ultralytics-opencv-headless 8.3.246__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (298) hide show
  1. tests/__init__.py +23 -0
  2. tests/conftest.py +59 -0
  3. tests/test_cli.py +131 -0
  4. tests/test_cuda.py +216 -0
  5. tests/test_engine.py +157 -0
  6. tests/test_exports.py +309 -0
  7. tests/test_integrations.py +151 -0
  8. tests/test_python.py +777 -0
  9. tests/test_solutions.py +371 -0
  10. ultralytics/__init__.py +48 -0
  11. ultralytics/assets/bus.jpg +0 -0
  12. ultralytics/assets/zidane.jpg +0 -0
  13. ultralytics/cfg/__init__.py +1026 -0
  14. ultralytics/cfg/datasets/Argoverse.yaml +78 -0
  15. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  16. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  17. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  18. ultralytics/cfg/datasets/HomeObjects-3K.yaml +32 -0
  19. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  20. ultralytics/cfg/datasets/Objects365.yaml +447 -0
  21. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  22. ultralytics/cfg/datasets/VOC.yaml +102 -0
  23. ultralytics/cfg/datasets/VisDrone.yaml +87 -0
  24. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  25. ultralytics/cfg/datasets/brain-tumor.yaml +22 -0
  26. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  27. ultralytics/cfg/datasets/coco-pose.yaml +64 -0
  28. ultralytics/cfg/datasets/coco.yaml +118 -0
  29. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  30. ultralytics/cfg/datasets/coco128.yaml +101 -0
  31. ultralytics/cfg/datasets/coco8-grayscale.yaml +103 -0
  32. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  33. ultralytics/cfg/datasets/coco8-pose.yaml +47 -0
  34. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  35. ultralytics/cfg/datasets/coco8.yaml +101 -0
  36. ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
  37. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  38. ultralytics/cfg/datasets/dog-pose.yaml +52 -0
  39. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  40. ultralytics/cfg/datasets/dota8.yaml +35 -0
  41. ultralytics/cfg/datasets/hand-keypoints.yaml +50 -0
  42. ultralytics/cfg/datasets/kitti.yaml +27 -0
  43. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  44. ultralytics/cfg/datasets/medical-pills.yaml +21 -0
  45. ultralytics/cfg/datasets/open-images-v7.yaml +663 -0
  46. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  47. ultralytics/cfg/datasets/signature.yaml +21 -0
  48. ultralytics/cfg/datasets/tiger-pose.yaml +41 -0
  49. ultralytics/cfg/datasets/xView.yaml +155 -0
  50. ultralytics/cfg/default.yaml +130 -0
  51. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  52. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  53. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  54. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  55. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  56. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  57. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  58. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  59. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  60. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  61. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  62. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  63. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  64. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  65. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  66. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  67. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  68. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  69. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  70. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  71. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  72. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  73. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  74. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  75. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  76. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  77. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  78. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  79. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  80. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +48 -0
  81. ultralytics/cfg/models/v8/yoloe-v8.yaml +48 -0
  82. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  83. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  84. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  85. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  86. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  87. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  88. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  89. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  90. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  91. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  92. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  93. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  94. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  95. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  96. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  97. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  98. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  99. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  100. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  101. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  102. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  103. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  104. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  105. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  106. ultralytics/cfg/trackers/botsort.yaml +21 -0
  107. ultralytics/cfg/trackers/bytetrack.yaml +12 -0
  108. ultralytics/data/__init__.py +26 -0
  109. ultralytics/data/annotator.py +66 -0
  110. ultralytics/data/augment.py +2801 -0
  111. ultralytics/data/base.py +435 -0
  112. ultralytics/data/build.py +437 -0
  113. ultralytics/data/converter.py +855 -0
  114. ultralytics/data/dataset.py +834 -0
  115. ultralytics/data/loaders.py +704 -0
  116. ultralytics/data/scripts/download_weights.sh +18 -0
  117. ultralytics/data/scripts/get_coco.sh +61 -0
  118. ultralytics/data/scripts/get_coco128.sh +18 -0
  119. ultralytics/data/scripts/get_imagenet.sh +52 -0
  120. ultralytics/data/split.py +138 -0
  121. ultralytics/data/split_dota.py +344 -0
  122. ultralytics/data/utils.py +798 -0
  123. ultralytics/engine/__init__.py +1 -0
  124. ultralytics/engine/exporter.py +1578 -0
  125. ultralytics/engine/model.py +1124 -0
  126. ultralytics/engine/predictor.py +508 -0
  127. ultralytics/engine/results.py +1522 -0
  128. ultralytics/engine/trainer.py +974 -0
  129. ultralytics/engine/tuner.py +448 -0
  130. ultralytics/engine/validator.py +384 -0
  131. ultralytics/hub/__init__.py +166 -0
  132. ultralytics/hub/auth.py +151 -0
  133. ultralytics/hub/google/__init__.py +174 -0
  134. ultralytics/hub/session.py +422 -0
  135. ultralytics/hub/utils.py +162 -0
  136. ultralytics/models/__init__.py +9 -0
  137. ultralytics/models/fastsam/__init__.py +7 -0
  138. ultralytics/models/fastsam/model.py +79 -0
  139. ultralytics/models/fastsam/predict.py +169 -0
  140. ultralytics/models/fastsam/utils.py +23 -0
  141. ultralytics/models/fastsam/val.py +38 -0
  142. ultralytics/models/nas/__init__.py +7 -0
  143. ultralytics/models/nas/model.py +98 -0
  144. ultralytics/models/nas/predict.py +56 -0
  145. ultralytics/models/nas/val.py +38 -0
  146. ultralytics/models/rtdetr/__init__.py +7 -0
  147. ultralytics/models/rtdetr/model.py +63 -0
  148. ultralytics/models/rtdetr/predict.py +88 -0
  149. ultralytics/models/rtdetr/train.py +89 -0
  150. ultralytics/models/rtdetr/val.py +216 -0
  151. ultralytics/models/sam/__init__.py +25 -0
  152. ultralytics/models/sam/amg.py +275 -0
  153. ultralytics/models/sam/build.py +365 -0
  154. ultralytics/models/sam/build_sam3.py +377 -0
  155. ultralytics/models/sam/model.py +169 -0
  156. ultralytics/models/sam/modules/__init__.py +1 -0
  157. ultralytics/models/sam/modules/blocks.py +1067 -0
  158. ultralytics/models/sam/modules/decoders.py +495 -0
  159. ultralytics/models/sam/modules/encoders.py +794 -0
  160. ultralytics/models/sam/modules/memory_attention.py +298 -0
  161. ultralytics/models/sam/modules/sam.py +1160 -0
  162. ultralytics/models/sam/modules/tiny_encoder.py +979 -0
  163. ultralytics/models/sam/modules/transformer.py +344 -0
  164. ultralytics/models/sam/modules/utils.py +512 -0
  165. ultralytics/models/sam/predict.py +3940 -0
  166. ultralytics/models/sam/sam3/__init__.py +3 -0
  167. ultralytics/models/sam/sam3/decoder.py +546 -0
  168. ultralytics/models/sam/sam3/encoder.py +529 -0
  169. ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
  170. ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
  171. ultralytics/models/sam/sam3/model_misc.py +199 -0
  172. ultralytics/models/sam/sam3/necks.py +129 -0
  173. ultralytics/models/sam/sam3/sam3_image.py +339 -0
  174. ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
  175. ultralytics/models/sam/sam3/vitdet.py +547 -0
  176. ultralytics/models/sam/sam3/vl_combiner.py +160 -0
  177. ultralytics/models/utils/__init__.py +1 -0
  178. ultralytics/models/utils/loss.py +466 -0
  179. ultralytics/models/utils/ops.py +315 -0
  180. ultralytics/models/yolo/__init__.py +7 -0
  181. ultralytics/models/yolo/classify/__init__.py +7 -0
  182. ultralytics/models/yolo/classify/predict.py +90 -0
  183. ultralytics/models/yolo/classify/train.py +202 -0
  184. ultralytics/models/yolo/classify/val.py +216 -0
  185. ultralytics/models/yolo/detect/__init__.py +7 -0
  186. ultralytics/models/yolo/detect/predict.py +122 -0
  187. ultralytics/models/yolo/detect/train.py +227 -0
  188. ultralytics/models/yolo/detect/val.py +507 -0
  189. ultralytics/models/yolo/model.py +430 -0
  190. ultralytics/models/yolo/obb/__init__.py +7 -0
  191. ultralytics/models/yolo/obb/predict.py +56 -0
  192. ultralytics/models/yolo/obb/train.py +79 -0
  193. ultralytics/models/yolo/obb/val.py +302 -0
  194. ultralytics/models/yolo/pose/__init__.py +7 -0
  195. ultralytics/models/yolo/pose/predict.py +65 -0
  196. ultralytics/models/yolo/pose/train.py +110 -0
  197. ultralytics/models/yolo/pose/val.py +248 -0
  198. ultralytics/models/yolo/segment/__init__.py +7 -0
  199. ultralytics/models/yolo/segment/predict.py +109 -0
  200. ultralytics/models/yolo/segment/train.py +69 -0
  201. ultralytics/models/yolo/segment/val.py +307 -0
  202. ultralytics/models/yolo/world/__init__.py +5 -0
  203. ultralytics/models/yolo/world/train.py +173 -0
  204. ultralytics/models/yolo/world/train_world.py +178 -0
  205. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  206. ultralytics/models/yolo/yoloe/predict.py +162 -0
  207. ultralytics/models/yolo/yoloe/train.py +287 -0
  208. ultralytics/models/yolo/yoloe/train_seg.py +122 -0
  209. ultralytics/models/yolo/yoloe/val.py +206 -0
  210. ultralytics/nn/__init__.py +27 -0
  211. ultralytics/nn/autobackend.py +958 -0
  212. ultralytics/nn/modules/__init__.py +182 -0
  213. ultralytics/nn/modules/activation.py +54 -0
  214. ultralytics/nn/modules/block.py +1947 -0
  215. ultralytics/nn/modules/conv.py +669 -0
  216. ultralytics/nn/modules/head.py +1183 -0
  217. ultralytics/nn/modules/transformer.py +793 -0
  218. ultralytics/nn/modules/utils.py +159 -0
  219. ultralytics/nn/tasks.py +1768 -0
  220. ultralytics/nn/text_model.py +356 -0
  221. ultralytics/py.typed +1 -0
  222. ultralytics/solutions/__init__.py +41 -0
  223. ultralytics/solutions/ai_gym.py +108 -0
  224. ultralytics/solutions/analytics.py +264 -0
  225. ultralytics/solutions/config.py +107 -0
  226. ultralytics/solutions/distance_calculation.py +123 -0
  227. ultralytics/solutions/heatmap.py +125 -0
  228. ultralytics/solutions/instance_segmentation.py +86 -0
  229. ultralytics/solutions/object_blurrer.py +89 -0
  230. ultralytics/solutions/object_counter.py +190 -0
  231. ultralytics/solutions/object_cropper.py +87 -0
  232. ultralytics/solutions/parking_management.py +280 -0
  233. ultralytics/solutions/queue_management.py +93 -0
  234. ultralytics/solutions/region_counter.py +133 -0
  235. ultralytics/solutions/security_alarm.py +151 -0
  236. ultralytics/solutions/similarity_search.py +219 -0
  237. ultralytics/solutions/solutions.py +828 -0
  238. ultralytics/solutions/speed_estimation.py +114 -0
  239. ultralytics/solutions/streamlit_inference.py +260 -0
  240. ultralytics/solutions/templates/similarity-search.html +156 -0
  241. ultralytics/solutions/trackzone.py +88 -0
  242. ultralytics/solutions/vision_eye.py +67 -0
  243. ultralytics/trackers/__init__.py +7 -0
  244. ultralytics/trackers/basetrack.py +115 -0
  245. ultralytics/trackers/bot_sort.py +257 -0
  246. ultralytics/trackers/byte_tracker.py +469 -0
  247. ultralytics/trackers/track.py +116 -0
  248. ultralytics/trackers/utils/__init__.py +1 -0
  249. ultralytics/trackers/utils/gmc.py +339 -0
  250. ultralytics/trackers/utils/kalman_filter.py +482 -0
  251. ultralytics/trackers/utils/matching.py +154 -0
  252. ultralytics/utils/__init__.py +1450 -0
  253. ultralytics/utils/autobatch.py +118 -0
  254. ultralytics/utils/autodevice.py +205 -0
  255. ultralytics/utils/benchmarks.py +728 -0
  256. ultralytics/utils/callbacks/__init__.py +5 -0
  257. ultralytics/utils/callbacks/base.py +233 -0
  258. ultralytics/utils/callbacks/clearml.py +146 -0
  259. ultralytics/utils/callbacks/comet.py +625 -0
  260. ultralytics/utils/callbacks/dvc.py +197 -0
  261. ultralytics/utils/callbacks/hub.py +110 -0
  262. ultralytics/utils/callbacks/mlflow.py +134 -0
  263. ultralytics/utils/callbacks/neptune.py +126 -0
  264. ultralytics/utils/callbacks/platform.py +313 -0
  265. ultralytics/utils/callbacks/raytune.py +42 -0
  266. ultralytics/utils/callbacks/tensorboard.py +123 -0
  267. ultralytics/utils/callbacks/wb.py +188 -0
  268. ultralytics/utils/checks.py +1006 -0
  269. ultralytics/utils/cpu.py +85 -0
  270. ultralytics/utils/dist.py +123 -0
  271. ultralytics/utils/downloads.py +529 -0
  272. ultralytics/utils/errors.py +35 -0
  273. ultralytics/utils/events.py +113 -0
  274. ultralytics/utils/export/__init__.py +7 -0
  275. ultralytics/utils/export/engine.py +237 -0
  276. ultralytics/utils/export/imx.py +315 -0
  277. ultralytics/utils/export/tensorflow.py +231 -0
  278. ultralytics/utils/files.py +219 -0
  279. ultralytics/utils/git.py +137 -0
  280. ultralytics/utils/instance.py +484 -0
  281. ultralytics/utils/logger.py +501 -0
  282. ultralytics/utils/loss.py +849 -0
  283. ultralytics/utils/metrics.py +1563 -0
  284. ultralytics/utils/nms.py +337 -0
  285. ultralytics/utils/ops.py +664 -0
  286. ultralytics/utils/patches.py +201 -0
  287. ultralytics/utils/plotting.py +1045 -0
  288. ultralytics/utils/tal.py +403 -0
  289. ultralytics/utils/torch_utils.py +984 -0
  290. ultralytics/utils/tqdm.py +440 -0
  291. ultralytics/utils/triton.py +112 -0
  292. ultralytics/utils/tuner.py +160 -0
  293. ultralytics_opencv_headless-8.3.246.dist-info/METADATA +374 -0
  294. ultralytics_opencv_headless-8.3.246.dist-info/RECORD +298 -0
  295. ultralytics_opencv_headless-8.3.246.dist-info/WHEEL +5 -0
  296. ultralytics_opencv_headless-8.3.246.dist-info/entry_points.txt +3 -0
  297. ultralytics_opencv_headless-8.3.246.dist-info/licenses/LICENSE +661 -0
  298. ultralytics_opencv_headless-8.3.246.dist-info/top_level.txt +1 -0
@@ -0,0 +1,339 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ from __future__ import annotations
4
+
5
+ import copy
6
+
7
+ import cv2
8
+ import numpy as np
9
+
10
+ from ultralytics.utils import LOGGER
11
+
12
+
13
+ class GMC:
14
+ """Generalized Motion Compensation (GMC) class for tracking and object detection in video frames.
15
+
16
+ This class provides methods for tracking and detecting objects based on several tracking algorithms including ORB,
17
+ SIFT, ECC, and Sparse Optical Flow. It also supports downscaling of frames for computational efficiency.
18
+
19
+ Attributes:
20
+ method (str): The tracking method to use. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
21
+ downscale (int): Factor by which to downscale the frames for processing.
22
+ prevFrame (np.ndarray): Previous frame for tracking.
23
+ prevKeyPoints (list): Keypoints from the previous frame.
24
+ prevDescriptors (np.ndarray): Descriptors from the previous frame.
25
+ initializedFirstFrame (bool): Flag indicating if the first frame has been processed.
26
+
27
+ Methods:
28
+ apply: Apply the chosen method to a raw frame and optionally use provided detections.
29
+ apply_ecc: Apply the ECC algorithm to a raw frame.
30
+ apply_features: Apply feature-based methods like ORB or SIFT to a raw frame.
31
+ apply_sparseoptflow: Apply the Sparse Optical Flow method to a raw frame.
32
+ reset_params: Reset the internal parameters of the GMC object.
33
+
34
+ Examples:
35
+ Create a GMC object and apply it to a frame
36
+ >>> gmc = GMC(method="sparseOptFlow", downscale=2)
37
+ >>> frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
38
+ >>> warp = gmc.apply(frame)
39
+ >>> print(warp.shape)
40
+ (2, 3)
41
+ """
42
+
43
+ def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
44
+ """Initialize a Generalized Motion Compensation (GMC) object with tracking method and downscale factor.
45
+
46
+ Args:
47
+ method (str): The tracking method to use. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
48
+ downscale (int): Downscale factor for processing frames.
49
+ """
50
+ super().__init__()
51
+
52
+ self.method = method
53
+ self.downscale = max(1, downscale)
54
+
55
+ if self.method == "orb":
56
+ self.detector = cv2.FastFeatureDetector_create(20)
57
+ self.extractor = cv2.ORB_create()
58
+ self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)
59
+
60
+ elif self.method == "sift":
61
+ self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
62
+ self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
63
+ self.matcher = cv2.BFMatcher(cv2.NORM_L2)
64
+
65
+ elif self.method == "ecc":
66
+ number_of_iterations = 5000
67
+ termination_eps = 1e-6
68
+ self.warp_mode = cv2.MOTION_EUCLIDEAN
69
+ self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)
70
+
71
+ elif self.method == "sparseOptFlow":
72
+ self.feature_params = dict(
73
+ maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
74
+ )
75
+
76
+ elif self.method in {"none", "None", None}:
77
+ self.method = None
78
+ else:
79
+ raise ValueError(f"Unknown GMC method: {method}")
80
+
81
+ self.prevFrame = None
82
+ self.prevKeyPoints = None
83
+ self.prevDescriptors = None
84
+ self.initializedFirstFrame = False
85
+
86
+ def apply(self, raw_frame: np.ndarray, detections: list | None = None) -> np.ndarray:
87
+ """Estimate a 2×3 motion compensation warp for a frame.
88
+
89
+ Args:
90
+ raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
91
+ detections (list, optional): List of detections to be used in the processing.
92
+
93
+ Returns:
94
+ (np.ndarray): Transformation matrix with shape (2, 3).
95
+
96
+ Examples:
97
+ >>> gmc = GMC(method="sparseOptFlow")
98
+ >>> raw_frame = np.random.rand(480, 640, 3)
99
+ >>> transformation_matrix = gmc.apply(raw_frame)
100
+ >>> print(transformation_matrix.shape)
101
+ (2, 3)
102
+ """
103
+ if self.method in {"orb", "sift"}:
104
+ return self.apply_features(raw_frame, detections)
105
+ elif self.method == "ecc":
106
+ return self.apply_ecc(raw_frame)
107
+ elif self.method == "sparseOptFlow":
108
+ return self.apply_sparseoptflow(raw_frame)
109
+ else:
110
+ return np.eye(2, 3)
111
+
112
+ def apply_ecc(self, raw_frame: np.ndarray) -> np.ndarray:
113
+ """Apply the ECC (Enhanced Correlation Coefficient) algorithm to a raw frame for motion compensation.
114
+
115
+ Args:
116
+ raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
117
+
118
+ Returns:
119
+ (np.ndarray): Transformation matrix with shape (2, 3).
120
+
121
+ Examples:
122
+ >>> gmc = GMC(method="ecc")
123
+ >>> processed_frame = gmc.apply_ecc(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
124
+ >>> print(processed_frame)
125
+ [[1. 0. 0.]
126
+ [0. 1. 0.]]
127
+ """
128
+ height, width, c = raw_frame.shape
129
+ frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
130
+ H = np.eye(2, 3, dtype=np.float32)
131
+
132
+ # Downscale image for computational efficiency
133
+ if self.downscale > 1.0:
134
+ frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
135
+ frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
136
+
137
+ # Handle first frame initialization
138
+ if not self.initializedFirstFrame:
139
+ self.prevFrame = frame.copy()
140
+ self.initializedFirstFrame = True
141
+ return H
142
+
143
+ # Run the ECC algorithm to find transformation matrix
144
+ try:
145
+ (_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
146
+ except Exception as e:
147
+ LOGGER.warning(f"findTransformECC failed; using identity warp. {e}")
148
+
149
+ return H
150
+
151
+ def apply_features(self, raw_frame: np.ndarray, detections: list | None = None) -> np.ndarray:
152
+ """Apply feature-based methods like ORB or SIFT to a raw frame.
153
+
154
+ Args:
155
+ raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
156
+ detections (list, optional): List of detections to be used in the processing.
157
+
158
+ Returns:
159
+ (np.ndarray): Transformation matrix with shape (2, 3).
160
+
161
+ Examples:
162
+ >>> gmc = GMC(method="orb")
163
+ >>> raw_frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
164
+ >>> transformation_matrix = gmc.apply_features(raw_frame)
165
+ >>> print(transformation_matrix.shape)
166
+ (2, 3)
167
+ """
168
+ height, width, c = raw_frame.shape
169
+ frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
170
+ H = np.eye(2, 3)
171
+
172
+ # Downscale image for computational efficiency
173
+ if self.downscale > 1.0:
174
+ frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
175
+ width = width // self.downscale
176
+ height = height // self.downscale
177
+
178
+ # Create mask for keypoint detection, excluding border regions
179
+ mask = np.zeros_like(frame)
180
+ mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
181
+
182
+ # Exclude detection regions from mask to avoid tracking detected objects
183
+ if detections is not None:
184
+ for det in detections:
185
+ tlbr = (det[:4] / self.downscale).astype(np.int_)
186
+ mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0
187
+
188
+ # Find keypoints and compute descriptors
189
+ keypoints = self.detector.detect(frame, mask)
190
+ keypoints, descriptors = self.extractor.compute(frame, keypoints)
191
+
192
+ # Handle first frame initialization
193
+ if not self.initializedFirstFrame:
194
+ self.prevFrame = frame.copy()
195
+ self.prevKeyPoints = copy.copy(keypoints)
196
+ self.prevDescriptors = copy.copy(descriptors)
197
+ self.initializedFirstFrame = True
198
+ return H
199
+
200
+ # Match descriptors between previous and current frame
201
+ knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)
202
+
203
+ # Filter matches based on spatial distance constraints
204
+ matches = []
205
+ spatialDistances = []
206
+ maxSpatialDistance = 0.25 * np.array([width, height])
207
+
208
+ # Handle empty matches case
209
+ if len(knnMatches) == 0:
210
+ self.prevFrame = frame.copy()
211
+ self.prevKeyPoints = copy.copy(keypoints)
212
+ self.prevDescriptors = copy.copy(descriptors)
213
+ return H
214
+
215
+ # Apply Lowe's ratio test and spatial distance filtering
216
+ for m, n in knnMatches:
217
+ if m.distance < 0.9 * n.distance:
218
+ prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
219
+ currKeyPointLocation = keypoints[m.trainIdx].pt
220
+
221
+ spatialDistance = (
222
+ prevKeyPointLocation[0] - currKeyPointLocation[0],
223
+ prevKeyPointLocation[1] - currKeyPointLocation[1],
224
+ )
225
+
226
+ if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
227
+ np.abs(spatialDistance[1]) < maxSpatialDistance[1]
228
+ ):
229
+ spatialDistances.append(spatialDistance)
230
+ matches.append(m)
231
+
232
+ # Filter outliers using statistical analysis
233
+ meanSpatialDistances = np.mean(spatialDistances, 0)
234
+ stdSpatialDistances = np.std(spatialDistances, 0)
235
+ inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances
236
+
237
+ # Extract good matches and corresponding points
238
+ goodMatches = []
239
+ prevPoints = []
240
+ currPoints = []
241
+ for i in range(len(matches)):
242
+ if inliers[i, 0] and inliers[i, 1]:
243
+ goodMatches.append(matches[i])
244
+ prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
245
+ currPoints.append(keypoints[matches[i].trainIdx].pt)
246
+
247
+ prevPoints = np.array(prevPoints)
248
+ currPoints = np.array(currPoints)
249
+
250
+ # Estimate transformation matrix using RANSAC
251
+ if prevPoints.shape[0] > 4:
252
+ H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
253
+
254
+ # Scale translation components back to original resolution
255
+ if self.downscale > 1.0:
256
+ H[0, 2] *= self.downscale
257
+ H[1, 2] *= self.downscale
258
+ else:
259
+ LOGGER.warning("not enough matching points")
260
+
261
+ # Store current frame data for next iteration
262
+ self.prevFrame = frame.copy()
263
+ self.prevKeyPoints = copy.copy(keypoints)
264
+ self.prevDescriptors = copy.copy(descriptors)
265
+
266
+ return H
267
+
268
+ def apply_sparseoptflow(self, raw_frame: np.ndarray) -> np.ndarray:
269
+ """Apply Sparse Optical Flow method to a raw frame.
270
+
271
+ Args:
272
+ raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
273
+
274
+ Returns:
275
+ (np.ndarray): Transformation matrix with shape (2, 3).
276
+
277
+ Examples:
278
+ >>> gmc = GMC()
279
+ >>> result = gmc.apply_sparseoptflow(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
280
+ >>> print(result)
281
+ [[1. 0. 0.]
282
+ [0. 1. 0.]]
283
+ """
284
+ height, width, c = raw_frame.shape
285
+ frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
286
+ H = np.eye(2, 3)
287
+
288
+ # Downscale image for computational efficiency
289
+ if self.downscale > 1.0:
290
+ frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
291
+
292
+ # Find good features to track
293
+ keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)
294
+
295
+ # Handle first frame initialization
296
+ if not self.initializedFirstFrame or self.prevKeyPoints is None:
297
+ self.prevFrame = frame.copy()
298
+ self.prevKeyPoints = copy.copy(keypoints)
299
+ self.initializedFirstFrame = True
300
+ return H
301
+
302
+ # Calculate optical flow using Lucas-Kanade method
303
+ matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)
304
+
305
+ # Extract successfully tracked points
306
+ prevPoints = []
307
+ currPoints = []
308
+
309
+ for i in range(len(status)):
310
+ if status[i]:
311
+ prevPoints.append(self.prevKeyPoints[i])
312
+ currPoints.append(matchedKeypoints[i])
313
+
314
+ prevPoints = np.array(prevPoints)
315
+ currPoints = np.array(currPoints)
316
+
317
+ # Estimate transformation matrix using RANSAC
318
+ if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == currPoints.shape[0]):
319
+ H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
320
+
321
+ # Scale translation components back to original resolution
322
+ if self.downscale > 1.0:
323
+ H[0, 2] *= self.downscale
324
+ H[1, 2] *= self.downscale
325
+ else:
326
+ LOGGER.warning("not enough matching points")
327
+
328
+ # Store current frame data for next iteration
329
+ self.prevFrame = frame.copy()
330
+ self.prevKeyPoints = copy.copy(keypoints)
331
+
332
+ return H
333
+
334
+ def reset_params(self) -> None:
335
+ """Reset the internal parameters including previous frame, keypoints, and descriptors."""
336
+ self.prevFrame = None
337
+ self.prevKeyPoints = None
338
+ self.prevDescriptors = None
339
+ self.initializedFirstFrame = False