, dtype=dtype
|
|
1203
|
+
)
|
|
1204
|
+
add_function_test_register_kernel(
|
|
1205
|
+
TestVec, f"test_normalize_{dtype.__name__}", test_normalize, devices=devices, dtype=dtype
|
|
1206
|
+
)
|
|
1207
|
+
add_function_test_register_kernel(
|
|
1208
|
+
TestVec,
|
|
1209
|
+
f"test_casting_constructors_{dtype.__name__}",
|
|
1210
|
+
test_casting_constructors,
|
|
1211
|
+
devices=devices,
|
|
1212
|
+
dtype=dtype,
|
|
1213
|
+
)
|
|
2958
1214
|
|
|
2959
|
-
|
|
1215
|
+
add_function_test(
|
|
1216
|
+
TestVec,
|
|
1217
|
+
"test_anon_constructor_error_dtype_keyword_missing",
|
|
1218
|
+
test_anon_constructor_error_dtype_keyword_missing,
|
|
1219
|
+
devices=devices,
|
|
1220
|
+
)
|
|
1221
|
+
add_function_test(
|
|
1222
|
+
TestVec,
|
|
1223
|
+
"test_anon_constructor_error_length_mismatch",
|
|
1224
|
+
test_anon_constructor_error_length_mismatch,
|
|
1225
|
+
devices=devices,
|
|
1226
|
+
)
|
|
1227
|
+
add_function_test(
|
|
1228
|
+
TestVec,
|
|
1229
|
+
"test_anon_constructor_error_numeric_arg_missing_1",
|
|
1230
|
+
test_anon_constructor_error_numeric_arg_missing_1,
|
|
1231
|
+
devices=devices,
|
|
1232
|
+
)
|
|
1233
|
+
add_function_test(
|
|
1234
|
+
TestVec,
|
|
1235
|
+
"test_anon_constructor_error_numeric_arg_missing_2",
|
|
1236
|
+
test_anon_constructor_error_numeric_arg_missing_2,
|
|
1237
|
+
devices=devices,
|
|
1238
|
+
)
|
|
1239
|
+
add_function_test(
|
|
1240
|
+
TestVec,
|
|
1241
|
+
"test_anon_constructor_error_dtype_keyword_extraneous",
|
|
1242
|
+
test_anon_constructor_error_dtype_keyword_extraneous,
|
|
1243
|
+
devices=devices,
|
|
1244
|
+
)
|
|
1245
|
+
add_function_test(
|
|
1246
|
+
TestVec,
|
|
1247
|
+
"test_anon_constructor_error_numeric_args_mismatch",
|
|
1248
|
+
test_anon_constructor_error_numeric_args_mismatch,
|
|
1249
|
+
devices=devices,
|
|
1250
|
+
)
|
|
1251
|
+
add_function_test(
|
|
1252
|
+
TestVec,
|
|
1253
|
+
"test_tpl_constructor_error_incompatible_sizes",
|
|
1254
|
+
test_tpl_constructor_error_incompatible_sizes,
|
|
1255
|
+
devices=devices,
|
|
1256
|
+
)
|
|
1257
|
+
add_function_test(
|
|
1258
|
+
TestVec,
|
|
1259
|
+
"test_tpl_constructor_error_numeric_args_mismatch",
|
|
1260
|
+
test_tpl_constructor_error_numeric_args_mismatch,
|
|
1261
|
+
devices=devices,
|
|
1262
|
+
)
|
|
1263
|
+
add_function_test(TestVec, "test_tpl_ops_with_anon", test_tpl_ops_with_anon)
|
|
2960
1264
|
|
|
2961
1265
|
|
|
2962
1266
|
if __name__ == "__main__":
|
|
2963
|
-
|
|
1267
|
+
wp.build.clear_kernel_cache()
|
|
2964
1268
|
unittest.main(verbosity=2, failfast=True)
|