validmind 2.5.8__py3-none-any.whl → 2.5.18__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (233) hide show
  1. validmind/__version__.py +1 -1
  2. validmind/ai/test_descriptions.py +80 -119
  3. validmind/ai/test_result_description/config.yaml +29 -0
  4. validmind/ai/test_result_description/context.py +73 -0
  5. validmind/ai/test_result_description/image_processing.py +124 -0
  6. validmind/ai/test_result_description/system.jinja +39 -0
  7. validmind/ai/test_result_description/user.jinja +25 -0
  8. validmind/api_client.py +89 -43
  9. validmind/client.py +2 -2
  10. validmind/client_config.py +11 -14
  11. validmind/datasets/credit_risk/__init__.py +1 -0
  12. validmind/datasets/credit_risk/datasets/lending_club_biased.csv.gz +0 -0
  13. validmind/datasets/credit_risk/lending_club_bias.py +142 -0
  14. validmind/datasets/regression/fred_timeseries.py +67 -138
  15. validmind/template.py +1 -0
  16. validmind/test_suites/__init__.py +0 -2
  17. validmind/test_suites/statsmodels_timeseries.py +1 -1
  18. validmind/test_suites/summarization.py +0 -1
  19. validmind/test_suites/time_series.py +0 -43
  20. validmind/tests/__types__.py +14 -15
  21. validmind/tests/data_validation/ACFandPACFPlot.py +15 -13
  22. validmind/tests/data_validation/ADF.py +31 -24
  23. validmind/tests/data_validation/AutoAR.py +9 -9
  24. validmind/tests/data_validation/AutoMA.py +23 -16
  25. validmind/tests/data_validation/AutoSeasonality.py +18 -16
  26. validmind/tests/data_validation/AutoStationarity.py +21 -16
  27. validmind/tests/data_validation/BivariateScatterPlots.py +67 -96
  28. validmind/tests/{model_validation/statsmodels → data_validation}/BoxPierce.py +34 -34
  29. validmind/tests/data_validation/ChiSquaredFeaturesTable.py +85 -124
  30. validmind/tests/data_validation/ClassImbalance.py +15 -12
  31. validmind/tests/data_validation/DFGLSArch.py +19 -13
  32. validmind/tests/data_validation/DatasetDescription.py +17 -11
  33. validmind/tests/data_validation/DatasetSplit.py +7 -5
  34. validmind/tests/data_validation/DescriptiveStatistics.py +28 -21
  35. validmind/tests/data_validation/Duplicates.py +33 -25
  36. validmind/tests/data_validation/EngleGrangerCoint.py +35 -33
  37. validmind/tests/data_validation/FeatureTargetCorrelationPlot.py +59 -71
  38. validmind/tests/data_validation/HighCardinality.py +19 -12
  39. validmind/tests/data_validation/HighPearsonCorrelation.py +27 -22
  40. validmind/tests/data_validation/IQROutliersBarPlot.py +13 -10
  41. validmind/tests/data_validation/IQROutliersTable.py +40 -36
  42. validmind/tests/data_validation/IsolationForestOutliers.py +21 -14
  43. validmind/tests/data_validation/JarqueBera.py +70 -0
  44. validmind/tests/data_validation/KPSS.py +34 -29
  45. validmind/tests/data_validation/LJungBox.py +66 -0
  46. validmind/tests/data_validation/LaggedCorrelationHeatmap.py +22 -15
  47. validmind/tests/data_validation/MissingValues.py +32 -27
  48. validmind/tests/data_validation/MissingValuesBarPlot.py +25 -21
  49. validmind/tests/data_validation/PearsonCorrelationMatrix.py +71 -84
  50. validmind/tests/data_validation/PhillipsPerronArch.py +37 -30
  51. validmind/tests/data_validation/ProtectedClassesCombination.py +197 -0
  52. validmind/tests/data_validation/ProtectedClassesDescription.py +130 -0
  53. validmind/tests/data_validation/ProtectedClassesDisparity.py +133 -0
  54. validmind/tests/data_validation/ProtectedClassesThresholdOptimizer.py +172 -0
  55. validmind/tests/data_validation/RollingStatsPlot.py +31 -23
  56. validmind/tests/data_validation/RunsTest.py +72 -0
  57. validmind/tests/data_validation/ScatterPlot.py +63 -78
  58. validmind/tests/data_validation/SeasonalDecompose.py +38 -34
  59. validmind/tests/{model_validation/statsmodels → data_validation}/ShapiroWilk.py +35 -30
  60. validmind/tests/data_validation/Skewness.py +35 -37
  61. validmind/tests/data_validation/SpreadPlot.py +35 -35
  62. validmind/tests/data_validation/TabularCategoricalBarPlots.py +23 -17
  63. validmind/tests/data_validation/TabularDateTimeHistograms.py +21 -13
  64. validmind/tests/data_validation/TabularDescriptionTables.py +51 -16
  65. validmind/tests/data_validation/TabularNumericalHistograms.py +25 -22
  66. validmind/tests/data_validation/TargetRateBarPlots.py +21 -14
  67. validmind/tests/data_validation/TimeSeriesDescription.py +25 -18
  68. validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py +23 -17
  69. validmind/tests/data_validation/TimeSeriesFrequency.py +24 -17
  70. validmind/tests/data_validation/TimeSeriesHistogram.py +33 -32
  71. validmind/tests/data_validation/TimeSeriesLinePlot.py +17 -10
  72. validmind/tests/data_validation/TimeSeriesMissingValues.py +15 -10
  73. validmind/tests/data_validation/TimeSeriesOutliers.py +37 -33
  74. validmind/tests/data_validation/TooManyZeroValues.py +16 -11
  75. validmind/tests/data_validation/UniqueRows.py +11 -6
  76. validmind/tests/data_validation/WOEBinPlots.py +23 -16
  77. validmind/tests/data_validation/WOEBinTable.py +35 -30
  78. validmind/tests/data_validation/ZivotAndrewsArch.py +34 -28
  79. validmind/tests/data_validation/nlp/CommonWords.py +21 -14
  80. validmind/tests/data_validation/nlp/Hashtags.py +42 -40
  81. validmind/tests/data_validation/nlp/LanguageDetection.py +33 -14
  82. validmind/tests/data_validation/nlp/Mentions.py +21 -15
  83. validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +32 -9
  84. validmind/tests/data_validation/nlp/Punctuations.py +24 -20
  85. validmind/tests/data_validation/nlp/Sentiment.py +27 -8
  86. validmind/tests/data_validation/nlp/StopWords.py +26 -19
  87. validmind/tests/data_validation/nlp/TextDescription.py +39 -36
  88. validmind/tests/data_validation/nlp/Toxicity.py +32 -9
  89. validmind/tests/decorator.py +81 -42
  90. validmind/tests/model_validation/BertScore.py +36 -27
  91. validmind/tests/model_validation/BleuScore.py +25 -19
  92. validmind/tests/model_validation/ClusterSizeDistribution.py +38 -34
  93. validmind/tests/model_validation/ContextualRecall.py +38 -13
  94. validmind/tests/model_validation/FeaturesAUC.py +32 -13
  95. validmind/tests/model_validation/MeteorScore.py +46 -33
  96. validmind/tests/model_validation/ModelMetadata.py +32 -64
  97. validmind/tests/model_validation/ModelPredictionResiduals.py +75 -73
  98. validmind/tests/model_validation/RegardScore.py +30 -14
  99. validmind/tests/model_validation/RegressionResidualsPlot.py +10 -5
  100. validmind/tests/model_validation/RougeScore.py +36 -30
  101. validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +30 -14
  102. validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +27 -30
  103. validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +68 -63
  104. validmind/tests/model_validation/TokenDisparity.py +31 -23
  105. validmind/tests/model_validation/ToxicityScore.py +26 -17
  106. validmind/tests/model_validation/embeddings/ClusterDistribution.py +24 -20
  107. validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +30 -27
  108. validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py +7 -5
  109. validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +32 -23
  110. validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py +7 -5
  111. validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py +15 -11
  112. validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +29 -29
  113. validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +34 -25
  114. validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +38 -26
  115. validmind/tests/model_validation/embeddings/StabilityAnalysis.py +40 -1
  116. validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +18 -17
  117. validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +40 -45
  118. validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +17 -19
  119. validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +29 -25
  120. validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +38 -28
  121. validmind/tests/model_validation/ragas/AnswerCorrectness.py +5 -4
  122. validmind/tests/model_validation/ragas/AnswerRelevance.py +5 -4
  123. validmind/tests/model_validation/ragas/AnswerSimilarity.py +5 -4
  124. validmind/tests/model_validation/ragas/AspectCritique.py +12 -6
  125. validmind/tests/model_validation/ragas/ContextEntityRecall.py +9 -8
  126. validmind/tests/model_validation/ragas/ContextPrecision.py +5 -4
  127. validmind/tests/model_validation/ragas/ContextRecall.py +5 -4
  128. validmind/tests/model_validation/ragas/ContextUtilization.py +155 -0
  129. validmind/tests/model_validation/ragas/Faithfulness.py +5 -4
  130. validmind/tests/model_validation/ragas/NoiseSensitivity.py +152 -0
  131. validmind/tests/model_validation/ragas/utils.py +6 -0
  132. validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py +19 -12
  133. validmind/tests/model_validation/sklearn/AdjustedRandIndex.py +22 -17
  134. validmind/tests/model_validation/sklearn/ClassifierPerformance.py +27 -25
  135. validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py +7 -5
  136. validmind/tests/model_validation/sklearn/ClusterPerformance.py +40 -78
  137. validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +15 -17
  138. validmind/tests/model_validation/sklearn/CompletenessScore.py +17 -11
  139. validmind/tests/model_validation/sklearn/ConfusionMatrix.py +22 -15
  140. validmind/tests/model_validation/sklearn/FeatureImportance.py +95 -0
  141. validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py +7 -7
  142. validmind/tests/model_validation/sklearn/HomogeneityScore.py +19 -12
  143. validmind/tests/model_validation/sklearn/HyperParametersTuning.py +35 -30
  144. validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py +10 -5
  145. validmind/tests/model_validation/sklearn/MinimumAccuracy.py +32 -32
  146. validmind/tests/model_validation/sklearn/MinimumF1Score.py +23 -23
  147. validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py +15 -10
  148. validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py +26 -19
  149. validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +38 -18
  150. validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +32 -26
  151. validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +8 -6
  152. validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +24 -17
  153. validmind/tests/model_validation/sklearn/ROCCurve.py +12 -7
  154. validmind/tests/model_validation/sklearn/RegressionErrors.py +74 -130
  155. validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py +27 -12
  156. validmind/tests/model_validation/sklearn/{RegressionModelsPerformanceComparison.py → RegressionPerformance.py} +18 -20
  157. validmind/tests/model_validation/sklearn/RegressionR2Square.py +55 -94
  158. validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py +32 -13
  159. validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +36 -32
  160. validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +66 -5
  161. validmind/tests/model_validation/sklearn/SilhouettePlot.py +27 -19
  162. validmind/tests/model_validation/sklearn/TrainingTestDegradation.py +25 -18
  163. validmind/tests/model_validation/sklearn/VMeasure.py +14 -13
  164. validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +7 -5
  165. validmind/tests/model_validation/statsmodels/AutoARIMA.py +24 -18
  166. validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py +73 -104
  167. validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +59 -32
  168. validmind/tests/model_validation/statsmodels/GINITable.py +44 -77
  169. validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +33 -34
  170. validmind/tests/model_validation/statsmodels/Lilliefors.py +27 -24
  171. validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +86 -119
  172. validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +100 -0
  173. validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +14 -9
  174. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +17 -13
  175. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +46 -43
  176. validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py +38 -36
  177. validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +30 -28
  178. validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py +18 -11
  179. validmind/tests/model_validation/statsmodels/ScorecardHistogram.py +75 -107
  180. validmind/tests/ongoing_monitoring/FeatureDrift.py +10 -6
  181. validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py +31 -25
  182. validmind/tests/ongoing_monitoring/PredictionCorrelation.py +29 -21
  183. validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py +31 -23
  184. validmind/tests/prompt_validation/Bias.py +14 -11
  185. validmind/tests/prompt_validation/Clarity.py +16 -14
  186. validmind/tests/prompt_validation/Conciseness.py +7 -5
  187. validmind/tests/prompt_validation/Delimitation.py +23 -22
  188. validmind/tests/prompt_validation/NegativeInstruction.py +7 -5
  189. validmind/tests/prompt_validation/Robustness.py +12 -10
  190. validmind/tests/prompt_validation/Specificity.py +13 -11
  191. validmind/tests/prompt_validation/ai_powered_test.py +6 -0
  192. validmind/tests/run.py +68 -23
  193. validmind/unit_metrics/__init__.py +81 -144
  194. validmind/unit_metrics/classification/{sklearn/Accuracy.py → Accuracy.py} +1 -1
  195. validmind/unit_metrics/classification/{sklearn/F1.py → F1.py} +1 -1
  196. validmind/unit_metrics/classification/{sklearn/Precision.py → Precision.py} +1 -1
  197. validmind/unit_metrics/classification/{sklearn/ROC_AUC.py → ROC_AUC.py} +1 -2
  198. validmind/unit_metrics/classification/{sklearn/Recall.py → Recall.py} +1 -1
  199. validmind/unit_metrics/regression/{sklearn/AdjustedRSquaredScore.py → AdjustedRSquaredScore.py} +1 -1
  200. validmind/unit_metrics/regression/GiniCoefficient.py +1 -1
  201. validmind/unit_metrics/regression/HuberLoss.py +1 -1
  202. validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py +1 -1
  203. validmind/unit_metrics/regression/{sklearn/MeanAbsoluteError.py → MeanAbsoluteError.py} +1 -1
  204. validmind/unit_metrics/regression/MeanAbsolutePercentageError.py +1 -1
  205. validmind/unit_metrics/regression/MeanBiasDeviation.py +1 -1
  206. validmind/unit_metrics/regression/{sklearn/MeanSquaredError.py → MeanSquaredError.py} +1 -1
  207. validmind/unit_metrics/regression/QuantileLoss.py +1 -1
  208. validmind/unit_metrics/regression/{sklearn/RSquaredScore.py → RSquaredScore.py} +1 -1
  209. validmind/unit_metrics/regression/{sklearn/RootMeanSquaredError.py → RootMeanSquaredError.py} +1 -1
  210. validmind/utils.py +4 -0
  211. validmind/vm_models/dataset/dataset.py +2 -0
  212. validmind/vm_models/figure.py +5 -0
  213. validmind/vm_models/test/metric.py +1 -0
  214. validmind/vm_models/test/result_wrapper.py +143 -158
  215. validmind/vm_models/test/threshold_test.py +1 -0
  216. {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/METADATA +4 -3
  217. validmind-2.5.18.dist-info/RECORD +324 -0
  218. validmind/tests/data_validation/ANOVAOneWayTable.py +0 -138
  219. validmind/tests/data_validation/BivariateFeaturesBarPlots.py +0 -142
  220. validmind/tests/data_validation/BivariateHistograms.py +0 -117
  221. validmind/tests/data_validation/HeatmapFeatureCorrelations.py +0 -124
  222. validmind/tests/data_validation/MissingValuesRisk.py +0 -88
  223. validmind/tests/model_validation/ModelMetadataComparison.py +0 -59
  224. validmind/tests/model_validation/sklearn/FeatureImportanceComparison.py +0 -83
  225. validmind/tests/model_validation/statsmodels/JarqueBera.py +0 -73
  226. validmind/tests/model_validation/statsmodels/LJungBox.py +0 -66
  227. validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py +0 -135
  228. validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +0 -103
  229. validmind/tests/model_validation/statsmodels/RunsTest.py +0 -71
  230. validmind-2.5.8.dist-info/RECORD +0 -318
  231. {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/LICENSE +0 -0
  232. {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/WHEEL +0 -0
  233. {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,324 @@
1
+ validmind/__init__.py,sha256=UfmzPwUCdUWbWq3zPqqmq4jw0_kfl3hX4U72p_seE4I,3700
2
+ validmind/__version__.py,sha256=5_8qftjKVqZpY9nQNjOXCjjbJi71PBjLUyEj4SwrM4M,23
3
+ validmind/ai/test_descriptions.py,sha256=BUJz-aZ3eu_i4LI16P8MD1ek_GfeB263CWks9T6W3Iw,7419
4
+ validmind/ai/test_result_description/config.yaml,sha256=E1gPd-uv-MzdrWZA_rP6LSk8pVmkYijx6v78hZ8ceL0,787
5
+ validmind/ai/test_result_description/context.py,sha256=tIdhPsrphomeTXdDcFE04kPYKbDNDPy2K8Xxg-dWWo0,2331
6
+ validmind/ai/test_result_description/image_processing.py,sha256=JNaO1zyM9293WWuyzUp1meQQbHuut0XN4kKUGzQTwYY,4061
7
+ validmind/ai/test_result_description/system.jinja,sha256=BjMvZCC3UXEH8p3VPpnHtGjhnqnbNcEG2_kYZ_QZrgg,2358
8
+ validmind/ai/test_result_description/user.jinja,sha256=kyWJK9RcBKvtPf6O2rEzCAHAdUFEIlAwK-exLhtoPRI,630
9
+ validmind/ai/utils.py,sha256=TEXII_S5CpkpczzSyHwTlqLcPMLnPBJWEBR6QFMKh1U,3421
10
+ validmind/api_client.py,sha256=arMEyVMNTlHnbThOTVhXV2BvKy7JlBKKv-pcG-ICigU,19228
11
+ validmind/client.py,sha256=Fi9WmDTt6J3KWJDpvkXy8CnSn00Xqwqf2qcV2rCTx8Y,18910
12
+ validmind/client_config.py,sha256=azf-0u8xSxNa99o4qCQNb67fw36HZ9ES_Q82XM39Ukc,1398
13
+ validmind/datasets/__init__.py,sha256=oYfcvW7BAyUgpghBOnTeGbQF6tpFAWg38rRirdLr8m8,262
14
+ validmind/datasets/classification/__init__.py,sha256=HlTOBLyb6IorRYmAhP3AIyX-l-NyemyDjV8BBOdrCrY,1787
15
+ validmind/datasets/classification/customer_churn.py,sha256=pqw6wjMF7KIDgUKX2KLm3IcIV7QdS2mmRAV_EhWwKLM,3802
16
+ validmind/datasets/classification/datasets/bank_customer_churn.csv,sha256=b0muNg38DpowgKjhBCSti7k_j1tDJMy2tydz3tAEAL4,545707
17
+ validmind/datasets/classification/datasets/taiwan_credit.csv,sha256=fe19VfV30li7rdydnXpbqC372JCdf_HvDc3mMlWNbXE,2897191
18
+ validmind/datasets/classification/taiwan_credit.py,sha256=nj6JyfcyAfaYgh60T3LdBZsCpzRBsMf0RjYMvedHzuQ,1469
19
+ validmind/datasets/cluster/digits.py,sha256=E600pX6QPrqndfr73kwZ1sTNk0hC5kNj4Fhs8zz8bQo,2097
20
+ validmind/datasets/credit_risk/__init__.py,sha256=vK0wyUcA2mpjasNR-EaBj_0MdPhJw5KK8xlrKj_xl68,295
21
+ validmind/datasets/credit_risk/datasets/lending_club_biased.csv.gz,sha256=PdsyEqHtfShtfl_xoNWva2Ofyfx5hmrLhowPka4hLew,6266192
22
+ validmind/datasets/credit_risk/datasets/lending_club_loan_data_2007_2014_clean.csv.gz,sha256=bAgdfmUxjYOdZMPvoHtKr_GLoXNAX04KUTfjn2L62eE,5493810
23
+ validmind/datasets/credit_risk/lending_club.py,sha256=oscdu1zmDytSU6dJwinl97si4LDdzMBTFUgiJialRmE,11403
24
+ validmind/datasets/credit_risk/lending_club_bias.py,sha256=8_Xf1qxCTUPv1wYHYkjabO2WtQsfVudJ6eje3phQUrc,4461
25
+ validmind/datasets/llm/rag/__init__.py,sha256=v8BygB6rGECoMIXv2_I1lVUAfPJ_gVo0GgVKhzk60h4,264
26
+ validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_1.csv,sha256=8Ae8TD5Yh6rQ67HMCu7iKipj5tyOOhzylZqLppAeKzs,24095
27
+ validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_2.csv,sha256=PV7eD-h_KWwLzboCPCAEg2LD4XMVO3tS1cWpu18V6Ok,24520
28
+ validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_3.csv,sha256=BEqBELuSjn5JXV3aGrriTBC4mZ--pH9iEWRIzDgu12Y,24417
29
+ validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_4.csv,sha256=HFaf8oJmEYwHht-QM_Um4X7lLpWcP2TswcwjXp7fsPw,24854
30
+ validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_5.csv,sha256=jJuRVsDbtv3ky8mJVHzpK_4bSlnIZH-hDW6a8DGGvfY,24551
31
+ validmind/datasets/llm/rag/rfp.py,sha256=mlx4I1ipMoPplZOqRPza6XEN5D4FE2xc6_SSuGOkgqk,1234
32
+ validmind/datasets/nlp/__init__.py,sha256=lu2-SGOSECgrxhDtHdlh_FsbpsFtuZ4DbLSL1sww5nc,323
33
+ validmind/datasets/nlp/cnn_dailymail.py,sha256=_N_a19nk7uaGQdDAEpSO-XHshV_8U6BH6s76Pmmi3eI,3692
34
+ validmind/datasets/nlp/datasets/Covid_19.csv,sha256=cwAJHgek3JWUhtZQIiC9-wRWycxbiod6nyZikf09iKE,11545066
35
+ validmind/datasets/nlp/datasets/cnn_dailymail_100_with_predictions.csv,sha256=Z-twNp-uRCA736YCQ2FK_95uZUc8nBtKd2ZJh_j6n2U,608859
36
+ validmind/datasets/nlp/datasets/cnn_dailymail_500_with_predictions.csv,sha256=g-TKvZHmnysaE1jW8OR42x119Ilo1S-V6sD2nf1BHyw,3072969
37
+ validmind/datasets/nlp/datasets/sentiments_with_predictions.csv,sha256=zwYI-XjUy72XqD0om-cMVYMrEUsL36u4rPAwsicoQtg,754686
38
+ validmind/datasets/nlp/twitter_covid_19.py,sha256=PtBOh6pri6pVQKpR0ivQfXy4Wcom40G9-dyYgcv0jFI,878
39
+ validmind/datasets/regression/__init__.py,sha256=wBcJyMyX4U6XjY6Y-aLozHdbjQlXbeFgB2YqFTk2kVU,1653
40
+ validmind/datasets/regression/california_housing.py,sha256=dZHVZ7ufR5ZVfsBlaIlQtEgBUNGuXjEuZm1OrwRl4KY,1046
41
+ validmind/datasets/regression/datasets/fred/CPIAUCSL.csv,sha256=giBJ0OrbA6HgptbEGpsTs6CCuEAcxrln6HGtrNYDgwY,15834
42
+ validmind/datasets/regression/datasets/fred/CSUSHPISA.csv,sha256=x09-rwYwf5HQzf8ythBDlNqJlviLDPinZvEDKud-wgU,9105
43
+ validmind/datasets/regression/datasets/fred/DRSFRMACBS.csv,sha256=jHqAF0zyR6dQLlaQcl3mX6t1Sg2i-nxj4U3Zz3l8xsE,2093
44
+ validmind/datasets/regression/datasets/fred/FEDFUNDS.csv,sha256=PEBnuvgIfP1rzClUquUDO-hnYrYIgN9eNKmdhFuGvMM,13274
45
+ validmind/datasets/regression/datasets/fred/GDP.csv,sha256=xHRD-gmrwU-NrPODoG84CnKgqYXU2_iKzNj6afwsiKg,6061
46
+ validmind/datasets/regression/datasets/fred/GDPC1.csv,sha256=MIp1GhButxSeK8a2-Zx1GWtb_6AjW2x58eUnn9VrQQM,6201
47
+ validmind/datasets/regression/datasets/fred/GS10.csv,sha256=R_8Kxcjl30PWAdPPa_7sG6ux5fJa3WjnS-djrmZkxc0,13538
48
+ validmind/datasets/regression/datasets/fred/GS3.csv,sha256=xXr5gcsPhpd8A0VQHIYeXVMr5n0C1w391se_mN-xIbk,13506
49
+ validmind/datasets/regression/datasets/fred/GS5.csv,sha256=-xzwzvYXGleV1jZSMeFWC2wMn9cB4WuOFfN_GrJxCj8,13514
50
+ validmind/datasets/regression/datasets/fred/MORTGAGE30US.csv,sha256=QSdHbEiVGOFtW8cb2pkNW7K8eJKoGc2lHKPPizw3ZkM,44040
51
+ validmind/datasets/regression/datasets/fred/UNRATE.csv,sha256=ZPHfCYKzgzGgRKPqr7L5rqQVLZGicIb9l1HtGmHHhTk,13572
52
+ validmind/datasets/regression/datasets/fred_loan_rates.csv,sha256=x5yYUlrab607QLmYm37wxq8ls-gA4gx2Dr7yiDF3_tI,107835
53
+ validmind/datasets/regression/datasets/fred_loan_rates_test_1.csv,sha256=arukRZYiYDn_zL4VnbIeoIiybsijajrWXjQ3J8do8nk,2634
54
+ validmind/datasets/regression/datasets/fred_loan_rates_test_2.csv,sha256=arukRZYiYDn_zL4VnbIeoIiybsijajrWXjQ3J8do8nk,2634
55
+ validmind/datasets/regression/datasets/fred_loan_rates_test_3.csv,sha256=pCznzePHsQFfAv9r6NMQqfZ9f2sAFquuqMiKIrry0TU,2736
56
+ validmind/datasets/regression/datasets/fred_loan_rates_test_4.csv,sha256=FBxkMcc-sauImJ2RKL1VDa5EqU501OoKU4zSwL2A1e0,3355
57
+ validmind/datasets/regression/datasets/fred_loan_rates_test_5.csv,sha256=qPFYcPRQgKYrsOEWjumrY-27n4E0r7IQIiAY8CtD8yc,3866
58
+ validmind/datasets/regression/datasets/leanding_club_loan_rates.csv,sha256=1mePKtdNXg8ZG-VVSPLtOlCJm_3qSqoK5qP0_klxdF8,11624
59
+ validmind/datasets/regression/fred.py,sha256=NpydiYfBPfClE8C5ZO_FisGBS09CulAIn1-yrz_LP4k,5707
60
+ validmind/datasets/regression/fred_timeseries.py,sha256=FJsPI8FGvFKJgpOOQMibdcW48QmJc5j5RBXZGeKFgt8,6665
61
+ validmind/datasets/regression/lending_club.py,sha256=QM8RTuy0ijRfbHm9Ye8_-vQY_X61sGRwG0HUDpn-oSQ,2536
62
+ validmind/datasets/regression/models/fred_loan_rates_model_1.pkl,sha256=RUpaUJC7WCqc5jwzV4vPujtQlNpVbcJhJ4N5F9Qk59s,40067
63
+ validmind/datasets/regression/models/fred_loan_rates_model_2.pkl,sha256=J1ukMdeFoxRlC1vAm7YV39aANncAU1VQVAFSyjlDPUk,48314
64
+ validmind/datasets/regression/models/fred_loan_rates_model_3.pkl,sha256=IogZPcUQc1F_v11fR6KWT-nRt5JzvK5f7p4Hrw7vLps,40063
65
+ validmind/datasets/regression/models/fred_loan_rates_model_4.pkl,sha256=cSxhpcrI4hCbxCwZwE2-nr7KObbWpDii3NzpECoXmmM,48292
66
+ validmind/datasets/regression/models/fred_loan_rates_model_5.pkl,sha256=FkNLHq9xkPMbYks_vyMjFL371mw9SQYbP1iX9lY4Ljo,60343
67
+ validmind/errors.py,sha256=qy7Gp6Uom5J6WmLw-CpE5zaTN96SiN7kJjDGBaJdoxY,8023
68
+ validmind/html_templates/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
69
+ validmind/html_templates/content_blocks.py,sha256=LTsv2Hr_drUUZVLEfY2JcT4z0M-45RGYy2sFInt1VKY,3998
70
+ validmind/input_registry.py,sha256=8C_mrhgLT72hwbt_lo3ZwXb5NCyIcSuCQI1HdJ3bK2A,1042
71
+ validmind/logging.py,sha256=J1Y1dYCH1dtkoYCHoXMOQH_B7EO4fJytWRDrDqZZz8U,5204
72
+ validmind/models/__init__.py,sha256=lraTbNwoKckXNP3Dbyj-euI78UTkZ_w5wpUOb8l5nWs,729
73
+ validmind/models/foundation.py,sha256=ZdVmwwRVbjgqMyfjguyf9Lka_KcgJnDD7ho8zv0gQok,1842
74
+ validmind/models/function.py,sha256=xLNtgzRiCfF4jrIedHrX1lmCR-92fB3fVDzLS7el4SM,1785
75
+ validmind/models/huggingface.py,sha256=DMHekLpWi6c4N0svh-3G0NYYwzxPXOvqiU95M4QffUs,2253
76
+ validmind/models/metadata.py,sha256=PMcdYuACkSPvuG8io5BhZeMwclQr_q79mXbvd1SC-7I,1665
77
+ validmind/models/pipeline.py,sha256=nSskKWxaS4SGmx_B0IAvS5ogDZyh6tdx_aUkyxSXt88,2051
78
+ validmind/models/pytorch.py,sha256=aAEUWtISwLh-PMvHkcLwBEbBStAByt4J-NpK-Ndv38E,1826
79
+ validmind/models/r_model.py,sha256=eYdpCREgBpYv-PxJDuG91I77OOAx3-43FoaYT560ziE,7172
80
+ validmind/models/sklearn.py,sha256=lOCJlP2wvd5IJHtBS1XG9FXrtIvO_f8xm2Qp1UdsiBw,2406
81
+ validmind/template.py,sha256=-j7UmM9v7I_VIZltWrmX5scbeDTbRDrR7hTQUzy6AVg,7307
82
+ validmind/test_suites/__init__.py,sha256=wC_ZgVykFZAOrs1LTM7bE8r7mTSjxF54F9amUdT3nT4,6953
83
+ validmind/test_suites/classifier.py,sha256=0ZE3z5X_ZewTvmwQ3cVGJQh7dPgg0IlqcQshJJxCFWQ,4003
84
+ validmind/test_suites/cluster.py,sha256=Wc2NViwivjiuiJMwrnGbOJYeZ3ApN8usWlOPYZYWAgE,2276
85
+ validmind/test_suites/embeddings.py,sha256=sBQRMjlp7kzsvPkA0qkgmAr4yzUrHMmXSEfSHMkn-_s,1949
86
+ validmind/test_suites/llm.py,sha256=SqHGBBoJsQ53RQtVhRB9j9ImN7NRRcgoSUW8uQgbLKs,2026
87
+ validmind/test_suites/nlp.py,sha256=KiHOoItyLMuRzdjcnJ2rdqOI1Ty47zklG_vJZrDsHxQ,1344
88
+ validmind/test_suites/parameters_optimization.py,sha256=mYVk8eVQneW5oRUuWztYv2NrV7S_5j_9O6S8v5xLEaQ,731
89
+ validmind/test_suites/regression.py,sha256=knVRJGW5k91CpfNJHjLdkjItSUVg-LBwqMEYcYD7jGM,1915
90
+ validmind/test_suites/statsmodels_timeseries.py,sha256=cL9H8-qPAX_l37Bshk3xLu3vKFfq0yWphk1XXBbxcts,962
91
+ validmind/test_suites/summarization.py,sha256=VKwcbf9PD-hnPkDlYJWZKW4nHyOnI4q6Y3toj2al0F0,644
92
+ validmind/test_suites/tabular_datasets.py,sha256=WE4eLzRCfiqAxRqXnZFRR3Lo_u-TI6KM6hmTbR8rg5o,1798
93
+ validmind/test_suites/text_data.py,sha256=YGVGBB05356jN9Gzcy5CHShRzo1fm5mKsZY7YBq0cYU,739
94
+ validmind/test_suites/time_series.py,sha256=3hzWc9gXHBf8aMecD-1YYGFS5RI1o8A-eor9akeBzSU,4403
95
+ validmind/tests/__init__.py,sha256=niYvgTHmjS5E42mJMCrzq1vP8PTKCWxVsqSkAaw2wsE,1036
96
+ validmind/tests/__types__.py,sha256=hpNSChkR53muc_IgNuCT5grYeU0PLbpXujmFji4fAlM,9955
97
+ validmind/tests/_store.py,sha256=G604L9g-XIJz8u7BLbHVVVcbx96tDYjAAciaF7wJoiM,2743
98
+ validmind/tests/data_validation/ACFandPACFPlot.py,sha256=gnEo0wbtXioK6XYo1KWgMTTX_c_dn61Y613T7tkOYnI,4897
99
+ validmind/tests/data_validation/ADF.py,sha256=a_LF0TV14c-B-wLtZW7buX_9mtWIpIYkcqOoSaOIl9Q,5053
100
+ validmind/tests/data_validation/AutoAR.py,sha256=dWhpzGTDfgJINLyu6E893KUkm4aJJEbWe4-M7Emz1EE,6631
101
+ validmind/tests/data_validation/AutoMA.py,sha256=_O-Io05ZnJvZLJ9tLFWXRFjyGbO7ULifkau0AfLRDRw,7087
102
+ validmind/tests/data_validation/AutoSeasonality.py,sha256=dmYNoKVuuJPVELK-xAy1NNNobApeLlpMk7dDp7nXNAo,7982
103
+ validmind/tests/data_validation/AutoStationarity.py,sha256=E_IgRNkd6DkxuLMBoaTDF-c2peGGMCPO6ltOaZ5lcS0,7841
104
+ validmind/tests/data_validation/BivariateScatterPlots.py,sha256=IFOihmr8Kf96Cvgs-HzDjMWKERZ26GYH8D_yzw0C3So,3330
105
+ validmind/tests/data_validation/BoxPierce.py,sha256=XdWf4vqdirQc3GdK19lfUtpG06QuFy42wkl6loxQLt8,3432
106
+ validmind/tests/data_validation/ChiSquaredFeaturesTable.py,sha256=il0L9AwlI2ukk1MOVECu7tddsbJTFD1m8vK2-tpvBTA,4077
107
+ validmind/tests/data_validation/ClassImbalance.py,sha256=10ZyWMy4KUAsDo5bifqNE9Wsu1PlpSpsxw0NY0BjHWo,6884
108
+ validmind/tests/data_validation/DFGLSArch.py,sha256=_Ri9A-d9sesn1hhqzMQczkdDzkiVtGQcwOxiNd6nOf0,5364
109
+ validmind/tests/data_validation/DatasetDescription.py,sha256=KSHe3nZUoaiJNBcIeS8CC8VVr--YR802_SEgJcYMyxI,11387
110
+ validmind/tests/data_validation/DatasetSplit.py,sha256=Zixsc6VxeXQ3u1wHR1sctEdPsfq62q-dPTkF5Fxid9E,5065
111
+ validmind/tests/data_validation/DescriptiveStatistics.py,sha256=AZmnpkM-ZYk6xA95L2d693bwveSKpaaAeEwh9jC_Kno,6328
112
+ validmind/tests/data_validation/Duplicates.py,sha256=u0h9nTke0ekuNCEze2yGH50ckhVPMBXCTh2ve-57uDY,5542
113
+ validmind/tests/data_validation/EngleGrangerCoint.py,sha256=mLOeOVr9hw2BNmL0KQZP_VISXR0QQWDmb5nOrygZ9X8,5248
114
+ validmind/tests/data_validation/FeatureTargetCorrelationPlot.py,sha256=OwEEavtIY23HRH1CcdCJnTlbj1hn9mCLe9mG8Yw0EOs,4249
115
+ validmind/tests/data_validation/HighCardinality.py,sha256=gh3eGcQbW328lOLE-d7SCQL7HFUgru0lFnzj4yMR1Oc,5078
116
+ validmind/tests/data_validation/HighPearsonCorrelation.py,sha256=gY-qeddWAxXR79IUNonurDVMREp0HAlVnRi8PZRWbXQ,5573
117
+ validmind/tests/data_validation/IQROutliersBarPlot.py,sha256=CeR8fqo2YhIWTqQSyE2fD5_uMnuXQfk4UN5XC_GQp0I,6276
118
+ validmind/tests/data_validation/IQROutliersTable.py,sha256=QfXsSMFoggL835aKJo-DBHZt_mjqA9V-hf-jx_4ApsA,5489
119
+ validmind/tests/data_validation/IsolationForestOutliers.py,sha256=lWBn08eAuSNcLJWTNocfn8O9T6L47zlHWGDMuunPlrw,4847
120
+ validmind/tests/data_validation/JarqueBera.py,sha256=KnUfQLrhV3KKqyGOA49pwxRLQ6wl6txjkxO1pqXFKS4,3159
121
+ validmind/tests/data_validation/KPSS.py,sha256=qdNLHtdDO7zIUhwjmNjUL1pc_IBYzn5kx3Nr5M7IDJ0,4959
122
+ validmind/tests/data_validation/LJungBox.py,sha256=8ujAg7ZcEYquYxHEqBZkD8otBnSpu6OH3kkyKVsX_c4,2895
123
+ validmind/tests/data_validation/LaggedCorrelationHeatmap.py,sha256=sdrDkCgtjymxqkfr0v1SZWHyd7nCpvbmosznwi9StpA,6016
124
+ validmind/tests/data_validation/MissingValues.py,sha256=hrAD6YhI5_tmQEcAddYmI3vWEWbIs2Q6R8N1sUAh_Iw,4048
125
+ validmind/tests/data_validation/MissingValuesBarPlot.py,sha256=Zp7cMLb7iAAC2ZbEFMBmTP4hAxKuRejL__24309mKe8,6210
126
+ validmind/tests/data_validation/PearsonCorrelationMatrix.py,sha256=GB8Ca8UT4ARBV7Oeha53UL0aTOrvUrwrwsJHKYeEL74,3797
127
+ validmind/tests/data_validation/PhillipsPerronArch.py,sha256=_YN_RVr0vOrb117XgxOl3W3YPcxfPNcTI_kf0r3CI38,4867
128
+ validmind/tests/data_validation/ProtectedClassesCombination.py,sha256=pPj797BrBZ-WKqsDiMz7Vas3qIVYoNe8IlxEYsdrMTY,6403
129
+ validmind/tests/data_validation/ProtectedClassesDescription.py,sha256=j1ymn-gRZUBVRR3BML2PytyFfOGGFGlcoAveMzTn04M,5203
130
+ validmind/tests/data_validation/ProtectedClassesDisparity.py,sha256=jnvugR9Zj87g3ELgq1J4FrKNtY0BQJqfhbvyUI19mNI,5154
131
+ validmind/tests/data_validation/ProtectedClassesThresholdOptimizer.py,sha256=PZYK8yBip3kMUCMK02b7L0BQswQC_fY6vFAK1uFpXHs,5611
132
+ validmind/tests/data_validation/RollingStatsPlot.py,sha256=St9LAWSawZ7YmNrCOzVH4Oi_tu6iYvi1WPS9R6ePRQU,5888
133
+ validmind/tests/data_validation/RunsTest.py,sha256=0xbi4K86m-qL1nxQPeZIp_HWo3NiDv6MPGaeRhvL6I8,3475
134
+ validmind/tests/data_validation/ScatterPlot.py,sha256=WeyeAq3QMY_OpzssY5S07a4Y46qiad6h2NunSVCYrQo,3423
135
+ validmind/tests/data_validation/SeasonalDecompose.py,sha256=fYdN2Kj-WoOE-fOJKDAgGrmZZPlNRgMj-2bgpsenRfI,9454
136
+ validmind/tests/data_validation/ShapiroWilk.py,sha256=AhqJwbmKAy8lpac5ELM_hKt_60PA3DCUqO8kCgnVgQE,3132
137
+ validmind/tests/data_validation/Skewness.py,sha256=B0lmASCEEJI3-BzPVhUNr6qf-XWc0QHwqeYEig9pvUY,4515
138
+ validmind/tests/data_validation/SpreadPlot.py,sha256=7bABKP6sSyh0eqn4k8f6e0045-y8yzv4lFgS-7YxY64,4343
139
+ validmind/tests/data_validation/TabularCategoricalBarPlots.py,sha256=hYDWqG5TJOVuPVhzNTf2mGu2rYPTK_qAaiqDJkj9ecY,4132
140
+ validmind/tests/data_validation/TabularDateTimeHistograms.py,sha256=GSCdrsHDkqz_geJUczw2we_N594_XxLCscBlZk6_RG4,3961
141
+ validmind/tests/data_validation/TabularDescriptionTables.py,sha256=zXtxoFY3M1AtM_l5FefaXqinq-RGBKQK6Few1K0FV-E,7939
142
+ validmind/tests/data_validation/TabularNumericalHistograms.py,sha256=KtRvRlXcYCB6-gljevU3kBojbN4imqvXgemFQrlJrMo,4091
143
+ validmind/tests/data_validation/TargetRateBarPlots.py,sha256=C8_vs-L7CePI3hJAbcxde4Me0-R4YcYL3nh8aQGVLqs,5705
144
+ validmind/tests/data_validation/TimeSeriesDescription.py,sha256=yajTp5miCgEo2qdiK0iSSDX9jUuoL47bW8tJMKe6Lws,3142
145
+ validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py,sha256=gxiksG5BW441GrKTkKZQlAaQ42-8BtMUsjo5EAsTdeE,3198
146
+ validmind/tests/data_validation/TimeSeriesFrequency.py,sha256=l5HZLDjk06S9w1hE6blSgqzNcfQEKtr7eeZzDdiZlYY,7211
147
+ validmind/tests/data_validation/TimeSeriesHistogram.py,sha256=AGX5-gGGLjulHjLkujnnHXfVs-zM-OCnUlRcRpaQHVo,3083
148
+ validmind/tests/data_validation/TimeSeriesLinePlot.py,sha256=okTVueh2BwRxNJ8CT5_PgtGDHqxtEROSUdnMkZeJ8CM,4142
149
+ validmind/tests/data_validation/TimeSeriesMissingValues.py,sha256=n_qzeOJPcn2CKQxIlq6TkcjC9crjLnIMGZZZwSM8vUc,7325
150
+ validmind/tests/data_validation/TimeSeriesOutliers.py,sha256=51n7PsoIghPJleFRmt1MW4T_8gNg9rg4F9XQKdk7mCQ,8870
151
+ validmind/tests/data_validation/TooManyZeroValues.py,sha256=3zWUIjpue6c0vl_GzyTA27ZMoGdexArpyHbF9WU6k_k,5762
152
+ validmind/tests/data_validation/UniqueRows.py,sha256=oSrg5nWu_LvzzA1hXnfnOr1pIChDbcS1E8PQiU7tM30,4473
153
+ validmind/tests/data_validation/WOEBinPlots.py,sha256=nnV3NGJ4Bu3QA3MRyT0tTsOtmqIHbiPmFTcbg5ns294,6914
154
+ validmind/tests/data_validation/WOEBinTable.py,sha256=E8s4bWKQKuywSCn-2oRwVliWb0BCaC2ovG1FnNSIc90,4600
155
+ validmind/tests/data_validation/ZivotAndrewsArch.py,sha256=sI2dc7bFyscAAQTi1eeAgWAiAC3qKxePK8epZmcMBX0,5006
156
+ validmind/tests/data_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
157
+ validmind/tests/data_validation/nlp/CommonWords.py,sha256=Vt0TcWOo2ndATxa7SIl6PcFT2SPELsBFx_QGIeENJRE,4149
158
+ validmind/tests/data_validation/nlp/Hashtags.py,sha256=NOgPg0V_E8O34YDlyviIjGxSjacVYHk_IuXb-z7n2QI,4178
159
+ validmind/tests/data_validation/nlp/LanguageDetection.py,sha256=axbhQeOOPmmFFhxV0b605qress5cVv--XlvK_CVRU6E,3055
160
+ validmind/tests/data_validation/nlp/Mentions.py,sha256=oDKDUAOA7r3E3HOV4UI5Q84aNIcoAiMMnjkjgJgKpqs,4594
161
+ validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py,sha256=ypIYPw3GJYngYzkj-d6Q4m_2YiQTSjAKJOJkwQ0y49g,2996
162
+ validmind/tests/data_validation/nlp/Punctuations.py,sha256=ESV9yl276Qubm1UYP9b_7zD33JX5g3BayZpTwqqlHiM,3681
163
+ validmind/tests/data_validation/nlp/Sentiment.py,sha256=AgKMyXU0gzMX6j2p1YYQY3zcW92jeTl9ScSZMJtkS7c,2780
164
+ validmind/tests/data_validation/nlp/StopWords.py,sha256=vr-nSIYxp-IX0xrIMbmMiY2Jj8pwjibXfLBPaAEZpMQ,6079
165
+ validmind/tests/data_validation/nlp/TextDescription.py,sha256=cYGILdpglV7fWMl_cG2HxfKKmnB7R5swBP3wRYDDbas,8071
166
+ validmind/tests/data_validation/nlp/Toxicity.py,sha256=-t51-sh8S5vkHeQHK8nRveqC0HqSh_C7xJBsGkOXW_o,2541
167
+ validmind/tests/data_validation/nlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
168
+ validmind/tests/decorator.py,sha256=vPcECxNZTYEkeaaZKGiuKOOuJYs0H344Bg5XcFmvei0,11276
169
+ validmind/tests/load.py,sha256=Bzr2DhOx4wRNNo0OpZTeEdedzRdnO-KPJk_E1ArnjGo,8766
170
+ validmind/tests/metadata.py,sha256=wAfWWD3s1GAlWsabjUUfoKlnAQhOn17Rym4y-gC4iCE,1370
171
+ validmind/tests/model_validation/BertScore.py,sha256=q-zdZazfVdgzr7Fgf4a4veEDblycwbepEkyG1RI5mKc,5279
172
+ validmind/tests/model_validation/BleuScore.py,sha256=eRK39XpbXXgXFpm5PFzj34U_ekHUMFW4G0sYWeZpy8g,4921
173
+ validmind/tests/model_validation/ClusterSizeDistribution.py,sha256=URML_uRs7KIaubLz49X2i_Dv5yCDOJ4hD8ADJWxV9dA,3795
174
+ validmind/tests/model_validation/ContextualRecall.py,sha256=5X8BerhosRRY-K_MqLs15forokWDA3he-teQTufGGVs,5113
175
+ validmind/tests/model_validation/FeaturesAUC.py,sha256=NrL4aw8IvmkHxjMqrQ3mvued994ze41N1iCvU4RHI1U,4733
176
+ validmind/tests/model_validation/MeteorScore.py,sha256=YhX2hBpT32QGkSrpidv-H-4HkQEwRMeU5Il6cMuCSwY,5114
177
+ validmind/tests/model_validation/ModelMetadata.py,sha256=UiDANMTqAy0DURnnTzImYNS-3Z8sE4yFjg1c2S5YFS8,2521
178
+ validmind/tests/model_validation/ModelPredictionResiduals.py,sha256=__LVaG5QzwaN98fT5YqrUfMoywmyI_JuzWmy5G0co2Q,3485
179
+ validmind/tests/model_validation/RegardScore.py,sha256=-8nZYaG2xvyKAnqGpEI_9_uKoC4bLDMqDYlElx3Anss,5276
180
+ validmind/tests/model_validation/RegressionResidualsPlot.py,sha256=a11Hiciu7kJYMRx7q_nDBWpv2Wa-v6FgTR3YxwqUE0w,4962
181
+ validmind/tests/model_validation/RougeScore.py,sha256=_HEz2xXaO_uxsXQtu_rI-OVUk1kMCVv5YwG4C9jcA4U,5446
182
+ validmind/tests/model_validation/TimeSeriesPredictionWithCI.py,sha256=2eOhV5huRnEjV0y5MqHQP-9uHJnjBASrc-uhsgHFdjU,4812
183
+ validmind/tests/model_validation/TimeSeriesPredictionsPlot.py,sha256=zoxONIl_a_mfOLuxnfVEMNQ3jL72pp5J4BDAQP5e-P0,2280
184
+ validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py,sha256=JIyER-vwXnQyHdxmpCULYm4iMkB_LaLHHQuzyygumbw,4000
185
+ validmind/tests/model_validation/TokenDisparity.py,sha256=1U33c6P-5jz1YOIoOho1dKrOEAxiWcpcI2bgCeZ--wg,4391
186
+ validmind/tests/model_validation/ToxicityScore.py,sha256=N-iOXgCXAwFUltjuqnPtHzZPdzMkCRvKK6mv9eWL1vU,5296
187
+ validmind/tests/model_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
188
+ validmind/tests/model_validation/embeddings/ClusterDistribution.py,sha256=-Ep1A7Axg3n1bpPQNfvdilJQ2xz22iv3TG_P4BVU5xU,3460
189
+ validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py,sha256=JGn1OjHlj6gIUYSty41zLWHy76_ls759NxK_gUY7HZ8,4757
190
+ validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py,sha256=hgN1gj6GdCwJqtcIlAmX7A5n1a9g8bCIWDxtRhpvDUY,3411
191
+ validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py,sha256=gPyNq00lOxBQyzxAtWVnn2zdCHvTSzgZJCek4cI0FmU,3511
192
+ validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py,sha256=s5Bi8fGL2DaXVCBkTkHSrGosOyYqOHhYhoZvrFTUvxE,4184
193
+ validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py,sha256=WjEVaEB_ge8EolrdLuNLHQftQA0i71L4aihlL9Kt_Kg,4287
194
+ validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py,sha256=kymHc2gphG_S_8dY5AKcVBfdLcjpVjrVLLnmG30dkjc,4231
195
+ validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py,sha256=xRANuVFf9CEVje9h1mTrmF2dXnkc03RDTzOt-aQdnc4,3342
196
+ validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py,sha256=Je1x9-iLUyG8kec0bz1TTUnvyy0xpwi6b82xh3Qc12w,3921
197
+ validmind/tests/model_validation/embeddings/StabilityAnalysis.py,sha256=6YydKmQSQxn9HTLhgQXXhXRnTPdDJAwm18MeHlrhxig,6513
198
+ validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py,sha256=Ykx-VIzFEPdsDUelhqYqK-p_8OVGGcM13BMPJAbl4Es,3777
199
+ validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py,sha256=0aPLXOsmie9T02WPqshE-o6jpLEs1lUMy0Hu6AEI4aI,5269
200
+ validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py,sha256=BzQeWSjhfP3qZ_sk9WHc3v-m_mH61oJBoWNNVnj9PoY,4181
201
+ validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py,sha256=bJspUwA6PyIpmLAQ_o5E_CE6t6QhvpU6qzIdk8qZWEQ,4620
202
+ validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py,sha256=7b-VONVp8yu5lG_U-h7VKb2k9edXbVai9W7TkiozQPc,4578
203
+ validmind/tests/model_validation/ragas/AnswerCorrectness.py,sha256=Qbi2nLCo_XdaGdhry6V8kUg4NsRHd9V771IyoVHQfhs,5150
204
+ validmind/tests/model_validation/ragas/AnswerRelevance.py,sha256=lIuZ6rZlT-BjT008Ph5MuXBZfg9SdUgo09D64oOosOo,5009
205
+ validmind/tests/model_validation/ragas/AnswerSimilarity.py,sha256=5vX-zSx8KI4bUtQrrEVC__kN1yN-cRvL99OddHMKyy8,4469
206
+ validmind/tests/model_validation/ragas/AspectCritique.py,sha256=wgbUxyhiUjSwBvVwbgJZ2h_8U6ug0ypcbN24dALaPlQ,6462
207
+ validmind/tests/model_validation/ragas/ContextEntityRecall.py,sha256=-l4hDhRhsKrfRlnTv_39LtXQ37PIvOXNTP_bwy2lwwQ,4924
208
+ validmind/tests/model_validation/ragas/ContextPrecision.py,sha256=d-m5U-1PNHVdWn3E9l9Cn0jD1Z_X3DZwbx1sIe0J9LI,4642
209
+ validmind/tests/model_validation/ragas/ContextRecall.py,sha256=0k7-4McTYN5EBwD--GuCu3ZDAiifD8P3b9L6CkAl-ug,4579
210
+ validmind/tests/model_validation/ragas/ContextUtilization.py,sha256=Odpkg01bCySeAKMb6ptNuU0vBZ0cn5SwOJuBQ5OWvFk,5956
211
+ validmind/tests/model_validation/ragas/Faithfulness.py,sha256=PKi63VJRo67WNFfjZCa72ujkKGMKWOrJwxXS73nSFmo,4537
212
+ validmind/tests/model_validation/ragas/NoiseSensitivity.py,sha256=7YJOwSsJpGcqiS_6N-pXcJPmmdMcrzAIhutit3aMRm8,5540
213
+ validmind/tests/model_validation/ragas/utils.py,sha256=VCc3NcNLIwrYQ7RvuJ1ev4XhI86TKDVNzI8o12aHFHc,3363
214
+ validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py,sha256=ayGZ2IVJxSFVhR_Vnb2xp8dHpMXzvAg8fK_uuBUgOLU,2832
215
+ validmind/tests/model_validation/sklearn/AdjustedRandIndex.py,sha256=bvXwgLQFQy7LvgXV5pL8vq5uizPFT5fmewLF0bQrwIE,2679
216
+ validmind/tests/model_validation/sklearn/ClassifierPerformance.py,sha256=Oa9vv7DxcP89M5jp5rc1chE4XwQiAltTbt1DIBHBKx0,5665
217
+ validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py,sha256=-5NBT13O3WfFUphXfTNe86PHmzf63kELY5enizIJvUc,5415
218
+ validmind/tests/model_validation/sklearn/ClusterPerformance.py,sha256=UOLfJkOHYBL4CV-cprHjqdAgKz-C2qqASblEXiI6vB4,3330
219
+ validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py,sha256=lh_AnIR2VELVlFlkok-fW0BEOIId1JZMdX0rF6flaMc,8383
220
+ validmind/tests/model_validation/sklearn/CompletenessScore.py,sha256=mhLcmE309u5mbwppa7PBegeH9_SK-1zvXrsR2SS3K4w,2510
221
+ validmind/tests/model_validation/sklearn/ConfusionMatrix.py,sha256=CMfMVWXnlHnzjaBpEzrMrDI1W-xmUhIfUi1SPMaXGm0,5873
222
+ validmind/tests/model_validation/sklearn/FeatureImportance.py,sha256=krS-Lnw3yh0XaPVKqjf7dy65y3GE-BGZ8sUcVP2ln_o,3480
223
+ validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py,sha256=rMijOpZ8LqugWNFzD-aMcX26TShqyG-L9xC_H2SmokE,2991
224
+ validmind/tests/model_validation/sklearn/HomogeneityScore.py,sha256=Okkn1OJom4MK9vkMOQS2PsdgQ8bKunXnw5xSjVIWhB4,2712
225
+ validmind/tests/model_validation/sklearn/HyperParametersTuning.py,sha256=COdHaNXlkQI3YL1ZFtwx65I9bp4PZEdJ1RcgbJGRX1I,4404
226
+ validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py,sha256=-KjvBxgM2RAa8GW9SYdacWpIHygk9wQ0GWOkom-FUC0,5906
227
+ validmind/tests/model_validation/sklearn/MinimumAccuracy.py,sha256=Kj0_Hqn8h7TfPjo2XwsvMobf7ZBAkdqi0igvH3jab7g,4854
228
+ validmind/tests/model_validation/sklearn/MinimumF1Score.py,sha256=4UKyrT-Bwn6aS-c7p-pZM9LHuoBfyRNZCEZyChrQjYA,4444
229
+ validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py,sha256=WNr5Pfc61st9mE1089sPmtfnXmJjXBEldocyzwIu4Lw,5071
230
+ validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py,sha256=WziKMHh-HrOuo7ARb-tVGy94fkXmjIJpAGq5wT60Mn0,6142
231
+ validmind/tests/model_validation/sklearn/OverfitDiagnosis.py,sha256=xU6tO8cdJKf9Rg-_kvtbZpBeV6z7ZEM9jY2TX338MTk,13542
232
+ validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py,sha256=l5R8UVaR04NktuY2rwAwGs9Fbqe73U8BEq75pPnU8hw,4839
233
+ validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py,sha256=v_7PT72-TplO1IeUZ84tfapzVdfvLMbopATUOm1RxQI,10068
234
+ validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py,sha256=o568TQtOzyxT0-B25tMhLnnxCekwXrzIGnAzch9igyI,4373
235
+ validmind/tests/model_validation/sklearn/ROCCurve.py,sha256=1KKqEJpNBLuPEWafS37Rsgj8azYOkeudMgfOgNwneEc,5825
236
+ validmind/tests/model_validation/sklearn/RegressionErrors.py,sha256=qj6l5RQGG7E6aOcaFxO8WReEEdJKfXrNp7wecWuCSaI,3713
237
+ validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py,sha256=em0NPWZVKq-nqdbFiiifQcsONGd8xek0_kwdtx6HXjE,3609
238
+ validmind/tests/model_validation/sklearn/RegressionPerformance.py,sha256=BoK3PTQNbJBtV-nHnlf7pc39Jhf_nV7AGE3FaO0w7L8,5610
239
+ validmind/tests/model_validation/sklearn/RegressionR2Square.py,sha256=jttavnKU1LqmTeTBbmGFH5qxP5Ag_TERYHoAb7ggeBQ,3100
240
+ validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py,sha256=TfBL_Mnk4hWWkXXB8OHzboWYuGk0e_gHmIDscKzLx9M,3377
241
+ validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py,sha256=nS_vDWqcJfb0wrr5lhIAUHOiJUNLtJE8bmZ-T8aRjuo,14326
242
+ validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py,sha256=1ea14RM8pUgNiRv_N1AjOYglvqZi-sGnNkvhH1Nhcns,11322
243
+ validmind/tests/model_validation/sklearn/SilhouettePlot.py,sha256=-5tm21WpvjryeEli1TnWzAhM_eG5tfpsTPAm-J8Af-Q,6191
244
+ validmind/tests/model_validation/sklearn/TrainingTestDegradation.py,sha256=t8o6KRytwX_e8nlsZYXgX0xBAi8BO5wbuNystcNwDrE,7166
245
+ validmind/tests/model_validation/sklearn/VMeasure.py,sha256=MH7sN5UZ4VqK3YCL_xTK_VcXRg6_ae5Srm_1lFmgxiE,2729
246
+ validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py,sha256=rR8uyOrjCtwevvSHM5mASfOKkwpYkOPKIbythv4UOdg,14127
247
+ validmind/tests/model_validation/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
248
+ validmind/tests/model_validation/statsmodels/AutoARIMA.py,sha256=G13cl2WHLJH4d_3DY4mKTkY5UHtyE3gKg9zHwFTFooE,5136
249
+ validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py,sha256=hXn0vBL-tvMR28sao1wnrnMEPl8gbl7eBYO6uW1WA-s,4625
250
+ validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py,sha256=wY36j1-bzEUyXwmymQILXHLiI-tIKze0gI8dOMkYyyI,3632
251
+ validmind/tests/model_validation/statsmodels/GINITable.py,sha256=voBMdMDMxfzEsolBCKDJIXUC64DV3CR5xtw35uudjT0,4276
252
+ validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py,sha256=cHelOkjkZDUgffEl9Nz-uD_TFzJhc0ojNO0MexvQqjk,3804
253
+ validmind/tests/model_validation/statsmodels/Lilliefors.py,sha256=1vOHrdmFg6IRZX5ysv5f4yaqQbYv_dQGjgiUSSqW_ag,3950
254
+ validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py,sha256=-c-FBs0QgXipWV-YQymXem9HdPx8-Fr-Yjwr4LAOm9k,4109
255
+ validmind/tests/model_validation/statsmodels/RegressionCoeffs.py,sha256=NH6Qi-1fFxIO2kzma6NhVm8U7JWkYA_gKAXsasgZIX0,4175
256
+ validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py,sha256=GZpmDfIguYBDT5pXK6JfAqDvWmO0ADhOjNQ4EW7oin4,5572
257
+ validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py,sha256=w5HVx6wIFBIFjNXR0J6qWOrqVGyGwMY6ZW5vvfIql6k,6538
258
+ validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py,sha256=F20DQaotT_SafEbcvR9FxvRkkY4kImthJYwXnzR4EIg,7725
259
+ validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py,sha256=T6xqo3AW3b4aF7uPhuhkoOoq3jJIJ6p4L9Thk_4PS2g,6964
260
+ validmind/tests/model_validation/statsmodels/RegressionModelSummary.py,sha256=s3Of1qvLa8Ct1XcPEYGBEh0fqhAYaVJR-QONktwslaU,3656
261
+ validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py,sha256=rU6L4198YCJiulWSNYdbbPaIwVVb48AuD5GJ0l_zWhc,4822
262
+ validmind/tests/model_validation/statsmodels/ScorecardHistogram.py,sha256=0hnB6icasRKT_Cl0YxMEpIuaUKgi5scXHmV_nP9RmkI,4650
263
+ validmind/tests/model_validation/statsmodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
264
+ validmind/tests/model_validation/statsmodels/statsutils.py,sha256=s1J7lHJ4kAcp_gGI0LAsaIFxbSqPrqXanxgtDI_Kig0,495
265
+ validmind/tests/ongoing_monitoring/FeatureDrift.py,sha256=qsBoolRGgW6sdUa8F-c4gsf6liFTyO4hCY-2lJv7YNY,6234
266
+ validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py,sha256=QDaYzf2b3n4yU_Rq3kBRJA49jIl1RP-n2d4KikZ76_c,3323
267
+ validmind/tests/ongoing_monitoring/PredictionCorrelation.py,sha256=_TCXU4DUDkHc21WjUk-mv7vjKctO4Wt7r4jR_Qf970w,3432
268
+ validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py,sha256=eSgit3i3WgmVW-CYp6hvor6g--RoY0NVduDoiy0F9xI,2483
269
+ validmind/tests/prompt_validation/Bias.py,sha256=lU8kEDNNraOrrGL46ciruUJOV7sY45u4glFvtfcmunU,7028
270
+ validmind/tests/prompt_validation/Clarity.py,sha256=FVZDfq4M8Z6u77GCu1m4-ncV7ZN6pUgtwmAOvYAx6S4,6178
271
+ validmind/tests/prompt_validation/Conciseness.py,sha256=OJCy388HOKilSp450GGo3ALVYG7wbIedNjuyGizL2Ik,5953
272
+ validmind/tests/prompt_validation/Delimitation.py,sha256=x9Wm83kb9cLuzZsqbwqjj2NYNDJu7o00c7CoF0wbm7M,5323
273
+ validmind/tests/prompt_validation/NegativeInstruction.py,sha256=Xo6O3B-jtRksCJ5Tx_TpbEGOV1ntjQBd7k15ODXSlMQ,6620
274
+ validmind/tests/prompt_validation/Robustness.py,sha256=S3wH1Raau8flIh2xw2C6GVUr9Z5B0WI7Z-kQ3PnuZ1c,6770
275
+ validmind/tests/prompt_validation/Specificity.py,sha256=ldG_yw-YJSlc6_m2bVUAlVXbl6A-xuALocl-SGI9YSI,6053
276
+ validmind/tests/prompt_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
277
+ validmind/tests/prompt_validation/ai_powered_test.py,sha256=bjbLPFcb4_M28foTpIBiQ4j-EyLMT689Bu4qPdwzRN8,2189
278
+ validmind/tests/run.py,sha256=Xvx_hc7cbeDsXY-s5OpZAo2mHm2pbKoWGvYJXoBYpSo,17553
279
+ validmind/tests/test_providers.py,sha256=47xe5eb5ufvj1jmhdRsbSvDQTXSDpFDFNeXg3xtXwhw,5320
280
+ validmind/tests/utils.py,sha256=kNrxfUYbj4DwmkZtpp_1rG4GMUGxYEhvqnYR_A7qAKM,471
281
+ validmind/unit_metrics/__init__.py,sha256=gbWM5GNltGcT26ZSyCbuVCVlcHdnFzGrv4Wsrzpv9As,5127
282
+ validmind/unit_metrics/classification/Accuracy.py,sha256=XKl1n7N77XRfE7jt6cHem_C-nmroxFjpIqSja-RZtmA,454
283
+ validmind/unit_metrics/classification/F1.py,sha256=fhvmwITE6GIll1zf5qlzGKqzpXl8Kx1vj0anAcQKQbQ,411
284
+ validmind/unit_metrics/classification/Precision.py,sha256=XB4N8RiPq_CeDHvKy_ao1GyP0NfXPrBnGfQzFh63WJw,432
285
+ validmind/unit_metrics/classification/ROC_AUC.py,sha256=38gasIuSyRcmZVNEl3CrtAgBQbwEV80eml3xkTXsmAY,1021
286
+ validmind/unit_metrics/classification/Recall.py,sha256=K50CXgzfcKk4PJig1KlynA2_OSeOv4n0IvhVMVOjjLk,423
287
+ validmind/unit_metrics/composite.py,sha256=EJiSucxFkNyrl1JhrVTxmfOFsYL5TvJwe4fNiVNgTFo,8158
288
+ validmind/unit_metrics/regression/AdjustedRSquaredScore.py,sha256=l5gDJcuRDe8e3LG47oJrw-vDsL9ji69mhCpub6bjcWc,603
289
+ validmind/unit_metrics/regression/GiniCoefficient.py,sha256=zc5xz94R37LnZ4hBKqCeIDcDENiaWcRiAgCSpixStVQ,969
290
+ validmind/unit_metrics/regression/HuberLoss.py,sha256=XA_EHDzcJgRg-92cGHBKIYVJjIV6ydWLbPJPsELLJDM,665
291
+ validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py,sha256=8TiUIoPApWkpgWdCU6ymgYUDr1bVKXwmgen_SLL1TFg,966
292
+ validmind/unit_metrics/regression/MeanAbsoluteError.py,sha256=7iv8T-4C8CUI5oZFnH2dqwaAr6M8s-5rtFgmXpXf_2E,465
293
+ validmind/unit_metrics/regression/MeanAbsolutePercentageError.py,sha256=K2zrN4HQkOY1XAwiKqy9RSKp0Hg2BCQ7vVex29JyGx0,456
294
+ validmind/unit_metrics/regression/MeanBiasDeviation.py,sha256=UNajOQfI3iHh4p4D9XjexbtEk1KP6R7KIleC8UHoZno,380
295
+ validmind/unit_metrics/regression/MeanSquaredError.py,sha256=e_4pE33pR_dCSUOfUHVR7Xw2-7xMJnY8GsquJJ7ytPA,437
296
+ validmind/unit_metrics/regression/QuantileLoss.py,sha256=TYyulr5_zSdheH5LDDs6YY9tgnheFlqTySFgAzhTOqw,455
297
+ validmind/unit_metrics/regression/RSquaredScore.py,sha256=TJNHFGUoykFxywsnpBysl0qRkOPeKXhm5Az6C3eHrag,394
298
+ validmind/unit_metrics/regression/RootMeanSquaredError.py,sha256=0r60JaoQIzIE5u99io2G89hWvyrjOmXGmUjLnt61w9g,530
299
+ validmind/utils.py,sha256=U8gZ_tqkTlqWoqdoyvhhRq0Q8c97W293wPrHNBvpAC4,15999
300
+ validmind/vm_models/__init__.py,sha256=V5DH-E1Rkvl-HQEkilppVCHBag9MQXkzyoORLW3LSGQ,1210
301
+ validmind/vm_models/dataset/__init__.py,sha256=U4CxZjdoc0dd9u2AqBl5PJh1UVbzXWNrmundmjLF-qE,346
302
+ validmind/vm_models/dataset/dataset.py,sha256=idgALhpMdBAl-VlgcxtBXw4QRG48LJ5I8jwnoO9lYHI,25765
303
+ validmind/vm_models/dataset/utils.py,sha256=VMcPEgwW9oW5D0MCa_MqXCq_sEzzsLLRmS4RaYrsif0,5530
304
+ validmind/vm_models/figure.py,sha256=YEbb9-BOpQvJRnf-gN8tgo40-UPRC552-nCVnNZi4qY,6817
305
+ validmind/vm_models/input.py,sha256=qLdqz_bktr4v0YcPha2vFdDvmkC-btT1pH9zBIkt1OY,1046
306
+ validmind/vm_models/model.py,sha256=Dewux_jTgUAXPgHW6ZtJTa8WvH0WkWsryO43DI9HkMU,6409
307
+ validmind/vm_models/test/metric.py,sha256=2aUXipqkCqzlh7kKk-rkB0yqtWQMzgjYn8-cBOd_TUs,3408
308
+ validmind/vm_models/test/metric_result.py,sha256=Bak4GDrMlNq5NtgP5exwlPsKZgz3tWgtC6jZqtHjvqM,1987
309
+ validmind/vm_models/test/output_template.py,sha256=njqCAMyLxwadkCWhACVskyL9-psTgmUysaeeirTVAX4,1500
310
+ validmind/vm_models/test/result_summary.py,sha256=QJcIKJUeBf5wW3lyue6ctsi1jKSyoiAIfmjudGJiJtc,2028
311
+ validmind/vm_models/test/result_wrapper.py,sha256=4oKVLa3WRtxopnT0G7xjLvgT9agOPXSq6EPvKfZe9ak,17336
312
+ validmind/vm_models/test/test.py,sha256=2Wbte09E4l7fUXwfQije0LQbPeSuh2Wpbyt4ddwyVks,3419
313
+ validmind/vm_models/test/threshold_test.py,sha256=LeGCcEc0PZk9uNhe7ykZETLwQdeuVfvR-XH4LKfWAI8,3791
314
+ validmind/vm_models/test/threshold_test_result.py,sha256=EXP-g_e3NsnpkvNgYew030qVUoY6ZTHyuuFUXaq-BuM,1954
315
+ validmind/vm_models/test_context.py,sha256=SGqoF_OeFC7Fj1jg5CPO1LOpfB7mA1FPwm61SYP8f2o,9475
316
+ validmind/vm_models/test_suite/runner.py,sha256=aewxadRfoOPH48jes2Gtb3Ju_FWFfVM_9ARIAJHD4wA,6982
317
+ validmind/vm_models/test_suite/summary.py,sha256=GQRNe2ZvvqjQN0yKmaN7ohAUjRFQIN4YYUYxfOuWN6M,4682
318
+ validmind/vm_models/test_suite/test.py,sha256=_GfbK36l98SjzgVcucmp0OKBJKqMW3neO7SqJ3EWeps,5049
319
+ validmind/vm_models/test_suite/test_suite.py,sha256=Cns2wL54v0T5Mv5_HJb3kMeaa4rtycdqT8KxK9_rWEU,6279
320
+ validmind-2.5.18.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
321
+ validmind-2.5.18.dist-info/METADATA,sha256=J0Y7Kl8mdReLJ3yMkX-uaVre3lhKzwRhskJLgp3ESlg,4291
322
+ validmind-2.5.18.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
323
+ validmind-2.5.18.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
324
+ validmind-2.5.18.dist-info/RECORD,,
@@ -1,138 +0,0 @@
1
- # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
- # See the LICENSE file in the root of this repository for details.
3
- # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
-
5
- from dataclasses import dataclass
6
-
7
- import pandas as pd
8
- from scipy.stats import f_oneway
9
-
10
- from validmind.vm_models import Metric, ResultSummary, ResultTable, ResultTableMetadata
11
-
12
-
13
- @dataclass
14
- class ANOVAOneWayTable(Metric):
15
- """
16
- Applies one-way ANOVA (Analysis of Variance) to identify statistically significant numerical features in the
17
- dataset.
18
-
19
- **Purpose**: The ANOVA (Analysis of Variance) One-Way Table metric is utilized to determine whether the mean of
20
- numerical variables differs across different groups identified by target or categorical variables. Its primary
21
- purpose is to scrutinize the significant impact of categorical variables on numerical ones. This method proves
22
- essential in identifying statistically significant features corresponding to the target variable present in the
23
- dataset.
24
-
25
- **Test Mechanism**: The testing mechanism involves the ANOVA F-test's performance on each numerical variable
26
- against the target. If no specific features are mentioned, all numerical features are tested. A p-value is produced
27
- for each test and compared against a certain threshold (default being 0.05 if not specified). If the p-value is
28
- less than or equal to this threshold, the feature is marked as 'Pass', indicating significant mean difference
29
- across the groups. Otherwise, it's marked as 'Fail'. The test produces a DataFrame that includes variable name, F
30
- statistic value, p-value, threshold, and pass/fail status for every numerical variable.
31
-
32
- **Signs of High Risk**:
33
- - A large number of 'Fail' results in the ANOVA F-test could signify high risk or underperformance in the model.
34
- This issue may arise when multiple numerical variables in the dataset don't exhibit any significant difference
35
- across the target variable groups.
36
- - Features with high p-values also indicate a high risk as they imply a greater chance of obtaining observed data
37
- given that the null hypothesis is true.
38
-
39
- **Strengths**:
40
- - The ANOVA One Way Table is highly efficient in identifying statistically significant features by simultaneously
41
- comparing group means.
42
- - Its flexibility allows the testing of all numerical features in the dataset when no specific ones are mentioned.
43
- - This metric provides a convenient method to measure the statistical significance of numerical variables and
44
- assists in selecting those variables influencing the classifier's predictions considerably.
45
-
46
- **Limitations**:
47
- - This metric assumes that the data is normally distributed, which may not always be the case leading to erroneous
48
- test results.
49
- - The sensitivity of the F-test to variance changes may hinder this metric's effectiveness, especially for datasets
50
- with high variance.
51
- - The ANOVA One Way test does not specify which group means differ statistically from others; it strictly asserts
52
- the existence of a difference.
53
- - The metric fails to provide insights into variable interactions, and significant effects due to these
54
- interactions could easily be overlooked.
55
- """
56
-
57
- name = "anova_one_way_table"
58
- required_inputs = ["dataset"]
59
- default_params = {"features": None, "p_threshold": 0.05}
60
- tasks = ["classification"]
61
- tags = [
62
- "tabular_data",
63
- "statistical_test",
64
- "multiclass_classification",
65
- "binary_classification",
66
- "numerical_data",
67
- ]
68
-
69
- def run(self):
70
- features = self.params["features"]
71
- p_threshold = self.params["p_threshold"]
72
-
73
- # Select all numerical features if none are specified
74
- if features is None:
75
- features = self.inputs.dataset.feature_columns_numeric
76
-
77
- anova_results = self.anova_numerical_features(features, p_threshold)
78
-
79
- return self.cache_results(
80
- {
81
- "anova_results": anova_results.to_dict(orient="records"),
82
- }
83
- )
84
-
85
- def anova_numerical_features(self, features, p_threshold):
86
- target_column = self.inputs.dataset.target_column
87
- df = self.inputs.dataset.df
88
-
89
- # Ensure the columns exist in the dataframe
90
- for var in features:
91
- if var not in df.columns:
92
- raise ValueError(f"The column '{var}' does not exist in the dataframe.")
93
- if target_column not in df.columns:
94
- raise ValueError(
95
- f"The target column '{target_column}' does not exist in the dataframe."
96
- )
97
-
98
- # Ensure the target variable is not included in num_vars
99
- if target_column in features:
100
- features.remove(target_column)
101
-
102
- results = []
103
-
104
- for var in features:
105
- # Perform the ANOVA test
106
- class_0 = df[df[target_column] == 0][var]
107
- class_1 = df[df[target_column] == 1][var]
108
-
109
- f, p = f_oneway(class_0, class_1)
110
-
111
- # Add the result to the list of results
112
- results.append(
113
- [var, f, p, p_threshold, "Pass" if p <= p_threshold else "Fail"]
114
- )
115
-
116
- # Convert results to a DataFrame and return
117
- results_df = pd.DataFrame(
118
- results,
119
- columns=["Variable", "F statistic", "p-value", "Threshold", "Pass/Fail"],
120
- )
121
-
122
- # Sort by p-value in ascending order
123
- results_df = results_df.sort_values(by="p-value")
124
-
125
- return results_df
126
-
127
- def summary(self, metric_value):
128
- anova_results_table = metric_value["anova_results"]
129
- return ResultSummary(
130
- results=[
131
- ResultTable(
132
- data=anova_results_table,
133
- metadata=ResultTableMetadata(
134
- title="ANOVA F-Test Results for Numerical Features"
135
- ),
136
- )
137
- ]
138
- )
@@ -1,142 +0,0 @@
1
- # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
- # See the LICENSE file in the root of this repository for details.
3
- # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
-
5
- from dataclasses import dataclass
6
-
7
- import matplotlib.colors as mcolors
8
- import matplotlib.pyplot as plt
9
- import numpy as np
10
-
11
- from validmind.vm_models import Figure, Metric
12
-
13
-
14
- @dataclass
15
- class BivariateFeaturesBarPlots(Metric):
16
- """
17
- Generates visual bar plots to analyze the relationship between paired features within categorical data in the model.
18
-
19
- **Purpose**: The BivariateFeaturesBarPlots metric is intended to perform a visual analysis of categorical data
20
- within the model. The goal is to assess and understand the specific relationships between various feature pairs,
21
- while simultaneously highlighting the model's target variable. This form of bivariate plotting is immensely
22
- beneficial in uncovering trends, correlations, patterns, or inconsistencies that may not be readily apparent within
23
- raw tabular data.
24
-
25
- **Test Mechanism**: These tests establish bar plots for each pair of features defined within the parameters. The
26
- dataset is grouped by each feature pair and then calculates the mean of the target variable within each specific
27
- grouping. Each group is represented via a bar in the plot, and the height of this bar aligns with the calculated
28
- mean. The colors assigned to these bars are based on the categorical section to which they pertain: these colors
29
- can either come from a colormap or generated anew if the total number of categories exceeds the current colormap's
30
- scope.
31
-
32
- **Signs of High Risk**:
33
- - If any values are found missing or inconsistent within the feature pairs.
34
- - If there exist large discrepancies or irregularities between the mean values of certain categories within feature
35
- pairs.
36
- - If the parameters for feature pairs have not been specified or if they were wrongly defined.
37
-
38
- **Strengths**:
39
- - The BivariateFeaturesBarPlots provides a clear, visual comprehension of the relationships between feature pairs
40
- and the target variable.
41
- - It allows an easy comparison between different categories within feature pairs.
42
- - The metric can handle a diverse array of categorical data, enhancing its universal applicability.
43
- - It is highly customizable due to its allowance for users to define feature pairs based on their specific
44
- requirements.
45
-
46
- **Limitations**:
47
- - It can only be used with categorical data, limiting its usability with numerical or textual data.
48
- - It relies on manual input for feature pairs, which could result in the overlooking of important feature pairs if
49
- not chosen judiciously.
50
- - The generated bar plots could become overly cluttered and difficult to decipher when dealing with feature pairs
51
- with a large number of categories.
52
- - This metric only provides a visual evaluation and fails to offer any numerical or statistical measures to
53
- quantify the relationship between feature pairs.
54
- """
55
-
56
- name = "bivariate_features_bar_plots"
57
- required_inputs = ["dataset"]
58
- default_params = {"features_pairs": None}
59
- tasks = ["classification"]
60
- tags = [
61
- "tabular_data",
62
- "categorical_data",
63
- "binary_classification",
64
- "multiclass_classification",
65
- "visualization",
66
- ]
67
-
68
- def run(self):
69
- features_pairs = self.params["features_pairs"]
70
-
71
- if features_pairs is None:
72
- raise ValueError(
73
- "The features_pairs parameter is required for this metric."
74
- )
75
-
76
- figures = self.plot_bivariate_bar(features_pairs)
77
-
78
- return self.cache_results(figures=figures)
79
-
80
- def plot_bivariate_bar(self, features_pairs):
81
- status_var = self.inputs.dataset.target_column
82
- figures = []
83
- for x, hue in features_pairs.items():
84
- df = self.inputs.dataset.df
85
-
86
- means = df.groupby([x, hue])[status_var].mean().unstack().reset_index()
87
- hue_categories = means.columns[1:]
88
-
89
- n = len(hue_categories)
90
- width = 1 / (n + 1)
91
-
92
- plt.figure()
93
-
94
- # Number of colors in the colormap
95
- num_colors = len(plt.cm.get_cmap("tab10").colors)
96
-
97
- if n <= num_colors:
98
- # Use the colors from the colormap if there are enough
99
- color_palette = {
100
- category: color
101
- for category, color in zip(
102
- hue_categories, plt.cm.get_cmap("tab10").colors
103
- )
104
- }
105
- else:
106
- # Generate a larger set of colors if needed
107
- hues = np.linspace(0, 1, n + 1)[
108
- :-1
109
- ] # exclude the last value which is equal to 1
110
- color_palette = {
111
- category: mcolors.hsv_to_rgb(
112
- (h, 1, 1)
113
- ) # replace 1, 1 with desired saturation and value
114
- for category, h in zip(hue_categories, hues)
115
- }
116
-
117
- for i, hue_category in enumerate(hue_categories):
118
- plt.bar(
119
- np.arange(len(means)) + i * width,
120
- means[hue_category],
121
- color=color_palette[hue_category],
122
- alpha=0.7,
123
- label=hue_category,
124
- width=width,
125
- )
126
-
127
- plt.title(x + " by " + hue)
128
- plt.xlabel(x)
129
- plt.ylabel("Default Ratio")
130
- plt.xticks(ticks=np.arange(len(means)), labels=means[x], rotation=90)
131
- plt.legend()
132
- plt.show()
133
-
134
- figures.append(
135
- Figure(
136
- for_object=self, key=f"{self.key}:{x}_{hue}", figure=plt.figure()
137
- )
138
- )
139
-
140
- plt.close("all")
141
-
142
- return figures