validmind 2.5.8__py3-none-any.whl → 2.5.18__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (233) hide show
  1. validmind/__version__.py +1 -1
  2. validmind/ai/test_descriptions.py +80 -119
  3. validmind/ai/test_result_description/config.yaml +29 -0
  4. validmind/ai/test_result_description/context.py +73 -0
  5. validmind/ai/test_result_description/image_processing.py +124 -0
  6. validmind/ai/test_result_description/system.jinja +39 -0
  7. validmind/ai/test_result_description/user.jinja +25 -0
  8. validmind/api_client.py +89 -43
  9. validmind/client.py +2 -2
  10. validmind/client_config.py +11 -14
  11. validmind/datasets/credit_risk/__init__.py +1 -0
  12. validmind/datasets/credit_risk/datasets/lending_club_biased.csv.gz +0 -0
  13. validmind/datasets/credit_risk/lending_club_bias.py +142 -0
  14. validmind/datasets/regression/fred_timeseries.py +67 -138
  15. validmind/template.py +1 -0
  16. validmind/test_suites/__init__.py +0 -2
  17. validmind/test_suites/statsmodels_timeseries.py +1 -1
  18. validmind/test_suites/summarization.py +0 -1
  19. validmind/test_suites/time_series.py +0 -43
  20. validmind/tests/__types__.py +14 -15
  21. validmind/tests/data_validation/ACFandPACFPlot.py +15 -13
  22. validmind/tests/data_validation/ADF.py +31 -24
  23. validmind/tests/data_validation/AutoAR.py +9 -9
  24. validmind/tests/data_validation/AutoMA.py +23 -16
  25. validmind/tests/data_validation/AutoSeasonality.py +18 -16
  26. validmind/tests/data_validation/AutoStationarity.py +21 -16
  27. validmind/tests/data_validation/BivariateScatterPlots.py +67 -96
  28. validmind/tests/{model_validation/statsmodels → data_validation}/BoxPierce.py +34 -34
  29. validmind/tests/data_validation/ChiSquaredFeaturesTable.py +85 -124
  30. validmind/tests/data_validation/ClassImbalance.py +15 -12
  31. validmind/tests/data_validation/DFGLSArch.py +19 -13
  32. validmind/tests/data_validation/DatasetDescription.py +17 -11
  33. validmind/tests/data_validation/DatasetSplit.py +7 -5
  34. validmind/tests/data_validation/DescriptiveStatistics.py +28 -21
  35. validmind/tests/data_validation/Duplicates.py +33 -25
  36. validmind/tests/data_validation/EngleGrangerCoint.py +35 -33
  37. validmind/tests/data_validation/FeatureTargetCorrelationPlot.py +59 -71
  38. validmind/tests/data_validation/HighCardinality.py +19 -12
  39. validmind/tests/data_validation/HighPearsonCorrelation.py +27 -22
  40. validmind/tests/data_validation/IQROutliersBarPlot.py +13 -10
  41. validmind/tests/data_validation/IQROutliersTable.py +40 -36
  42. validmind/tests/data_validation/IsolationForestOutliers.py +21 -14
  43. validmind/tests/data_validation/JarqueBera.py +70 -0
  44. validmind/tests/data_validation/KPSS.py +34 -29
  45. validmind/tests/data_validation/LJungBox.py +66 -0
  46. validmind/tests/data_validation/LaggedCorrelationHeatmap.py +22 -15
  47. validmind/tests/data_validation/MissingValues.py +32 -27
  48. validmind/tests/data_validation/MissingValuesBarPlot.py +25 -21
  49. validmind/tests/data_validation/PearsonCorrelationMatrix.py +71 -84
  50. validmind/tests/data_validation/PhillipsPerronArch.py +37 -30
  51. validmind/tests/data_validation/ProtectedClassesCombination.py +197 -0
  52. validmind/tests/data_validation/ProtectedClassesDescription.py +130 -0
  53. validmind/tests/data_validation/ProtectedClassesDisparity.py +133 -0
  54. validmind/tests/data_validation/ProtectedClassesThresholdOptimizer.py +172 -0
  55. validmind/tests/data_validation/RollingStatsPlot.py +31 -23
  56. validmind/tests/data_validation/RunsTest.py +72 -0
  57. validmind/tests/data_validation/ScatterPlot.py +63 -78
  58. validmind/tests/data_validation/SeasonalDecompose.py +38 -34
  59. validmind/tests/{model_validation/statsmodels → data_validation}/ShapiroWilk.py +35 -30
  60. validmind/tests/data_validation/Skewness.py +35 -37
  61. validmind/tests/data_validation/SpreadPlot.py +35 -35
  62. validmind/tests/data_validation/TabularCategoricalBarPlots.py +23 -17
  63. validmind/tests/data_validation/TabularDateTimeHistograms.py +21 -13
  64. validmind/tests/data_validation/TabularDescriptionTables.py +51 -16
  65. validmind/tests/data_validation/TabularNumericalHistograms.py +25 -22
  66. validmind/tests/data_validation/TargetRateBarPlots.py +21 -14
  67. validmind/tests/data_validation/TimeSeriesDescription.py +25 -18
  68. validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py +23 -17
  69. validmind/tests/data_validation/TimeSeriesFrequency.py +24 -17
  70. validmind/tests/data_validation/TimeSeriesHistogram.py +33 -32
  71. validmind/tests/data_validation/TimeSeriesLinePlot.py +17 -10
  72. validmind/tests/data_validation/TimeSeriesMissingValues.py +15 -10
  73. validmind/tests/data_validation/TimeSeriesOutliers.py +37 -33
  74. validmind/tests/data_validation/TooManyZeroValues.py +16 -11
  75. validmind/tests/data_validation/UniqueRows.py +11 -6
  76. validmind/tests/data_validation/WOEBinPlots.py +23 -16
  77. validmind/tests/data_validation/WOEBinTable.py +35 -30
  78. validmind/tests/data_validation/ZivotAndrewsArch.py +34 -28
  79. validmind/tests/data_validation/nlp/CommonWords.py +21 -14
  80. validmind/tests/data_validation/nlp/Hashtags.py +42 -40
  81. validmind/tests/data_validation/nlp/LanguageDetection.py +33 -14
  82. validmind/tests/data_validation/nlp/Mentions.py +21 -15
  83. validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +32 -9
  84. validmind/tests/data_validation/nlp/Punctuations.py +24 -20
  85. validmind/tests/data_validation/nlp/Sentiment.py +27 -8
  86. validmind/tests/data_validation/nlp/StopWords.py +26 -19
  87. validmind/tests/data_validation/nlp/TextDescription.py +39 -36
  88. validmind/tests/data_validation/nlp/Toxicity.py +32 -9
  89. validmind/tests/decorator.py +81 -42
  90. validmind/tests/model_validation/BertScore.py +36 -27
  91. validmind/tests/model_validation/BleuScore.py +25 -19
  92. validmind/tests/model_validation/ClusterSizeDistribution.py +38 -34
  93. validmind/tests/model_validation/ContextualRecall.py +38 -13
  94. validmind/tests/model_validation/FeaturesAUC.py +32 -13
  95. validmind/tests/model_validation/MeteorScore.py +46 -33
  96. validmind/tests/model_validation/ModelMetadata.py +32 -64
  97. validmind/tests/model_validation/ModelPredictionResiduals.py +75 -73
  98. validmind/tests/model_validation/RegardScore.py +30 -14
  99. validmind/tests/model_validation/RegressionResidualsPlot.py +10 -5
  100. validmind/tests/model_validation/RougeScore.py +36 -30
  101. validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +30 -14
  102. validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +27 -30
  103. validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +68 -63
  104. validmind/tests/model_validation/TokenDisparity.py +31 -23
  105. validmind/tests/model_validation/ToxicityScore.py +26 -17
  106. validmind/tests/model_validation/embeddings/ClusterDistribution.py +24 -20
  107. validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +30 -27
  108. validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py +7 -5
  109. validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +32 -23
  110. validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py +7 -5
  111. validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py +15 -11
  112. validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +29 -29
  113. validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +34 -25
  114. validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +38 -26
  115. validmind/tests/model_validation/embeddings/StabilityAnalysis.py +40 -1
  116. validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +18 -17
  117. validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +40 -45
  118. validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +17 -19
  119. validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +29 -25
  120. validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +38 -28
  121. validmind/tests/model_validation/ragas/AnswerCorrectness.py +5 -4
  122. validmind/tests/model_validation/ragas/AnswerRelevance.py +5 -4
  123. validmind/tests/model_validation/ragas/AnswerSimilarity.py +5 -4
  124. validmind/tests/model_validation/ragas/AspectCritique.py +12 -6
  125. validmind/tests/model_validation/ragas/ContextEntityRecall.py +9 -8
  126. validmind/tests/model_validation/ragas/ContextPrecision.py +5 -4
  127. validmind/tests/model_validation/ragas/ContextRecall.py +5 -4
  128. validmind/tests/model_validation/ragas/ContextUtilization.py +155 -0
  129. validmind/tests/model_validation/ragas/Faithfulness.py +5 -4
  130. validmind/tests/model_validation/ragas/NoiseSensitivity.py +152 -0
  131. validmind/tests/model_validation/ragas/utils.py +6 -0
  132. validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py +19 -12
  133. validmind/tests/model_validation/sklearn/AdjustedRandIndex.py +22 -17
  134. validmind/tests/model_validation/sklearn/ClassifierPerformance.py +27 -25
  135. validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py +7 -5
  136. validmind/tests/model_validation/sklearn/ClusterPerformance.py +40 -78
  137. validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +15 -17
  138. validmind/tests/model_validation/sklearn/CompletenessScore.py +17 -11
  139. validmind/tests/model_validation/sklearn/ConfusionMatrix.py +22 -15
  140. validmind/tests/model_validation/sklearn/FeatureImportance.py +95 -0
  141. validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py +7 -7
  142. validmind/tests/model_validation/sklearn/HomogeneityScore.py +19 -12
  143. validmind/tests/model_validation/sklearn/HyperParametersTuning.py +35 -30
  144. validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py +10 -5
  145. validmind/tests/model_validation/sklearn/MinimumAccuracy.py +32 -32
  146. validmind/tests/model_validation/sklearn/MinimumF1Score.py +23 -23
  147. validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py +15 -10
  148. validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py +26 -19
  149. validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +38 -18
  150. validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +32 -26
  151. validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +8 -6
  152. validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +24 -17
  153. validmind/tests/model_validation/sklearn/ROCCurve.py +12 -7
  154. validmind/tests/model_validation/sklearn/RegressionErrors.py +74 -130
  155. validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py +27 -12
  156. validmind/tests/model_validation/sklearn/{RegressionModelsPerformanceComparison.py → RegressionPerformance.py} +18 -20
  157. validmind/tests/model_validation/sklearn/RegressionR2Square.py +55 -94
  158. validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py +32 -13
  159. validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +36 -32
  160. validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +66 -5
  161. validmind/tests/model_validation/sklearn/SilhouettePlot.py +27 -19
  162. validmind/tests/model_validation/sklearn/TrainingTestDegradation.py +25 -18
  163. validmind/tests/model_validation/sklearn/VMeasure.py +14 -13
  164. validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +7 -5
  165. validmind/tests/model_validation/statsmodels/AutoARIMA.py +24 -18
  166. validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py +73 -104
  167. validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +59 -32
  168. validmind/tests/model_validation/statsmodels/GINITable.py +44 -77
  169. validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +33 -34
  170. validmind/tests/model_validation/statsmodels/Lilliefors.py +27 -24
  171. validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +86 -119
  172. validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +100 -0
  173. validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +14 -9
  174. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +17 -13
  175. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +46 -43
  176. validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py +38 -36
  177. validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +30 -28
  178. validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py +18 -11
  179. validmind/tests/model_validation/statsmodels/ScorecardHistogram.py +75 -107
  180. validmind/tests/ongoing_monitoring/FeatureDrift.py +10 -6
  181. validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py +31 -25
  182. validmind/tests/ongoing_monitoring/PredictionCorrelation.py +29 -21
  183. validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py +31 -23
  184. validmind/tests/prompt_validation/Bias.py +14 -11
  185. validmind/tests/prompt_validation/Clarity.py +16 -14
  186. validmind/tests/prompt_validation/Conciseness.py +7 -5
  187. validmind/tests/prompt_validation/Delimitation.py +23 -22
  188. validmind/tests/prompt_validation/NegativeInstruction.py +7 -5
  189. validmind/tests/prompt_validation/Robustness.py +12 -10
  190. validmind/tests/prompt_validation/Specificity.py +13 -11
  191. validmind/tests/prompt_validation/ai_powered_test.py +6 -0
  192. validmind/tests/run.py +68 -23
  193. validmind/unit_metrics/__init__.py +81 -144
  194. validmind/unit_metrics/classification/{sklearn/Accuracy.py → Accuracy.py} +1 -1
  195. validmind/unit_metrics/classification/{sklearn/F1.py → F1.py} +1 -1
  196. validmind/unit_metrics/classification/{sklearn/Precision.py → Precision.py} +1 -1
  197. validmind/unit_metrics/classification/{sklearn/ROC_AUC.py → ROC_AUC.py} +1 -2
  198. validmind/unit_metrics/classification/{sklearn/Recall.py → Recall.py} +1 -1
  199. validmind/unit_metrics/regression/{sklearn/AdjustedRSquaredScore.py → AdjustedRSquaredScore.py} +1 -1
  200. validmind/unit_metrics/regression/GiniCoefficient.py +1 -1
  201. validmind/unit_metrics/regression/HuberLoss.py +1 -1
  202. validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py +1 -1
  203. validmind/unit_metrics/regression/{sklearn/MeanAbsoluteError.py → MeanAbsoluteError.py} +1 -1
  204. validmind/unit_metrics/regression/MeanAbsolutePercentageError.py +1 -1
  205. validmind/unit_metrics/regression/MeanBiasDeviation.py +1 -1
  206. validmind/unit_metrics/regression/{sklearn/MeanSquaredError.py → MeanSquaredError.py} +1 -1
  207. validmind/unit_metrics/regression/QuantileLoss.py +1 -1
  208. validmind/unit_metrics/regression/{sklearn/RSquaredScore.py → RSquaredScore.py} +1 -1
  209. validmind/unit_metrics/regression/{sklearn/RootMeanSquaredError.py → RootMeanSquaredError.py} +1 -1
  210. validmind/utils.py +4 -0
  211. validmind/vm_models/dataset/dataset.py +2 -0
  212. validmind/vm_models/figure.py +5 -0
  213. validmind/vm_models/test/metric.py +1 -0
  214. validmind/vm_models/test/result_wrapper.py +143 -158
  215. validmind/vm_models/test/threshold_test.py +1 -0
  216. {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/METADATA +4 -3
  217. validmind-2.5.18.dist-info/RECORD +324 -0
  218. validmind/tests/data_validation/ANOVAOneWayTable.py +0 -138
  219. validmind/tests/data_validation/BivariateFeaturesBarPlots.py +0 -142
  220. validmind/tests/data_validation/BivariateHistograms.py +0 -117
  221. validmind/tests/data_validation/HeatmapFeatureCorrelations.py +0 -124
  222. validmind/tests/data_validation/MissingValuesRisk.py +0 -88
  223. validmind/tests/model_validation/ModelMetadataComparison.py +0 -59
  224. validmind/tests/model_validation/sklearn/FeatureImportanceComparison.py +0 -83
  225. validmind/tests/model_validation/statsmodels/JarqueBera.py +0 -73
  226. validmind/tests/model_validation/statsmodels/LJungBox.py +0 -66
  227. validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py +0 -135
  228. validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +0 -103
  229. validmind/tests/model_validation/statsmodels/RunsTest.py +0 -71
  230. validmind-2.5.8.dist-info/RECORD +0 -318
  231. {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/LICENSE +0 -0
  232. {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/WHEEL +0 -0
  233. {validmind-2.5.8.dist-info → validmind-2.5.18.dist-info}/entry_points.txt +0 -0
@@ -2,38 +2,48 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
+ import pandas as pd
5
6
  from scipy import stats
6
7
 
7
- from validmind.vm_models import Metric
8
+ from validmind import tags, tasks
8
9
 
9
10
 
10
- class ShapiroWilk(Metric):
11
+ @tasks("classification", "regression")
12
+ @tags("tabular_data", "data_distribution", "statistical_test")
13
+ def ShapiroWilk(dataset):
11
14
  """
12
15
  Evaluates feature-wise normality of training data using the Shapiro-Wilk test.
13
16
 
14
- **Purpose**: The Shapiro-Wilk test is utilized to investigate whether a particular dataset conforms to the standard
15
- normal distribution. This analysis is crucial in machine learning modeling because the normality of the data can
17
+ ### Purpose
18
+
19
+ The Shapiro-Wilk test is utilized to investigate whether a particular dataset conforms to the standard normal
20
+ distribution. This analysis is crucial in machine learning modeling because the normality of the data can
16
21
  profoundly impact the performance of the model. This metric is especially useful in evaluating various features of
17
22
  the dataset in both classification and regression tasks.
18
23
 
19
- **Test Mechanism**: The Shapiro-Wilk test is conducted on each feature column of the training dataset to determine
20
- if the data contained fall within the normal distribution. The test presents a statistic and a p-value, with the
21
- p-value serving to validate or repudiate the null hypothesis, which is that the tested data is normally distributed.
24
+ ### Test Mechanism
25
+
26
+ The Shapiro-Wilk test is conducted on each feature column of the training dataset to determine if the data
27
+ contained fall within the normal distribution. The test presents a statistic and a p-value, with the p-value
28
+ serving to validate or repudiate the null hypothesis, which is that the tested data is normally distributed.
29
+
30
+ ### Signs of High Risk
22
31
 
23
- **Signs of High Risk**:
24
32
  - A p-value that falls below 0.05 signifies a high risk as it discards the null hypothesis, indicating that the
25
33
  data does not adhere to the normal distribution.
26
34
  - For machine learning models built on the presumption of data normality, such an outcome could result in subpar
27
35
  performance or incorrect predictions.
28
36
 
29
- **Strengths**:
37
+ ### Strengths
38
+
30
39
  - The Shapiro-Wilk test is esteemed for its level of accuracy, thereby making it particularly well-suited to
31
40
  datasets of small to moderate sizes.
32
41
  - It proves its versatility through its efficient functioning in both classification and regression tasks.
33
42
  - By separately testing each feature column, the Shapiro-Wilk test can raise an alarm if a specific feature does
34
43
  not comply with the normality.
35
44
 
36
- **Limitations**:
45
+ ### Limitations
46
+
37
47
  - The Shapiro-Wilk test's sensitivity can be a disadvantage as it often rejects the null hypothesis (i.e., data is
38
48
  normally distributed), even for minor deviations, especially in large datasets. This may lead to unwarranted 'false
39
49
  alarms' of high risk by deeming the data as not normally distributed even if it approximates normal distribution.
@@ -42,23 +52,18 @@ class ShapiroWilk(Metric):
42
52
  - Lastly, the Shapiro-Wilk test is not optimally suited for processing data with pronounced skewness or kurtosis.
43
53
  """
44
54
 
45
- name = "shapiro_wilk"
46
- required_inputs = ["dataset"]
47
- tasks = ["classification", "regression"]
48
- tags = ["tabular_data", "data_distribution", "statistical_test"]
49
-
50
- def run(self):
51
- """
52
- Calculates Shapiro-Wilk test for each of the dataset features.
53
- """
54
- x_train = self.inputs.dataset.df[self.inputs.dataset.feature_columns_numeric]
55
- sw_values = {}
56
- for col in x_train.columns:
57
- sw_stat, sw_pvalue = stats.shapiro(x_train[col].values)
58
-
59
- sw_values[col] = {
60
- "stat": sw_stat,
61
- "pvalue": sw_pvalue,
62
- }
63
-
64
- return self.cache_results(sw_values)
55
+ df = dataset.df[dataset.feature_columns_numeric]
56
+
57
+ sw_values = {}
58
+ for col in df.columns:
59
+ sw_stat, sw_pvalue = stats.shapiro(df[col].values)
60
+ sw_values[col] = {
61
+ "stat": sw_stat,
62
+ "pvalue": sw_pvalue,
63
+ }
64
+
65
+ sw_df = pd.DataFrame.from_dict(sw_values, orient="index")
66
+ sw_df.reset_index(inplace=True)
67
+ sw_df.columns = ["column", "stat", "pvalue"]
68
+
69
+ return sw_df
@@ -20,43 +20,41 @@ from validmind.vm_models import (
20
20
  @dataclass
21
21
  class Skewness(ThresholdTest):
22
22
  """
23
- Evaluates the skewness of numerical data in a machine learning model and checks if it falls below a set maximum
24
- threshold.
25
-
26
- **Purpose**: The purpose of the Skewness test is to measure the asymmetry in the distribution of data within a
27
- predictive machine learning model. Specifically, it evaluates the divergence of said distribution from a normal
28
- distribution. In understanding the level of skewness, we can potentially identify issues with data quality, an
29
- essential component for optimizing the performance of traditional machine learning models in both classification
30
- and regression settings.
31
-
32
- **Test Mechanism**: This test calculates skewness of numerical columns in a dataset, which is extracted from the
33
- DataFrame, specifically focusing on numerical data types. The skewness value is then contrasted against a
34
- predetermined maximum threshold, set by default to 1. The skewness value under review is deemed to have passed the
35
- test only if it is less than this maximum threshold; otherwise, the test is considered 'fail'. Subsequently, the
36
- test results of each column, together with the skewness value and column name, are cached.
37
-
38
- **Signs of High Risk**:
39
-
40
- - The presence of substantial skewness levels that significantly exceed the maximum threshold is an indication of
41
- skewed data distribution and subsequently high model risk.
42
- - Persistent skewness in data could signify that the foundational assumptions of the machine learning model may not
43
- be applicable, potentially leading to subpar model performance, erroneous predictions, or biased inferences.
44
-
45
- **Strengths**:
46
-
47
- - Fast and efficient identification of unequal data
48
- - distributions within a machine learning model is enabled by the skewness test.
49
- - The maximum threshold parameter can be adjusted to meet the user's specific needs, enhancing the test's
50
- versatility.
51
-
52
- **Limitations**:
53
-
54
- - The test only evaluates numeric columns, which means that data in non-numeric columns could still include bias or
55
- problematic skewness that this test does not capture.
56
- - The test inherently assumes that the data should follow a normal distribution, an expectation which may not
57
- always be met in real-world data.
58
- - The risk grading is largely dependent on a subjective threshold, which may result in excessive strictness or
59
- leniency depending upon selection. This factor might require expert input and recurrent iterations for refinement.
23
+ Evaluates the skewness of numerical data in a dataset to check against a defined threshold, aiming to ensure data
24
+ quality and optimize model performance.
25
+
26
+ ### Purpose
27
+
28
+ The purpose of the Skewness test is to measure the asymmetry in the distribution of data within a predictive
29
+ machine learning model. Specifically, it evaluates the divergence of said distribution from a normal distribution.
30
+ Understanding the level of skewness helps identify data quality issues, which are crucial for optimizing the
31
+ performance of traditional machine learning models in both classification and regression settings.
32
+
33
+ ### Test Mechanism
34
+
35
+ This test calculates the skewness of numerical columns in the dataset, focusing specifically on numerical data
36
+ types. The calculated skewness value is then compared against a predetermined maximum threshold, which is set by
37
+ default to 1. If the skewness value is less than this maximum threshold, the test passes; otherwise, it fails. The
38
+ test results, along with the skewness values and column names, are then recorded for further analysis.
39
+
40
+ ### Signs of High Risk
41
+
42
+ - Substantial skewness levels that significantly exceed the maximum threshold.
43
+ - Persistent skewness in the data, indicating potential issues with the foundational assumptions of the machine
44
+ learning model.
45
+ - Subpar model performance, erroneous predictions, or biased inferences due to skewed data distributions.
46
+
47
+ ### Strengths
48
+
49
+ - Fast and efficient identification of unequal data distributions within a machine learning model.
50
+ - Adjustable maximum threshold parameter, allowing for customization based on user needs.
51
+ - Provides a clear quantitative measure to mitigate model risks related to data skewness.
52
+
53
+ ### Limitations
54
+
55
+ - Only evaluates numeric columns, potentially missing skewness or bias in non-numeric data.
56
+ - Assumes that data should follow a normal distribution, which may not always be applicable to real-world data.
57
+ - Subjective threshold for risk grading, requiring expert input and recurrent iterations for refinement.
60
58
  """
61
59
 
62
60
  name = "skewness"
@@ -10,46 +10,46 @@ from validmind.vm_models import Figure, Metric
10
10
 
11
11
  class SpreadPlot(Metric):
12
12
  """
13
- Visualizes the spread relationship between pairs of time-series variables in a dataset, thereby aiding in
14
- identification of potential correlations.
13
+ Assesses potential correlations between pairs of time series variables through visualization to enhance
14
+ understanding of their relationships.
15
15
 
16
- **Purpose**:
17
- The SpreadPlot metric is intended to graphically illustrate and analyse the relationships between pairs of time
18
- series variables within a given dataset. This facilitated understanding helps in identifying and assessing
19
- potential time series correlations, like cointegration, between the variables.
16
+ ### Purpose
20
17
 
21
- **Test Mechanism**:
22
- The SpreadPlot metric operates by computing and representing the spread between each pair of time series variables
23
- in the dataset. In particular, the difference between two variables is calculated and presented as a line graph.
24
- This method is iterated for each unique pair of variables in the dataset.
18
+ The SpreadPlot test aims to graphically illustrate and analyze the relationships between pairs of time series
19
+ variables within a given dataset. This facilitated understanding helps in identifying and assessing potential time
20
+ series correlations, such as cointegration, between the variables.
25
21
 
26
- **Signs of High Risk**:
27
- Potential indicators of high risk related to the SpreadPlot metric might include:
22
+ ### Test Mechanism
28
23
 
29
- - Large fluctuations in the spread over a given timespan
30
- - Unexpected patterns or trends that may signal a potential risk in the underlying correlations between the
31
- variables
24
+ The SpreadPlot test computes and represents the spread between each pair of time series variables in the dataset.
25
+ Specifically, the difference between two variables is calculated and presented as a line graph. This process is
26
+ iterated for each unique pair of variables in the dataset, allowing for comprehensive visualization of their
27
+ relationships.
28
+
29
+ ### Signs of High Risk
30
+
31
+ - Large fluctuations in the spread over a given timespan.
32
+ - Unexpected patterns or trends that may signal potential risks in the underlying correlations between the
33
+ variables.
32
34
  - Presence of significant missing data or extreme outlier values, which could potentially skew the spread and
33
- indicate high risk
34
-
35
- **Strengths**:
36
- The SpreadPlot metric provides several key advantages:
37
-
38
- - It allows for thorough visual examination and interpretation of the correlations between time-series pairs
39
- - It aids in revealing complex relationships like cointegration
40
- - It enhances interpretability by visualising the relationships, thereby helping in spotting outliers and trends
41
- - It is capable of handling numerous variable pairs from the dataset through a versatile and adaptable process
42
-
43
- **Limitations**:
44
- Despite its advantages, the SpreadPlot metric does have certain drawbacks:
45
-
46
- - It primarily serves as a visualisation tool and does not offer quantitative measurements or statistics to
47
- objectively determine relationships
48
- - It heavily relies on the quality and granularity of the data - missing data or outliers can notably disturb the
49
- interpretation of the relationships
50
- - It can become inefficient or difficult to interpret with a high number of variables due to the profuse number of
51
- plots
52
- - It might not completely capture intricate non-linear relationships between the variables
35
+ indicate high risk.
36
+
37
+ ### Strengths
38
+
39
+ - Allows for thorough visual examination and interpretation of the correlations between time-series pairs.
40
+ - Aids in revealing complex relationships like cointegration.
41
+ - Enhances interpretability by visualizing the relationships, thereby helping in spotting outliers and trends.
42
+ - Capable of handling numerous variable pairs from the dataset through a versatile and adaptable process.
43
+
44
+ ### Limitations
45
+
46
+ - Primarily serves as a visualization tool and does not offer quantitative measurements or statistics to
47
+ objectively determine relationships.
48
+ - Heavily relies on the quality and granularity of the data—missing data or outliers can notably disturb the
49
+ interpretation of relationships.
50
+ - Can become inefficient or difficult to interpret with a high number of variables due to the profuse number of
51
+ plots.
52
+ - Might not completely capture intricate non-linear relationships between the variables.
53
53
  """
54
54
 
55
55
  name = "spread_plot"
@@ -10,17 +10,21 @@ from validmind.vm_models import Figure, Metric
10
10
 
11
11
  class TabularCategoricalBarPlots(Metric):
12
12
  """
13
- Generates and visualizes bar plots for each category in categorical features to evaluate dataset's composition.
13
+ Generates and visualizes bar plots for each category in categorical features to evaluate the dataset's composition.
14
14
 
15
- **Purpose**: The purpose of this metric is to visually analyze categorical data using bar plots. It is intended to
16
- evaluate the dataset's composition by displaying the counts of each category in each categorical feature.
15
+ ### Purpose
17
16
 
18
- **Test Mechanism**: The provided dataset is first checked to determine if it contains any categorical variables. If
19
- no categorical columns are found, the tool raises a ValueError. For each categorical variable in the dataset, a
20
- separate bar plot is generated. The number of occurrences for each category is calculated and displayed on the
21
- plot. If a dataset contains multiple categorical columns, multiple bar plots are produced.
17
+ The purpose of this metric is to visually analyze categorical data using bar plots. It is intended to evaluate the
18
+ dataset's composition by displaying the counts of each category in each categorical feature.
22
19
 
23
- **Signs of High Risk**:
20
+ ### Test Mechanism
21
+
22
+ The provided dataset is first checked to determine if it contains any categorical variables. If no categorical
23
+ columns are found, the tool raises a ValueError. For each categorical variable in the dataset, a separate bar plot
24
+ is generated. The number of occurrences for each category is calculated and displayed on the plot. If a dataset
25
+ contains multiple categorical columns, multiple bar plots are produced.
26
+
27
+ ### Signs of High Risk
24
28
 
25
29
  - High risk could occur if the categorical variables exhibit an extreme imbalance, with categories having very few
26
30
  instances possibly being underrepresented in the model, which could affect the model's performance and its ability
@@ -28,17 +32,19 @@ class TabularCategoricalBarPlots(Metric):
28
32
  - Another sign of risk is if there are too many categories in a single variable, which could lead to overfitting
29
33
  and make the model complex.
30
34
 
31
- **Strengths**: This metric provides a visual and intuitively understandable representation of categorical data,
32
- which aids in the analysis of variable distributions. By presenting model inputs in this way, we can easily
33
- identify imbalances or rare categories that could affect the model's performance.
35
+ ### Strengths
36
+
37
+ - Provides a visual and intuitively understandable representation of categorical data.
38
+ - Aids in the analysis of variable distributions.
39
+ - Helps in easily identifying imbalances or rare categories that could affect the model's performance.
34
40
 
35
- **Limitations**:
41
+ ### Limitations
36
42
 
37
- - This method only works with categorical data, meaning it won't apply to numerical variables.
38
- - In addition, the method does not provide any informative value when there are too many categories, as the bar
39
- chart could become cluttered and hard to interpret.
40
- - It offers no insights into the model's performance or precision, but rather provides a descriptive analysis of
41
- the input.
43
+ - This method only works with categorical data and won't apply to numerical variables.
44
+ - It does not provide informative value when there are too many categories, as the bar chart could become cluttered
45
+ and hard to interpret.
46
+ - Offers no insights into the model's performance or precision, but rather provides a descriptive analysis of the
47
+ input.
42
48
  """
43
49
 
44
50
  name = "tabular_categorical_bar_plots"
@@ -10,26 +10,33 @@ from validmind.vm_models import Figure, Metric
10
10
 
11
11
  class TabularDateTimeHistograms(Metric):
12
12
  """
13
- Generates histograms to provide graphical insight into the distribution of time intervals in model's datetime data.
13
+ Generates histograms to provide graphical insight into the distribution of time intervals in a model's datetime
14
+ data.
14
15
 
15
- **Purpose**: The `TabularDateTimeHistograms` metric is designed to provide graphical insight into the distribution
16
- of time intervals in a machine learning model's datetime data. By plotting histograms of differences between
17
- consecutive date entries in all datetime variables, it enables an examination of the underlying pattern of time
18
- series data and identification of anomalies.
16
+ ### Purpose
19
17
 
20
- **Test Mechanism**: This test operates by first identifying all datetime columns and extracting them from the
21
- dataset. For each datetime column, it next computes the differences (in days) between consecutive dates, excluding
22
- zero values, and visualizes these differences in a histogram. The seaborn library's histplot function is used to
23
- generate histograms, which are labeled appropriately and provide a graphical representation of the frequency of
24
- different day intervals in the dataset.
18
+ The `TabularDateTimeHistograms` metric is designed to provide graphical insight into the distribution of time
19
+ intervals in a machine learning model's datetime data. By plotting histograms of differences between consecutive
20
+ date entries in all datetime variables, it enables an examination of the underlying pattern of time series data and
21
+ identification of anomalies.
22
+
23
+ ### Test Mechanism
24
+
25
+ This test operates by first identifying all datetime columns and extracting them from the dataset. For each
26
+ datetime column, it next computes the differences (in days) between consecutive dates, excluding zero values, and
27
+ visualizes these differences in a histogram. The Plotly library's histogram function is used to generate
28
+ histograms, which are labeled appropriately and provide a graphical representation of the frequency of different
29
+ day intervals in the dataset.
30
+
31
+ ### Signs of High Risk
25
32
 
26
- **Signs of High Risk**:
27
33
  - If no datetime columns are detected in the dataset, this would lead to a ValueError. Hence, the absence of
28
34
  datetime columns signifies a high risk.
29
35
  - A severely skewed or irregular distribution depicted in the histogram may indicate possible complications with
30
36
  the data, such as faulty timestamps or abnormalities.
31
37
 
32
- **Strengths**:
38
+ ### Strengths
39
+
33
40
  - The metric offers a visual overview of time interval frequencies within the dataset, supporting the recognition
34
41
  of inherent patterns.
35
42
  - Histogram plots can aid in the detection of potential outliers and data anomalies, contributing to an assessment
@@ -37,7 +44,8 @@ class TabularDateTimeHistograms(Metric):
37
44
  - The metric is versatile, compatible with a range of task types, including classification and regression, and can
38
45
  work with multiple datetime variables if present.
39
46
 
40
- **Limitations**:
47
+ ### Limitations
48
+
41
49
  - A major weakness of this metric is its dependence on the visual examination of data, as it does not provide a
42
50
  measurable evaluation of the model.
43
51
  - The metric might overlook complex or multi-dimensional trends in the data.
@@ -13,14 +13,17 @@ def TabularDescriptionTables(dataset):
13
13
  """
14
14
  Summarizes key descriptive statistics for numerical, categorical, and datetime variables in a dataset.
15
15
 
16
- **Purpose**: The main purpose of this metric is to gather and present the descriptive statistics of numerical,
17
- categorical, and datetime variables present in a dataset. The attributes it measures include the count, mean,
18
- minimum and maximum values, percentage of missing values, data types of fields, and unique values for categorical
19
- fields, among others.
16
+ ### Purpose
20
17
 
21
- **Test Mechanism**: The test first segregates the variables in the dataset according to their data types
22
- (numerical, categorical, or datetime). Then, it compiles summary statistics for each type of variable. The
23
- specifics of these statistics vary depending on the type of variable:
18
+ The main purpose of this metric is to gather and present the descriptive statistics of numerical, categorical, and
19
+ datetime variables present in a dataset. The attributes it measures include the count, mean, minimum and maximum
20
+ values, percentage of missing values, data types of fields, and unique values for categorical fields, among others.
21
+
22
+ ### Test Mechanism
23
+
24
+ The test first segregates the variables in the dataset according to their data types (numerical, categorical, or
25
+ datetime). Then, it compiles summary statistics for each type of variable. The specifics of these statistics vary
26
+ depending on the type of variable:
24
27
 
25
28
  - For numerical variables, the metric extracts descriptors like count, mean, minimum and maximum values, count of
26
29
  missing values, and data types.
@@ -29,14 +32,16 @@ def TabularDescriptionTables(dataset):
29
32
  - For datetime variables, it counts the number of unique values, identifies the earliest and latest dates, counts
30
33
  missing values, and identifies data types.
31
34
 
32
- **Signs of High Risk**:
35
+ ### Signs of High Risk
36
+
33
37
  - Masses of missing values in the descriptive statistics results could hint at high risk or failure, indicating
34
38
  potential data collection, integrity, and quality issues.
35
39
  - Detection of inappropriate distributions for numerical variables, like having negative values for variables that
36
40
  are always supposed to be positive.
37
41
  - Identifying inappropriate data types, like a continuous variable being encoded as a categorical type.
38
42
 
39
- **Strengths**:
43
+ ### Strengths
44
+
40
45
  - Provides a comprehensive overview of the dataset.
41
46
  - Gives a snapshot into the essence of the numerical, categorical, and datetime fields.
42
47
  - Identifies potential data quality issues such as missing values or inconsistencies crucial for building credible
@@ -44,7 +49,8 @@ def TabularDescriptionTables(dataset):
44
49
  - The metadata, including the data type and missing value information, are vital for anyone including data
45
50
  scientists dealing with the dataset before the modeling process.
46
51
 
47
- **Limitations**:
52
+ ### Limitations
53
+
48
54
  - It does not perform any deeper statistical analysis or tests on the data.
49
55
  - It does not handle issues such as outliers, or relationships between variables.
50
56
  - It offers no insights into potential correlations or possible interactions between variables.
@@ -57,15 +63,44 @@ def TabularDescriptionTables(dataset):
57
63
  categorical_fields = get_categorical_columns(dataset)
58
64
  datetime_fields = get_datetime_columns(dataset)
59
65
 
60
- summary_stats_numerical = get_summary_statistics_numerical(
61
- dataset, numerical_fields
66
+ summary_stats_numerical = (
67
+ get_summary_statistics_numerical(dataset, numerical_fields)
68
+ if numerical_fields
69
+ else pd.DataFrame()
70
+ )
71
+ summary_stats_categorical = (
72
+ get_summary_statistics_categorical(dataset, categorical_fields)
73
+ if categorical_fields
74
+ else pd.DataFrame()
75
+ )
76
+ summary_stats_datetime = (
77
+ get_summary_statistics_datetime(dataset, datetime_fields)
78
+ if datetime_fields
79
+ else pd.DataFrame()
80
+ )
81
+
82
+ # Replace empty DataFrames with None
83
+ summary_stats_numerical = (
84
+ summary_stats_numerical if not summary_stats_numerical.empty else None
62
85
  )
63
- summary_stats_categorical = get_summary_statistics_categorical(
64
- dataset, categorical_fields
86
+ summary_stats_categorical = (
87
+ summary_stats_categorical if not summary_stats_categorical.empty else None
88
+ )
89
+ summary_stats_datetime = (
90
+ summary_stats_datetime if not summary_stats_datetime.empty else None
65
91
  )
66
- summary_stats_datetime = get_summary_statistics_datetime(dataset, datetime_fields)
67
92
 
68
- return (summary_stats_numerical, summary_stats_categorical, summary_stats_datetime)
93
+ # Return a tuple with only non-None values (tables with data)
94
+ return tuple(
95
+ filter(
96
+ lambda x: x is not None,
97
+ (
98
+ summary_stats_numerical,
99
+ summary_stats_categorical,
100
+ summary_stats_datetime,
101
+ ),
102
+ )
103
+ )
69
104
 
70
105
 
71
106
  def get_summary_statistics_numerical(dataset, numerical_fields):
@@ -13,39 +13,42 @@ class TabularNumericalHistograms(Metric):
13
13
  Generates histograms for each numerical feature in a dataset to provide visual insights into data distribution and
14
14
  detect potential issues.
15
15
 
16
- **Purpose**: The purpose of this test is to provide visual analysis of numerical data through the generation of
17
- histograms for each numerical feature in the dataset. Histograms aid in the exploratory analysis of data, offering
18
- insight into the distribution of the data, skewness, presence of outliers, and central tendencies. It helps in
19
- understanding if the inputs to the model are normally distributed which is a common assumption in many machine
20
- learning algorithms.
16
+ ### Purpose
21
17
 
22
- **Test Mechanism**: This test scans the provided dataset and extracts all the numerical columns. For each numerical
23
- column, it constructs a histogram using plotly, with 50 bins. The deployment of histograms offers a robust visual
24
- aid, ensuring unruffled identification and understanding of numerical data distribution patterns.
18
+ The purpose of this test is to provide visual analysis of numerical data through the generation of histograms for
19
+ each numerical feature in the dataset. Histograms aid in the exploratory analysis of data, offering insight into
20
+ the distribution of the data, skewness, presence of outliers, and central tendencies. It helps in understanding if
21
+ the inputs to the model are normally distributed, which is a common assumption in many machine learning algorithms.
25
22
 
26
- **Signs of High Risk**:
23
+ ### Test Mechanism
24
+
25
+ This test scans the provided dataset and extracts all the numerical columns. For each numerical column, it
26
+ constructs a histogram using plotly, with 50 bins. The deployment of histograms offers a robust visual aid,
27
+ ensuring unruffled identification and understanding of numerical data distribution patterns.
28
+
29
+ ### Signs of High Risk
27
30
 
28
31
  - A high degree of skewness
29
32
  - Unexpected data distributions
30
33
  - Existence of extreme outliers in the histograms
34
+
31
35
  These may indicate issues with the data that the model is receiving. If data for a numerical feature is expected to
32
- follow a certain distribution (like normal distribution) but does not, it could lead to sub-par performance by the
33
- model. As such these instances should be treated as high-risk indicators.
36
+ follow a certain distribution (like a normal distribution) but does not, it could lead to sub-par performance by
37
+ the model. As such these instances should be treated as high-risk indicators.
34
38
 
35
- **Strengths**:
39
+ ### Strengths
36
40
 
37
- - This test provides a simple, easy-to-interpret visualization of how data for each numerical attribute is
38
- distributed.
39
- - It can help detect skewed values and outliers, that could potentially harm the AI model's performance.
40
- - It can be applied to large datasets and multiple numerical variables conveniently.
41
+ - Provides a simple, easy-to-interpret visualization of how data for each numerical attribute is distributed.
42
+ - Helps detect skewed values and outliers that could potentially harm the AI model's performance.
43
+ - Can be applied to large datasets and multiple numerical variables conveniently.
41
44
 
42
- **Limitations**:
45
+ ### Limitations
43
46
 
44
- - This test only works with numerical data, thus ignoring non-numerical or categorical data.
45
- - It does not analyze relationships between different features, only the individual feature distributions.
46
- - It is a univariate analysis, and may miss patterns or anomalies that only appear when considering multiple
47
- variables together.
48
- - It does not provide any insight into how these features affect the output of the model; it is purely an input
47
+ - Only works with numerical data, thus ignoring non-numerical or categorical data.
48
+ - Does not analyze relationships between different features, only the individual feature distributions.
49
+ - Is a univariate analysis and may miss patterns or anomalies that only appear when considering multiple variables
50
+ together.
51
+ - Does not provide any insight into how these features affect the output of the model; it is purely an input
49
52
  analysis tool.
50
53
  """
51
54
 
@@ -13,29 +13,36 @@ class TargetRateBarPlots(Metric):
13
13
  Generates bar plots visualizing the default rates of categorical features for a classification machine learning
14
14
  model.
15
15
 
16
- **Purpose**: This test, implemented as a metric, is designed to provide an intuitive, graphical summary of the
17
- decision-making patterns exhibited by a categorical classification machine learning model. The model's performance
18
- is evaluated using bar plots depicting the ratio of target rates—meaning the proportion of positive classes—for
19
- different categorical inputs. This allows for an easy, at-a-glance understanding of the model's accuracy.
20
-
21
- **Test Mechanism**: The test involves creating a pair of bar plots for each categorical feature in the dataset. The
22
- first plot depicts the frequency of each category in the dataset, with each category visually distinguished by its
23
- unique color. The second plot shows the mean target rate of each category (sourced from the "default_column").
24
- Plotly, a Python library, is used to generate these plots, with distinct plots created for each feature. If no
25
- specific columns are selected, the test will generate plots for each categorical column in the dataset.
26
-
27
- **Signs of High Risk**:
16
+ ### Purpose
17
+
18
+ This test, implemented as a metric, is designed to provide an intuitive, graphical summary of the decision-making
19
+ patterns exhibited by a categorical classification machine learning model. The model's performance is evaluated
20
+ using bar plots depicting the ratio of target rates—meaning the proportion of positive classes—for different
21
+ categorical inputs. This allows for an easy, at-a-glance understanding of the model's accuracy.
22
+
23
+ ### Test Mechanism
24
+
25
+ The test involves creating a pair of bar plots for each categorical feature in the dataset. The first plot depicts
26
+ the frequency of each category in the dataset, with each category visually distinguished by its unique color. The
27
+ second plot shows the mean target rate of each category (sourced from the "default_column"). Plotly, a Python
28
+ library, is used to generate these plots, with distinct plots created for each feature. If no specific columns are
29
+ selected, the test will generate plots for each categorical column in the dataset.
30
+
31
+ ### Signs of High Risk
32
+
28
33
  - Inconsistent or non-binary values in the "default_column" could complicate or render impossible the calculation
29
34
  of average target rates.
30
35
  - Particularly low or high target rates for a specific category might suggest that the model is misclassifying
31
36
  instances of that category.
32
37
 
33
- **Strengths**:
38
+ ### Strengths
39
+
34
40
  - This test offers a visually interpretable breakdown of the model's decisions, providing an easy way to spot
35
41
  irregularities, inconsistencies, or patterns.
36
42
  - Its flexibility allows for the inspection of one or multiple columns, as needed.
37
43
 
38
- **Limitations**:
44
+ ### Limitations
45
+
39
46
  - The test is less useful when dealing with numeric or continuous data, as it's designed specifically for
40
47
  categorical features.
41
48
  - If the model in question is dealing with a multi-class problem rather than binary classification, the test's