validmind 2.5.8__py3-none-any.whl → 2.5.18__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (233) hide show
  1. validmind/__version__.py +1 -1
  2. validmind/ai/test_descriptions.py +80 -119
  3. validmind/ai/test_result_description/config.yaml +29 -0
  4. validmind/ai/test_result_description/context.py +73 -0
  5. validmind/ai/test_result_description/image_processing.py +124 -0
  6. validmind/ai/test_result_description/system.jinja +39 -0
  7. validmind/ai/test_result_description/user.jinja +25 -0
  8. validmind/api_client.py +89 -43
  9. validmind/client.py +2 -2
  10. validmind/client_config.py +11 -14
  11. validmind/datasets/credit_risk/__init__.py +1 -0
  12. validmind/datasets/credit_risk/datasets/lending_club_biased.csv.gz +0 -0
  13. validmind/datasets/credit_risk/lending_club_bias.py +142 -0
  14. validmind/datasets/regression/fred_timeseries.py +67 -138
  15. validmind/template.py +1 -0
  16. validmind/test_suites/__init__.py +0 -2
  17. validmind/test_suites/statsmodels_timeseries.py +1 -1
  18. validmind/test_suites/summarization.py +0 -1
  19. validmind/test_suites/time_series.py +0 -43
  20. validmind/tests/__types__.py +14 -15
  21. validmind/tests/data_validation/ACFandPACFPlot.py +15 -13
  22. validmind/tests/data_validation/ADF.py +31 -24
  23. validmind/tests/data_validation/AutoAR.py +9 -9
  24. validmind/tests/data_validation/AutoMA.py +23 -16
  25. validmind/tests/data_validation/AutoSeasonality.py +18 -16
  26. validmind/tests/data_validation/AutoStationarity.py +21 -16
  27. validmind/tests/data_validation/BivariateScatterPlots.py +67 -96
  28. validmind/tests/{model_validation/statsmodels → data_validation}/BoxPierce.py +34 -34
  29. validmind/tests/data_validation/ChiSquaredFeaturesTable.py +85 -124
  30. validmind/tests/data_validation/ClassImbalance.py +15 -12
  31. validmind/tests/data_validation/DFGLSArch.py +19 -13
  32. validmind/tests/data_validation/DatasetDescription.py +17 -11
  33. validmind/tests/data_validation/DatasetSplit.py +7 -5
  34. validmind/tests/data_validation/DescriptiveStatistics.py +28 -21
  35. validmind/tests/data_validation/Duplicates.py +33 -25
  36. validmind/tests/data_validation/EngleGrangerCoint.py +35 -33
  37. validmind/tests/data_validation/FeatureTargetCorrelationPlot.py +59 -71
  38. validmind/tests/data_validation/HighCardinality.py +19 -12
  39. validmind/tests/data_validation/HighPearsonCorrelation.py +27 -22
  40. validmind/tests/data_validation/IQROutliersBarPlot.py +13 -10
  41. validmind/tests/data_validation/IQROutliersTable.py +40 -36
  42. validmind/tests/data_validation/IsolationForestOutliers.py +21 -14
  43. validmind/tests/data_validation/JarqueBera.py +70 -0
  44. validmind/tests/data_validation/KPSS.py +34 -29
  45. validmind/tests/data_validation/LJungBox.py +66 -0
  46. validmind/tests/data_validation/LaggedCorrelationHeatmap.py +22 -15
  47. validmind/tests/data_validation/MissingValues.py +32 -27
  48. validmind/tests/data_validation/MissingValuesBarPlot.py +25 -21
  49. validmind/tests/data_validation/PearsonCorrelationMatrix.py +71 -84
  50. validmind/tests/data_validation/PhillipsPerronArch.py +37 -30
  51. validmind/tests/data_validation/ProtectedClassesCombination.py +197 -0
  52. validmind/tests/data_validation/ProtectedClassesDescription.py +130 -0
  53. validmind/tests/data_validation/ProtectedClassesDisparity.py +133 -0
  54. validmind/tests/data_validation/ProtectedClassesThresholdOptimizer.py +172 -0
  55. validmind/tests/data_validation/RollingStatsPlot.py +31 -23
  56. validmind/tests/data_validation/RunsTest.py +72 -0
  57. validmind/tests/data_validation/ScatterPlot.py +63 -78
  58. validmind/tests/data_validation/SeasonalDecompose.py +38 -34
  59. validmind/tests/{model_validation/statsmodels → data_validation}/ShapiroWilk.py +35 -30
  60. validmind/tests/data_validation/Skewness.py +35 -37
  61. validmind/tests/data_validation/SpreadPlot.py +35 -35
  62. validmind/tests/data_validation/TabularCategoricalBarPlots.py +23 -17
  63. validmind/tests/data_validation/TabularDateTimeHistograms.py +21 -13
  64. validmind/tests/data_validation/TabularDescriptionTables.py +51 -16
  65. validmind/tests/data_validation/TabularNumericalHistograms.py +25 -22
  66. validmind/tests/data_validation/TargetRateBarPlots.py +21 -14
  67. validmind/tests/data_validation/TimeSeriesDescription.py +25 -18
  68. validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py +23 -17
  69. validmind/tests/data_validation/TimeSeriesFrequency.py +24 -17
  70. validmind/tests/data_validation/TimeSeriesHistogram.py +33 -32
  71. validmind/tests/data_validation/TimeSeriesLinePlot.py +17 -10
  72. validmind/tests/data_validation/TimeSeriesMissingValues.py +15 -10
  73. validmind/tests/data_validation/TimeSeriesOutliers.py +37 -33
  74. validmind/tests/data_validation/TooManyZeroValues.py +16 -11
  75. validmind/tests/data_validation/UniqueRows.py +11 -6
  76. validmind/tests/data_validation/WOEBinPlots.py +23 -16
  77. validmind/tests/data_validation/WOEBinTable.py +35 -30
  78. validmind/tests/data_validation/ZivotAndrewsArch.py +34 -28
  79. validmind/tests/data_validation/nlp/CommonWords.py +21 -14
  80. validmind/tests/data_validation/nlp/Hashtags.py +42 -40
  81. validmind/tests/data_validation/nlp/LanguageDetection.py +33 -14
  82. validmind/tests/data_validation/nlp/Mentions.py +21 -15
  83. validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +32 -9
  84. validmind/tests/data_validation/nlp/Punctuations.py +24 -20
  85. validmind/tests/data_validation/nlp/Sentiment.py +27 -8
  86. validmind/tests/data_validation/nlp/StopWords.py +26 -19
  87. validmind/tests/data_validation/nlp/TextDescription.py +39 -36
  88. validmind/tests/data_validation/nlp/Toxicity.py +32 -9
  89. validmind/tests/decorator.py +81 -42
  90. validmind/tests/model_validation/BertScore.py +36 -27
  91. validmind/tests/model_validation/BleuScore.py +25 -19
  92. validmind/tests/model_validation/ClusterSizeDistribution.py +38 -34
  93. validmind/tests/model_validation/ContextualRecall.py +38 -13
  94. validmind/tests/model_validation/FeaturesAUC.py +32 -13
  95. validmind/tests/model_validation/MeteorScore.py +46 -33
  96. validmind/tests/model_validation/ModelMetadata.py +32 -64
  97. validmind/tests/model_validation/ModelPredictionResiduals.py +75 -73
  98. validmind/tests/model_validation/RegardScore.py +30 -14
  99. validmind/tests/model_validation/RegressionResidualsPlot.py +10 -5
  100. validmind/tests/model_validation/RougeScore.py +36 -30
  101. validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +30 -14
  102. validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +27 -30
  103. validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +68 -63
  104. validmind/tests/model_validation/TokenDisparity.py +31 -23
  105. validmind/tests/model_validation/ToxicityScore.py +26 -17
  106. validmind/tests/model_validation/embeddings/ClusterDistribution.py +24 -20
  107. validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +30 -27
  108. validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py +7 -5
  109. validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +32 -23
  110. validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py +7 -5
  111. validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py +15 -11
  112. validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +29 -29
  113. validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +34 -25
  114. validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +38 -26
  115. validmind/tests/model_validation/embeddings/StabilityAnalysis.py +40 -1
  116. validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +18 -17
  117. validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +40 -45
  118. validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +17 -19
  119. validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +29 -25
  120. validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +38 -28
  121. validmind/tests/model_validation/ragas/AnswerCorrectness.py +5 -4
  122. validmind/tests/model_validation/ragas/AnswerRelevance.py +5 -4
  123. validmind/tests/model_validation/ragas/AnswerSimilarity.py +5 -4
  124. validmind/tests/model_validation/ragas/AspectCritique.py +12 -6
  125. validmind/tests/model_validation/ragas/ContextEntityRecall.py +9 -8
  126. validmind/tests/model_validation/ragas/ContextPrecision.py +5 -4
  127. validmind/tests/model_validation/ragas/ContextRecall.py +5 -4
  128. validmind/tests/model_validation/ragas/ContextUtilization.py +155 -0
  129. validmind/tests/model_validation/ragas/Faithfulness.py +5 -4
  130. validmind/tests/model_validation/ragas/NoiseSensitivity.py +152 -0
  131. validmind/tests/model_validation/ragas/utils.py +6 -0
  132. validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py +19 -12
  133. validmind/tests/model_validation/sklearn/AdjustedRandIndex.py +22 -17
  134. validmind/tests/model_validation/sklearn/ClassifierPerformance.py +27 -25
  135. validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py +7 -5
  136. validmind/tests/model_validation/sklearn/ClusterPerformance.py +40 -78
  137. validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +15 -17
  138. validmind/tests/model_validation/sklearn/CompletenessScore.py +17 -11
  139. validmind/tests/model_validation/sklearn/ConfusionMatrix.py +22 -15
  140. validmind/tests/model_validation/sklearn/FeatureImportance.py +95 -0
  141. validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py +7 -7
  142. validmind/tests/model_validation/sklearn/HomogeneityScore.py +19 -12
  143. validmind/tests/model_validation/sklearn/HyperParametersTuning.py +35 -30
  144. validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py +10 -5
  145. validmind/tests/model_validation/sklearn/MinimumAccuracy.py +32 -32
  146. validmind/tests/model_validation/sklearn/MinimumF1Score.py +23 -23
  147. validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py +15 -10
  148. validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py +26 -19
  149. validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +38 -18
  150. validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +32 -26
  151. validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +8 -6
  152. validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +24 -17
  153. validmind/tests/model_validation/sklearn/ROCCurve.py +12 -7
  154. validmind/tests/model_validation/sklearn/RegressionErrors.py +74 -130
  155. validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py +27 -12
  156. validmind/tests/model_validation/sklearn/{RegressionModelsPerformanceComparison.py → RegressionPerformance.py} +18 -20
  157. validmind/tests/model_validation/sklearn/RegressionR2Square.py +55 -94
  158. validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py +32 -13
  159. validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +36 -32
  160. validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +66 -5
  161. validmind/tests/model_validation/sklearn/SilhouettePlot.py +27 -19
  162. validmind/tests/model_validation/sklearn/TrainingTestDegradation.py +25 -18
  163. validmind/tests/model_validation/sklearn/VMeasure.py +14 -13
  164. validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +7 -5
  165. validmind/tests/model_validation/statsmodels/AutoARIMA.py +24 -18
  166. validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py +73 -104
  167. validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +59 -32
  168. validmind/tests/model_validation/statsmodels/GINITable.py +44 -77
  169. validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +33 -34
  170. validmind/tests/model_validation/statsmodels/Lilliefors.py +27 -24
  171. validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +86 -119
  172. validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +100 -0
  173. validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +14 -9
  174. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +17 -13
  175. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +46 -43
  176. validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py +38 -36
  177. validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +30 -28
  178. validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py +18 -11
  179. validmind/tests/model_validation/statsmodels/ScorecardHistogram.py +75 -107
  180. validmind/tests/ongoing_monitoring/FeatureDrift.py +10 -6
  181. validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py +31 -25
  182. validmind/tests/ongoing_monitoring/PredictionCorrelation.py +29 -21
  183. validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py +31 -23
  184. validmind/tests/prompt_validation/Bias.py +14 -11
  185. validmind/tests/prompt_validation/Clarity.py +16 -14
  186. validmind/tests/prompt_validation/Conciseness.py +7 -5
  187. validmind/tests/prompt_validation/Delimitation.py +23 -22
  188. validmind/tests/prompt_validation/NegativeInstruction.py +7 -5
  189. validmind/tests/prompt_validation/Robustness.py +12 -10
  190. validmind/tests/prompt_validation/Specificity.py +13 -11
  191. validmind/tests/prompt_validation/ai_powered_test.py +6 -0
  192. validmind/tests/run.py +68 -23
  193. validmind/unit_metrics/__init__.py +81 -144
  194. validmind/unit_metrics/classification/{sklearn/Accuracy.py → Accuracy.py} +1 -1
  195. validmind/unit_metrics/classification/{sklearn/F1.py → F1.py} +1 -1
  196. validmind/unit_metrics/classification/{sklearn/Precision.py → Precision.py} +1 -1
  197. validmind/unit_metrics/classification/{sklearn/ROC_AUC.py → ROC_AUC.py} +1 -2
  198. validmind/unit_metrics/classification/{sklearn/Recall.py → Recall.py} +1 -1
  199. validmind/unit_metrics/regression/{sklearn/AdjustedRSquaredScore.py → AdjustedRSquaredScore.py} +1 -1
  200. validmind/unit_metrics/regression/GiniCoefficient.py +1 -1
  201. validmind/unit_metrics/regression/HuberLoss.py +1 -1
  202. validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py +1 -1
  203. validmind/unit_metrics/regression/{sklearn/MeanAbsoluteError.py → MeanAbsoluteError.py} +1 -1
  204. validmind/unit_metrics/regression/MeanAbsolutePercentageError.py +1 -1
  205. validmind/unit_metrics/regression/MeanBiasDeviation.py +1 -1
  206. validmind/unit_metrics/regression/{sklearn/MeanSquaredError.py → MeanSquaredError.py} +1 -1
  207. validmind/unit_metrics/regression/QuantileLoss.py +1 -1
  208. validmind/unit_metrics/regression/{sklearn/RSquaredScore.py → RSquaredScore.py} +1 -1
  209. validmind/unit_metrics/regression/{sklearn/RootMeanSquaredError.py → RootMeanSquaredError.py} +1 -1
  210. validmind/utils.py +4 -0
  211. validmind/vm_models/dataset/dataset.py +2 -0
  212. validmind/vm_models/figure.py +5 -0
  213. validmind/vm_models/test/metric.py +1 -0
  214. validmind/vm_models/test/result_wrapper.py +143 -158
  215. validmind/vm_models/test/threshold_test.py +1 -0
  216. {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/METADATA +4 -3
  217. validmind-2.5.18.dist-info/RECORD +324 -0
  218. validmind/tests/data_validation/ANOVAOneWayTable.py +0 -138
  219. validmind/tests/data_validation/BivariateFeaturesBarPlots.py +0 -142
  220. validmind/tests/data_validation/BivariateHistograms.py +0 -117
  221. validmind/tests/data_validation/HeatmapFeatureCorrelations.py +0 -124
  222. validmind/tests/data_validation/MissingValuesRisk.py +0 -88
  223. validmind/tests/model_validation/ModelMetadataComparison.py +0 -59
  224. validmind/tests/model_validation/sklearn/FeatureImportanceComparison.py +0 -83
  225. validmind/tests/model_validation/statsmodels/JarqueBera.py +0 -73
  226. validmind/tests/model_validation/statsmodels/LJungBox.py +0 -66
  227. validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py +0 -135
  228. validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +0 -103
  229. validmind/tests/model_validation/statsmodels/RunsTest.py +0 -71
  230. validmind-2.5.8.dist-info/RECORD +0 -318
  231. {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/LICENSE +0 -0
  232. {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/WHEEL +0 -0
  233. {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/entry_points.txt +0 -0
@@ -13,40 +13,39 @@ from validmind.vm_models import Metric, ResultSummary, ResultTable, ResultTableM
13
13
  @dataclass
14
14
  class KolmogorovSmirnov(Metric):
15
15
  """
16
- Executes a feature-wise Kolmogorov-Smirnov test to evaluate alignment with normal distribution in datasets.
17
-
18
- **Purpose**: This metric employs the Kolmogorov-Smirnov (KS) test to evaluate the distribution of a dataset's
19
- features. It specifically gauges whether the data from each feature aligns with a normal distribution, a common
20
- presumption in many statistical methods and machine learning models.
21
-
22
- **Test Mechanism**: This KS test calculates the KS statistic and the corresponding p-value for each column in a
23
- dataset. It achieves this by contrasting the cumulative distribution function of the dataset's feature with an
24
- ideal normal distribution. Subsequently, a feature-by-feature KS statistic and p-value are stored in a dictionary.
25
- The specific threshold p-value (the value below which we reject the hypothesis that the data is drawn from a normal
26
- distribution) is not firmly set within this implementation, allowing for definitional flexibility depending on the
27
- specific application.
28
-
29
- **Signs of High Risk**:
30
- - Elevated KS statistic for a feature combined with a low p-value. This suggests a significant divergence between
31
- the feature's distribution and a normal one.
32
- - Features with notable deviations. These could create problems if the applicable model makes assumptions about
33
- normal data distribution, thereby representing a risk.
34
-
35
- **Strengths**:
36
- - The KS test is acutely sensitive to differences in the location and shape of the empirical cumulative
37
- distribution functions of two samples.
38
- - It is non-parametric and does not presuppose any specific data distribution, making it adaptable to a range of
39
- datasets.
40
- - With its focus on individual features, it offers detailed insights into data distribution.
41
-
42
- **Limitations**:
43
- - The sensitivity of the KS test to disparities in data distribution tails can be excessive. Such sensitivity might
44
- prompt false alarms about non-normal distributions, particularly in situations where these tail tendencies are
45
- irrelevant to the model.
46
- - It could become less effective when applied to multivariate distributions, considering that it's primarily
47
- configured for univariate distributions.
48
- - As a goodness-of-fit test, the KS test does not identify specific types of non-normality, such as skewness or
49
- kurtosis, that could directly impact model fitting.
16
+ Assesses whether each feature in the dataset aligns with a normal distribution using the Kolmogorov-Smirnov test.
17
+
18
+ ### Purpose
19
+
20
+ The Kolmogorov-Smirnov (KS) test evaluates the distribution of features in a dataset to determine their alignment
21
+ with a normal distribution. This is important because many statistical methods and machine learning models assume
22
+ normality in the data distribution.
23
+
24
+ ### Test Mechanism
25
+
26
+ This test calculates the KS statistic and corresponding p-value for each feature in the dataset. It does so by
27
+ comparing the cumulative distribution function of the feature with an ideal normal distribution. The KS statistic
28
+ and p-value for each feature are then stored in a dictionary. The p-value threshold to reject the normal
29
+ distribution hypothesis is not preset, providing flexibility for different applications.
30
+
31
+ ### Signs of High Risk
32
+
33
+ - Elevated KS statistic for a feature combined with a low p-value, indicating a significant divergence from a
34
+ normal distribution.
35
+ - Features with notable deviations that could create problems if the model assumes normality in data distribution.
36
+
37
+ ### Strengths
38
+
39
+ - The KS test is sensitive to differences in the location and shape of empirical cumulative distribution functions.
40
+ - It is non-parametric and adaptable to various datasets, as it does not assume any specific data distribution.
41
+ - Provides detailed insights into the distribution of individual features.
42
+
43
+ ### Limitations
44
+
45
+ - The test's sensitivity to disparities in the tails of data distribution might cause false alarms about
46
+ non-normality.
47
+ - Less effective for multivariate distributions, as it is designed for univariate distributions.
48
+ - Does not identify specific types of non-normality, such as skewness or kurtosis, which could impact model fitting.
50
49
  """
51
50
 
52
51
  name = "kolmogorov_smirnov"
@@ -14,44 +14,47 @@ class Lilliefors(Metric):
14
14
  """
15
15
  Assesses the normality of feature distributions in an ML model's training dataset using the Lilliefors test.
16
16
 
17
- **Purpose**: The purpose of this metric is to utilize the Lilliefors test, named in honor of the Swedish
18
- statistician Hubert Lilliefors, in order to assess whether the features of the machine learning model's training
19
- dataset conform to a normal distribution. This is done because the assumption of normal distribution plays a vital
20
- role in numerous statistical procedures as well as numerous machine learning models. Should the features fail to
21
- follow a normal distribution, some model types may not operate at optimal efficiency. This can potentially lead to
22
- inaccurate predictions.
23
-
24
- **Test Mechanism**: The application of this test happens across all feature columns within the training dataset.
25
- For each feature, the Lilliefors test returns a test statistic and p-value. The test statistic quantifies how far
26
- the feature's distribution is from an ideal normal distribution, whereas the p-value aids in determining the
27
- statistical relevance of this deviation. The final results are stored within a dictionary, the keys of which
28
- correspond to the name of the feature column, and the values being another dictionary which houses the test
29
- statistic and p-value.
30
-
31
- **Signs of High Risk**:
17
+ ### Purpose
18
+
19
+ The purpose of this metric is to utilize the Lilliefors test, named in honor of the Swedish statistician Hubert
20
+ Lilliefors, in order to assess whether the features of the machine learning model's training dataset conform to a
21
+ normal distribution. This is done because the assumption of normal distribution plays a vital role in numerous
22
+ statistical procedures as well as numerous machine learning models. Should the features fail to follow a normal
23
+ distribution, some model types may not operate at optimal efficiency. This can potentially lead to inaccurate
24
+ predictions.
25
+
26
+ ### Test Mechanism
27
+
28
+ The application of this test happens across all feature columns within the training dataset. For each feature, the
29
+ Lilliefors test returns a test statistic and p-value. The test statistic quantifies how far the feature's
30
+ distribution is from an ideal normal distribution, whereas the p-value aids in determining the statistical
31
+ relevance of this deviation. The final results are stored within a dictionary, the keys of which correspond to the
32
+ name of the feature column, and the values being another dictionary which houses the test statistic and p-value.
33
+
34
+ ### Signs of High Risk
32
35
 
33
36
  - If the p-value corresponding to a specific feature sinks below a pre-established significance level, generally
34
37
  set at 0.05, then it can be deduced that the distribution of that feature significantly deviates from a normal
35
38
  distribution. This can present a high risk for models that assume normality, as these models may perform
36
39
  inaccurately or inefficiently in the presence of such a feature.
37
40
 
38
- **Strengths**:
41
+ ### Strengths
39
42
 
40
43
  - One advantage of the Lilliefors test is its utility irrespective of whether the mean and variance of the normal
41
44
  distribution are known in advance. This makes it a more robust option in real-world situations where these values
42
45
  might not be known.
43
- - Second, the test has the ability to screen every feature column, offering a holistic view of the dataset.
46
+ - The test has the ability to screen every feature column, offering a holistic view of the dataset.
44
47
 
45
- **Limitations**:
48
+ ### Limitations
46
49
 
47
50
  - Despite the practical applications of the Lilliefors test in validating normality, it does come with some
48
51
  limitations.
49
- - Firstly, it is only capable of testing unidimensional data, thus rendering it ineffective for datasets with
50
- interactions between features or multi-dimensional phenomena.
51
- - Additionally, the test might not be as sensitive as some other tests (like the Anderson-Darling test) in
52
- detecting deviations from a normal distribution.
53
- - Lastly, like any other statistical test, Lilliefors test may also produce false positives or negatives. Hence,
54
- banking solely on this test, without considering other characteristics of the data, may give rise to risks.
52
+ - It is only capable of testing unidimensional data, thus rendering it ineffective for datasets with interactions
53
+ between features or multi-dimensional phenomena.
54
+ - The test might not be as sensitive as some other tests (like the Anderson-Darling test) in detecting deviations
55
+ from a normal distribution.
56
+ - Like any other statistical test, Lilliefors test may also produce false positives or negatives. Hence, banking
57
+ solely on this test, without considering other characteristics of the data, may give rise to risks.
55
58
  """
56
59
 
57
60
  name = "lilliefors_test"
@@ -2,134 +2,101 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
- from dataclasses import dataclass
6
5
 
7
6
  import plotly.graph_objects as go
8
7
  from matplotlib import cm
9
8
 
10
- from validmind.vm_models import Figure, Metric
9
+ from validmind import tags, tasks
11
10
 
12
11
 
13
- @dataclass
14
- class PredictionProbabilitiesHistogram(Metric):
12
+ @tags("visualization", "credit_risk", "logistic_regression")
13
+ @tasks("classification")
14
+ def PredictionProbabilitiesHistogram(
15
+ dataset, model, title="Histogram of Predictive Probabilities"
16
+ ):
15
17
  """
16
- Generates and visualizes histograms of the Probability of Default predictions for both positive and negative
17
- classes in training and testing datasets.
18
-
19
- **Purpose**: This code is designed to generate histograms that display the Probability of Default (PD) predictions
20
- for positive and negative classes in both the training and testing datasets. By doing so, it evaluates the
21
- performance of a logistic regression model, particularly in the context of credit risk prediction.
22
-
23
- **Test Mechanism**: The metric executes these steps to run the test:
24
- - Firstly, it extracts the target column from both the train and test datasets.
25
- - The model's predict function is then used to calculate probabilities.
26
- - These probabilities are added as a new column to the training and testing dataframes.
27
- - Histograms are generated for each class (0 or 1 in binary classification scenarios) within the training and
28
- testing datasets.
29
- - To enhance visualization, the histograms are set to have different opacities.
30
- - The four histograms (two for training data and two for testing) are overlaid on two different subplot frames (one
31
- for training and one for testing data).
32
- - The test returns a plotly graph object displaying the visualization.
33
-
34
- **Signs of High Risk**: Several indicators could suggest a high risk or failure in the model's performance. These
35
- include:
36
- - Significant discrepancies observed between the histograms of training and testing data.
18
+ Assesses the predictive probability distribution for binary classification to evaluate model performance and
19
+ potential overfitting or bias.
20
+
21
+ ### Purpose
22
+
23
+ The Prediction Probabilities Histogram test is designed to generate histograms displaying the Probability of
24
+ Default (PD) predictions for both positive and negative classes in training and testing datasets. This helps in
25
+ evaluating the performance of a logistic regression model, particularly for credit risk prediction.
26
+
27
+ ### Test Mechanism
28
+
29
+ The metric follows these steps to execute the test:
30
+ - Extracts the target column from both the train and test datasets.
31
+ - Uses the model's predict function to calculate probabilities.
32
+ - Adds these probabilities as a new column to the training and testing dataframes.
33
+ - Generates histograms for each class (0 or 1) within the training and testing datasets.
34
+ - Sets different opacities for the histograms to enhance visualization.
35
+ - Overlays the four histograms (two for training and two for testing) on two different subplot frames.
36
+ - Returns a plotly graph object displaying the visualization.
37
+
38
+ ### Signs of High Risk
39
+
40
+ - Significant discrepancies between the histograms of training and testing data.
37
41
  - Large disparities between the histograms for the positive and negative classes.
38
- - These issues could signal potential overfitting or bias in the model.
39
- - Unevenly distributed probabilities may also indicate that the model does not accurately predict outcomes.
40
-
41
- **Strengths**: This metric and test offer several benefits, including:
42
- - The visual representation of the PD predictions made by the model, which aids in understanding the model's
43
- behaviour.
44
- - The ability to assess both the training and testing datasets, adding depth to the validation of the model.
45
- - Highlighting disparities between multiple classes, providing potential insights into class imbalance or data
46
- skewness issues.
47
- - Particularly beneficial for credit risk prediction, it effectively visualizes the spread of risk across different
48
- classes.
49
-
50
- **Limitations**: Despite its strengths, the test has several limitations:
51
- - It is specifically tailored for binary classification scenarios, where the target variable only has two classes;
52
- as such, it isn't suited for multi-class classification tasks.
53
- - This metric is mainly applicable for logistic regression models. It might not be effective or accurate when used
54
- on other model types.
55
- - While the test provides a robust visual representation of the model's PD predictions, it does not provide a
56
- quantifiable measure or score to assess model performance.
42
+ - Potential overfitting or bias indicated by significant issues.
43
+ - Unevenly distributed probabilities suggesting inaccurate model predictions.
44
+
45
+ ### Strengths
46
+
47
+ - Offers a visual representation of the PD predictions made by the model, aiding in understanding its behavior.
48
+ - Assesses both the training and testing datasets, adding depth to model validation.
49
+ - Highlights disparities between classes, providing insights into class imbalance or data skewness.
50
+ - Effectively visualizes risk spread, which is particularly beneficial for credit risk prediction.
51
+
52
+ ### Limitations
53
+
54
+ - Specifically tailored for binary classification scenarios and not suited for multi-class classification tasks.
55
+ - Mainly applicable to logistic regression models, and may not be effective for other model types.
56
+ - Provides a robust visual representation but lacks a quantifiable measure to assess model performance.
57
57
  """
58
58
 
59
- name = "prediction_probabilities_histogram"
60
- required_inputs = ["model", "datasets"]
61
- tasks = ["classification"]
62
- tags = ["tabular_data", "visualization", "credit_risk", "logistic_regression"]
63
-
64
- default_params = {"title": "Histogram of Predictive Probabilities"}
65
-
66
- @staticmethod
67
- def plot_prob_histogram(dataframes, dataset_titles, target_col, title):
68
- figures = []
69
-
70
- # Generate a colormap and convert to Plotly-accepted color format
71
- # Adjust 'viridis' to any other matplotlib colormap if desired
72
- colormap = cm.get_cmap("viridis")
73
-
74
- for i, (df, dataset_title) in enumerate(zip(dataframes, dataset_titles)):
75
- fig = go.Figure()
76
-
77
- # Get unique classes and assign colors
78
- classes = sorted(df[target_col].unique())
79
- colors = [
80
- colormap(i / len(classes))[:3] for i in range(len(classes))
81
- ] # RGB
82
- color_dict = {
83
- cls: f"rgb({int(rgb[0]*255)}, {int(rgb[1]*255)}, {int(rgb[2]*255)})"
84
- for cls, rgb in zip(classes, colors)
85
- }
86
-
87
- # Ensure classes are plotted in the specified order
88
- for class_value in sorted(df[target_col].unique()):
89
- fig.add_trace(
90
- go.Histogram(
91
- x=df[df[target_col] == class_value]["probabilities"],
92
- opacity=0.75,
93
- name=f"{dataset_title} {target_col} = {class_value}",
94
- marker=dict(
95
- color=color_dict[class_value],
96
- ),
97
- )
98
- )
99
- fig.update_layout(
100
- barmode="overlay",
101
- title_text=f"{title} - {dataset_title}",
102
- xaxis_title="Probability",
103
- yaxis_title="Frequency",
104
- )
105
- figures.append(fig)
106
- return figures
107
-
108
- def run(self):
109
- dataset_titles = [dataset.input_id for dataset in self.inputs.datasets]
110
- target_column = self.inputs.datasets[0].target_column
111
- title = self.params.get("title", self.default_params["title"])
112
-
113
- dataframes = []
114
- metric_value = {"prob_histogram": {}}
115
- for _, dataset in enumerate(self.inputs.datasets):
116
- df = dataset.df.copy()
117
- y_prob = dataset.y_prob(self.inputs.model)
118
- df["probabilities"] = y_prob
119
- dataframes.append(df)
120
- metric_value["prob_histogram"][dataset.input_id] = list(df["probabilities"])
121
-
122
- figures = self.plot_prob_histogram(
123
- dataframes, dataset_titles, target_column, title
124
- )
59
+ df = dataset.df
60
+ df["probabilities"] = dataset.y_prob(model)
125
61
 
126
- figures_list = [
127
- Figure(
128
- for_object=self,
129
- key=f"prob_histogram_{title.replace(' ', '_')}_{i+1}",
130
- figure=fig,
131
- )
132
- for i, fig in enumerate(figures)
133
- ]
62
+ fig = _plot_prob_histogram(df, dataset.target_column, title)
63
+
64
+ return fig
65
+
66
+
67
+ def _plot_prob_histogram(df, target_col, title):
134
68
 
135
- return self.cache_results(metric_value=metric_value, figures=figures_list)
69
+ # Generate a colormap and convert to Plotly-accepted color format
70
+ # Adjust 'viridis' to any other matplotlib colormap if desired
71
+ colormap = cm.get_cmap("viridis")
72
+
73
+ fig = go.Figure()
74
+
75
+ # Get unique classes and assign colors
76
+ classes = sorted(df[target_col].unique())
77
+ colors = [colormap(i / len(classes))[:3] for i in range(len(classes))] # RGB
78
+ color_dict = {
79
+ cls: f"rgb({int(rgb[0]*255)}, {int(rgb[1]*255)}, {int(rgb[2]*255)})"
80
+ for cls, rgb in zip(classes, colors)
81
+ }
82
+
83
+ # Ensure classes are plotted in the specified order
84
+ for class_value in sorted(df[target_col].unique()):
85
+ fig.add_trace(
86
+ go.Histogram(
87
+ x=df[df[target_col] == class_value]["probabilities"],
88
+ opacity=0.75,
89
+ name=f"{target_col} = {class_value}",
90
+ marker=dict(
91
+ color=color_dict[class_value],
92
+ ),
93
+ )
94
+ )
95
+ fig.update_layout(
96
+ barmode="overlay",
97
+ title_text=f"{title}",
98
+ xaxis_title="Probability",
99
+ yaxis_title="Frequency",
100
+ )
101
+
102
+ return fig
@@ -0,0 +1,100 @@
1
+ # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
+ # See the LICENSE file in the root of this repository for details.
3
+ # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
+
5
+
6
+ import pandas as pd
7
+ import plotly.graph_objects as go
8
+ from scipy import stats
9
+
10
+ from validmind import tags, tasks
11
+ from validmind.errors import SkipTestError
12
+
13
+
14
+ @tags("tabular_data", "visualization", "model_training")
15
+ @tasks("regression")
16
+ def RegressionCoeffs(model):
17
+ """
18
+ Assesses the significance and uncertainty of predictor variables in a regression model through visualization of
19
+ coefficients and their 95% confidence intervals.
20
+
21
+ ### Purpose
22
+
23
+ The `RegressionCoeffs` metric visualizes the estimated regression coefficients alongside their 95% confidence intervals,
24
+ providing insights into the impact and significance of predictor variables on the response variable. This visualization
25
+ helps to understand the variability and uncertainty in the model's estimates, aiding in the evaluation of the
26
+ significance of each predictor.
27
+
28
+ ### Test Mechanism
29
+
30
+ The function operates by extracting the estimated coefficients and their standard errors from the regression model.
31
+ Using these, it calculates the confidence intervals at a 95% confidence level, which indicates the range within which
32
+ the true coefficient value is expected to fall 95% of the time. The confidence intervals are computed using the
33
+ Z-value associated with the 95% confidence level. The coefficients and their confidence intervals are then visualized
34
+ in a bar plot. The x-axis represents the predictor variables, the y-axis represents the estimated coefficients, and
35
+ the error bars depict the confidence intervals.
36
+
37
+ ### Signs of High Risk
38
+
39
+ - The confidence interval for a coefficient contains the zero value, suggesting that the predictor may not significantly
40
+ contribute to the model.
41
+ - Multiple coefficients with confidence intervals that include zero, potentially indicating issues with model reliability.
42
+ - Very wide confidence intervals, which may suggest high uncertainty in the coefficient estimates and potential model
43
+ instability.
44
+
45
+ ### Strengths
46
+
47
+ - Provides a clear visualization that allows for easy interpretation of the significance and impact of predictor
48
+ variables.
49
+ - Includes confidence intervals, which provide additional information about the uncertainty surrounding each coefficient
50
+ estimate.
51
+
52
+ ### Limitations
53
+
54
+ - The method assumes normality of residuals and independence of observations, assumptions that may not always hold true
55
+ in practice.
56
+ - It does not address issues related to multi-collinearity among predictor variables, which can affect the interpretation
57
+ of coefficients.
58
+ - This metric is limited to regression tasks using tabular data and is not applicable to other types of machine learning
59
+ tasks or data structures.
60
+ """
61
+
62
+ if model.library != "statsmodels":
63
+ raise SkipTestError("Only statsmodels are supported for this metric")
64
+
65
+ # Extract estimated coefficients and standard errors
66
+ coefficients = model.regression_coefficients()
67
+ coef = pd.to_numeric(coefficients["coef"])
68
+ std_err = pd.to_numeric(coefficients["std err"])
69
+
70
+ # Calculate confidence intervals
71
+ confidence_level = 0.95 # 95% confidence interval
72
+ z_value = stats.norm.ppf((1 + confidence_level) / 2) # Calculate Z-value
73
+ lower_ci = coef - z_value * std_err
74
+ upper_ci = coef + z_value * std_err
75
+
76
+ # Create a bar plot with confidence intervals
77
+ fig = go.Figure()
78
+
79
+ fig.add_trace(
80
+ go.Bar(
81
+ x=list(coefficients["Feature"].values),
82
+ y=coef,
83
+ name="Estimated Coefficients",
84
+ error_y=dict(
85
+ type="data",
86
+ symmetric=False,
87
+ arrayminus=lower_ci,
88
+ array=upper_ci,
89
+ visible=True,
90
+ ),
91
+ )
92
+ )
93
+
94
+ fig.update_layout(
95
+ title=f"{model.input_id} Coefficients with Confidence Intervals",
96
+ xaxis_title="Predictor Variables",
97
+ yaxis_title="Coefficients",
98
+ )
99
+
100
+ return (fig, coefficients)
@@ -19,31 +19,36 @@ class RegressionFeatureSignificance(Metric):
19
19
  """
20
20
  Assesses and visualizes the statistical significance of features in a set of regression models.
21
21
 
22
- **Purpose**:
22
+ ### Purpose
23
+
23
24
  The Regression Feature Significance metric assesses the significance of each feature in a given set of regression
24
25
  models. It creates a visualization displaying p-values for every feature of each model, assisting model developers
25
26
  in understanding which features are most influential in their models.
26
27
 
27
- **Test Mechanism**:
28
+ ### Test Mechanism
29
+
28
30
  The test mechanism involves going through each fitted regression model in a given list, extracting the model
29
31
  coefficients and p-values for each feature, and then plotting these values. The x-axis on the plot contains the
30
32
  p-values while the y-axis denotes the coefficients of each feature. A vertical red line is drawn at the threshold
31
33
  for p-value significance, which is 0.05 by default. Any features with p-values to the left of this line are
32
34
  considered statistically significant at the chosen level.
33
35
 
34
- **Signs of High Risk**:
36
+ ### Signs of High Risk
37
+
35
38
  - Any feature with a high p-value (greater than the threshold) is considered a potential high risk, as it suggests
36
39
  the feature is not statistically significant and may not be reliably contributing to the model's predictions.
37
40
  - A high number of such features may indicate problems with the model validation, variable selection, and overall
38
41
  reliability of the model predictions.
39
42
 
40
- **Strengths**:
43
+ ### Strengths
44
+
41
45
  - Helps identify the features that significantly contribute to a model's prediction, providing insights into the
42
46
  feature importance.
43
47
  - Provides tangible, easy-to-understand visualizations to interpret the feature significance.
44
48
  - Facilitates comparison of feature importance across multiple models.
45
49
 
46
- **Limitations**:
50
+ ### Limitations
51
+
47
52
  - This metric assumes model features are independent, which may not always be the case. Multicollinearity (high
48
53
  correlation amongst predictors) can cause high variance and unreliable statistical tests of significance.
49
54
  - The p-value strategy for feature selection doesn't take into account the magnitude of the effect, focusing solely
@@ -54,7 +59,7 @@ class RegressionFeatureSignificance(Metric):
54
59
  """
55
60
 
56
61
  name = "regression_feature_significance"
57
- required_inputs = ["models"]
62
+ required_inputs = ["model"]
58
63
 
59
64
  default_params = {"fontsize": 10, "p_threshold": 0.05}
60
65
  tasks = ["regression"]
@@ -70,10 +75,10 @@ class RegressionFeatureSignificance(Metric):
70
75
  p_threshold = self.params["p_threshold"]
71
76
 
72
77
  # Check models list is not empty
73
- if not self.inputs.models:
74
- raise ValueError("List of models must be provided in the models parameter")
78
+ if not self.inputs.model:
79
+ raise ValueError("Model must be provided in the models parameter")
75
80
 
76
- figures = self._plot_pvalues(self.inputs.models, fontsize, p_threshold)
81
+ figures = self._plot_pvalues(self.inputs.model, fontsize, p_threshold)
77
82
 
78
83
  return self.cache_results(figures=figures)
79
84
 
@@ -19,26 +19,30 @@ class RegressionModelForecastPlot(Metric):
19
19
  Generates plots to visually compare the forecasted outcomes of one or more regression models against actual
20
20
  observed values over a specified date range.
21
21
 
22
- **Purpose:** The "regression_forecast_plot" is intended to visually depict the performance of one or more
23
- regression models by comparing the model's forecasted outcomes against actual observed values within a specified
24
- date range. This metric is especially useful in time-series models or any model where the outcome changes over
25
- time, allowing direct comparison of predicted vs actual values.
22
+ ### Purpose
26
23
 
27
- **Test Mechanism:** This test generates a plot for each fitted model in the list. The x-axis represents the date
28
- ranging from the specified "start_date" to the "end_date", while the y-axis shows the value of the outcome
29
- variable. Two lines are plotted: one representing the forecasted values and the other representing the observed
30
- values. The "start_date" and "end_date" can be parameters of this test; if these parameters are not provided, they
31
- are set to the minimum and maximum date available in the dataset. The test verifies that the provided date range is
32
- within the limits of the available data.
24
+ The "regression_forecast_plot" is intended to visually depict the performance of one or more regression models by
25
+ comparing the model's forecasted outcomes against actual observed values within a specified date range. This metric
26
+ is especially useful in time-series models or any model where the outcome changes over time, allowing direct
27
+ comparison of predicted vs actual values.
33
28
 
34
- **Signs of High Risk:**
29
+ ### Test Mechanism
30
+
31
+ This test generates a plot for each fitted model in the list. The x-axis represents the date ranging from the
32
+ specified "start_date" to the "end_date", while the y-axis shows the value of the outcome variable. Two lines are
33
+ plotted: one representing the forecasted values and the other representing the observed values. The "start_date"
34
+ and "end_date" can be parameters of this test; if these parameters are not provided, they are set to the minimum
35
+ and maximum date available in the dataset. The test verifies that the provided date range is within the limits of
36
+ the available data.
37
+
38
+ ### Signs of High Risk
35
39
 
36
40
  - High risk or failure signs could be deduced visually from the plots if the forecasted line significantly deviates
37
41
  from the observed line, indicating the model's predicted values are not matching actual outcomes.
38
42
  - A model that struggles to handle the edge conditions like maximum and minimum data points could also be
39
43
  considered a sign of risk.
40
44
 
41
- **Strengths:**
45
+ ### Strengths
42
46
 
43
47
  - Visualization: The plot provides an intuitive and clear illustration of how well the forecast matches the actual
44
48
  values, making it straightforward even for non-technical stakeholders to interpret.
@@ -46,7 +50,7 @@ class RegressionModelForecastPlot(Metric):
46
50
  - Model Evaluation: It can be useful in identifying overfitting or underfitting situations, as these will manifest
47
51
  as discrepancies between the forecasted and observed values.
48
52
 
49
- **Limitations:**
53
+ ### Limitations
50
54
 
51
55
  - Interpretation Bias: Interpretation of the plot is subjective and can lead to different conclusions by different
52
56
  evaluators.