ultralytics-opencv-headless 8.3.246__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (298) hide show
  1. tests/__init__.py +23 -0
  2. tests/conftest.py +59 -0
  3. tests/test_cli.py +131 -0
  4. tests/test_cuda.py +216 -0
  5. tests/test_engine.py +157 -0
  6. tests/test_exports.py +309 -0
  7. tests/test_integrations.py +151 -0
  8. tests/test_python.py +777 -0
  9. tests/test_solutions.py +371 -0
  10. ultralytics/__init__.py +48 -0
  11. ultralytics/assets/bus.jpg +0 -0
  12. ultralytics/assets/zidane.jpg +0 -0
  13. ultralytics/cfg/__init__.py +1026 -0
  14. ultralytics/cfg/datasets/Argoverse.yaml +78 -0
  15. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  16. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  17. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  18. ultralytics/cfg/datasets/HomeObjects-3K.yaml +32 -0
  19. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  20. ultralytics/cfg/datasets/Objects365.yaml +447 -0
  21. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  22. ultralytics/cfg/datasets/VOC.yaml +102 -0
  23. ultralytics/cfg/datasets/VisDrone.yaml +87 -0
  24. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  25. ultralytics/cfg/datasets/brain-tumor.yaml +22 -0
  26. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  27. ultralytics/cfg/datasets/coco-pose.yaml +64 -0
  28. ultralytics/cfg/datasets/coco.yaml +118 -0
  29. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  30. ultralytics/cfg/datasets/coco128.yaml +101 -0
  31. ultralytics/cfg/datasets/coco8-grayscale.yaml +103 -0
  32. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  33. ultralytics/cfg/datasets/coco8-pose.yaml +47 -0
  34. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  35. ultralytics/cfg/datasets/coco8.yaml +101 -0
  36. ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
  37. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  38. ultralytics/cfg/datasets/dog-pose.yaml +52 -0
  39. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  40. ultralytics/cfg/datasets/dota8.yaml +35 -0
  41. ultralytics/cfg/datasets/hand-keypoints.yaml +50 -0
  42. ultralytics/cfg/datasets/kitti.yaml +27 -0
  43. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  44. ultralytics/cfg/datasets/medical-pills.yaml +21 -0
  45. ultralytics/cfg/datasets/open-images-v7.yaml +663 -0
  46. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  47. ultralytics/cfg/datasets/signature.yaml +21 -0
  48. ultralytics/cfg/datasets/tiger-pose.yaml +41 -0
  49. ultralytics/cfg/datasets/xView.yaml +155 -0
  50. ultralytics/cfg/default.yaml +130 -0
  51. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  52. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  53. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  54. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  55. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  56. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  57. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  58. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  59. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  60. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  61. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  62. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  63. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  64. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  65. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  66. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  67. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  68. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  69. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  70. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  71. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  72. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  73. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  74. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  75. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  76. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  77. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  78. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  79. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  80. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +48 -0
  81. ultralytics/cfg/models/v8/yoloe-v8.yaml +48 -0
  82. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  83. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  84. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  85. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  86. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  87. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  88. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  89. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  90. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  91. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  92. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  93. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  94. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  95. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  96. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  97. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  98. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  99. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  100. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  101. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  102. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  103. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  104. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  105. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  106. ultralytics/cfg/trackers/botsort.yaml +21 -0
  107. ultralytics/cfg/trackers/bytetrack.yaml +12 -0
  108. ultralytics/data/__init__.py +26 -0
  109. ultralytics/data/annotator.py +66 -0
  110. ultralytics/data/augment.py +2801 -0
  111. ultralytics/data/base.py +435 -0
  112. ultralytics/data/build.py +437 -0
  113. ultralytics/data/converter.py +855 -0
  114. ultralytics/data/dataset.py +834 -0
  115. ultralytics/data/loaders.py +704 -0
  116. ultralytics/data/scripts/download_weights.sh +18 -0
  117. ultralytics/data/scripts/get_coco.sh +61 -0
  118. ultralytics/data/scripts/get_coco128.sh +18 -0
  119. ultralytics/data/scripts/get_imagenet.sh +52 -0
  120. ultralytics/data/split.py +138 -0
  121. ultralytics/data/split_dota.py +344 -0
  122. ultralytics/data/utils.py +798 -0
  123. ultralytics/engine/__init__.py +1 -0
  124. ultralytics/engine/exporter.py +1578 -0
  125. ultralytics/engine/model.py +1124 -0
  126. ultralytics/engine/predictor.py +508 -0
  127. ultralytics/engine/results.py +1522 -0
  128. ultralytics/engine/trainer.py +974 -0
  129. ultralytics/engine/tuner.py +448 -0
  130. ultralytics/engine/validator.py +384 -0
  131. ultralytics/hub/__init__.py +166 -0
  132. ultralytics/hub/auth.py +151 -0
  133. ultralytics/hub/google/__init__.py +174 -0
  134. ultralytics/hub/session.py +422 -0
  135. ultralytics/hub/utils.py +162 -0
  136. ultralytics/models/__init__.py +9 -0
  137. ultralytics/models/fastsam/__init__.py +7 -0
  138. ultralytics/models/fastsam/model.py +79 -0
  139. ultralytics/models/fastsam/predict.py +169 -0
  140. ultralytics/models/fastsam/utils.py +23 -0
  141. ultralytics/models/fastsam/val.py +38 -0
  142. ultralytics/models/nas/__init__.py +7 -0
  143. ultralytics/models/nas/model.py +98 -0
  144. ultralytics/models/nas/predict.py +56 -0
  145. ultralytics/models/nas/val.py +38 -0
  146. ultralytics/models/rtdetr/__init__.py +7 -0
  147. ultralytics/models/rtdetr/model.py +63 -0
  148. ultralytics/models/rtdetr/predict.py +88 -0
  149. ultralytics/models/rtdetr/train.py +89 -0
  150. ultralytics/models/rtdetr/val.py +216 -0
  151. ultralytics/models/sam/__init__.py +25 -0
  152. ultralytics/models/sam/amg.py +275 -0
  153. ultralytics/models/sam/build.py +365 -0
  154. ultralytics/models/sam/build_sam3.py +377 -0
  155. ultralytics/models/sam/model.py +169 -0
  156. ultralytics/models/sam/modules/__init__.py +1 -0
  157. ultralytics/models/sam/modules/blocks.py +1067 -0
  158. ultralytics/models/sam/modules/decoders.py +495 -0
  159. ultralytics/models/sam/modules/encoders.py +794 -0
  160. ultralytics/models/sam/modules/memory_attention.py +298 -0
  161. ultralytics/models/sam/modules/sam.py +1160 -0
  162. ultralytics/models/sam/modules/tiny_encoder.py +979 -0
  163. ultralytics/models/sam/modules/transformer.py +344 -0
  164. ultralytics/models/sam/modules/utils.py +512 -0
  165. ultralytics/models/sam/predict.py +3940 -0
  166. ultralytics/models/sam/sam3/__init__.py +3 -0
  167. ultralytics/models/sam/sam3/decoder.py +546 -0
  168. ultralytics/models/sam/sam3/encoder.py +529 -0
  169. ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
  170. ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
  171. ultralytics/models/sam/sam3/model_misc.py +199 -0
  172. ultralytics/models/sam/sam3/necks.py +129 -0
  173. ultralytics/models/sam/sam3/sam3_image.py +339 -0
  174. ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
  175. ultralytics/models/sam/sam3/vitdet.py +547 -0
  176. ultralytics/models/sam/sam3/vl_combiner.py +160 -0
  177. ultralytics/models/utils/__init__.py +1 -0
  178. ultralytics/models/utils/loss.py +466 -0
  179. ultralytics/models/utils/ops.py +315 -0
  180. ultralytics/models/yolo/__init__.py +7 -0
  181. ultralytics/models/yolo/classify/__init__.py +7 -0
  182. ultralytics/models/yolo/classify/predict.py +90 -0
  183. ultralytics/models/yolo/classify/train.py +202 -0
  184. ultralytics/models/yolo/classify/val.py +216 -0
  185. ultralytics/models/yolo/detect/__init__.py +7 -0
  186. ultralytics/models/yolo/detect/predict.py +122 -0
  187. ultralytics/models/yolo/detect/train.py +227 -0
  188. ultralytics/models/yolo/detect/val.py +507 -0
  189. ultralytics/models/yolo/model.py +430 -0
  190. ultralytics/models/yolo/obb/__init__.py +7 -0
  191. ultralytics/models/yolo/obb/predict.py +56 -0
  192. ultralytics/models/yolo/obb/train.py +79 -0
  193. ultralytics/models/yolo/obb/val.py +302 -0
  194. ultralytics/models/yolo/pose/__init__.py +7 -0
  195. ultralytics/models/yolo/pose/predict.py +65 -0
  196. ultralytics/models/yolo/pose/train.py +110 -0
  197. ultralytics/models/yolo/pose/val.py +248 -0
  198. ultralytics/models/yolo/segment/__init__.py +7 -0
  199. ultralytics/models/yolo/segment/predict.py +109 -0
  200. ultralytics/models/yolo/segment/train.py +69 -0
  201. ultralytics/models/yolo/segment/val.py +307 -0
  202. ultralytics/models/yolo/world/__init__.py +5 -0
  203. ultralytics/models/yolo/world/train.py +173 -0
  204. ultralytics/models/yolo/world/train_world.py +178 -0
  205. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  206. ultralytics/models/yolo/yoloe/predict.py +162 -0
  207. ultralytics/models/yolo/yoloe/train.py +287 -0
  208. ultralytics/models/yolo/yoloe/train_seg.py +122 -0
  209. ultralytics/models/yolo/yoloe/val.py +206 -0
  210. ultralytics/nn/__init__.py +27 -0
  211. ultralytics/nn/autobackend.py +958 -0
  212. ultralytics/nn/modules/__init__.py +182 -0
  213. ultralytics/nn/modules/activation.py +54 -0
  214. ultralytics/nn/modules/block.py +1947 -0
  215. ultralytics/nn/modules/conv.py +669 -0
  216. ultralytics/nn/modules/head.py +1183 -0
  217. ultralytics/nn/modules/transformer.py +793 -0
  218. ultralytics/nn/modules/utils.py +159 -0
  219. ultralytics/nn/tasks.py +1768 -0
  220. ultralytics/nn/text_model.py +356 -0
  221. ultralytics/py.typed +1 -0
  222. ultralytics/solutions/__init__.py +41 -0
  223. ultralytics/solutions/ai_gym.py +108 -0
  224. ultralytics/solutions/analytics.py +264 -0
  225. ultralytics/solutions/config.py +107 -0
  226. ultralytics/solutions/distance_calculation.py +123 -0
  227. ultralytics/solutions/heatmap.py +125 -0
  228. ultralytics/solutions/instance_segmentation.py +86 -0
  229. ultralytics/solutions/object_blurrer.py +89 -0
  230. ultralytics/solutions/object_counter.py +190 -0
  231. ultralytics/solutions/object_cropper.py +87 -0
  232. ultralytics/solutions/parking_management.py +280 -0
  233. ultralytics/solutions/queue_management.py +93 -0
  234. ultralytics/solutions/region_counter.py +133 -0
  235. ultralytics/solutions/security_alarm.py +151 -0
  236. ultralytics/solutions/similarity_search.py +219 -0
  237. ultralytics/solutions/solutions.py +828 -0
  238. ultralytics/solutions/speed_estimation.py +114 -0
  239. ultralytics/solutions/streamlit_inference.py +260 -0
  240. ultralytics/solutions/templates/similarity-search.html +156 -0
  241. ultralytics/solutions/trackzone.py +88 -0
  242. ultralytics/solutions/vision_eye.py +67 -0
  243. ultralytics/trackers/__init__.py +7 -0
  244. ultralytics/trackers/basetrack.py +115 -0
  245. ultralytics/trackers/bot_sort.py +257 -0
  246. ultralytics/trackers/byte_tracker.py +469 -0
  247. ultralytics/trackers/track.py +116 -0
  248. ultralytics/trackers/utils/__init__.py +1 -0
  249. ultralytics/trackers/utils/gmc.py +339 -0
  250. ultralytics/trackers/utils/kalman_filter.py +482 -0
  251. ultralytics/trackers/utils/matching.py +154 -0
  252. ultralytics/utils/__init__.py +1450 -0
  253. ultralytics/utils/autobatch.py +118 -0
  254. ultralytics/utils/autodevice.py +205 -0
  255. ultralytics/utils/benchmarks.py +728 -0
  256. ultralytics/utils/callbacks/__init__.py +5 -0
  257. ultralytics/utils/callbacks/base.py +233 -0
  258. ultralytics/utils/callbacks/clearml.py +146 -0
  259. ultralytics/utils/callbacks/comet.py +625 -0
  260. ultralytics/utils/callbacks/dvc.py +197 -0
  261. ultralytics/utils/callbacks/hub.py +110 -0
  262. ultralytics/utils/callbacks/mlflow.py +134 -0
  263. ultralytics/utils/callbacks/neptune.py +126 -0
  264. ultralytics/utils/callbacks/platform.py +313 -0
  265. ultralytics/utils/callbacks/raytune.py +42 -0
  266. ultralytics/utils/callbacks/tensorboard.py +123 -0
  267. ultralytics/utils/callbacks/wb.py +188 -0
  268. ultralytics/utils/checks.py +1006 -0
  269. ultralytics/utils/cpu.py +85 -0
  270. ultralytics/utils/dist.py +123 -0
  271. ultralytics/utils/downloads.py +529 -0
  272. ultralytics/utils/errors.py +35 -0
  273. ultralytics/utils/events.py +113 -0
  274. ultralytics/utils/export/__init__.py +7 -0
  275. ultralytics/utils/export/engine.py +237 -0
  276. ultralytics/utils/export/imx.py +315 -0
  277. ultralytics/utils/export/tensorflow.py +231 -0
  278. ultralytics/utils/files.py +219 -0
  279. ultralytics/utils/git.py +137 -0
  280. ultralytics/utils/instance.py +484 -0
  281. ultralytics/utils/logger.py +501 -0
  282. ultralytics/utils/loss.py +849 -0
  283. ultralytics/utils/metrics.py +1563 -0
  284. ultralytics/utils/nms.py +337 -0
  285. ultralytics/utils/ops.py +664 -0
  286. ultralytics/utils/patches.py +201 -0
  287. ultralytics/utils/plotting.py +1045 -0
  288. ultralytics/utils/tal.py +403 -0
  289. ultralytics/utils/torch_utils.py +984 -0
  290. ultralytics/utils/tqdm.py +440 -0
  291. ultralytics/utils/triton.py +112 -0
  292. ultralytics/utils/tuner.py +160 -0
  293. ultralytics_opencv_headless-8.3.246.dist-info/METADATA +374 -0
  294. ultralytics_opencv_headless-8.3.246.dist-info/RECORD +298 -0
  295. ultralytics_opencv_headless-8.3.246.dist-info/WHEEL +5 -0
  296. ultralytics_opencv_headless-8.3.246.dist-info/entry_points.txt +3 -0
  297. ultralytics_opencv_headless-8.3.246.dist-info/licenses/LICENSE +661 -0
  298. ultralytics_opencv_headless-8.3.246.dist-info/top_level.txt +1 -0
@@ -0,0 +1,469 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ from __future__ import annotations
4
+
5
+ from typing import Any
6
+
7
+ import numpy as np
8
+
9
+ from ..utils import LOGGER
10
+ from ..utils.ops import xywh2ltwh
11
+ from .basetrack import BaseTrack, TrackState
12
+ from .utils import matching
13
+ from .utils.kalman_filter import KalmanFilterXYAH
14
+
15
+
16
+ class STrack(BaseTrack):
17
+ """Single object tracking representation that uses Kalman filtering for state estimation.
18
+
19
+ This class is responsible for storing all the information regarding individual tracklets and performs state updates
20
+ and predictions based on Kalman filter.
21
+
22
+ Attributes:
23
+ shared_kalman (KalmanFilterXYAH): Shared Kalman filter used across all STrack instances for prediction.
24
+ _tlwh (np.ndarray): Private attribute to store top-left corner coordinates and width and height of bounding box.
25
+ kalman_filter (KalmanFilterXYAH): Instance of Kalman filter used for this particular object track.
26
+ mean (np.ndarray): Mean state estimate vector.
27
+ covariance (np.ndarray): Covariance of state estimate.
28
+ is_activated (bool): Boolean flag indicating if the track has been activated.
29
+ score (float): Confidence score of the track.
30
+ tracklet_len (int): Length of the tracklet.
31
+ cls (Any): Class label for the object.
32
+ idx (int): Index or identifier for the object.
33
+ frame_id (int): Current frame ID.
34
+ start_frame (int): Frame where the object was first detected.
35
+ angle (float | None): Optional angle information for oriented bounding boxes.
36
+
37
+ Methods:
38
+ predict: Predict the next state of the object using Kalman filter.
39
+ multi_predict: Predict the next states for multiple tracks.
40
+ multi_gmc: Update multiple track states using a homography matrix.
41
+ activate: Activate a new tracklet.
42
+ re_activate: Reactivate a previously lost tracklet.
43
+ update: Update the state of a matched track.
44
+ convert_coords: Convert bounding box to x-y-aspect-height format.
45
+ tlwh_to_xyah: Convert tlwh bounding box to xyah format.
46
+
47
+ Examples:
48
+ Initialize and activate a new track
49
+ >>> track = STrack(xywh=[100, 200, 50, 80, 0], score=0.9, cls="person")
50
+ >>> track.activate(kalman_filter=KalmanFilterXYAH(), frame_id=1)
51
+ """
52
+
53
+ shared_kalman = KalmanFilterXYAH()
54
+
55
+ def __init__(self, xywh: list[float], score: float, cls: Any):
56
+ """Initialize a new STrack instance.
57
+
58
+ Args:
59
+ xywh (list[float]): Bounding box in `(x, y, w, h, idx)` or `(x, y, w, h, angle, idx)` format, where (x, y)
60
+ is the center, (w, h) are width and height, and `idx` is the detection index.
61
+ score (float): Confidence score of the detection.
62
+ cls (Any): Class label for the detected object.
63
+ """
64
+ super().__init__()
65
+ # xywh+idx or xywha+idx
66
+ assert len(xywh) in {5, 6}, f"expected 5 or 6 values but got {len(xywh)}"
67
+ self._tlwh = np.asarray(xywh2ltwh(xywh[:4]), dtype=np.float32)
68
+ self.kalman_filter = None
69
+ self.mean, self.covariance = None, None
70
+ self.is_activated = False
71
+
72
+ self.score = score
73
+ self.tracklet_len = 0
74
+ self.cls = cls
75
+ self.idx = xywh[-1]
76
+ self.angle = xywh[4] if len(xywh) == 6 else None
77
+
78
+ def predict(self):
79
+ """Predict the next state (mean and covariance) of the object using the Kalman filter."""
80
+ mean_state = self.mean.copy()
81
+ if self.state != TrackState.Tracked:
82
+ mean_state[7] = 0
83
+ self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
84
+
85
+ @staticmethod
86
+ def multi_predict(stracks: list[STrack]):
87
+ """Perform multi-object predictive tracking using Kalman filter for the provided list of STrack instances."""
88
+ if len(stracks) <= 0:
89
+ return
90
+ multi_mean = np.asarray([st.mean.copy() for st in stracks])
91
+ multi_covariance = np.asarray([st.covariance for st in stracks])
92
+ for i, st in enumerate(stracks):
93
+ if st.state != TrackState.Tracked:
94
+ multi_mean[i][7] = 0
95
+ multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
96
+ for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
97
+ stracks[i].mean = mean
98
+ stracks[i].covariance = cov
99
+
100
+ @staticmethod
101
+ def multi_gmc(stracks: list[STrack], H: np.ndarray = np.eye(2, 3)):
102
+ """Update state tracks positions and covariances using a homography matrix for multiple tracks."""
103
+ if stracks:
104
+ multi_mean = np.asarray([st.mean.copy() for st in stracks])
105
+ multi_covariance = np.asarray([st.covariance for st in stracks])
106
+
107
+ R = H[:2, :2]
108
+ R8x8 = np.kron(np.eye(4, dtype=float), R)
109
+ t = H[:2, 2]
110
+
111
+ for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
112
+ mean = R8x8.dot(mean)
113
+ mean[:2] += t
114
+ cov = R8x8.dot(cov).dot(R8x8.transpose())
115
+
116
+ stracks[i].mean = mean
117
+ stracks[i].covariance = cov
118
+
119
+ def activate(self, kalman_filter: KalmanFilterXYAH, frame_id: int):
120
+ """Activate a new tracklet using the provided Kalman filter and initialize its state and covariance."""
121
+ self.kalman_filter = kalman_filter
122
+ self.track_id = self.next_id()
123
+ self.mean, self.covariance = self.kalman_filter.initiate(self.convert_coords(self._tlwh))
124
+
125
+ self.tracklet_len = 0
126
+ self.state = TrackState.Tracked
127
+ if frame_id == 1:
128
+ self.is_activated = True
129
+ self.frame_id = frame_id
130
+ self.start_frame = frame_id
131
+
132
+ def re_activate(self, new_track: STrack, frame_id: int, new_id: bool = False):
133
+ """Reactivate a previously lost track using new detection data and update its state and attributes."""
134
+ self.mean, self.covariance = self.kalman_filter.update(
135
+ self.mean, self.covariance, self.convert_coords(new_track.tlwh)
136
+ )
137
+ self.tracklet_len = 0
138
+ self.state = TrackState.Tracked
139
+ self.is_activated = True
140
+ self.frame_id = frame_id
141
+ if new_id:
142
+ self.track_id = self.next_id()
143
+ self.score = new_track.score
144
+ self.cls = new_track.cls
145
+ self.angle = new_track.angle
146
+ self.idx = new_track.idx
147
+
148
+ def update(self, new_track: STrack, frame_id: int):
149
+ """Update the state of a matched track.
150
+
151
+ Args:
152
+ new_track (STrack): The new track containing updated information.
153
+ frame_id (int): The ID of the current frame.
154
+
155
+ Examples:
156
+ Update the state of a track with new detection information
157
+ >>> track = STrack([100, 200, 50, 80, 0.9, 1])
158
+ >>> new_track = STrack([105, 205, 55, 85, 0.95, 1])
159
+ >>> track.update(new_track, 2)
160
+ """
161
+ self.frame_id = frame_id
162
+ self.tracklet_len += 1
163
+
164
+ new_tlwh = new_track.tlwh
165
+ self.mean, self.covariance = self.kalman_filter.update(
166
+ self.mean, self.covariance, self.convert_coords(new_tlwh)
167
+ )
168
+ self.state = TrackState.Tracked
169
+ self.is_activated = True
170
+
171
+ self.score = new_track.score
172
+ self.cls = new_track.cls
173
+ self.angle = new_track.angle
174
+ self.idx = new_track.idx
175
+
176
+ def convert_coords(self, tlwh: np.ndarray) -> np.ndarray:
177
+ """Convert a bounding box's top-left-width-height format to its x-y-aspect-height equivalent."""
178
+ return self.tlwh_to_xyah(tlwh)
179
+
180
+ @property
181
+ def tlwh(self) -> np.ndarray:
182
+ """Get the bounding box in top-left-width-height format from the current state estimate."""
183
+ if self.mean is None:
184
+ return self._tlwh.copy()
185
+ ret = self.mean[:4].copy()
186
+ ret[2] *= ret[3]
187
+ ret[:2] -= ret[2:] / 2
188
+ return ret
189
+
190
+ @property
191
+ def xyxy(self) -> np.ndarray:
192
+ """Convert bounding box from (top left x, top left y, width, height) to (min x, min y, max x, max y) format."""
193
+ ret = self.tlwh.copy()
194
+ ret[2:] += ret[:2]
195
+ return ret
196
+
197
+ @staticmethod
198
+ def tlwh_to_xyah(tlwh: np.ndarray) -> np.ndarray:
199
+ """Convert bounding box from tlwh format to center-x-center-y-aspect-height (xyah) format."""
200
+ ret = np.asarray(tlwh).copy()
201
+ ret[:2] += ret[2:] / 2
202
+ ret[2] /= ret[3]
203
+ return ret
204
+
205
+ @property
206
+ def xywh(self) -> np.ndarray:
207
+ """Get the current position of the bounding box in (center x, center y, width, height) format."""
208
+ ret = np.asarray(self.tlwh).copy()
209
+ ret[:2] += ret[2:] / 2
210
+ return ret
211
+
212
+ @property
213
+ def xywha(self) -> np.ndarray:
214
+ """Get position in (center x, center y, width, height, angle) format, warning if angle is missing."""
215
+ if self.angle is None:
216
+ LOGGER.warning("`angle` attr not found, returning `xywh` instead.")
217
+ return self.xywh
218
+ return np.concatenate([self.xywh, self.angle[None]])
219
+
220
+ @property
221
+ def result(self) -> list[float]:
222
+ """Get the current tracking results in the appropriate bounding box format."""
223
+ coords = self.xyxy if self.angle is None else self.xywha
224
+ return [*coords.tolist(), self.track_id, self.score, self.cls, self.idx]
225
+
226
+ def __repr__(self) -> str:
227
+ """Return a string representation of the STrack object including start frame, end frame, and track ID."""
228
+ return f"OT_{self.track_id}_({self.start_frame}-{self.end_frame})"
229
+
230
+
231
+ class BYTETracker:
232
+ """BYTETracker: A tracking algorithm built on top of YOLOv8 for object detection and tracking.
233
+
234
+ This class encapsulates the functionality for initializing, updating, and managing the tracks for detected objects
235
+ in a video sequence. It maintains the state of tracked, lost, and removed tracks over frames, utilizes Kalman
236
+ filtering for predicting the new object locations, and performs data association.
237
+
238
+ Attributes:
239
+ tracked_stracks (list[STrack]): List of successfully activated tracks.
240
+ lost_stracks (list[STrack]): List of lost tracks.
241
+ removed_stracks (list[STrack]): List of removed tracks.
242
+ frame_id (int): The current frame ID.
243
+ args (Namespace): Command-line arguments.
244
+ max_time_lost (int): The maximum frames for a track to be considered as 'lost'.
245
+ kalman_filter (KalmanFilterXYAH): Kalman Filter object.
246
+
247
+ Methods:
248
+ update: Update object tracker with new detections.
249
+ get_kalmanfilter: Return a Kalman filter object for tracking bounding boxes.
250
+ init_track: Initialize object tracking with detections.
251
+ get_dists: Calculate the distance between tracks and detections.
252
+ multi_predict: Predict the location of tracks.
253
+ reset_id: Reset the ID counter of STrack.
254
+ reset: Reset the tracker by clearing all tracks.
255
+ joint_stracks: Combine two lists of stracks.
256
+ sub_stracks: Filter out the stracks present in the second list from the first list.
257
+ remove_duplicate_stracks: Remove duplicate stracks based on IoU.
258
+
259
+ Examples:
260
+ Initialize BYTETracker and update with detection results
261
+ >>> tracker = BYTETracker(args, frame_rate=30)
262
+ >>> results = yolo_model.detect(image)
263
+ >>> tracked_objects = tracker.update(results)
264
+ """
265
+
266
+ def __init__(self, args, frame_rate: int = 30):
267
+ """Initialize a BYTETracker instance for object tracking.
268
+
269
+ Args:
270
+ args (Namespace): Command-line arguments containing tracking parameters.
271
+ frame_rate (int): Frame rate of the video sequence.
272
+ """
273
+ self.tracked_stracks = [] # type: list[STrack]
274
+ self.lost_stracks = [] # type: list[STrack]
275
+ self.removed_stracks = [] # type: list[STrack]
276
+
277
+ self.frame_id = 0
278
+ self.args = args
279
+ self.max_time_lost = int(frame_rate / 30.0 * args.track_buffer)
280
+ self.kalman_filter = self.get_kalmanfilter()
281
+ self.reset_id()
282
+
283
+ def update(self, results, img: np.ndarray | None = None, feats: np.ndarray | None = None) -> np.ndarray:
284
+ """Update the tracker with new detections and return the current list of tracked objects."""
285
+ self.frame_id += 1
286
+ activated_stracks = []
287
+ refind_stracks = []
288
+ lost_stracks = []
289
+ removed_stracks = []
290
+
291
+ scores = results.conf
292
+ remain_inds = scores >= self.args.track_high_thresh
293
+ inds_low = scores > self.args.track_low_thresh
294
+ inds_high = scores < self.args.track_high_thresh
295
+
296
+ inds_second = inds_low & inds_high
297
+ results_second = results[inds_second]
298
+ results = results[remain_inds]
299
+ feats_keep = feats_second = img
300
+ if feats is not None and len(feats):
301
+ feats_keep = feats[remain_inds]
302
+ feats_second = feats[inds_second]
303
+
304
+ detections = self.init_track(results, feats_keep)
305
+ # Add newly detected tracklets to tracked_stracks
306
+ unconfirmed = []
307
+ tracked_stracks = [] # type: list[STrack]
308
+ for track in self.tracked_stracks:
309
+ if not track.is_activated:
310
+ unconfirmed.append(track)
311
+ else:
312
+ tracked_stracks.append(track)
313
+ # Step 2: First association, with high score detection boxes
314
+ strack_pool = self.joint_stracks(tracked_stracks, self.lost_stracks)
315
+ # Predict the current location with KF
316
+ self.multi_predict(strack_pool)
317
+ if hasattr(self, "gmc") and img is not None:
318
+ # use try-except here to bypass errors from gmc module
319
+ try:
320
+ warp = self.gmc.apply(img, results.xyxy)
321
+ except Exception:
322
+ warp = np.eye(2, 3)
323
+ STrack.multi_gmc(strack_pool, warp)
324
+ STrack.multi_gmc(unconfirmed, warp)
325
+
326
+ dists = self.get_dists(strack_pool, detections)
327
+ matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh)
328
+
329
+ for itracked, idet in matches:
330
+ track = strack_pool[itracked]
331
+ det = detections[idet]
332
+ if track.state == TrackState.Tracked:
333
+ track.update(det, self.frame_id)
334
+ activated_stracks.append(track)
335
+ else:
336
+ track.re_activate(det, self.frame_id, new_id=False)
337
+ refind_stracks.append(track)
338
+ # Step 3: Second association, with low score detection boxes association the untrack to the low score detections
339
+ detections_second = self.init_track(results_second, feats_second)
340
+ r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
341
+ # TODO: consider fusing scores or appearance features for second association.
342
+ dists = matching.iou_distance(r_tracked_stracks, detections_second)
343
+ matches, u_track, _u_detection_second = matching.linear_assignment(dists, thresh=0.5)
344
+ for itracked, idet in matches:
345
+ track = r_tracked_stracks[itracked]
346
+ det = detections_second[idet]
347
+ if track.state == TrackState.Tracked:
348
+ track.update(det, self.frame_id)
349
+ activated_stracks.append(track)
350
+ else:
351
+ track.re_activate(det, self.frame_id, new_id=False)
352
+ refind_stracks.append(track)
353
+
354
+ for it in u_track:
355
+ track = r_tracked_stracks[it]
356
+ if track.state != TrackState.Lost:
357
+ track.mark_lost()
358
+ lost_stracks.append(track)
359
+ # Deal with unconfirmed tracks, usually tracks with only one beginning frame
360
+ detections = [detections[i] for i in u_detection]
361
+ dists = self.get_dists(unconfirmed, detections)
362
+ matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
363
+ for itracked, idet in matches:
364
+ unconfirmed[itracked].update(detections[idet], self.frame_id)
365
+ activated_stracks.append(unconfirmed[itracked])
366
+ for it in u_unconfirmed:
367
+ track = unconfirmed[it]
368
+ track.mark_removed()
369
+ removed_stracks.append(track)
370
+ # Step 4: Init new stracks
371
+ for inew in u_detection:
372
+ track = detections[inew]
373
+ if track.score < self.args.new_track_thresh:
374
+ continue
375
+ track.activate(self.kalman_filter, self.frame_id)
376
+ activated_stracks.append(track)
377
+ # Step 5: Update state
378
+ for track in self.lost_stracks:
379
+ if self.frame_id - track.end_frame > self.max_time_lost:
380
+ track.mark_removed()
381
+ removed_stracks.append(track)
382
+
383
+ self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
384
+ self.tracked_stracks = self.joint_stracks(self.tracked_stracks, activated_stracks)
385
+ self.tracked_stracks = self.joint_stracks(self.tracked_stracks, refind_stracks)
386
+ self.lost_stracks = self.sub_stracks(self.lost_stracks, self.tracked_stracks)
387
+ self.lost_stracks.extend(lost_stracks)
388
+ self.lost_stracks = self.sub_stracks(self.lost_stracks, self.removed_stracks)
389
+ self.tracked_stracks, self.lost_stracks = self.remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
390
+ self.removed_stracks.extend(removed_stracks)
391
+ if len(self.removed_stracks) > 1000:
392
+ self.removed_stracks = self.removed_stracks[-1000:] # clip removed stracks to 1000 maximum
393
+
394
+ return np.asarray([x.result for x in self.tracked_stracks if x.is_activated], dtype=np.float32)
395
+
396
+ def get_kalmanfilter(self) -> KalmanFilterXYAH:
397
+ """Return a Kalman filter object for tracking bounding boxes using KalmanFilterXYAH."""
398
+ return KalmanFilterXYAH()
399
+
400
+ def init_track(self, results, img: np.ndarray | None = None) -> list[STrack]:
401
+ """Initialize object tracking with given detections, scores, and class labels using the STrack algorithm."""
402
+ if len(results) == 0:
403
+ return []
404
+ bboxes = results.xywhr if hasattr(results, "xywhr") else results.xywh
405
+ bboxes = np.concatenate([bboxes, np.arange(len(bboxes)).reshape(-1, 1)], axis=-1)
406
+ return [STrack(xywh, s, c) for (xywh, s, c) in zip(bboxes, results.conf, results.cls)]
407
+
408
+ def get_dists(self, tracks: list[STrack], detections: list[STrack]) -> np.ndarray:
409
+ """Calculate the distance between tracks and detections using IoU and optionally fuse scores."""
410
+ dists = matching.iou_distance(tracks, detections)
411
+ if self.args.fuse_score:
412
+ dists = matching.fuse_score(dists, detections)
413
+ return dists
414
+
415
+ def multi_predict(self, tracks: list[STrack]):
416
+ """Predict the next states for multiple tracks using Kalman filter."""
417
+ STrack.multi_predict(tracks)
418
+
419
+ @staticmethod
420
+ def reset_id():
421
+ """Reset the ID counter for STrack instances to ensure unique track IDs across tracking sessions."""
422
+ STrack.reset_id()
423
+
424
+ def reset(self):
425
+ """Reset the tracker by clearing all tracked, lost, and removed tracks and reinitializing the Kalman filter."""
426
+ self.tracked_stracks = [] # type: list[STrack]
427
+ self.lost_stracks = [] # type: list[STrack]
428
+ self.removed_stracks = [] # type: list[STrack]
429
+ self.frame_id = 0
430
+ self.kalman_filter = self.get_kalmanfilter()
431
+ self.reset_id()
432
+
433
+ @staticmethod
434
+ def joint_stracks(tlista: list[STrack], tlistb: list[STrack]) -> list[STrack]:
435
+ """Combine two lists of STrack objects into a single list, ensuring no duplicates based on track IDs."""
436
+ exists = {}
437
+ res = []
438
+ for t in tlista:
439
+ exists[t.track_id] = 1
440
+ res.append(t)
441
+ for t in tlistb:
442
+ tid = t.track_id
443
+ if not exists.get(tid, 0):
444
+ exists[tid] = 1
445
+ res.append(t)
446
+ return res
447
+
448
+ @staticmethod
449
+ def sub_stracks(tlista: list[STrack], tlistb: list[STrack]) -> list[STrack]:
450
+ """Filter out the stracks present in the second list from the first list."""
451
+ track_ids_b = {t.track_id for t in tlistb}
452
+ return [t for t in tlista if t.track_id not in track_ids_b]
453
+
454
+ @staticmethod
455
+ def remove_duplicate_stracks(stracksa: list[STrack], stracksb: list[STrack]) -> tuple[list[STrack], list[STrack]]:
456
+ """Remove duplicate stracks from two lists based on Intersection over Union (IoU) distance."""
457
+ pdist = matching.iou_distance(stracksa, stracksb)
458
+ pairs = np.where(pdist < 0.15)
459
+ dupa, dupb = [], []
460
+ for p, q in zip(*pairs):
461
+ timep = stracksa[p].frame_id - stracksa[p].start_frame
462
+ timeq = stracksb[q].frame_id - stracksb[q].start_frame
463
+ if timep > timeq:
464
+ dupb.append(q)
465
+ else:
466
+ dupa.append(p)
467
+ resa = [t for i, t in enumerate(stracksa) if i not in dupa]
468
+ resb = [t for i, t in enumerate(stracksb) if i not in dupb]
469
+ return resa, resb
@@ -0,0 +1,116 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ from functools import partial
4
+ from pathlib import Path
5
+
6
+ import torch
7
+
8
+ from ultralytics.utils import YAML, IterableSimpleNamespace
9
+ from ultralytics.utils.checks import check_yaml
10
+
11
+ from .bot_sort import BOTSORT
12
+ from .byte_tracker import BYTETracker
13
+
14
+ # A mapping of tracker types to corresponding tracker classes
15
+ TRACKER_MAP = {"bytetrack": BYTETracker, "botsort": BOTSORT}
16
+
17
+
18
+ def on_predict_start(predictor: object, persist: bool = False) -> None:
19
+ """Initialize trackers for object tracking during prediction.
20
+
21
+ Args:
22
+ predictor (ultralytics.engine.predictor.BasePredictor): The predictor object to initialize trackers for.
23
+ persist (bool, optional): Whether to persist the trackers if they already exist.
24
+
25
+ Examples:
26
+ Initialize trackers for a predictor object
27
+ >>> predictor = SomePredictorClass()
28
+ >>> on_predict_start(predictor, persist=True)
29
+ """
30
+ if predictor.args.task == "classify":
31
+ raise ValueError("❌ Classification doesn't support 'mode=track'")
32
+
33
+ if hasattr(predictor, "trackers") and persist:
34
+ return
35
+
36
+ tracker = check_yaml(predictor.args.tracker)
37
+ cfg = IterableSimpleNamespace(**YAML.load(tracker))
38
+
39
+ if cfg.tracker_type not in {"bytetrack", "botsort"}:
40
+ raise AssertionError(f"Only 'bytetrack' and 'botsort' are supported for now, but got '{cfg.tracker_type}'")
41
+
42
+ predictor._feats = None # reset in case used earlier
43
+ if hasattr(predictor, "_hook"):
44
+ predictor._hook.remove()
45
+ if cfg.tracker_type == "botsort" and cfg.with_reid and cfg.model == "auto":
46
+ from ultralytics.nn.modules.head import Detect
47
+
48
+ if not (
49
+ isinstance(predictor.model.model, torch.nn.Module)
50
+ and isinstance(predictor.model.model.model[-1], Detect)
51
+ and not predictor.model.model.model[-1].end2end
52
+ ):
53
+ cfg.model = "yolo11n-cls.pt"
54
+ else:
55
+ # Register hook to extract input of Detect layer
56
+ def pre_hook(module, input):
57
+ predictor._feats = list(input[0]) # unroll to new list to avoid mutation in forward
58
+
59
+ predictor._hook = predictor.model.model.model[-1].register_forward_pre_hook(pre_hook)
60
+
61
+ trackers = []
62
+ for _ in range(predictor.dataset.bs):
63
+ tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
64
+ trackers.append(tracker)
65
+ if predictor.dataset.mode != "stream": # only need one tracker for other modes
66
+ break
67
+ predictor.trackers = trackers
68
+ predictor.vid_path = [None] * predictor.dataset.bs # for determining when to reset tracker on new video
69
+
70
+
71
+ def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None:
72
+ """Postprocess detected boxes and update with object tracking.
73
+
74
+ Args:
75
+ predictor (object): The predictor object containing the predictions.
76
+ persist (bool, optional): Whether to persist the trackers if they already exist.
77
+
78
+ Examples:
79
+ Postprocess predictions and update with tracking
80
+ >>> predictor = YourPredictorClass()
81
+ >>> on_predict_postprocess_end(predictor, persist=True)
82
+ """
83
+ is_obb = predictor.args.task == "obb"
84
+ is_stream = predictor.dataset.mode == "stream"
85
+ for i, result in enumerate(predictor.results):
86
+ tracker = predictor.trackers[i if is_stream else 0]
87
+ vid_path = predictor.save_dir / Path(result.path).name
88
+ if not persist and predictor.vid_path[i if is_stream else 0] != vid_path:
89
+ tracker.reset()
90
+ predictor.vid_path[i if is_stream else 0] = vid_path
91
+
92
+ det = (result.obb if is_obb else result.boxes).cpu().numpy()
93
+ tracks = tracker.update(det, result.orig_img, getattr(result, "feats", None))
94
+ if len(tracks) == 0:
95
+ continue
96
+ idx = tracks[:, -1].astype(int)
97
+ predictor.results[i] = result[idx]
98
+
99
+ update_args = {"obb" if is_obb else "boxes": torch.as_tensor(tracks[:, :-1])}
100
+ predictor.results[i].update(**update_args)
101
+
102
+
103
+ def register_tracker(model: object, persist: bool) -> None:
104
+ """Register tracking callbacks to the model for object tracking during prediction.
105
+
106
+ Args:
107
+ model (object): The model object to register tracking callbacks for.
108
+ persist (bool): Whether to persist the trackers if they already exist.
109
+
110
+ Examples:
111
+ Register tracking callbacks to a YOLO model
112
+ >>> model = YOLOModel()
113
+ >>> register_tracker(model, persist=True)
114
+ """
115
+ model.add_callback("on_predict_start", partial(on_predict_start, persist=persist))
116
+ model.add_callback("on_predict_postprocess_end", partial(on_predict_postprocess_end, persist=persist))
@@ -0,0 +1 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license