validmind 2.5.8__py3-none-any.whl → 2.5.18__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- validmind/__version__.py +1 -1
- validmind/ai/test_descriptions.py +80 -119
- validmind/ai/test_result_description/config.yaml +29 -0
- validmind/ai/test_result_description/context.py +73 -0
- validmind/ai/test_result_description/image_processing.py +124 -0
- validmind/ai/test_result_description/system.jinja +39 -0
- validmind/ai/test_result_description/user.jinja +25 -0
- validmind/api_client.py +89 -43
- validmind/client.py +2 -2
- validmind/client_config.py +11 -14
- validmind/datasets/credit_risk/__init__.py +1 -0
- validmind/datasets/credit_risk/datasets/lending_club_biased.csv.gz +0 -0
- validmind/datasets/credit_risk/lending_club_bias.py +142 -0
- validmind/datasets/regression/fred_timeseries.py +67 -138
- validmind/template.py +1 -0
- validmind/test_suites/__init__.py +0 -2
- validmind/test_suites/statsmodels_timeseries.py +1 -1
- validmind/test_suites/summarization.py +0 -1
- validmind/test_suites/time_series.py +0 -43
- validmind/tests/__types__.py +14 -15
- validmind/tests/data_validation/ACFandPACFPlot.py +15 -13
- validmind/tests/data_validation/ADF.py +31 -24
- validmind/tests/data_validation/AutoAR.py +9 -9
- validmind/tests/data_validation/AutoMA.py +23 -16
- validmind/tests/data_validation/AutoSeasonality.py +18 -16
- validmind/tests/data_validation/AutoStationarity.py +21 -16
- validmind/tests/data_validation/BivariateScatterPlots.py +67 -96
- validmind/tests/{model_validation/statsmodels → data_validation}/BoxPierce.py +34 -34
- validmind/tests/data_validation/ChiSquaredFeaturesTable.py +85 -124
- validmind/tests/data_validation/ClassImbalance.py +15 -12
- validmind/tests/data_validation/DFGLSArch.py +19 -13
- validmind/tests/data_validation/DatasetDescription.py +17 -11
- validmind/tests/data_validation/DatasetSplit.py +7 -5
- validmind/tests/data_validation/DescriptiveStatistics.py +28 -21
- validmind/tests/data_validation/Duplicates.py +33 -25
- validmind/tests/data_validation/EngleGrangerCoint.py +35 -33
- validmind/tests/data_validation/FeatureTargetCorrelationPlot.py +59 -71
- validmind/tests/data_validation/HighCardinality.py +19 -12
- validmind/tests/data_validation/HighPearsonCorrelation.py +27 -22
- validmind/tests/data_validation/IQROutliersBarPlot.py +13 -10
- validmind/tests/data_validation/IQROutliersTable.py +40 -36
- validmind/tests/data_validation/IsolationForestOutliers.py +21 -14
- validmind/tests/data_validation/JarqueBera.py +70 -0
- validmind/tests/data_validation/KPSS.py +34 -29
- validmind/tests/data_validation/LJungBox.py +66 -0
- validmind/tests/data_validation/LaggedCorrelationHeatmap.py +22 -15
- validmind/tests/data_validation/MissingValues.py +32 -27
- validmind/tests/data_validation/MissingValuesBarPlot.py +25 -21
- validmind/tests/data_validation/PearsonCorrelationMatrix.py +71 -84
- validmind/tests/data_validation/PhillipsPerronArch.py +37 -30
- validmind/tests/data_validation/ProtectedClassesCombination.py +197 -0
- validmind/tests/data_validation/ProtectedClassesDescription.py +130 -0
- validmind/tests/data_validation/ProtectedClassesDisparity.py +133 -0
- validmind/tests/data_validation/ProtectedClassesThresholdOptimizer.py +172 -0
- validmind/tests/data_validation/RollingStatsPlot.py +31 -23
- validmind/tests/data_validation/RunsTest.py +72 -0
- validmind/tests/data_validation/ScatterPlot.py +63 -78
- validmind/tests/data_validation/SeasonalDecompose.py +38 -34
- validmind/tests/{model_validation/statsmodels → data_validation}/ShapiroWilk.py +35 -30
- validmind/tests/data_validation/Skewness.py +35 -37
- validmind/tests/data_validation/SpreadPlot.py +35 -35
- validmind/tests/data_validation/TabularCategoricalBarPlots.py +23 -17
- validmind/tests/data_validation/TabularDateTimeHistograms.py +21 -13
- validmind/tests/data_validation/TabularDescriptionTables.py +51 -16
- validmind/tests/data_validation/TabularNumericalHistograms.py +25 -22
- validmind/tests/data_validation/TargetRateBarPlots.py +21 -14
- validmind/tests/data_validation/TimeSeriesDescription.py +25 -18
- validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py +23 -17
- validmind/tests/data_validation/TimeSeriesFrequency.py +24 -17
- validmind/tests/data_validation/TimeSeriesHistogram.py +33 -32
- validmind/tests/data_validation/TimeSeriesLinePlot.py +17 -10
- validmind/tests/data_validation/TimeSeriesMissingValues.py +15 -10
- validmind/tests/data_validation/TimeSeriesOutliers.py +37 -33
- validmind/tests/data_validation/TooManyZeroValues.py +16 -11
- validmind/tests/data_validation/UniqueRows.py +11 -6
- validmind/tests/data_validation/WOEBinPlots.py +23 -16
- validmind/tests/data_validation/WOEBinTable.py +35 -30
- validmind/tests/data_validation/ZivotAndrewsArch.py +34 -28
- validmind/tests/data_validation/nlp/CommonWords.py +21 -14
- validmind/tests/data_validation/nlp/Hashtags.py +42 -40
- validmind/tests/data_validation/nlp/LanguageDetection.py +33 -14
- validmind/tests/data_validation/nlp/Mentions.py +21 -15
- validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +32 -9
- validmind/tests/data_validation/nlp/Punctuations.py +24 -20
- validmind/tests/data_validation/nlp/Sentiment.py +27 -8
- validmind/tests/data_validation/nlp/StopWords.py +26 -19
- validmind/tests/data_validation/nlp/TextDescription.py +39 -36
- validmind/tests/data_validation/nlp/Toxicity.py +32 -9
- validmind/tests/decorator.py +81 -42
- validmind/tests/model_validation/BertScore.py +36 -27
- validmind/tests/model_validation/BleuScore.py +25 -19
- validmind/tests/model_validation/ClusterSizeDistribution.py +38 -34
- validmind/tests/model_validation/ContextualRecall.py +38 -13
- validmind/tests/model_validation/FeaturesAUC.py +32 -13
- validmind/tests/model_validation/MeteorScore.py +46 -33
- validmind/tests/model_validation/ModelMetadata.py +32 -64
- validmind/tests/model_validation/ModelPredictionResiduals.py +75 -73
- validmind/tests/model_validation/RegardScore.py +30 -14
- validmind/tests/model_validation/RegressionResidualsPlot.py +10 -5
- validmind/tests/model_validation/RougeScore.py +36 -30
- validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +30 -14
- validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +27 -30
- validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +68 -63
- validmind/tests/model_validation/TokenDisparity.py +31 -23
- validmind/tests/model_validation/ToxicityScore.py +26 -17
- validmind/tests/model_validation/embeddings/ClusterDistribution.py +24 -20
- validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +30 -27
- validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py +7 -5
- validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +32 -23
- validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py +7 -5
- validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py +15 -11
- validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +29 -29
- validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +34 -25
- validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +38 -26
- validmind/tests/model_validation/embeddings/StabilityAnalysis.py +40 -1
- validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +18 -17
- validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +40 -45
- validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +17 -19
- validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +29 -25
- validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +38 -28
- validmind/tests/model_validation/ragas/AnswerCorrectness.py +5 -4
- validmind/tests/model_validation/ragas/AnswerRelevance.py +5 -4
- validmind/tests/model_validation/ragas/AnswerSimilarity.py +5 -4
- validmind/tests/model_validation/ragas/AspectCritique.py +12 -6
- validmind/tests/model_validation/ragas/ContextEntityRecall.py +9 -8
- validmind/tests/model_validation/ragas/ContextPrecision.py +5 -4
- validmind/tests/model_validation/ragas/ContextRecall.py +5 -4
- validmind/tests/model_validation/ragas/ContextUtilization.py +155 -0
- validmind/tests/model_validation/ragas/Faithfulness.py +5 -4
- validmind/tests/model_validation/ragas/NoiseSensitivity.py +152 -0
- validmind/tests/model_validation/ragas/utils.py +6 -0
- validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py +19 -12
- validmind/tests/model_validation/sklearn/AdjustedRandIndex.py +22 -17
- validmind/tests/model_validation/sklearn/ClassifierPerformance.py +27 -25
- validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py +7 -5
- validmind/tests/model_validation/sklearn/ClusterPerformance.py +40 -78
- validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +15 -17
- validmind/tests/model_validation/sklearn/CompletenessScore.py +17 -11
- validmind/tests/model_validation/sklearn/ConfusionMatrix.py +22 -15
- validmind/tests/model_validation/sklearn/FeatureImportance.py +95 -0
- validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py +7 -7
- validmind/tests/model_validation/sklearn/HomogeneityScore.py +19 -12
- validmind/tests/model_validation/sklearn/HyperParametersTuning.py +35 -30
- validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py +10 -5
- validmind/tests/model_validation/sklearn/MinimumAccuracy.py +32 -32
- validmind/tests/model_validation/sklearn/MinimumF1Score.py +23 -23
- validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py +15 -10
- validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py +26 -19
- validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +38 -18
- validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +32 -26
- validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +8 -6
- validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +24 -17
- validmind/tests/model_validation/sklearn/ROCCurve.py +12 -7
- validmind/tests/model_validation/sklearn/RegressionErrors.py +74 -130
- validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py +27 -12
- validmind/tests/model_validation/sklearn/{RegressionModelsPerformanceComparison.py → RegressionPerformance.py} +18 -20
- validmind/tests/model_validation/sklearn/RegressionR2Square.py +55 -94
- validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py +32 -13
- validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +36 -32
- validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +66 -5
- validmind/tests/model_validation/sklearn/SilhouettePlot.py +27 -19
- validmind/tests/model_validation/sklearn/TrainingTestDegradation.py +25 -18
- validmind/tests/model_validation/sklearn/VMeasure.py +14 -13
- validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +7 -5
- validmind/tests/model_validation/statsmodels/AutoARIMA.py +24 -18
- validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py +73 -104
- validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +59 -32
- validmind/tests/model_validation/statsmodels/GINITable.py +44 -77
- validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +33 -34
- validmind/tests/model_validation/statsmodels/Lilliefors.py +27 -24
- validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +86 -119
- validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +100 -0
- validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +14 -9
- validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +17 -13
- validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +46 -43
- validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py +38 -36
- validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +30 -28
- validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py +18 -11
- validmind/tests/model_validation/statsmodels/ScorecardHistogram.py +75 -107
- validmind/tests/ongoing_monitoring/FeatureDrift.py +10 -6
- validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py +31 -25
- validmind/tests/ongoing_monitoring/PredictionCorrelation.py +29 -21
- validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py +31 -23
- validmind/tests/prompt_validation/Bias.py +14 -11
- validmind/tests/prompt_validation/Clarity.py +16 -14
- validmind/tests/prompt_validation/Conciseness.py +7 -5
- validmind/tests/prompt_validation/Delimitation.py +23 -22
- validmind/tests/prompt_validation/NegativeInstruction.py +7 -5
- validmind/tests/prompt_validation/Robustness.py +12 -10
- validmind/tests/prompt_validation/Specificity.py +13 -11
- validmind/tests/prompt_validation/ai_powered_test.py +6 -0
- validmind/tests/run.py +68 -23
- validmind/unit_metrics/__init__.py +81 -144
- validmind/unit_metrics/classification/{sklearn/Accuracy.py → Accuracy.py} +1 -1
- validmind/unit_metrics/classification/{sklearn/F1.py → F1.py} +1 -1
- validmind/unit_metrics/classification/{sklearn/Precision.py → Precision.py} +1 -1
- validmind/unit_metrics/classification/{sklearn/ROC_AUC.py → ROC_AUC.py} +1 -2
- validmind/unit_metrics/classification/{sklearn/Recall.py → Recall.py} +1 -1
- validmind/unit_metrics/regression/{sklearn/AdjustedRSquaredScore.py → AdjustedRSquaredScore.py} +1 -1
- validmind/unit_metrics/regression/GiniCoefficient.py +1 -1
- validmind/unit_metrics/regression/HuberLoss.py +1 -1
- validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py +1 -1
- validmind/unit_metrics/regression/{sklearn/MeanAbsoluteError.py → MeanAbsoluteError.py} +1 -1
- validmind/unit_metrics/regression/MeanAbsolutePercentageError.py +1 -1
- validmind/unit_metrics/regression/MeanBiasDeviation.py +1 -1
- validmind/unit_metrics/regression/{sklearn/MeanSquaredError.py → MeanSquaredError.py} +1 -1
- validmind/unit_metrics/regression/QuantileLoss.py +1 -1
- validmind/unit_metrics/regression/{sklearn/RSquaredScore.py → RSquaredScore.py} +1 -1
- validmind/unit_metrics/regression/{sklearn/RootMeanSquaredError.py → RootMeanSquaredError.py} +1 -1
- validmind/utils.py +4 -0
- validmind/vm_models/dataset/dataset.py +2 -0
- validmind/vm_models/figure.py +5 -0
- validmind/vm_models/test/metric.py +1 -0
- validmind/vm_models/test/result_wrapper.py +143 -158
- validmind/vm_models/test/threshold_test.py +1 -0
- {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/METADATA +4 -3
- validmind-2.5.18.dist-info/RECORD +324 -0
- validmind/tests/data_validation/ANOVAOneWayTable.py +0 -138
- validmind/tests/data_validation/BivariateFeaturesBarPlots.py +0 -142
- validmind/tests/data_validation/BivariateHistograms.py +0 -117
- validmind/tests/data_validation/HeatmapFeatureCorrelations.py +0 -124
- validmind/tests/data_validation/MissingValuesRisk.py +0 -88
- validmind/tests/model_validation/ModelMetadataComparison.py +0 -59
- validmind/tests/model_validation/sklearn/FeatureImportanceComparison.py +0 -83
- validmind/tests/model_validation/statsmodels/JarqueBera.py +0 -73
- validmind/tests/model_validation/statsmodels/LJungBox.py +0 -66
- validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py +0 -135
- validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +0 -103
- validmind/tests/model_validation/statsmodels/RunsTest.py +0 -71
- validmind-2.5.8.dist-info/RECORD +0 -318
- {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/LICENSE +0 -0
- {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/WHEEL +0 -0
- {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/entry_points.txt +0 -0
@@ -17,36 +17,43 @@ logger = get_logger(__name__)
|
|
17
17
|
@dataclass
|
18
18
|
class PhillipsPerronArch(Metric):
|
19
19
|
"""
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
-
|
34
|
-
|
35
|
-
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
-
|
41
|
-
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
-
|
47
|
-
|
48
|
-
-
|
49
|
-
|
20
|
+
Assesses the stationarity of time series data in each feature of the ML model using the Phillips-Perron test.
|
21
|
+
|
22
|
+
### Purpose
|
23
|
+
|
24
|
+
The Phillips-Perron (PP) test is used to determine the stationarity of time series data for each feature in a
|
25
|
+
dataset, which is crucial for forecasting tasks. It tests the null hypothesis that a time series is unit-root
|
26
|
+
non-stationary. This is vital for understanding the stochastic behavior of the data and ensuring the robustness and
|
27
|
+
validity of predictions generated by regression analysis models.
|
28
|
+
|
29
|
+
### Test Mechanism
|
30
|
+
|
31
|
+
The PP test is conducted for each feature in the dataset as follows:
|
32
|
+
- A data frame is created from the dataset.
|
33
|
+
- For each column, the Phillips-Perron method calculates the test statistic, p-value, lags used, and number of
|
34
|
+
observations.
|
35
|
+
- The results are then stored for each feature, providing a metric that indicates the stationarity of the time
|
36
|
+
series data.
|
37
|
+
|
38
|
+
### Signs of High Risk
|
39
|
+
|
40
|
+
- A high p-value, indicating that the series has a unit root and is non-stationary.
|
41
|
+
- Test statistic values exceeding critical values, suggesting non-stationarity.
|
42
|
+
- High 'usedlag' value, pointing towards autocorrelation issues that may degrade model performance.
|
43
|
+
|
44
|
+
### Strengths
|
45
|
+
|
46
|
+
- Resilience against heteroskedasticity in the error term.
|
47
|
+
- Effective for long time series data.
|
48
|
+
- Helps in determining whether the time series is stationary, aiding in the selection of suitable forecasting
|
49
|
+
models.
|
50
|
+
|
51
|
+
### Limitations
|
52
|
+
|
53
|
+
- Applicable only within a univariate time series framework.
|
54
|
+
- Relies on asymptotic theory, which may reduce the test’s power for small sample sizes.
|
55
|
+
- Non-stationary time series must be converted to stationary series through differencing, potentially leading to
|
56
|
+
loss of important data points.
|
50
57
|
"""
|
51
58
|
|
52
59
|
name = "phillips_perron"
|
@@ -0,0 +1,197 @@
|
|
1
|
+
# Copyright © 2023-2024 ValidMind Inc. All rights reserved.
|
2
|
+
# See the LICENSE file in the root of this repository for details.
|
3
|
+
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
|
+
|
5
|
+
import sys
|
6
|
+
|
7
|
+
import pandas as pd
|
8
|
+
import plotly.graph_objects as go
|
9
|
+
import plotly.subplots as sp
|
10
|
+
from fairlearn.metrics import (
|
11
|
+
MetricFrame,
|
12
|
+
count,
|
13
|
+
demographic_parity_ratio,
|
14
|
+
equalized_odds_ratio,
|
15
|
+
false_positive_rate,
|
16
|
+
selection_rate,
|
17
|
+
true_positive_rate,
|
18
|
+
)
|
19
|
+
|
20
|
+
from validmind import tags, tasks
|
21
|
+
from validmind.logging import get_logger
|
22
|
+
|
23
|
+
logger = get_logger(__name__)
|
24
|
+
|
25
|
+
|
26
|
+
@tags("bias_and_fairness")
|
27
|
+
@tasks("classification", "regression")
|
28
|
+
def ProtectedClassesCombination(dataset, model, protected_classes=None):
|
29
|
+
"""
|
30
|
+
Visualizes combinations of protected classes and their corresponding error metric differences.
|
31
|
+
|
32
|
+
### Purpose
|
33
|
+
|
34
|
+
This test aims to provide insights into how different combinations of protected classes affect various error metrics,
|
35
|
+
particularly the false negative rate (FNR) and false positive rate (FPR). By visualizing these combinations,
|
36
|
+
it helps identify potential biases or disparities in model performance across different intersectional groups.
|
37
|
+
|
38
|
+
### Test Mechanism
|
39
|
+
|
40
|
+
The test performs the following steps:
|
41
|
+
1. Combines the specified protected class columns to create a single multi-class category.
|
42
|
+
2. Calculates error metrics (FNR, FPR, etc.) for each combination of protected classes.
|
43
|
+
3. Generates visualizations showing the distribution of these metrics across all class combinations.
|
44
|
+
|
45
|
+
### Signs of High Risk
|
46
|
+
|
47
|
+
- Large disparities in FNR or FPR across different protected class combinations.
|
48
|
+
- Consistent patterns of higher error rates for specific combinations of protected attributes.
|
49
|
+
- Unexpected or unexplainable variations in error metrics between similar group combinations.
|
50
|
+
|
51
|
+
### Strengths
|
52
|
+
|
53
|
+
- Provides a comprehensive view of intersectional fairness across multiple protected attributes.
|
54
|
+
- Allows for easy identification of potentially problematic combinations of protected classes.
|
55
|
+
- Visualizations make it easier to spot patterns or outliers in model performance across groups.
|
56
|
+
|
57
|
+
### Limitations
|
58
|
+
|
59
|
+
- May become complex and difficult to interpret with a large number of protected classes or combinations.
|
60
|
+
- Does not provide statistical significance of observed differences.
|
61
|
+
- Visualization alone may not capture all nuances of intersectional fairness.
|
62
|
+
"""
|
63
|
+
|
64
|
+
if sys.version_info < (3, 9):
|
65
|
+
raise RuntimeError("This test requires Python 3.9 or higher.")
|
66
|
+
|
67
|
+
if protected_classes is None:
|
68
|
+
logger.warning(
|
69
|
+
"No protected classes provided. Please pass the 'protected_classes' parameter to run this test."
|
70
|
+
)
|
71
|
+
return pd.DataFrame()
|
72
|
+
|
73
|
+
# Construct a function dictionary for figures
|
74
|
+
my_metrics = {
|
75
|
+
"fpr": false_positive_rate,
|
76
|
+
"tpr": true_positive_rate,
|
77
|
+
"selection rate": selection_rate,
|
78
|
+
"count": count,
|
79
|
+
}
|
80
|
+
|
81
|
+
# Construct a MetricFrame for figures
|
82
|
+
mf = MetricFrame(
|
83
|
+
metrics=my_metrics,
|
84
|
+
y_true=dataset.y,
|
85
|
+
y_pred=dataset.y_pred(model),
|
86
|
+
sensitive_features=dataset._df[protected_classes],
|
87
|
+
)
|
88
|
+
|
89
|
+
# Combine protected class columns to create a single multi-class category for the x-axis
|
90
|
+
metrics_by_group = mf.by_group.reset_index()
|
91
|
+
metrics_by_group["class_combination"] = metrics_by_group[protected_classes].apply(
|
92
|
+
lambda row: ", ".join(row.values.astype(str)), axis=1
|
93
|
+
)
|
94
|
+
|
95
|
+
# Create the subplots for the bar plots
|
96
|
+
fig = sp.make_subplots(
|
97
|
+
rows=2,
|
98
|
+
cols=2,
|
99
|
+
subplot_titles=[
|
100
|
+
"False Positive Rate",
|
101
|
+
"True Positive Rate",
|
102
|
+
"Selection Rate",
|
103
|
+
"Count",
|
104
|
+
],
|
105
|
+
)
|
106
|
+
|
107
|
+
# Add bar plots for each metric
|
108
|
+
fig.add_trace(
|
109
|
+
go.Bar(
|
110
|
+
x=metrics_by_group["class_combination"],
|
111
|
+
y=metrics_by_group["fpr"],
|
112
|
+
name="FPR",
|
113
|
+
),
|
114
|
+
row=1,
|
115
|
+
col=1,
|
116
|
+
)
|
117
|
+
fig.add_trace(
|
118
|
+
go.Bar(
|
119
|
+
x=metrics_by_group["class_combination"],
|
120
|
+
y=metrics_by_group["tpr"],
|
121
|
+
name="TPR",
|
122
|
+
),
|
123
|
+
row=1,
|
124
|
+
col=2,
|
125
|
+
)
|
126
|
+
fig.add_trace(
|
127
|
+
go.Bar(
|
128
|
+
x=metrics_by_group["class_combination"],
|
129
|
+
y=metrics_by_group["selection rate"],
|
130
|
+
name="Selection Rate",
|
131
|
+
),
|
132
|
+
row=2,
|
133
|
+
col=1,
|
134
|
+
)
|
135
|
+
fig.add_trace(
|
136
|
+
go.Bar(
|
137
|
+
x=metrics_by_group["class_combination"],
|
138
|
+
y=metrics_by_group["count"],
|
139
|
+
name="Count",
|
140
|
+
),
|
141
|
+
row=2,
|
142
|
+
col=2,
|
143
|
+
)
|
144
|
+
|
145
|
+
# Update layout of the figure to match the original style
|
146
|
+
fig.update_layout(
|
147
|
+
title="Show all metrics",
|
148
|
+
height=800,
|
149
|
+
width=900,
|
150
|
+
barmode="group",
|
151
|
+
legend=dict(orientation="h", yanchor="bottom", y=-0.3, xanchor="center", x=0.5),
|
152
|
+
margin=dict(t=50),
|
153
|
+
font=dict(size=12),
|
154
|
+
)
|
155
|
+
|
156
|
+
# Rotate x-axis labels for better readability
|
157
|
+
fig.update_xaxes(tickangle=45, row=1, col=1)
|
158
|
+
fig.update_xaxes(tickangle=45, row=1, col=2)
|
159
|
+
fig.update_xaxes(tickangle=45, row=2, col=1)
|
160
|
+
fig.update_xaxes(tickangle=45, row=2, col=2)
|
161
|
+
|
162
|
+
# Extract demographic parity ratio and equalized odds ratio
|
163
|
+
m_dpr = []
|
164
|
+
m_eqo = []
|
165
|
+
for protected_class in protected_classes:
|
166
|
+
m_dpr.append(
|
167
|
+
demographic_parity_ratio(
|
168
|
+
y_true=dataset.y,
|
169
|
+
y_pred=dataset.y_pred(model),
|
170
|
+
sensitive_features=dataset._df[[protected_class]],
|
171
|
+
)
|
172
|
+
)
|
173
|
+
m_eqo.append(
|
174
|
+
equalized_odds_ratio(
|
175
|
+
y_true=dataset.y,
|
176
|
+
y_pred=dataset.y_pred(model),
|
177
|
+
sensitive_features=dataset._df[[protected_class]],
|
178
|
+
)
|
179
|
+
)
|
180
|
+
|
181
|
+
# Create a DataFrame for the demographic parity and equalized odds ratio
|
182
|
+
dpr_eor_df = pd.DataFrame(
|
183
|
+
columns=protected_classes,
|
184
|
+
index=["demographic parity ratio", "equal odds ratio"],
|
185
|
+
)
|
186
|
+
|
187
|
+
for i in range(len(m_dpr)):
|
188
|
+
dpr_eor_df[protected_classes[i]]["demographic parity ratio"] = round(
|
189
|
+
m_dpr[i], 2
|
190
|
+
)
|
191
|
+
dpr_eor_df[protected_classes[i]]["equal odds ratio"] = round(m_eqo[i], 2)
|
192
|
+
|
193
|
+
return (
|
194
|
+
{"Class Combination Table": metrics_by_group},
|
195
|
+
{"DPR and EOR table": dpr_eor_df},
|
196
|
+
fig,
|
197
|
+
)
|
@@ -0,0 +1,130 @@
|
|
1
|
+
# Copyright © 2023-2024 ValidMind Inc. All rights reserved.
|
2
|
+
# See the LICENSE file in the root of this repository for details.
|
3
|
+
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
|
+
|
5
|
+
|
6
|
+
import pandas as pd
|
7
|
+
import plotly.graph_objects as go
|
8
|
+
|
9
|
+
from validmind import tags, tasks
|
10
|
+
from validmind.logging import get_logger
|
11
|
+
|
12
|
+
logger = get_logger(__name__)
|
13
|
+
|
14
|
+
|
15
|
+
@tags("bias_and_fairness", "descriptive_statistics")
|
16
|
+
@tasks("classification", "regression")
|
17
|
+
def ProtectedClassesDescription(dataset, protected_classes=None):
|
18
|
+
"""
|
19
|
+
Visualizes the distribution of protected classes in the dataset relative to the target variable
|
20
|
+
and provides descriptive statistics.
|
21
|
+
|
22
|
+
### Purpose
|
23
|
+
|
24
|
+
The ProtectedClassesDescription test aims to identify potential biases or significant differences in the
|
25
|
+
distribution of target outcomes across different protected classes. This visualization and statistical summary
|
26
|
+
help in understanding the relationship between protected attributes and the target variable, which is crucial
|
27
|
+
for assessing fairness in machine learning models.
|
28
|
+
|
29
|
+
### Test Mechanism
|
30
|
+
|
31
|
+
The function creates interactive stacked bar charts for each specified protected class using Plotly.
|
32
|
+
Additionally, it generates a single table of descriptive statistics for all protected classes, including:
|
33
|
+
- Protected class and category
|
34
|
+
- Count and percentage of each category within the protected class
|
35
|
+
- Mean, median, and mode of the target variable for each category
|
36
|
+
- Standard deviation of the target variable for each category
|
37
|
+
- Minimum and maximum values of the target variable for each category
|
38
|
+
|
39
|
+
### Signs of High Risk
|
40
|
+
|
41
|
+
- Significant imbalances in the distribution of target outcomes across different categories of a protected class.
|
42
|
+
- Large disparities in mean, median, or mode of the target variable across categories.
|
43
|
+
- Underrepresentation or overrepresentation of certain groups within protected classes.
|
44
|
+
- High standard deviations in certain categories, indicating potential volatility or outliers.
|
45
|
+
|
46
|
+
### Strengths
|
47
|
+
|
48
|
+
- Provides both visual and statistical representation of potential biases in the dataset.
|
49
|
+
- Allows for easy identification of imbalances in target variable distribution across protected classes.
|
50
|
+
- Interactive plots enable detailed exploration of the data.
|
51
|
+
- Consolidated statistical summary provides quantitative measures to complement visual analysis.
|
52
|
+
- Applicable to both classification and regression tasks.
|
53
|
+
|
54
|
+
### Limitations
|
55
|
+
|
56
|
+
- Does not provide advanced statistical measures of bias or fairness.
|
57
|
+
- May become cluttered if there are many categories within a protected class or many unique target values.
|
58
|
+
- Interpretation may require domain expertise to understand the implications of observed disparities.
|
59
|
+
- Does not account for intersectionality or complex interactions between multiple protected attributes.
|
60
|
+
"""
|
61
|
+
|
62
|
+
if protected_classes is None:
|
63
|
+
logger.warning(
|
64
|
+
"No protected classes provided. Please pass the 'protected_classes' parameter to run this test."
|
65
|
+
)
|
66
|
+
return pd.DataFrame()
|
67
|
+
|
68
|
+
figures = []
|
69
|
+
all_stats = []
|
70
|
+
|
71
|
+
df = dataset._df
|
72
|
+
target = dataset.target_column
|
73
|
+
|
74
|
+
for protected_class in protected_classes:
|
75
|
+
# Create the stacked bar chart
|
76
|
+
counts = df.groupby([protected_class, target]).size().unstack(fill_value=0)
|
77
|
+
fig = go.Figure()
|
78
|
+
for col in counts.columns:
|
79
|
+
fig.add_trace(
|
80
|
+
go.Bar(
|
81
|
+
x=counts.index,
|
82
|
+
y=counts[col],
|
83
|
+
name=str(col),
|
84
|
+
text=counts[col],
|
85
|
+
textposition="auto",
|
86
|
+
)
|
87
|
+
)
|
88
|
+
|
89
|
+
fig.update_layout(
|
90
|
+
title=f"Distribution of {protected_class} by {target}",
|
91
|
+
xaxis_title=protected_class,
|
92
|
+
yaxis_title="Count",
|
93
|
+
barmode="stack",
|
94
|
+
showlegend=True,
|
95
|
+
legend_title=target,
|
96
|
+
)
|
97
|
+
|
98
|
+
figures.append(fig)
|
99
|
+
|
100
|
+
# Get unique values in the target column
|
101
|
+
target_labels = df[target].unique()
|
102
|
+
|
103
|
+
for category in df[protected_class].unique():
|
104
|
+
category_data = df[df[protected_class] == category]
|
105
|
+
stats = {
|
106
|
+
"Protected Class": protected_class,
|
107
|
+
"Category": category,
|
108
|
+
"Count": len(category_data),
|
109
|
+
"Percentage": len(category_data) / len(df) * 100,
|
110
|
+
}
|
111
|
+
|
112
|
+
# Add mean for each target label
|
113
|
+
for label in target_labels:
|
114
|
+
label_data = category_data[category_data[target] == label]
|
115
|
+
stats[f"Rate {target}: {label}"] = (
|
116
|
+
len(label_data) / len(category_data) * 100
|
117
|
+
)
|
118
|
+
|
119
|
+
all_stats.append(stats)
|
120
|
+
|
121
|
+
# Create a single DataFrame with all statistics
|
122
|
+
stats_df = pd.DataFrame(all_stats)
|
123
|
+
stats_df = stats_df.round(2) # Round to 2 decimal places for readability
|
124
|
+
|
125
|
+
# Sort the DataFrame by Protected Class and Count (descending)
|
126
|
+
stats_df = stats_df.sort_values(
|
127
|
+
["Protected Class", "Count"], ascending=[True, False]
|
128
|
+
)
|
129
|
+
|
130
|
+
return (stats_df, *tuple(figures))
|
@@ -0,0 +1,133 @@
|
|
1
|
+
# Copyright © 2023-2024 ValidMind Inc. All rights reserved.
|
2
|
+
# See the LICENSE file in the root of this repository for details.
|
3
|
+
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
|
+
|
5
|
+
import io
|
6
|
+
import sys
|
7
|
+
|
8
|
+
import aequitas.plot as ap
|
9
|
+
import pandas as pd
|
10
|
+
from aequitas.bias import Bias
|
11
|
+
from aequitas.group import Group
|
12
|
+
from aequitas.plotting import Plot
|
13
|
+
|
14
|
+
from validmind import tags, tasks
|
15
|
+
from validmind.logging import get_logger
|
16
|
+
|
17
|
+
logger = get_logger(__name__)
|
18
|
+
|
19
|
+
|
20
|
+
@tags("bias_and_fairness")
|
21
|
+
@tasks("classification", "regression")
|
22
|
+
def ProtectedClassesDisparity(
|
23
|
+
dataset,
|
24
|
+
model,
|
25
|
+
protected_classes=None,
|
26
|
+
disparity_tolerance=1.25,
|
27
|
+
metrics=["fnr", "fpr", "tpr"],
|
28
|
+
):
|
29
|
+
"""
|
30
|
+
Investigates disparities in model performance across different protected class segments.
|
31
|
+
|
32
|
+
### Purpose
|
33
|
+
|
34
|
+
This test aims to identify and quantify potential biases in model outcomes by comparing various performance metrics
|
35
|
+
across different segments of protected classes. It helps in assessing whether the model produces discriminatory
|
36
|
+
outcomes for certain groups, which is crucial for ensuring fairness in machine learning models.
|
37
|
+
|
38
|
+
### Test Mechanism
|
39
|
+
|
40
|
+
The test performs the following steps:
|
41
|
+
1. Calculates performance metrics (e.g., false negative rate, false positive rate, true positive rate) for each segment
|
42
|
+
of the specified protected classes.
|
43
|
+
2. Computes disparity ratios by comparing these metrics between different segments and a reference group.
|
44
|
+
3. Generates visualizations showing the disparities and their relation to a user-defined disparity tolerance threshold.
|
45
|
+
4. Produces a comprehensive table with various disparity metrics for detailed analysis.
|
46
|
+
|
47
|
+
### Signs of High Risk
|
48
|
+
|
49
|
+
- Disparity ratios exceeding the specified disparity tolerance threshold.
|
50
|
+
- Consistent patterns of higher error rates or lower performance for specific protected class segments.
|
51
|
+
- Statistically significant differences in performance metrics across segments.
|
52
|
+
|
53
|
+
### Strengths
|
54
|
+
|
55
|
+
- Provides a comprehensive view of model fairness across multiple protected attributes and metrics.
|
56
|
+
- Allows for easy identification of problematic disparities through visual and tabular representations.
|
57
|
+
- Customizable disparity tolerance threshold to align with specific use-case requirements.
|
58
|
+
- Applicable to various performance metrics, offering a multi-faceted analysis of model fairness.
|
59
|
+
|
60
|
+
### Limitations
|
61
|
+
|
62
|
+
- Relies on a predefined reference group for each protected class, which may not always be the most appropriate choice.
|
63
|
+
- Does not account for intersectionality between different protected attributes.
|
64
|
+
- The interpretation of results may require domain expertise to understand the implications of observed disparities.
|
65
|
+
"""
|
66
|
+
|
67
|
+
if protected_classes is None:
|
68
|
+
logger.warning(
|
69
|
+
"No protected classes provided. Please pass the 'protected_classes' parameter to run this test."
|
70
|
+
)
|
71
|
+
return pd.DataFrame()
|
72
|
+
|
73
|
+
if sys.version_info < (3, 9):
|
74
|
+
raise RuntimeError("This test requires Python 3.9 or higher.")
|
75
|
+
|
76
|
+
df = dataset._df
|
77
|
+
|
78
|
+
for protected_class in protected_classes:
|
79
|
+
# make the dataset compatible for the python package of interest
|
80
|
+
df[protected_class] = pd.Categorical(df[protected_class]).astype("object")
|
81
|
+
|
82
|
+
df["score"] = dataset.y_pred(model).astype(int)
|
83
|
+
df["label_value"] = df[dataset.target_column].astype(int)
|
84
|
+
|
85
|
+
# let map the attributes for each protected class
|
86
|
+
# default use reference that is most observable for dictionary
|
87
|
+
attributes_and_reference_groups = {}
|
88
|
+
for protected_class in protected_classes:
|
89
|
+
attributes_and_reference_groups.update(
|
90
|
+
{protected_class: df[protected_class].value_counts().idxmax()}
|
91
|
+
)
|
92
|
+
|
93
|
+
attributes_to_audit = list(attributes_and_reference_groups.keys())
|
94
|
+
|
95
|
+
# Initialize Aequitas
|
96
|
+
g = Group()
|
97
|
+
b = Bias()
|
98
|
+
aqp = Plot()
|
99
|
+
|
100
|
+
columns_to_include = (
|
101
|
+
protected_classes + [dataset.target_column] + ["score", "label_value"]
|
102
|
+
)
|
103
|
+
|
104
|
+
# get_crosstabs returns a dataframe of the group counts and group value bias metrics.
|
105
|
+
xtab, _ = g.get_crosstabs(df[columns_to_include], attr_cols=attributes_to_audit)
|
106
|
+
bdf = b.get_disparity_predefined_groups(
|
107
|
+
xtab,
|
108
|
+
original_df=df[columns_to_include],
|
109
|
+
ref_groups_dict=attributes_and_reference_groups,
|
110
|
+
alpha=0.05,
|
111
|
+
mask_significance=True,
|
112
|
+
)
|
113
|
+
|
114
|
+
plots = []
|
115
|
+
for protected_class in protected_classes:
|
116
|
+
plot = ap.disparity(
|
117
|
+
bdf, metrics, protected_class, fairness_threshold=disparity_tolerance
|
118
|
+
)
|
119
|
+
|
120
|
+
buf = io.BytesIO() # create a bytes array to save the image into in memory
|
121
|
+
plot.save(
|
122
|
+
buf, format="png"
|
123
|
+
) # as long as the above library is installed, this will work
|
124
|
+
plots.append(buf.getvalue())
|
125
|
+
|
126
|
+
string = "_disparity"
|
127
|
+
metrics_adj = [x + string for x in metrics]
|
128
|
+
|
129
|
+
table = bdf[["attribute_name", "attribute_value"] + b.list_disparities(bdf)]
|
130
|
+
plots.append(aqp.plot_disparity_all(bdf, metrics=metrics_adj))
|
131
|
+
plots_return = tuple(plots)
|
132
|
+
|
133
|
+
return (table, *plots_return)
|