validmind 2.5.8__py3-none-any.whl → 2.5.18__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- validmind/__version__.py +1 -1
- validmind/ai/test_descriptions.py +80 -119
- validmind/ai/test_result_description/config.yaml +29 -0
- validmind/ai/test_result_description/context.py +73 -0
- validmind/ai/test_result_description/image_processing.py +124 -0
- validmind/ai/test_result_description/system.jinja +39 -0
- validmind/ai/test_result_description/user.jinja +25 -0
- validmind/api_client.py +89 -43
- validmind/client.py +2 -2
- validmind/client_config.py +11 -14
- validmind/datasets/credit_risk/__init__.py +1 -0
- validmind/datasets/credit_risk/datasets/lending_club_biased.csv.gz +0 -0
- validmind/datasets/credit_risk/lending_club_bias.py +142 -0
- validmind/datasets/regression/fred_timeseries.py +67 -138
- validmind/template.py +1 -0
- validmind/test_suites/__init__.py +0 -2
- validmind/test_suites/statsmodels_timeseries.py +1 -1
- validmind/test_suites/summarization.py +0 -1
- validmind/test_suites/time_series.py +0 -43
- validmind/tests/__types__.py +14 -15
- validmind/tests/data_validation/ACFandPACFPlot.py +15 -13
- validmind/tests/data_validation/ADF.py +31 -24
- validmind/tests/data_validation/AutoAR.py +9 -9
- validmind/tests/data_validation/AutoMA.py +23 -16
- validmind/tests/data_validation/AutoSeasonality.py +18 -16
- validmind/tests/data_validation/AutoStationarity.py +21 -16
- validmind/tests/data_validation/BivariateScatterPlots.py +67 -96
- validmind/tests/{model_validation/statsmodels → data_validation}/BoxPierce.py +34 -34
- validmind/tests/data_validation/ChiSquaredFeaturesTable.py +85 -124
- validmind/tests/data_validation/ClassImbalance.py +15 -12
- validmind/tests/data_validation/DFGLSArch.py +19 -13
- validmind/tests/data_validation/DatasetDescription.py +17 -11
- validmind/tests/data_validation/DatasetSplit.py +7 -5
- validmind/tests/data_validation/DescriptiveStatistics.py +28 -21
- validmind/tests/data_validation/Duplicates.py +33 -25
- validmind/tests/data_validation/EngleGrangerCoint.py +35 -33
- validmind/tests/data_validation/FeatureTargetCorrelationPlot.py +59 -71
- validmind/tests/data_validation/HighCardinality.py +19 -12
- validmind/tests/data_validation/HighPearsonCorrelation.py +27 -22
- validmind/tests/data_validation/IQROutliersBarPlot.py +13 -10
- validmind/tests/data_validation/IQROutliersTable.py +40 -36
- validmind/tests/data_validation/IsolationForestOutliers.py +21 -14
- validmind/tests/data_validation/JarqueBera.py +70 -0
- validmind/tests/data_validation/KPSS.py +34 -29
- validmind/tests/data_validation/LJungBox.py +66 -0
- validmind/tests/data_validation/LaggedCorrelationHeatmap.py +22 -15
- validmind/tests/data_validation/MissingValues.py +32 -27
- validmind/tests/data_validation/MissingValuesBarPlot.py +25 -21
- validmind/tests/data_validation/PearsonCorrelationMatrix.py +71 -84
- validmind/tests/data_validation/PhillipsPerronArch.py +37 -30
- validmind/tests/data_validation/ProtectedClassesCombination.py +197 -0
- validmind/tests/data_validation/ProtectedClassesDescription.py +130 -0
- validmind/tests/data_validation/ProtectedClassesDisparity.py +133 -0
- validmind/tests/data_validation/ProtectedClassesThresholdOptimizer.py +172 -0
- validmind/tests/data_validation/RollingStatsPlot.py +31 -23
- validmind/tests/data_validation/RunsTest.py +72 -0
- validmind/tests/data_validation/ScatterPlot.py +63 -78
- validmind/tests/data_validation/SeasonalDecompose.py +38 -34
- validmind/tests/{model_validation/statsmodels → data_validation}/ShapiroWilk.py +35 -30
- validmind/tests/data_validation/Skewness.py +35 -37
- validmind/tests/data_validation/SpreadPlot.py +35 -35
- validmind/tests/data_validation/TabularCategoricalBarPlots.py +23 -17
- validmind/tests/data_validation/TabularDateTimeHistograms.py +21 -13
- validmind/tests/data_validation/TabularDescriptionTables.py +51 -16
- validmind/tests/data_validation/TabularNumericalHistograms.py +25 -22
- validmind/tests/data_validation/TargetRateBarPlots.py +21 -14
- validmind/tests/data_validation/TimeSeriesDescription.py +25 -18
- validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py +23 -17
- validmind/tests/data_validation/TimeSeriesFrequency.py +24 -17
- validmind/tests/data_validation/TimeSeriesHistogram.py +33 -32
- validmind/tests/data_validation/TimeSeriesLinePlot.py +17 -10
- validmind/tests/data_validation/TimeSeriesMissingValues.py +15 -10
- validmind/tests/data_validation/TimeSeriesOutliers.py +37 -33
- validmind/tests/data_validation/TooManyZeroValues.py +16 -11
- validmind/tests/data_validation/UniqueRows.py +11 -6
- validmind/tests/data_validation/WOEBinPlots.py +23 -16
- validmind/tests/data_validation/WOEBinTable.py +35 -30
- validmind/tests/data_validation/ZivotAndrewsArch.py +34 -28
- validmind/tests/data_validation/nlp/CommonWords.py +21 -14
- validmind/tests/data_validation/nlp/Hashtags.py +42 -40
- validmind/tests/data_validation/nlp/LanguageDetection.py +33 -14
- validmind/tests/data_validation/nlp/Mentions.py +21 -15
- validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +32 -9
- validmind/tests/data_validation/nlp/Punctuations.py +24 -20
- validmind/tests/data_validation/nlp/Sentiment.py +27 -8
- validmind/tests/data_validation/nlp/StopWords.py +26 -19
- validmind/tests/data_validation/nlp/TextDescription.py +39 -36
- validmind/tests/data_validation/nlp/Toxicity.py +32 -9
- validmind/tests/decorator.py +81 -42
- validmind/tests/model_validation/BertScore.py +36 -27
- validmind/tests/model_validation/BleuScore.py +25 -19
- validmind/tests/model_validation/ClusterSizeDistribution.py +38 -34
- validmind/tests/model_validation/ContextualRecall.py +38 -13
- validmind/tests/model_validation/FeaturesAUC.py +32 -13
- validmind/tests/model_validation/MeteorScore.py +46 -33
- validmind/tests/model_validation/ModelMetadata.py +32 -64
- validmind/tests/model_validation/ModelPredictionResiduals.py +75 -73
- validmind/tests/model_validation/RegardScore.py +30 -14
- validmind/tests/model_validation/RegressionResidualsPlot.py +10 -5
- validmind/tests/model_validation/RougeScore.py +36 -30
- validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +30 -14
- validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +27 -30
- validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +68 -63
- validmind/tests/model_validation/TokenDisparity.py +31 -23
- validmind/tests/model_validation/ToxicityScore.py +26 -17
- validmind/tests/model_validation/embeddings/ClusterDistribution.py +24 -20
- validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +30 -27
- validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py +7 -5
- validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +32 -23
- validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py +7 -5
- validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py +15 -11
- validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +29 -29
- validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +34 -25
- validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +38 -26
- validmind/tests/model_validation/embeddings/StabilityAnalysis.py +40 -1
- validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +18 -17
- validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +40 -45
- validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +17 -19
- validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +29 -25
- validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +38 -28
- validmind/tests/model_validation/ragas/AnswerCorrectness.py +5 -4
- validmind/tests/model_validation/ragas/AnswerRelevance.py +5 -4
- validmind/tests/model_validation/ragas/AnswerSimilarity.py +5 -4
- validmind/tests/model_validation/ragas/AspectCritique.py +12 -6
- validmind/tests/model_validation/ragas/ContextEntityRecall.py +9 -8
- validmind/tests/model_validation/ragas/ContextPrecision.py +5 -4
- validmind/tests/model_validation/ragas/ContextRecall.py +5 -4
- validmind/tests/model_validation/ragas/ContextUtilization.py +155 -0
- validmind/tests/model_validation/ragas/Faithfulness.py +5 -4
- validmind/tests/model_validation/ragas/NoiseSensitivity.py +152 -0
- validmind/tests/model_validation/ragas/utils.py +6 -0
- validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py +19 -12
- validmind/tests/model_validation/sklearn/AdjustedRandIndex.py +22 -17
- validmind/tests/model_validation/sklearn/ClassifierPerformance.py +27 -25
- validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py +7 -5
- validmind/tests/model_validation/sklearn/ClusterPerformance.py +40 -78
- validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +15 -17
- validmind/tests/model_validation/sklearn/CompletenessScore.py +17 -11
- validmind/tests/model_validation/sklearn/ConfusionMatrix.py +22 -15
- validmind/tests/model_validation/sklearn/FeatureImportance.py +95 -0
- validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py +7 -7
- validmind/tests/model_validation/sklearn/HomogeneityScore.py +19 -12
- validmind/tests/model_validation/sklearn/HyperParametersTuning.py +35 -30
- validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py +10 -5
- validmind/tests/model_validation/sklearn/MinimumAccuracy.py +32 -32
- validmind/tests/model_validation/sklearn/MinimumF1Score.py +23 -23
- validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py +15 -10
- validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py +26 -19
- validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +38 -18
- validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +32 -26
- validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +8 -6
- validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +24 -17
- validmind/tests/model_validation/sklearn/ROCCurve.py +12 -7
- validmind/tests/model_validation/sklearn/RegressionErrors.py +74 -130
- validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py +27 -12
- validmind/tests/model_validation/sklearn/{RegressionModelsPerformanceComparison.py → RegressionPerformance.py} +18 -20
- validmind/tests/model_validation/sklearn/RegressionR2Square.py +55 -94
- validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py +32 -13
- validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +36 -32
- validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +66 -5
- validmind/tests/model_validation/sklearn/SilhouettePlot.py +27 -19
- validmind/tests/model_validation/sklearn/TrainingTestDegradation.py +25 -18
- validmind/tests/model_validation/sklearn/VMeasure.py +14 -13
- validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +7 -5
- validmind/tests/model_validation/statsmodels/AutoARIMA.py +24 -18
- validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py +73 -104
- validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +59 -32
- validmind/tests/model_validation/statsmodels/GINITable.py +44 -77
- validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +33 -34
- validmind/tests/model_validation/statsmodels/Lilliefors.py +27 -24
- validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +86 -119
- validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +100 -0
- validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +14 -9
- validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +17 -13
- validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +46 -43
- validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py +38 -36
- validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +30 -28
- validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py +18 -11
- validmind/tests/model_validation/statsmodels/ScorecardHistogram.py +75 -107
- validmind/tests/ongoing_monitoring/FeatureDrift.py +10 -6
- validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py +31 -25
- validmind/tests/ongoing_monitoring/PredictionCorrelation.py +29 -21
- validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py +31 -23
- validmind/tests/prompt_validation/Bias.py +14 -11
- validmind/tests/prompt_validation/Clarity.py +16 -14
- validmind/tests/prompt_validation/Conciseness.py +7 -5
- validmind/tests/prompt_validation/Delimitation.py +23 -22
- validmind/tests/prompt_validation/NegativeInstruction.py +7 -5
- validmind/tests/prompt_validation/Robustness.py +12 -10
- validmind/tests/prompt_validation/Specificity.py +13 -11
- validmind/tests/prompt_validation/ai_powered_test.py +6 -0
- validmind/tests/run.py +68 -23
- validmind/unit_metrics/__init__.py +81 -144
- validmind/unit_metrics/classification/{sklearn/Accuracy.py → Accuracy.py} +1 -1
- validmind/unit_metrics/classification/{sklearn/F1.py → F1.py} +1 -1
- validmind/unit_metrics/classification/{sklearn/Precision.py → Precision.py} +1 -1
- validmind/unit_metrics/classification/{sklearn/ROC_AUC.py → ROC_AUC.py} +1 -2
- validmind/unit_metrics/classification/{sklearn/Recall.py → Recall.py} +1 -1
- validmind/unit_metrics/regression/{sklearn/AdjustedRSquaredScore.py → AdjustedRSquaredScore.py} +1 -1
- validmind/unit_metrics/regression/GiniCoefficient.py +1 -1
- validmind/unit_metrics/regression/HuberLoss.py +1 -1
- validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py +1 -1
- validmind/unit_metrics/regression/{sklearn/MeanAbsoluteError.py → MeanAbsoluteError.py} +1 -1
- validmind/unit_metrics/regression/MeanAbsolutePercentageError.py +1 -1
- validmind/unit_metrics/regression/MeanBiasDeviation.py +1 -1
- validmind/unit_metrics/regression/{sklearn/MeanSquaredError.py → MeanSquaredError.py} +1 -1
- validmind/unit_metrics/regression/QuantileLoss.py +1 -1
- validmind/unit_metrics/regression/{sklearn/RSquaredScore.py → RSquaredScore.py} +1 -1
- validmind/unit_metrics/regression/{sklearn/RootMeanSquaredError.py → RootMeanSquaredError.py} +1 -1
- validmind/utils.py +4 -0
- validmind/vm_models/dataset/dataset.py +2 -0
- validmind/vm_models/figure.py +5 -0
- validmind/vm_models/test/metric.py +1 -0
- validmind/vm_models/test/result_wrapper.py +143 -158
- validmind/vm_models/test/threshold_test.py +1 -0
- {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/METADATA +4 -3
- validmind-2.5.18.dist-info/RECORD +324 -0
- validmind/tests/data_validation/ANOVAOneWayTable.py +0 -138
- validmind/tests/data_validation/BivariateFeaturesBarPlots.py +0 -142
- validmind/tests/data_validation/BivariateHistograms.py +0 -117
- validmind/tests/data_validation/HeatmapFeatureCorrelations.py +0 -124
- validmind/tests/data_validation/MissingValuesRisk.py +0 -88
- validmind/tests/model_validation/ModelMetadataComparison.py +0 -59
- validmind/tests/model_validation/sklearn/FeatureImportanceComparison.py +0 -83
- validmind/tests/model_validation/statsmodels/JarqueBera.py +0 -73
- validmind/tests/model_validation/statsmodels/LJungBox.py +0 -66
- validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py +0 -135
- validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +0 -103
- validmind/tests/model_validation/statsmodels/RunsTest.py +0 -71
- validmind-2.5.8.dist-info/RECORD +0 -318
- {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/LICENSE +0 -0
- {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/WHEEL +0 -0
- {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,324 @@
|
|
1
|
+
validmind/__init__.py,sha256=UfmzPwUCdUWbWq3zPqqmq4jw0_kfl3hX4U72p_seE4I,3700
|
2
|
+
validmind/__version__.py,sha256=5_8qftjKVqZpY9nQNjOXCjjbJi71PBjLUyEj4SwrM4M,23
|
3
|
+
validmind/ai/test_descriptions.py,sha256=BUJz-aZ3eu_i4LI16P8MD1ek_GfeB263CWks9T6W3Iw,7419
|
4
|
+
validmind/ai/test_result_description/config.yaml,sha256=E1gPd-uv-MzdrWZA_rP6LSk8pVmkYijx6v78hZ8ceL0,787
|
5
|
+
validmind/ai/test_result_description/context.py,sha256=tIdhPsrphomeTXdDcFE04kPYKbDNDPy2K8Xxg-dWWo0,2331
|
6
|
+
validmind/ai/test_result_description/image_processing.py,sha256=JNaO1zyM9293WWuyzUp1meQQbHuut0XN4kKUGzQTwYY,4061
|
7
|
+
validmind/ai/test_result_description/system.jinja,sha256=BjMvZCC3UXEH8p3VPpnHtGjhnqnbNcEG2_kYZ_QZrgg,2358
|
8
|
+
validmind/ai/test_result_description/user.jinja,sha256=kyWJK9RcBKvtPf6O2rEzCAHAdUFEIlAwK-exLhtoPRI,630
|
9
|
+
validmind/ai/utils.py,sha256=TEXII_S5CpkpczzSyHwTlqLcPMLnPBJWEBR6QFMKh1U,3421
|
10
|
+
validmind/api_client.py,sha256=arMEyVMNTlHnbThOTVhXV2BvKy7JlBKKv-pcG-ICigU,19228
|
11
|
+
validmind/client.py,sha256=Fi9WmDTt6J3KWJDpvkXy8CnSn00Xqwqf2qcV2rCTx8Y,18910
|
12
|
+
validmind/client_config.py,sha256=azf-0u8xSxNa99o4qCQNb67fw36HZ9ES_Q82XM39Ukc,1398
|
13
|
+
validmind/datasets/__init__.py,sha256=oYfcvW7BAyUgpghBOnTeGbQF6tpFAWg38rRirdLr8m8,262
|
14
|
+
validmind/datasets/classification/__init__.py,sha256=HlTOBLyb6IorRYmAhP3AIyX-l-NyemyDjV8BBOdrCrY,1787
|
15
|
+
validmind/datasets/classification/customer_churn.py,sha256=pqw6wjMF7KIDgUKX2KLm3IcIV7QdS2mmRAV_EhWwKLM,3802
|
16
|
+
validmind/datasets/classification/datasets/bank_customer_churn.csv,sha256=b0muNg38DpowgKjhBCSti7k_j1tDJMy2tydz3tAEAL4,545707
|
17
|
+
validmind/datasets/classification/datasets/taiwan_credit.csv,sha256=fe19VfV30li7rdydnXpbqC372JCdf_HvDc3mMlWNbXE,2897191
|
18
|
+
validmind/datasets/classification/taiwan_credit.py,sha256=nj6JyfcyAfaYgh60T3LdBZsCpzRBsMf0RjYMvedHzuQ,1469
|
19
|
+
validmind/datasets/cluster/digits.py,sha256=E600pX6QPrqndfr73kwZ1sTNk0hC5kNj4Fhs8zz8bQo,2097
|
20
|
+
validmind/datasets/credit_risk/__init__.py,sha256=vK0wyUcA2mpjasNR-EaBj_0MdPhJw5KK8xlrKj_xl68,295
|
21
|
+
validmind/datasets/credit_risk/datasets/lending_club_biased.csv.gz,sha256=PdsyEqHtfShtfl_xoNWva2Ofyfx5hmrLhowPka4hLew,6266192
|
22
|
+
validmind/datasets/credit_risk/datasets/lending_club_loan_data_2007_2014_clean.csv.gz,sha256=bAgdfmUxjYOdZMPvoHtKr_GLoXNAX04KUTfjn2L62eE,5493810
|
23
|
+
validmind/datasets/credit_risk/lending_club.py,sha256=oscdu1zmDytSU6dJwinl97si4LDdzMBTFUgiJialRmE,11403
|
24
|
+
validmind/datasets/credit_risk/lending_club_bias.py,sha256=8_Xf1qxCTUPv1wYHYkjabO2WtQsfVudJ6eje3phQUrc,4461
|
25
|
+
validmind/datasets/llm/rag/__init__.py,sha256=v8BygB6rGECoMIXv2_I1lVUAfPJ_gVo0GgVKhzk60h4,264
|
26
|
+
validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_1.csv,sha256=8Ae8TD5Yh6rQ67HMCu7iKipj5tyOOhzylZqLppAeKzs,24095
|
27
|
+
validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_2.csv,sha256=PV7eD-h_KWwLzboCPCAEg2LD4XMVO3tS1cWpu18V6Ok,24520
|
28
|
+
validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_3.csv,sha256=BEqBELuSjn5JXV3aGrriTBC4mZ--pH9iEWRIzDgu12Y,24417
|
29
|
+
validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_4.csv,sha256=HFaf8oJmEYwHht-QM_Um4X7lLpWcP2TswcwjXp7fsPw,24854
|
30
|
+
validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_5.csv,sha256=jJuRVsDbtv3ky8mJVHzpK_4bSlnIZH-hDW6a8DGGvfY,24551
|
31
|
+
validmind/datasets/llm/rag/rfp.py,sha256=mlx4I1ipMoPplZOqRPza6XEN5D4FE2xc6_SSuGOkgqk,1234
|
32
|
+
validmind/datasets/nlp/__init__.py,sha256=lu2-SGOSECgrxhDtHdlh_FsbpsFtuZ4DbLSL1sww5nc,323
|
33
|
+
validmind/datasets/nlp/cnn_dailymail.py,sha256=_N_a19nk7uaGQdDAEpSO-XHshV_8U6BH6s76Pmmi3eI,3692
|
34
|
+
validmind/datasets/nlp/datasets/Covid_19.csv,sha256=cwAJHgek3JWUhtZQIiC9-wRWycxbiod6nyZikf09iKE,11545066
|
35
|
+
validmind/datasets/nlp/datasets/cnn_dailymail_100_with_predictions.csv,sha256=Z-twNp-uRCA736YCQ2FK_95uZUc8nBtKd2ZJh_j6n2U,608859
|
36
|
+
validmind/datasets/nlp/datasets/cnn_dailymail_500_with_predictions.csv,sha256=g-TKvZHmnysaE1jW8OR42x119Ilo1S-V6sD2nf1BHyw,3072969
|
37
|
+
validmind/datasets/nlp/datasets/sentiments_with_predictions.csv,sha256=zwYI-XjUy72XqD0om-cMVYMrEUsL36u4rPAwsicoQtg,754686
|
38
|
+
validmind/datasets/nlp/twitter_covid_19.py,sha256=PtBOh6pri6pVQKpR0ivQfXy4Wcom40G9-dyYgcv0jFI,878
|
39
|
+
validmind/datasets/regression/__init__.py,sha256=wBcJyMyX4U6XjY6Y-aLozHdbjQlXbeFgB2YqFTk2kVU,1653
|
40
|
+
validmind/datasets/regression/california_housing.py,sha256=dZHVZ7ufR5ZVfsBlaIlQtEgBUNGuXjEuZm1OrwRl4KY,1046
|
41
|
+
validmind/datasets/regression/datasets/fred/CPIAUCSL.csv,sha256=giBJ0OrbA6HgptbEGpsTs6CCuEAcxrln6HGtrNYDgwY,15834
|
42
|
+
validmind/datasets/regression/datasets/fred/CSUSHPISA.csv,sha256=x09-rwYwf5HQzf8ythBDlNqJlviLDPinZvEDKud-wgU,9105
|
43
|
+
validmind/datasets/regression/datasets/fred/DRSFRMACBS.csv,sha256=jHqAF0zyR6dQLlaQcl3mX6t1Sg2i-nxj4U3Zz3l8xsE,2093
|
44
|
+
validmind/datasets/regression/datasets/fred/FEDFUNDS.csv,sha256=PEBnuvgIfP1rzClUquUDO-hnYrYIgN9eNKmdhFuGvMM,13274
|
45
|
+
validmind/datasets/regression/datasets/fred/GDP.csv,sha256=xHRD-gmrwU-NrPODoG84CnKgqYXU2_iKzNj6afwsiKg,6061
|
46
|
+
validmind/datasets/regression/datasets/fred/GDPC1.csv,sha256=MIp1GhButxSeK8a2-Zx1GWtb_6AjW2x58eUnn9VrQQM,6201
|
47
|
+
validmind/datasets/regression/datasets/fred/GS10.csv,sha256=R_8Kxcjl30PWAdPPa_7sG6ux5fJa3WjnS-djrmZkxc0,13538
|
48
|
+
validmind/datasets/regression/datasets/fred/GS3.csv,sha256=xXr5gcsPhpd8A0VQHIYeXVMr5n0C1w391se_mN-xIbk,13506
|
49
|
+
validmind/datasets/regression/datasets/fred/GS5.csv,sha256=-xzwzvYXGleV1jZSMeFWC2wMn9cB4WuOFfN_GrJxCj8,13514
|
50
|
+
validmind/datasets/regression/datasets/fred/MORTGAGE30US.csv,sha256=QSdHbEiVGOFtW8cb2pkNW7K8eJKoGc2lHKPPizw3ZkM,44040
|
51
|
+
validmind/datasets/regression/datasets/fred/UNRATE.csv,sha256=ZPHfCYKzgzGgRKPqr7L5rqQVLZGicIb9l1HtGmHHhTk,13572
|
52
|
+
validmind/datasets/regression/datasets/fred_loan_rates.csv,sha256=x5yYUlrab607QLmYm37wxq8ls-gA4gx2Dr7yiDF3_tI,107835
|
53
|
+
validmind/datasets/regression/datasets/fred_loan_rates_test_1.csv,sha256=arukRZYiYDn_zL4VnbIeoIiybsijajrWXjQ3J8do8nk,2634
|
54
|
+
validmind/datasets/regression/datasets/fred_loan_rates_test_2.csv,sha256=arukRZYiYDn_zL4VnbIeoIiybsijajrWXjQ3J8do8nk,2634
|
55
|
+
validmind/datasets/regression/datasets/fred_loan_rates_test_3.csv,sha256=pCznzePHsQFfAv9r6NMQqfZ9f2sAFquuqMiKIrry0TU,2736
|
56
|
+
validmind/datasets/regression/datasets/fred_loan_rates_test_4.csv,sha256=FBxkMcc-sauImJ2RKL1VDa5EqU501OoKU4zSwL2A1e0,3355
|
57
|
+
validmind/datasets/regression/datasets/fred_loan_rates_test_5.csv,sha256=qPFYcPRQgKYrsOEWjumrY-27n4E0r7IQIiAY8CtD8yc,3866
|
58
|
+
validmind/datasets/regression/datasets/leanding_club_loan_rates.csv,sha256=1mePKtdNXg8ZG-VVSPLtOlCJm_3qSqoK5qP0_klxdF8,11624
|
59
|
+
validmind/datasets/regression/fred.py,sha256=NpydiYfBPfClE8C5ZO_FisGBS09CulAIn1-yrz_LP4k,5707
|
60
|
+
validmind/datasets/regression/fred_timeseries.py,sha256=FJsPI8FGvFKJgpOOQMibdcW48QmJc5j5RBXZGeKFgt8,6665
|
61
|
+
validmind/datasets/regression/lending_club.py,sha256=QM8RTuy0ijRfbHm9Ye8_-vQY_X61sGRwG0HUDpn-oSQ,2536
|
62
|
+
validmind/datasets/regression/models/fred_loan_rates_model_1.pkl,sha256=RUpaUJC7WCqc5jwzV4vPujtQlNpVbcJhJ4N5F9Qk59s,40067
|
63
|
+
validmind/datasets/regression/models/fred_loan_rates_model_2.pkl,sha256=J1ukMdeFoxRlC1vAm7YV39aANncAU1VQVAFSyjlDPUk,48314
|
64
|
+
validmind/datasets/regression/models/fred_loan_rates_model_3.pkl,sha256=IogZPcUQc1F_v11fR6KWT-nRt5JzvK5f7p4Hrw7vLps,40063
|
65
|
+
validmind/datasets/regression/models/fred_loan_rates_model_4.pkl,sha256=cSxhpcrI4hCbxCwZwE2-nr7KObbWpDii3NzpECoXmmM,48292
|
66
|
+
validmind/datasets/regression/models/fred_loan_rates_model_5.pkl,sha256=FkNLHq9xkPMbYks_vyMjFL371mw9SQYbP1iX9lY4Ljo,60343
|
67
|
+
validmind/errors.py,sha256=qy7Gp6Uom5J6WmLw-CpE5zaTN96SiN7kJjDGBaJdoxY,8023
|
68
|
+
validmind/html_templates/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
69
|
+
validmind/html_templates/content_blocks.py,sha256=LTsv2Hr_drUUZVLEfY2JcT4z0M-45RGYy2sFInt1VKY,3998
|
70
|
+
validmind/input_registry.py,sha256=8C_mrhgLT72hwbt_lo3ZwXb5NCyIcSuCQI1HdJ3bK2A,1042
|
71
|
+
validmind/logging.py,sha256=J1Y1dYCH1dtkoYCHoXMOQH_B7EO4fJytWRDrDqZZz8U,5204
|
72
|
+
validmind/models/__init__.py,sha256=lraTbNwoKckXNP3Dbyj-euI78UTkZ_w5wpUOb8l5nWs,729
|
73
|
+
validmind/models/foundation.py,sha256=ZdVmwwRVbjgqMyfjguyf9Lka_KcgJnDD7ho8zv0gQok,1842
|
74
|
+
validmind/models/function.py,sha256=xLNtgzRiCfF4jrIedHrX1lmCR-92fB3fVDzLS7el4SM,1785
|
75
|
+
validmind/models/huggingface.py,sha256=DMHekLpWi6c4N0svh-3G0NYYwzxPXOvqiU95M4QffUs,2253
|
76
|
+
validmind/models/metadata.py,sha256=PMcdYuACkSPvuG8io5BhZeMwclQr_q79mXbvd1SC-7I,1665
|
77
|
+
validmind/models/pipeline.py,sha256=nSskKWxaS4SGmx_B0IAvS5ogDZyh6tdx_aUkyxSXt88,2051
|
78
|
+
validmind/models/pytorch.py,sha256=aAEUWtISwLh-PMvHkcLwBEbBStAByt4J-NpK-Ndv38E,1826
|
79
|
+
validmind/models/r_model.py,sha256=eYdpCREgBpYv-PxJDuG91I77OOAx3-43FoaYT560ziE,7172
|
80
|
+
validmind/models/sklearn.py,sha256=lOCJlP2wvd5IJHtBS1XG9FXrtIvO_f8xm2Qp1UdsiBw,2406
|
81
|
+
validmind/template.py,sha256=-j7UmM9v7I_VIZltWrmX5scbeDTbRDrR7hTQUzy6AVg,7307
|
82
|
+
validmind/test_suites/__init__.py,sha256=wC_ZgVykFZAOrs1LTM7bE8r7mTSjxF54F9amUdT3nT4,6953
|
83
|
+
validmind/test_suites/classifier.py,sha256=0ZE3z5X_ZewTvmwQ3cVGJQh7dPgg0IlqcQshJJxCFWQ,4003
|
84
|
+
validmind/test_suites/cluster.py,sha256=Wc2NViwivjiuiJMwrnGbOJYeZ3ApN8usWlOPYZYWAgE,2276
|
85
|
+
validmind/test_suites/embeddings.py,sha256=sBQRMjlp7kzsvPkA0qkgmAr4yzUrHMmXSEfSHMkn-_s,1949
|
86
|
+
validmind/test_suites/llm.py,sha256=SqHGBBoJsQ53RQtVhRB9j9ImN7NRRcgoSUW8uQgbLKs,2026
|
87
|
+
validmind/test_suites/nlp.py,sha256=KiHOoItyLMuRzdjcnJ2rdqOI1Ty47zklG_vJZrDsHxQ,1344
|
88
|
+
validmind/test_suites/parameters_optimization.py,sha256=mYVk8eVQneW5oRUuWztYv2NrV7S_5j_9O6S8v5xLEaQ,731
|
89
|
+
validmind/test_suites/regression.py,sha256=knVRJGW5k91CpfNJHjLdkjItSUVg-LBwqMEYcYD7jGM,1915
|
90
|
+
validmind/test_suites/statsmodels_timeseries.py,sha256=cL9H8-qPAX_l37Bshk3xLu3vKFfq0yWphk1XXBbxcts,962
|
91
|
+
validmind/test_suites/summarization.py,sha256=VKwcbf9PD-hnPkDlYJWZKW4nHyOnI4q6Y3toj2al0F0,644
|
92
|
+
validmind/test_suites/tabular_datasets.py,sha256=WE4eLzRCfiqAxRqXnZFRR3Lo_u-TI6KM6hmTbR8rg5o,1798
|
93
|
+
validmind/test_suites/text_data.py,sha256=YGVGBB05356jN9Gzcy5CHShRzo1fm5mKsZY7YBq0cYU,739
|
94
|
+
validmind/test_suites/time_series.py,sha256=3hzWc9gXHBf8aMecD-1YYGFS5RI1o8A-eor9akeBzSU,4403
|
95
|
+
validmind/tests/__init__.py,sha256=niYvgTHmjS5E42mJMCrzq1vP8PTKCWxVsqSkAaw2wsE,1036
|
96
|
+
validmind/tests/__types__.py,sha256=hpNSChkR53muc_IgNuCT5grYeU0PLbpXujmFji4fAlM,9955
|
97
|
+
validmind/tests/_store.py,sha256=G604L9g-XIJz8u7BLbHVVVcbx96tDYjAAciaF7wJoiM,2743
|
98
|
+
validmind/tests/data_validation/ACFandPACFPlot.py,sha256=gnEo0wbtXioK6XYo1KWgMTTX_c_dn61Y613T7tkOYnI,4897
|
99
|
+
validmind/tests/data_validation/ADF.py,sha256=a_LF0TV14c-B-wLtZW7buX_9mtWIpIYkcqOoSaOIl9Q,5053
|
100
|
+
validmind/tests/data_validation/AutoAR.py,sha256=dWhpzGTDfgJINLyu6E893KUkm4aJJEbWe4-M7Emz1EE,6631
|
101
|
+
validmind/tests/data_validation/AutoMA.py,sha256=_O-Io05ZnJvZLJ9tLFWXRFjyGbO7ULifkau0AfLRDRw,7087
|
102
|
+
validmind/tests/data_validation/AutoSeasonality.py,sha256=dmYNoKVuuJPVELK-xAy1NNNobApeLlpMk7dDp7nXNAo,7982
|
103
|
+
validmind/tests/data_validation/AutoStationarity.py,sha256=E_IgRNkd6DkxuLMBoaTDF-c2peGGMCPO6ltOaZ5lcS0,7841
|
104
|
+
validmind/tests/data_validation/BivariateScatterPlots.py,sha256=IFOihmr8Kf96Cvgs-HzDjMWKERZ26GYH8D_yzw0C3So,3330
|
105
|
+
validmind/tests/data_validation/BoxPierce.py,sha256=XdWf4vqdirQc3GdK19lfUtpG06QuFy42wkl6loxQLt8,3432
|
106
|
+
validmind/tests/data_validation/ChiSquaredFeaturesTable.py,sha256=il0L9AwlI2ukk1MOVECu7tddsbJTFD1m8vK2-tpvBTA,4077
|
107
|
+
validmind/tests/data_validation/ClassImbalance.py,sha256=10ZyWMy4KUAsDo5bifqNE9Wsu1PlpSpsxw0NY0BjHWo,6884
|
108
|
+
validmind/tests/data_validation/DFGLSArch.py,sha256=_Ri9A-d9sesn1hhqzMQczkdDzkiVtGQcwOxiNd6nOf0,5364
|
109
|
+
validmind/tests/data_validation/DatasetDescription.py,sha256=KSHe3nZUoaiJNBcIeS8CC8VVr--YR802_SEgJcYMyxI,11387
|
110
|
+
validmind/tests/data_validation/DatasetSplit.py,sha256=Zixsc6VxeXQ3u1wHR1sctEdPsfq62q-dPTkF5Fxid9E,5065
|
111
|
+
validmind/tests/data_validation/DescriptiveStatistics.py,sha256=AZmnpkM-ZYk6xA95L2d693bwveSKpaaAeEwh9jC_Kno,6328
|
112
|
+
validmind/tests/data_validation/Duplicates.py,sha256=u0h9nTke0ekuNCEze2yGH50ckhVPMBXCTh2ve-57uDY,5542
|
113
|
+
validmind/tests/data_validation/EngleGrangerCoint.py,sha256=mLOeOVr9hw2BNmL0KQZP_VISXR0QQWDmb5nOrygZ9X8,5248
|
114
|
+
validmind/tests/data_validation/FeatureTargetCorrelationPlot.py,sha256=OwEEavtIY23HRH1CcdCJnTlbj1hn9mCLe9mG8Yw0EOs,4249
|
115
|
+
validmind/tests/data_validation/HighCardinality.py,sha256=gh3eGcQbW328lOLE-d7SCQL7HFUgru0lFnzj4yMR1Oc,5078
|
116
|
+
validmind/tests/data_validation/HighPearsonCorrelation.py,sha256=gY-qeddWAxXR79IUNonurDVMREp0HAlVnRi8PZRWbXQ,5573
|
117
|
+
validmind/tests/data_validation/IQROutliersBarPlot.py,sha256=CeR8fqo2YhIWTqQSyE2fD5_uMnuXQfk4UN5XC_GQp0I,6276
|
118
|
+
validmind/tests/data_validation/IQROutliersTable.py,sha256=QfXsSMFoggL835aKJo-DBHZt_mjqA9V-hf-jx_4ApsA,5489
|
119
|
+
validmind/tests/data_validation/IsolationForestOutliers.py,sha256=lWBn08eAuSNcLJWTNocfn8O9T6L47zlHWGDMuunPlrw,4847
|
120
|
+
validmind/tests/data_validation/JarqueBera.py,sha256=KnUfQLrhV3KKqyGOA49pwxRLQ6wl6txjkxO1pqXFKS4,3159
|
121
|
+
validmind/tests/data_validation/KPSS.py,sha256=qdNLHtdDO7zIUhwjmNjUL1pc_IBYzn5kx3Nr5M7IDJ0,4959
|
122
|
+
validmind/tests/data_validation/LJungBox.py,sha256=8ujAg7ZcEYquYxHEqBZkD8otBnSpu6OH3kkyKVsX_c4,2895
|
123
|
+
validmind/tests/data_validation/LaggedCorrelationHeatmap.py,sha256=sdrDkCgtjymxqkfr0v1SZWHyd7nCpvbmosznwi9StpA,6016
|
124
|
+
validmind/tests/data_validation/MissingValues.py,sha256=hrAD6YhI5_tmQEcAddYmI3vWEWbIs2Q6R8N1sUAh_Iw,4048
|
125
|
+
validmind/tests/data_validation/MissingValuesBarPlot.py,sha256=Zp7cMLb7iAAC2ZbEFMBmTP4hAxKuRejL__24309mKe8,6210
|
126
|
+
validmind/tests/data_validation/PearsonCorrelationMatrix.py,sha256=GB8Ca8UT4ARBV7Oeha53UL0aTOrvUrwrwsJHKYeEL74,3797
|
127
|
+
validmind/tests/data_validation/PhillipsPerronArch.py,sha256=_YN_RVr0vOrb117XgxOl3W3YPcxfPNcTI_kf0r3CI38,4867
|
128
|
+
validmind/tests/data_validation/ProtectedClassesCombination.py,sha256=pPj797BrBZ-WKqsDiMz7Vas3qIVYoNe8IlxEYsdrMTY,6403
|
129
|
+
validmind/tests/data_validation/ProtectedClassesDescription.py,sha256=j1ymn-gRZUBVRR3BML2PytyFfOGGFGlcoAveMzTn04M,5203
|
130
|
+
validmind/tests/data_validation/ProtectedClassesDisparity.py,sha256=jnvugR9Zj87g3ELgq1J4FrKNtY0BQJqfhbvyUI19mNI,5154
|
131
|
+
validmind/tests/data_validation/ProtectedClassesThresholdOptimizer.py,sha256=PZYK8yBip3kMUCMK02b7L0BQswQC_fY6vFAK1uFpXHs,5611
|
132
|
+
validmind/tests/data_validation/RollingStatsPlot.py,sha256=St9LAWSawZ7YmNrCOzVH4Oi_tu6iYvi1WPS9R6ePRQU,5888
|
133
|
+
validmind/tests/data_validation/RunsTest.py,sha256=0xbi4K86m-qL1nxQPeZIp_HWo3NiDv6MPGaeRhvL6I8,3475
|
134
|
+
validmind/tests/data_validation/ScatterPlot.py,sha256=WeyeAq3QMY_OpzssY5S07a4Y46qiad6h2NunSVCYrQo,3423
|
135
|
+
validmind/tests/data_validation/SeasonalDecompose.py,sha256=fYdN2Kj-WoOE-fOJKDAgGrmZZPlNRgMj-2bgpsenRfI,9454
|
136
|
+
validmind/tests/data_validation/ShapiroWilk.py,sha256=AhqJwbmKAy8lpac5ELM_hKt_60PA3DCUqO8kCgnVgQE,3132
|
137
|
+
validmind/tests/data_validation/Skewness.py,sha256=B0lmASCEEJI3-BzPVhUNr6qf-XWc0QHwqeYEig9pvUY,4515
|
138
|
+
validmind/tests/data_validation/SpreadPlot.py,sha256=7bABKP6sSyh0eqn4k8f6e0045-y8yzv4lFgS-7YxY64,4343
|
139
|
+
validmind/tests/data_validation/TabularCategoricalBarPlots.py,sha256=hYDWqG5TJOVuPVhzNTf2mGu2rYPTK_qAaiqDJkj9ecY,4132
|
140
|
+
validmind/tests/data_validation/TabularDateTimeHistograms.py,sha256=GSCdrsHDkqz_geJUczw2we_N594_XxLCscBlZk6_RG4,3961
|
141
|
+
validmind/tests/data_validation/TabularDescriptionTables.py,sha256=zXtxoFY3M1AtM_l5FefaXqinq-RGBKQK6Few1K0FV-E,7939
|
142
|
+
validmind/tests/data_validation/TabularNumericalHistograms.py,sha256=KtRvRlXcYCB6-gljevU3kBojbN4imqvXgemFQrlJrMo,4091
|
143
|
+
validmind/tests/data_validation/TargetRateBarPlots.py,sha256=C8_vs-L7CePI3hJAbcxde4Me0-R4YcYL3nh8aQGVLqs,5705
|
144
|
+
validmind/tests/data_validation/TimeSeriesDescription.py,sha256=yajTp5miCgEo2qdiK0iSSDX9jUuoL47bW8tJMKe6Lws,3142
|
145
|
+
validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py,sha256=gxiksG5BW441GrKTkKZQlAaQ42-8BtMUsjo5EAsTdeE,3198
|
146
|
+
validmind/tests/data_validation/TimeSeriesFrequency.py,sha256=l5HZLDjk06S9w1hE6blSgqzNcfQEKtr7eeZzDdiZlYY,7211
|
147
|
+
validmind/tests/data_validation/TimeSeriesHistogram.py,sha256=AGX5-gGGLjulHjLkujnnHXfVs-zM-OCnUlRcRpaQHVo,3083
|
148
|
+
validmind/tests/data_validation/TimeSeriesLinePlot.py,sha256=okTVueh2BwRxNJ8CT5_PgtGDHqxtEROSUdnMkZeJ8CM,4142
|
149
|
+
validmind/tests/data_validation/TimeSeriesMissingValues.py,sha256=n_qzeOJPcn2CKQxIlq6TkcjC9crjLnIMGZZZwSM8vUc,7325
|
150
|
+
validmind/tests/data_validation/TimeSeriesOutliers.py,sha256=51n7PsoIghPJleFRmt1MW4T_8gNg9rg4F9XQKdk7mCQ,8870
|
151
|
+
validmind/tests/data_validation/TooManyZeroValues.py,sha256=3zWUIjpue6c0vl_GzyTA27ZMoGdexArpyHbF9WU6k_k,5762
|
152
|
+
validmind/tests/data_validation/UniqueRows.py,sha256=oSrg5nWu_LvzzA1hXnfnOr1pIChDbcS1E8PQiU7tM30,4473
|
153
|
+
validmind/tests/data_validation/WOEBinPlots.py,sha256=nnV3NGJ4Bu3QA3MRyT0tTsOtmqIHbiPmFTcbg5ns294,6914
|
154
|
+
validmind/tests/data_validation/WOEBinTable.py,sha256=E8s4bWKQKuywSCn-2oRwVliWb0BCaC2ovG1FnNSIc90,4600
|
155
|
+
validmind/tests/data_validation/ZivotAndrewsArch.py,sha256=sI2dc7bFyscAAQTi1eeAgWAiAC3qKxePK8epZmcMBX0,5006
|
156
|
+
validmind/tests/data_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
157
|
+
validmind/tests/data_validation/nlp/CommonWords.py,sha256=Vt0TcWOo2ndATxa7SIl6PcFT2SPELsBFx_QGIeENJRE,4149
|
158
|
+
validmind/tests/data_validation/nlp/Hashtags.py,sha256=NOgPg0V_E8O34YDlyviIjGxSjacVYHk_IuXb-z7n2QI,4178
|
159
|
+
validmind/tests/data_validation/nlp/LanguageDetection.py,sha256=axbhQeOOPmmFFhxV0b605qress5cVv--XlvK_CVRU6E,3055
|
160
|
+
validmind/tests/data_validation/nlp/Mentions.py,sha256=oDKDUAOA7r3E3HOV4UI5Q84aNIcoAiMMnjkjgJgKpqs,4594
|
161
|
+
validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py,sha256=ypIYPw3GJYngYzkj-d6Q4m_2YiQTSjAKJOJkwQ0y49g,2996
|
162
|
+
validmind/tests/data_validation/nlp/Punctuations.py,sha256=ESV9yl276Qubm1UYP9b_7zD33JX5g3BayZpTwqqlHiM,3681
|
163
|
+
validmind/tests/data_validation/nlp/Sentiment.py,sha256=AgKMyXU0gzMX6j2p1YYQY3zcW92jeTl9ScSZMJtkS7c,2780
|
164
|
+
validmind/tests/data_validation/nlp/StopWords.py,sha256=vr-nSIYxp-IX0xrIMbmMiY2Jj8pwjibXfLBPaAEZpMQ,6079
|
165
|
+
validmind/tests/data_validation/nlp/TextDescription.py,sha256=cYGILdpglV7fWMl_cG2HxfKKmnB7R5swBP3wRYDDbas,8071
|
166
|
+
validmind/tests/data_validation/nlp/Toxicity.py,sha256=-t51-sh8S5vkHeQHK8nRveqC0HqSh_C7xJBsGkOXW_o,2541
|
167
|
+
validmind/tests/data_validation/nlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
168
|
+
validmind/tests/decorator.py,sha256=vPcECxNZTYEkeaaZKGiuKOOuJYs0H344Bg5XcFmvei0,11276
|
169
|
+
validmind/tests/load.py,sha256=Bzr2DhOx4wRNNo0OpZTeEdedzRdnO-KPJk_E1ArnjGo,8766
|
170
|
+
validmind/tests/metadata.py,sha256=wAfWWD3s1GAlWsabjUUfoKlnAQhOn17Rym4y-gC4iCE,1370
|
171
|
+
validmind/tests/model_validation/BertScore.py,sha256=q-zdZazfVdgzr7Fgf4a4veEDblycwbepEkyG1RI5mKc,5279
|
172
|
+
validmind/tests/model_validation/BleuScore.py,sha256=eRK39XpbXXgXFpm5PFzj34U_ekHUMFW4G0sYWeZpy8g,4921
|
173
|
+
validmind/tests/model_validation/ClusterSizeDistribution.py,sha256=URML_uRs7KIaubLz49X2i_Dv5yCDOJ4hD8ADJWxV9dA,3795
|
174
|
+
validmind/tests/model_validation/ContextualRecall.py,sha256=5X8BerhosRRY-K_MqLs15forokWDA3he-teQTufGGVs,5113
|
175
|
+
validmind/tests/model_validation/FeaturesAUC.py,sha256=NrL4aw8IvmkHxjMqrQ3mvued994ze41N1iCvU4RHI1U,4733
|
176
|
+
validmind/tests/model_validation/MeteorScore.py,sha256=YhX2hBpT32QGkSrpidv-H-4HkQEwRMeU5Il6cMuCSwY,5114
|
177
|
+
validmind/tests/model_validation/ModelMetadata.py,sha256=UiDANMTqAy0DURnnTzImYNS-3Z8sE4yFjg1c2S5YFS8,2521
|
178
|
+
validmind/tests/model_validation/ModelPredictionResiduals.py,sha256=__LVaG5QzwaN98fT5YqrUfMoywmyI_JuzWmy5G0co2Q,3485
|
179
|
+
validmind/tests/model_validation/RegardScore.py,sha256=-8nZYaG2xvyKAnqGpEI_9_uKoC4bLDMqDYlElx3Anss,5276
|
180
|
+
validmind/tests/model_validation/RegressionResidualsPlot.py,sha256=a11Hiciu7kJYMRx7q_nDBWpv2Wa-v6FgTR3YxwqUE0w,4962
|
181
|
+
validmind/tests/model_validation/RougeScore.py,sha256=_HEz2xXaO_uxsXQtu_rI-OVUk1kMCVv5YwG4C9jcA4U,5446
|
182
|
+
validmind/tests/model_validation/TimeSeriesPredictionWithCI.py,sha256=2eOhV5huRnEjV0y5MqHQP-9uHJnjBASrc-uhsgHFdjU,4812
|
183
|
+
validmind/tests/model_validation/TimeSeriesPredictionsPlot.py,sha256=zoxONIl_a_mfOLuxnfVEMNQ3jL72pp5J4BDAQP5e-P0,2280
|
184
|
+
validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py,sha256=JIyER-vwXnQyHdxmpCULYm4iMkB_LaLHHQuzyygumbw,4000
|
185
|
+
validmind/tests/model_validation/TokenDisparity.py,sha256=1U33c6P-5jz1YOIoOho1dKrOEAxiWcpcI2bgCeZ--wg,4391
|
186
|
+
validmind/tests/model_validation/ToxicityScore.py,sha256=N-iOXgCXAwFUltjuqnPtHzZPdzMkCRvKK6mv9eWL1vU,5296
|
187
|
+
validmind/tests/model_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
188
|
+
validmind/tests/model_validation/embeddings/ClusterDistribution.py,sha256=-Ep1A7Axg3n1bpPQNfvdilJQ2xz22iv3TG_P4BVU5xU,3460
|
189
|
+
validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py,sha256=JGn1OjHlj6gIUYSty41zLWHy76_ls759NxK_gUY7HZ8,4757
|
190
|
+
validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py,sha256=hgN1gj6GdCwJqtcIlAmX7A5n1a9g8bCIWDxtRhpvDUY,3411
|
191
|
+
validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py,sha256=gPyNq00lOxBQyzxAtWVnn2zdCHvTSzgZJCek4cI0FmU,3511
|
192
|
+
validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py,sha256=s5Bi8fGL2DaXVCBkTkHSrGosOyYqOHhYhoZvrFTUvxE,4184
|
193
|
+
validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py,sha256=WjEVaEB_ge8EolrdLuNLHQftQA0i71L4aihlL9Kt_Kg,4287
|
194
|
+
validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py,sha256=kymHc2gphG_S_8dY5AKcVBfdLcjpVjrVLLnmG30dkjc,4231
|
195
|
+
validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py,sha256=xRANuVFf9CEVje9h1mTrmF2dXnkc03RDTzOt-aQdnc4,3342
|
196
|
+
validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py,sha256=Je1x9-iLUyG8kec0bz1TTUnvyy0xpwi6b82xh3Qc12w,3921
|
197
|
+
validmind/tests/model_validation/embeddings/StabilityAnalysis.py,sha256=6YydKmQSQxn9HTLhgQXXhXRnTPdDJAwm18MeHlrhxig,6513
|
198
|
+
validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py,sha256=Ykx-VIzFEPdsDUelhqYqK-p_8OVGGcM13BMPJAbl4Es,3777
|
199
|
+
validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py,sha256=0aPLXOsmie9T02WPqshE-o6jpLEs1lUMy0Hu6AEI4aI,5269
|
200
|
+
validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py,sha256=BzQeWSjhfP3qZ_sk9WHc3v-m_mH61oJBoWNNVnj9PoY,4181
|
201
|
+
validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py,sha256=bJspUwA6PyIpmLAQ_o5E_CE6t6QhvpU6qzIdk8qZWEQ,4620
|
202
|
+
validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py,sha256=7b-VONVp8yu5lG_U-h7VKb2k9edXbVai9W7TkiozQPc,4578
|
203
|
+
validmind/tests/model_validation/ragas/AnswerCorrectness.py,sha256=Qbi2nLCo_XdaGdhry6V8kUg4NsRHd9V771IyoVHQfhs,5150
|
204
|
+
validmind/tests/model_validation/ragas/AnswerRelevance.py,sha256=lIuZ6rZlT-BjT008Ph5MuXBZfg9SdUgo09D64oOosOo,5009
|
205
|
+
validmind/tests/model_validation/ragas/AnswerSimilarity.py,sha256=5vX-zSx8KI4bUtQrrEVC__kN1yN-cRvL99OddHMKyy8,4469
|
206
|
+
validmind/tests/model_validation/ragas/AspectCritique.py,sha256=wgbUxyhiUjSwBvVwbgJZ2h_8U6ug0ypcbN24dALaPlQ,6462
|
207
|
+
validmind/tests/model_validation/ragas/ContextEntityRecall.py,sha256=-l4hDhRhsKrfRlnTv_39LtXQ37PIvOXNTP_bwy2lwwQ,4924
|
208
|
+
validmind/tests/model_validation/ragas/ContextPrecision.py,sha256=d-m5U-1PNHVdWn3E9l9Cn0jD1Z_X3DZwbx1sIe0J9LI,4642
|
209
|
+
validmind/tests/model_validation/ragas/ContextRecall.py,sha256=0k7-4McTYN5EBwD--GuCu3ZDAiifD8P3b9L6CkAl-ug,4579
|
210
|
+
validmind/tests/model_validation/ragas/ContextUtilization.py,sha256=Odpkg01bCySeAKMb6ptNuU0vBZ0cn5SwOJuBQ5OWvFk,5956
|
211
|
+
validmind/tests/model_validation/ragas/Faithfulness.py,sha256=PKi63VJRo67WNFfjZCa72ujkKGMKWOrJwxXS73nSFmo,4537
|
212
|
+
validmind/tests/model_validation/ragas/NoiseSensitivity.py,sha256=7YJOwSsJpGcqiS_6N-pXcJPmmdMcrzAIhutit3aMRm8,5540
|
213
|
+
validmind/tests/model_validation/ragas/utils.py,sha256=VCc3NcNLIwrYQ7RvuJ1ev4XhI86TKDVNzI8o12aHFHc,3363
|
214
|
+
validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py,sha256=ayGZ2IVJxSFVhR_Vnb2xp8dHpMXzvAg8fK_uuBUgOLU,2832
|
215
|
+
validmind/tests/model_validation/sklearn/AdjustedRandIndex.py,sha256=bvXwgLQFQy7LvgXV5pL8vq5uizPFT5fmewLF0bQrwIE,2679
|
216
|
+
validmind/tests/model_validation/sklearn/ClassifierPerformance.py,sha256=Oa9vv7DxcP89M5jp5rc1chE4XwQiAltTbt1DIBHBKx0,5665
|
217
|
+
validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py,sha256=-5NBT13O3WfFUphXfTNe86PHmzf63kELY5enizIJvUc,5415
|
218
|
+
validmind/tests/model_validation/sklearn/ClusterPerformance.py,sha256=UOLfJkOHYBL4CV-cprHjqdAgKz-C2qqASblEXiI6vB4,3330
|
219
|
+
validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py,sha256=lh_AnIR2VELVlFlkok-fW0BEOIId1JZMdX0rF6flaMc,8383
|
220
|
+
validmind/tests/model_validation/sklearn/CompletenessScore.py,sha256=mhLcmE309u5mbwppa7PBegeH9_SK-1zvXrsR2SS3K4w,2510
|
221
|
+
validmind/tests/model_validation/sklearn/ConfusionMatrix.py,sha256=CMfMVWXnlHnzjaBpEzrMrDI1W-xmUhIfUi1SPMaXGm0,5873
|
222
|
+
validmind/tests/model_validation/sklearn/FeatureImportance.py,sha256=krS-Lnw3yh0XaPVKqjf7dy65y3GE-BGZ8sUcVP2ln_o,3480
|
223
|
+
validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py,sha256=rMijOpZ8LqugWNFzD-aMcX26TShqyG-L9xC_H2SmokE,2991
|
224
|
+
validmind/tests/model_validation/sklearn/HomogeneityScore.py,sha256=Okkn1OJom4MK9vkMOQS2PsdgQ8bKunXnw5xSjVIWhB4,2712
|
225
|
+
validmind/tests/model_validation/sklearn/HyperParametersTuning.py,sha256=COdHaNXlkQI3YL1ZFtwx65I9bp4PZEdJ1RcgbJGRX1I,4404
|
226
|
+
validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py,sha256=-KjvBxgM2RAa8GW9SYdacWpIHygk9wQ0GWOkom-FUC0,5906
|
227
|
+
validmind/tests/model_validation/sklearn/MinimumAccuracy.py,sha256=Kj0_Hqn8h7TfPjo2XwsvMobf7ZBAkdqi0igvH3jab7g,4854
|
228
|
+
validmind/tests/model_validation/sklearn/MinimumF1Score.py,sha256=4UKyrT-Bwn6aS-c7p-pZM9LHuoBfyRNZCEZyChrQjYA,4444
|
229
|
+
validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py,sha256=WNr5Pfc61st9mE1089sPmtfnXmJjXBEldocyzwIu4Lw,5071
|
230
|
+
validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py,sha256=WziKMHh-HrOuo7ARb-tVGy94fkXmjIJpAGq5wT60Mn0,6142
|
231
|
+
validmind/tests/model_validation/sklearn/OverfitDiagnosis.py,sha256=xU6tO8cdJKf9Rg-_kvtbZpBeV6z7ZEM9jY2TX338MTk,13542
|
232
|
+
validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py,sha256=l5R8UVaR04NktuY2rwAwGs9Fbqe73U8BEq75pPnU8hw,4839
|
233
|
+
validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py,sha256=v_7PT72-TplO1IeUZ84tfapzVdfvLMbopATUOm1RxQI,10068
|
234
|
+
validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py,sha256=o568TQtOzyxT0-B25tMhLnnxCekwXrzIGnAzch9igyI,4373
|
235
|
+
validmind/tests/model_validation/sklearn/ROCCurve.py,sha256=1KKqEJpNBLuPEWafS37Rsgj8azYOkeudMgfOgNwneEc,5825
|
236
|
+
validmind/tests/model_validation/sklearn/RegressionErrors.py,sha256=qj6l5RQGG7E6aOcaFxO8WReEEdJKfXrNp7wecWuCSaI,3713
|
237
|
+
validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py,sha256=em0NPWZVKq-nqdbFiiifQcsONGd8xek0_kwdtx6HXjE,3609
|
238
|
+
validmind/tests/model_validation/sklearn/RegressionPerformance.py,sha256=BoK3PTQNbJBtV-nHnlf7pc39Jhf_nV7AGE3FaO0w7L8,5610
|
239
|
+
validmind/tests/model_validation/sklearn/RegressionR2Square.py,sha256=jttavnKU1LqmTeTBbmGFH5qxP5Ag_TERYHoAb7ggeBQ,3100
|
240
|
+
validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py,sha256=TfBL_Mnk4hWWkXXB8OHzboWYuGk0e_gHmIDscKzLx9M,3377
|
241
|
+
validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py,sha256=nS_vDWqcJfb0wrr5lhIAUHOiJUNLtJE8bmZ-T8aRjuo,14326
|
242
|
+
validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py,sha256=1ea14RM8pUgNiRv_N1AjOYglvqZi-sGnNkvhH1Nhcns,11322
|
243
|
+
validmind/tests/model_validation/sklearn/SilhouettePlot.py,sha256=-5tm21WpvjryeEli1TnWzAhM_eG5tfpsTPAm-J8Af-Q,6191
|
244
|
+
validmind/tests/model_validation/sklearn/TrainingTestDegradation.py,sha256=t8o6KRytwX_e8nlsZYXgX0xBAi8BO5wbuNystcNwDrE,7166
|
245
|
+
validmind/tests/model_validation/sklearn/VMeasure.py,sha256=MH7sN5UZ4VqK3YCL_xTK_VcXRg6_ae5Srm_1lFmgxiE,2729
|
246
|
+
validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py,sha256=rR8uyOrjCtwevvSHM5mASfOKkwpYkOPKIbythv4UOdg,14127
|
247
|
+
validmind/tests/model_validation/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
248
|
+
validmind/tests/model_validation/statsmodels/AutoARIMA.py,sha256=G13cl2WHLJH4d_3DY4mKTkY5UHtyE3gKg9zHwFTFooE,5136
|
249
|
+
validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py,sha256=hXn0vBL-tvMR28sao1wnrnMEPl8gbl7eBYO6uW1WA-s,4625
|
250
|
+
validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py,sha256=wY36j1-bzEUyXwmymQILXHLiI-tIKze0gI8dOMkYyyI,3632
|
251
|
+
validmind/tests/model_validation/statsmodels/GINITable.py,sha256=voBMdMDMxfzEsolBCKDJIXUC64DV3CR5xtw35uudjT0,4276
|
252
|
+
validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py,sha256=cHelOkjkZDUgffEl9Nz-uD_TFzJhc0ojNO0MexvQqjk,3804
|
253
|
+
validmind/tests/model_validation/statsmodels/Lilliefors.py,sha256=1vOHrdmFg6IRZX5ysv5f4yaqQbYv_dQGjgiUSSqW_ag,3950
|
254
|
+
validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py,sha256=-c-FBs0QgXipWV-YQymXem9HdPx8-Fr-Yjwr4LAOm9k,4109
|
255
|
+
validmind/tests/model_validation/statsmodels/RegressionCoeffs.py,sha256=NH6Qi-1fFxIO2kzma6NhVm8U7JWkYA_gKAXsasgZIX0,4175
|
256
|
+
validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py,sha256=GZpmDfIguYBDT5pXK6JfAqDvWmO0ADhOjNQ4EW7oin4,5572
|
257
|
+
validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py,sha256=w5HVx6wIFBIFjNXR0J6qWOrqVGyGwMY6ZW5vvfIql6k,6538
|
258
|
+
validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py,sha256=F20DQaotT_SafEbcvR9FxvRkkY4kImthJYwXnzR4EIg,7725
|
259
|
+
validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py,sha256=T6xqo3AW3b4aF7uPhuhkoOoq3jJIJ6p4L9Thk_4PS2g,6964
|
260
|
+
validmind/tests/model_validation/statsmodels/RegressionModelSummary.py,sha256=s3Of1qvLa8Ct1XcPEYGBEh0fqhAYaVJR-QONktwslaU,3656
|
261
|
+
validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py,sha256=rU6L4198YCJiulWSNYdbbPaIwVVb48AuD5GJ0l_zWhc,4822
|
262
|
+
validmind/tests/model_validation/statsmodels/ScorecardHistogram.py,sha256=0hnB6icasRKT_Cl0YxMEpIuaUKgi5scXHmV_nP9RmkI,4650
|
263
|
+
validmind/tests/model_validation/statsmodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
264
|
+
validmind/tests/model_validation/statsmodels/statsutils.py,sha256=s1J7lHJ4kAcp_gGI0LAsaIFxbSqPrqXanxgtDI_Kig0,495
|
265
|
+
validmind/tests/ongoing_monitoring/FeatureDrift.py,sha256=qsBoolRGgW6sdUa8F-c4gsf6liFTyO4hCY-2lJv7YNY,6234
|
266
|
+
validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py,sha256=QDaYzf2b3n4yU_Rq3kBRJA49jIl1RP-n2d4KikZ76_c,3323
|
267
|
+
validmind/tests/ongoing_monitoring/PredictionCorrelation.py,sha256=_TCXU4DUDkHc21WjUk-mv7vjKctO4Wt7r4jR_Qf970w,3432
|
268
|
+
validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py,sha256=eSgit3i3WgmVW-CYp6hvor6g--RoY0NVduDoiy0F9xI,2483
|
269
|
+
validmind/tests/prompt_validation/Bias.py,sha256=lU8kEDNNraOrrGL46ciruUJOV7sY45u4glFvtfcmunU,7028
|
270
|
+
validmind/tests/prompt_validation/Clarity.py,sha256=FVZDfq4M8Z6u77GCu1m4-ncV7ZN6pUgtwmAOvYAx6S4,6178
|
271
|
+
validmind/tests/prompt_validation/Conciseness.py,sha256=OJCy388HOKilSp450GGo3ALVYG7wbIedNjuyGizL2Ik,5953
|
272
|
+
validmind/tests/prompt_validation/Delimitation.py,sha256=x9Wm83kb9cLuzZsqbwqjj2NYNDJu7o00c7CoF0wbm7M,5323
|
273
|
+
validmind/tests/prompt_validation/NegativeInstruction.py,sha256=Xo6O3B-jtRksCJ5Tx_TpbEGOV1ntjQBd7k15ODXSlMQ,6620
|
274
|
+
validmind/tests/prompt_validation/Robustness.py,sha256=S3wH1Raau8flIh2xw2C6GVUr9Z5B0WI7Z-kQ3PnuZ1c,6770
|
275
|
+
validmind/tests/prompt_validation/Specificity.py,sha256=ldG_yw-YJSlc6_m2bVUAlVXbl6A-xuALocl-SGI9YSI,6053
|
276
|
+
validmind/tests/prompt_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
277
|
+
validmind/tests/prompt_validation/ai_powered_test.py,sha256=bjbLPFcb4_M28foTpIBiQ4j-EyLMT689Bu4qPdwzRN8,2189
|
278
|
+
validmind/tests/run.py,sha256=Xvx_hc7cbeDsXY-s5OpZAo2mHm2pbKoWGvYJXoBYpSo,17553
|
279
|
+
validmind/tests/test_providers.py,sha256=47xe5eb5ufvj1jmhdRsbSvDQTXSDpFDFNeXg3xtXwhw,5320
|
280
|
+
validmind/tests/utils.py,sha256=kNrxfUYbj4DwmkZtpp_1rG4GMUGxYEhvqnYR_A7qAKM,471
|
281
|
+
validmind/unit_metrics/__init__.py,sha256=gbWM5GNltGcT26ZSyCbuVCVlcHdnFzGrv4Wsrzpv9As,5127
|
282
|
+
validmind/unit_metrics/classification/Accuracy.py,sha256=XKl1n7N77XRfE7jt6cHem_C-nmroxFjpIqSja-RZtmA,454
|
283
|
+
validmind/unit_metrics/classification/F1.py,sha256=fhvmwITE6GIll1zf5qlzGKqzpXl8Kx1vj0anAcQKQbQ,411
|
284
|
+
validmind/unit_metrics/classification/Precision.py,sha256=XB4N8RiPq_CeDHvKy_ao1GyP0NfXPrBnGfQzFh63WJw,432
|
285
|
+
validmind/unit_metrics/classification/ROC_AUC.py,sha256=38gasIuSyRcmZVNEl3CrtAgBQbwEV80eml3xkTXsmAY,1021
|
286
|
+
validmind/unit_metrics/classification/Recall.py,sha256=K50CXgzfcKk4PJig1KlynA2_OSeOv4n0IvhVMVOjjLk,423
|
287
|
+
validmind/unit_metrics/composite.py,sha256=EJiSucxFkNyrl1JhrVTxmfOFsYL5TvJwe4fNiVNgTFo,8158
|
288
|
+
validmind/unit_metrics/regression/AdjustedRSquaredScore.py,sha256=l5gDJcuRDe8e3LG47oJrw-vDsL9ji69mhCpub6bjcWc,603
|
289
|
+
validmind/unit_metrics/regression/GiniCoefficient.py,sha256=zc5xz94R37LnZ4hBKqCeIDcDENiaWcRiAgCSpixStVQ,969
|
290
|
+
validmind/unit_metrics/regression/HuberLoss.py,sha256=XA_EHDzcJgRg-92cGHBKIYVJjIV6ydWLbPJPsELLJDM,665
|
291
|
+
validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py,sha256=8TiUIoPApWkpgWdCU6ymgYUDr1bVKXwmgen_SLL1TFg,966
|
292
|
+
validmind/unit_metrics/regression/MeanAbsoluteError.py,sha256=7iv8T-4C8CUI5oZFnH2dqwaAr6M8s-5rtFgmXpXf_2E,465
|
293
|
+
validmind/unit_metrics/regression/MeanAbsolutePercentageError.py,sha256=K2zrN4HQkOY1XAwiKqy9RSKp0Hg2BCQ7vVex29JyGx0,456
|
294
|
+
validmind/unit_metrics/regression/MeanBiasDeviation.py,sha256=UNajOQfI3iHh4p4D9XjexbtEk1KP6R7KIleC8UHoZno,380
|
295
|
+
validmind/unit_metrics/regression/MeanSquaredError.py,sha256=e_4pE33pR_dCSUOfUHVR7Xw2-7xMJnY8GsquJJ7ytPA,437
|
296
|
+
validmind/unit_metrics/regression/QuantileLoss.py,sha256=TYyulr5_zSdheH5LDDs6YY9tgnheFlqTySFgAzhTOqw,455
|
297
|
+
validmind/unit_metrics/regression/RSquaredScore.py,sha256=TJNHFGUoykFxywsnpBysl0qRkOPeKXhm5Az6C3eHrag,394
|
298
|
+
validmind/unit_metrics/regression/RootMeanSquaredError.py,sha256=0r60JaoQIzIE5u99io2G89hWvyrjOmXGmUjLnt61w9g,530
|
299
|
+
validmind/utils.py,sha256=U8gZ_tqkTlqWoqdoyvhhRq0Q8c97W293wPrHNBvpAC4,15999
|
300
|
+
validmind/vm_models/__init__.py,sha256=V5DH-E1Rkvl-HQEkilppVCHBag9MQXkzyoORLW3LSGQ,1210
|
301
|
+
validmind/vm_models/dataset/__init__.py,sha256=U4CxZjdoc0dd9u2AqBl5PJh1UVbzXWNrmundmjLF-qE,346
|
302
|
+
validmind/vm_models/dataset/dataset.py,sha256=idgALhpMdBAl-VlgcxtBXw4QRG48LJ5I8jwnoO9lYHI,25765
|
303
|
+
validmind/vm_models/dataset/utils.py,sha256=VMcPEgwW9oW5D0MCa_MqXCq_sEzzsLLRmS4RaYrsif0,5530
|
304
|
+
validmind/vm_models/figure.py,sha256=YEbb9-BOpQvJRnf-gN8tgo40-UPRC552-nCVnNZi4qY,6817
|
305
|
+
validmind/vm_models/input.py,sha256=qLdqz_bktr4v0YcPha2vFdDvmkC-btT1pH9zBIkt1OY,1046
|
306
|
+
validmind/vm_models/model.py,sha256=Dewux_jTgUAXPgHW6ZtJTa8WvH0WkWsryO43DI9HkMU,6409
|
307
|
+
validmind/vm_models/test/metric.py,sha256=2aUXipqkCqzlh7kKk-rkB0yqtWQMzgjYn8-cBOd_TUs,3408
|
308
|
+
validmind/vm_models/test/metric_result.py,sha256=Bak4GDrMlNq5NtgP5exwlPsKZgz3tWgtC6jZqtHjvqM,1987
|
309
|
+
validmind/vm_models/test/output_template.py,sha256=njqCAMyLxwadkCWhACVskyL9-psTgmUysaeeirTVAX4,1500
|
310
|
+
validmind/vm_models/test/result_summary.py,sha256=QJcIKJUeBf5wW3lyue6ctsi1jKSyoiAIfmjudGJiJtc,2028
|
311
|
+
validmind/vm_models/test/result_wrapper.py,sha256=4oKVLa3WRtxopnT0G7xjLvgT9agOPXSq6EPvKfZe9ak,17336
|
312
|
+
validmind/vm_models/test/test.py,sha256=2Wbte09E4l7fUXwfQije0LQbPeSuh2Wpbyt4ddwyVks,3419
|
313
|
+
validmind/vm_models/test/threshold_test.py,sha256=LeGCcEc0PZk9uNhe7ykZETLwQdeuVfvR-XH4LKfWAI8,3791
|
314
|
+
validmind/vm_models/test/threshold_test_result.py,sha256=EXP-g_e3NsnpkvNgYew030qVUoY6ZTHyuuFUXaq-BuM,1954
|
315
|
+
validmind/vm_models/test_context.py,sha256=SGqoF_OeFC7Fj1jg5CPO1LOpfB7mA1FPwm61SYP8f2o,9475
|
316
|
+
validmind/vm_models/test_suite/runner.py,sha256=aewxadRfoOPH48jes2Gtb3Ju_FWFfVM_9ARIAJHD4wA,6982
|
317
|
+
validmind/vm_models/test_suite/summary.py,sha256=GQRNe2ZvvqjQN0yKmaN7ohAUjRFQIN4YYUYxfOuWN6M,4682
|
318
|
+
validmind/vm_models/test_suite/test.py,sha256=_GfbK36l98SjzgVcucmp0OKBJKqMW3neO7SqJ3EWeps,5049
|
319
|
+
validmind/vm_models/test_suite/test_suite.py,sha256=Cns2wL54v0T5Mv5_HJb3kMeaa4rtycdqT8KxK9_rWEU,6279
|
320
|
+
validmind-2.5.18.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
|
321
|
+
validmind-2.5.18.dist-info/METADATA,sha256=J0Y7Kl8mdReLJ3yMkX-uaVre3lhKzwRhskJLgp3ESlg,4291
|
322
|
+
validmind-2.5.18.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
323
|
+
validmind-2.5.18.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
|
324
|
+
validmind-2.5.18.dist-info/RECORD,,
|
@@ -1,138 +0,0 @@
|
|
1
|
-
# Copyright © 2023-2024 ValidMind Inc. All rights reserved.
|
2
|
-
# See the LICENSE file in the root of this repository for details.
|
3
|
-
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
|
-
|
5
|
-
from dataclasses import dataclass
|
6
|
-
|
7
|
-
import pandas as pd
|
8
|
-
from scipy.stats import f_oneway
|
9
|
-
|
10
|
-
from validmind.vm_models import Metric, ResultSummary, ResultTable, ResultTableMetadata
|
11
|
-
|
12
|
-
|
13
|
-
@dataclass
|
14
|
-
class ANOVAOneWayTable(Metric):
|
15
|
-
"""
|
16
|
-
Applies one-way ANOVA (Analysis of Variance) to identify statistically significant numerical features in the
|
17
|
-
dataset.
|
18
|
-
|
19
|
-
**Purpose**: The ANOVA (Analysis of Variance) One-Way Table metric is utilized to determine whether the mean of
|
20
|
-
numerical variables differs across different groups identified by target or categorical variables. Its primary
|
21
|
-
purpose is to scrutinize the significant impact of categorical variables on numerical ones. This method proves
|
22
|
-
essential in identifying statistically significant features corresponding to the target variable present in the
|
23
|
-
dataset.
|
24
|
-
|
25
|
-
**Test Mechanism**: The testing mechanism involves the ANOVA F-test's performance on each numerical variable
|
26
|
-
against the target. If no specific features are mentioned, all numerical features are tested. A p-value is produced
|
27
|
-
for each test and compared against a certain threshold (default being 0.05 if not specified). If the p-value is
|
28
|
-
less than or equal to this threshold, the feature is marked as 'Pass', indicating significant mean difference
|
29
|
-
across the groups. Otherwise, it's marked as 'Fail'. The test produces a DataFrame that includes variable name, F
|
30
|
-
statistic value, p-value, threshold, and pass/fail status for every numerical variable.
|
31
|
-
|
32
|
-
**Signs of High Risk**:
|
33
|
-
- A large number of 'Fail' results in the ANOVA F-test could signify high risk or underperformance in the model.
|
34
|
-
This issue may arise when multiple numerical variables in the dataset don't exhibit any significant difference
|
35
|
-
across the target variable groups.
|
36
|
-
- Features with high p-values also indicate a high risk as they imply a greater chance of obtaining observed data
|
37
|
-
given that the null hypothesis is true.
|
38
|
-
|
39
|
-
**Strengths**:
|
40
|
-
- The ANOVA One Way Table is highly efficient in identifying statistically significant features by simultaneously
|
41
|
-
comparing group means.
|
42
|
-
- Its flexibility allows the testing of all numerical features in the dataset when no specific ones are mentioned.
|
43
|
-
- This metric provides a convenient method to measure the statistical significance of numerical variables and
|
44
|
-
assists in selecting those variables influencing the classifier's predictions considerably.
|
45
|
-
|
46
|
-
**Limitations**:
|
47
|
-
- This metric assumes that the data is normally distributed, which may not always be the case leading to erroneous
|
48
|
-
test results.
|
49
|
-
- The sensitivity of the F-test to variance changes may hinder this metric's effectiveness, especially for datasets
|
50
|
-
with high variance.
|
51
|
-
- The ANOVA One Way test does not specify which group means differ statistically from others; it strictly asserts
|
52
|
-
the existence of a difference.
|
53
|
-
- The metric fails to provide insights into variable interactions, and significant effects due to these
|
54
|
-
interactions could easily be overlooked.
|
55
|
-
"""
|
56
|
-
|
57
|
-
name = "anova_one_way_table"
|
58
|
-
required_inputs = ["dataset"]
|
59
|
-
default_params = {"features": None, "p_threshold": 0.05}
|
60
|
-
tasks = ["classification"]
|
61
|
-
tags = [
|
62
|
-
"tabular_data",
|
63
|
-
"statistical_test",
|
64
|
-
"multiclass_classification",
|
65
|
-
"binary_classification",
|
66
|
-
"numerical_data",
|
67
|
-
]
|
68
|
-
|
69
|
-
def run(self):
|
70
|
-
features = self.params["features"]
|
71
|
-
p_threshold = self.params["p_threshold"]
|
72
|
-
|
73
|
-
# Select all numerical features if none are specified
|
74
|
-
if features is None:
|
75
|
-
features = self.inputs.dataset.feature_columns_numeric
|
76
|
-
|
77
|
-
anova_results = self.anova_numerical_features(features, p_threshold)
|
78
|
-
|
79
|
-
return self.cache_results(
|
80
|
-
{
|
81
|
-
"anova_results": anova_results.to_dict(orient="records"),
|
82
|
-
}
|
83
|
-
)
|
84
|
-
|
85
|
-
def anova_numerical_features(self, features, p_threshold):
|
86
|
-
target_column = self.inputs.dataset.target_column
|
87
|
-
df = self.inputs.dataset.df
|
88
|
-
|
89
|
-
# Ensure the columns exist in the dataframe
|
90
|
-
for var in features:
|
91
|
-
if var not in df.columns:
|
92
|
-
raise ValueError(f"The column '{var}' does not exist in the dataframe.")
|
93
|
-
if target_column not in df.columns:
|
94
|
-
raise ValueError(
|
95
|
-
f"The target column '{target_column}' does not exist in the dataframe."
|
96
|
-
)
|
97
|
-
|
98
|
-
# Ensure the target variable is not included in num_vars
|
99
|
-
if target_column in features:
|
100
|
-
features.remove(target_column)
|
101
|
-
|
102
|
-
results = []
|
103
|
-
|
104
|
-
for var in features:
|
105
|
-
# Perform the ANOVA test
|
106
|
-
class_0 = df[df[target_column] == 0][var]
|
107
|
-
class_1 = df[df[target_column] == 1][var]
|
108
|
-
|
109
|
-
f, p = f_oneway(class_0, class_1)
|
110
|
-
|
111
|
-
# Add the result to the list of results
|
112
|
-
results.append(
|
113
|
-
[var, f, p, p_threshold, "Pass" if p <= p_threshold else "Fail"]
|
114
|
-
)
|
115
|
-
|
116
|
-
# Convert results to a DataFrame and return
|
117
|
-
results_df = pd.DataFrame(
|
118
|
-
results,
|
119
|
-
columns=["Variable", "F statistic", "p-value", "Threshold", "Pass/Fail"],
|
120
|
-
)
|
121
|
-
|
122
|
-
# Sort by p-value in ascending order
|
123
|
-
results_df = results_df.sort_values(by="p-value")
|
124
|
-
|
125
|
-
return results_df
|
126
|
-
|
127
|
-
def summary(self, metric_value):
|
128
|
-
anova_results_table = metric_value["anova_results"]
|
129
|
-
return ResultSummary(
|
130
|
-
results=[
|
131
|
-
ResultTable(
|
132
|
-
data=anova_results_table,
|
133
|
-
metadata=ResultTableMetadata(
|
134
|
-
title="ANOVA F-Test Results for Numerical Features"
|
135
|
-
),
|
136
|
-
)
|
137
|
-
]
|
138
|
-
)
|
@@ -1,142 +0,0 @@
|
|
1
|
-
# Copyright © 2023-2024 ValidMind Inc. All rights reserved.
|
2
|
-
# See the LICENSE file in the root of this repository for details.
|
3
|
-
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
|
-
|
5
|
-
from dataclasses import dataclass
|
6
|
-
|
7
|
-
import matplotlib.colors as mcolors
|
8
|
-
import matplotlib.pyplot as plt
|
9
|
-
import numpy as np
|
10
|
-
|
11
|
-
from validmind.vm_models import Figure, Metric
|
12
|
-
|
13
|
-
|
14
|
-
@dataclass
|
15
|
-
class BivariateFeaturesBarPlots(Metric):
|
16
|
-
"""
|
17
|
-
Generates visual bar plots to analyze the relationship between paired features within categorical data in the model.
|
18
|
-
|
19
|
-
**Purpose**: The BivariateFeaturesBarPlots metric is intended to perform a visual analysis of categorical data
|
20
|
-
within the model. The goal is to assess and understand the specific relationships between various feature pairs,
|
21
|
-
while simultaneously highlighting the model's target variable. This form of bivariate plotting is immensely
|
22
|
-
beneficial in uncovering trends, correlations, patterns, or inconsistencies that may not be readily apparent within
|
23
|
-
raw tabular data.
|
24
|
-
|
25
|
-
**Test Mechanism**: These tests establish bar plots for each pair of features defined within the parameters. The
|
26
|
-
dataset is grouped by each feature pair and then calculates the mean of the target variable within each specific
|
27
|
-
grouping. Each group is represented via a bar in the plot, and the height of this bar aligns with the calculated
|
28
|
-
mean. The colors assigned to these bars are based on the categorical section to which they pertain: these colors
|
29
|
-
can either come from a colormap or generated anew if the total number of categories exceeds the current colormap's
|
30
|
-
scope.
|
31
|
-
|
32
|
-
**Signs of High Risk**:
|
33
|
-
- If any values are found missing or inconsistent within the feature pairs.
|
34
|
-
- If there exist large discrepancies or irregularities between the mean values of certain categories within feature
|
35
|
-
pairs.
|
36
|
-
- If the parameters for feature pairs have not been specified or if they were wrongly defined.
|
37
|
-
|
38
|
-
**Strengths**:
|
39
|
-
- The BivariateFeaturesBarPlots provides a clear, visual comprehension of the relationships between feature pairs
|
40
|
-
and the target variable.
|
41
|
-
- It allows an easy comparison between different categories within feature pairs.
|
42
|
-
- The metric can handle a diverse array of categorical data, enhancing its universal applicability.
|
43
|
-
- It is highly customizable due to its allowance for users to define feature pairs based on their specific
|
44
|
-
requirements.
|
45
|
-
|
46
|
-
**Limitations**:
|
47
|
-
- It can only be used with categorical data, limiting its usability with numerical or textual data.
|
48
|
-
- It relies on manual input for feature pairs, which could result in the overlooking of important feature pairs if
|
49
|
-
not chosen judiciously.
|
50
|
-
- The generated bar plots could become overly cluttered and difficult to decipher when dealing with feature pairs
|
51
|
-
with a large number of categories.
|
52
|
-
- This metric only provides a visual evaluation and fails to offer any numerical or statistical measures to
|
53
|
-
quantify the relationship between feature pairs.
|
54
|
-
"""
|
55
|
-
|
56
|
-
name = "bivariate_features_bar_plots"
|
57
|
-
required_inputs = ["dataset"]
|
58
|
-
default_params = {"features_pairs": None}
|
59
|
-
tasks = ["classification"]
|
60
|
-
tags = [
|
61
|
-
"tabular_data",
|
62
|
-
"categorical_data",
|
63
|
-
"binary_classification",
|
64
|
-
"multiclass_classification",
|
65
|
-
"visualization",
|
66
|
-
]
|
67
|
-
|
68
|
-
def run(self):
|
69
|
-
features_pairs = self.params["features_pairs"]
|
70
|
-
|
71
|
-
if features_pairs is None:
|
72
|
-
raise ValueError(
|
73
|
-
"The features_pairs parameter is required for this metric."
|
74
|
-
)
|
75
|
-
|
76
|
-
figures = self.plot_bivariate_bar(features_pairs)
|
77
|
-
|
78
|
-
return self.cache_results(figures=figures)
|
79
|
-
|
80
|
-
def plot_bivariate_bar(self, features_pairs):
|
81
|
-
status_var = self.inputs.dataset.target_column
|
82
|
-
figures = []
|
83
|
-
for x, hue in features_pairs.items():
|
84
|
-
df = self.inputs.dataset.df
|
85
|
-
|
86
|
-
means = df.groupby([x, hue])[status_var].mean().unstack().reset_index()
|
87
|
-
hue_categories = means.columns[1:]
|
88
|
-
|
89
|
-
n = len(hue_categories)
|
90
|
-
width = 1 / (n + 1)
|
91
|
-
|
92
|
-
plt.figure()
|
93
|
-
|
94
|
-
# Number of colors in the colormap
|
95
|
-
num_colors = len(plt.cm.get_cmap("tab10").colors)
|
96
|
-
|
97
|
-
if n <= num_colors:
|
98
|
-
# Use the colors from the colormap if there are enough
|
99
|
-
color_palette = {
|
100
|
-
category: color
|
101
|
-
for category, color in zip(
|
102
|
-
hue_categories, plt.cm.get_cmap("tab10").colors
|
103
|
-
)
|
104
|
-
}
|
105
|
-
else:
|
106
|
-
# Generate a larger set of colors if needed
|
107
|
-
hues = np.linspace(0, 1, n + 1)[
|
108
|
-
:-1
|
109
|
-
] # exclude the last value which is equal to 1
|
110
|
-
color_palette = {
|
111
|
-
category: mcolors.hsv_to_rgb(
|
112
|
-
(h, 1, 1)
|
113
|
-
) # replace 1, 1 with desired saturation and value
|
114
|
-
for category, h in zip(hue_categories, hues)
|
115
|
-
}
|
116
|
-
|
117
|
-
for i, hue_category in enumerate(hue_categories):
|
118
|
-
plt.bar(
|
119
|
-
np.arange(len(means)) + i * width,
|
120
|
-
means[hue_category],
|
121
|
-
color=color_palette[hue_category],
|
122
|
-
alpha=0.7,
|
123
|
-
label=hue_category,
|
124
|
-
width=width,
|
125
|
-
)
|
126
|
-
|
127
|
-
plt.title(x + " by " + hue)
|
128
|
-
plt.xlabel(x)
|
129
|
-
plt.ylabel("Default Ratio")
|
130
|
-
plt.xticks(ticks=np.arange(len(means)), labels=means[x], rotation=90)
|
131
|
-
plt.legend()
|
132
|
-
plt.show()
|
133
|
-
|
134
|
-
figures.append(
|
135
|
-
Figure(
|
136
|
-
for_object=self, key=f"{self.key}:{x}_{hue}", figure=plt.figure()
|
137
|
-
)
|
138
|
-
)
|
139
|
-
|
140
|
-
plt.close("all")
|
141
|
-
|
142
|
-
return figures
|