ultralytics-opencv-headless 8.3.246__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (298) hide show
  1. tests/__init__.py +23 -0
  2. tests/conftest.py +59 -0
  3. tests/test_cli.py +131 -0
  4. tests/test_cuda.py +216 -0
  5. tests/test_engine.py +157 -0
  6. tests/test_exports.py +309 -0
  7. tests/test_integrations.py +151 -0
  8. tests/test_python.py +777 -0
  9. tests/test_solutions.py +371 -0
  10. ultralytics/__init__.py +48 -0
  11. ultralytics/assets/bus.jpg +0 -0
  12. ultralytics/assets/zidane.jpg +0 -0
  13. ultralytics/cfg/__init__.py +1026 -0
  14. ultralytics/cfg/datasets/Argoverse.yaml +78 -0
  15. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  16. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  17. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  18. ultralytics/cfg/datasets/HomeObjects-3K.yaml +32 -0
  19. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  20. ultralytics/cfg/datasets/Objects365.yaml +447 -0
  21. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  22. ultralytics/cfg/datasets/VOC.yaml +102 -0
  23. ultralytics/cfg/datasets/VisDrone.yaml +87 -0
  24. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  25. ultralytics/cfg/datasets/brain-tumor.yaml +22 -0
  26. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  27. ultralytics/cfg/datasets/coco-pose.yaml +64 -0
  28. ultralytics/cfg/datasets/coco.yaml +118 -0
  29. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  30. ultralytics/cfg/datasets/coco128.yaml +101 -0
  31. ultralytics/cfg/datasets/coco8-grayscale.yaml +103 -0
  32. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  33. ultralytics/cfg/datasets/coco8-pose.yaml +47 -0
  34. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  35. ultralytics/cfg/datasets/coco8.yaml +101 -0
  36. ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
  37. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  38. ultralytics/cfg/datasets/dog-pose.yaml +52 -0
  39. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  40. ultralytics/cfg/datasets/dota8.yaml +35 -0
  41. ultralytics/cfg/datasets/hand-keypoints.yaml +50 -0
  42. ultralytics/cfg/datasets/kitti.yaml +27 -0
  43. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  44. ultralytics/cfg/datasets/medical-pills.yaml +21 -0
  45. ultralytics/cfg/datasets/open-images-v7.yaml +663 -0
  46. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  47. ultralytics/cfg/datasets/signature.yaml +21 -0
  48. ultralytics/cfg/datasets/tiger-pose.yaml +41 -0
  49. ultralytics/cfg/datasets/xView.yaml +155 -0
  50. ultralytics/cfg/default.yaml +130 -0
  51. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  52. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  53. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  54. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  55. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  56. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  57. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  58. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  59. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  60. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  61. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  62. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  63. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  64. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  65. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  66. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  67. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  68. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  69. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  70. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  71. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  72. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  73. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  74. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  75. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  76. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  77. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  78. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  79. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  80. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +48 -0
  81. ultralytics/cfg/models/v8/yoloe-v8.yaml +48 -0
  82. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  83. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  84. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  85. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  86. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  87. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  88. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  89. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  90. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  91. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  92. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  93. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  94. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  95. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  96. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  97. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  98. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  99. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  100. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  101. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  102. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  103. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  104. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  105. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  106. ultralytics/cfg/trackers/botsort.yaml +21 -0
  107. ultralytics/cfg/trackers/bytetrack.yaml +12 -0
  108. ultralytics/data/__init__.py +26 -0
  109. ultralytics/data/annotator.py +66 -0
  110. ultralytics/data/augment.py +2801 -0
  111. ultralytics/data/base.py +435 -0
  112. ultralytics/data/build.py +437 -0
  113. ultralytics/data/converter.py +855 -0
  114. ultralytics/data/dataset.py +834 -0
  115. ultralytics/data/loaders.py +704 -0
  116. ultralytics/data/scripts/download_weights.sh +18 -0
  117. ultralytics/data/scripts/get_coco.sh +61 -0
  118. ultralytics/data/scripts/get_coco128.sh +18 -0
  119. ultralytics/data/scripts/get_imagenet.sh +52 -0
  120. ultralytics/data/split.py +138 -0
  121. ultralytics/data/split_dota.py +344 -0
  122. ultralytics/data/utils.py +798 -0
  123. ultralytics/engine/__init__.py +1 -0
  124. ultralytics/engine/exporter.py +1578 -0
  125. ultralytics/engine/model.py +1124 -0
  126. ultralytics/engine/predictor.py +508 -0
  127. ultralytics/engine/results.py +1522 -0
  128. ultralytics/engine/trainer.py +974 -0
  129. ultralytics/engine/tuner.py +448 -0
  130. ultralytics/engine/validator.py +384 -0
  131. ultralytics/hub/__init__.py +166 -0
  132. ultralytics/hub/auth.py +151 -0
  133. ultralytics/hub/google/__init__.py +174 -0
  134. ultralytics/hub/session.py +422 -0
  135. ultralytics/hub/utils.py +162 -0
  136. ultralytics/models/__init__.py +9 -0
  137. ultralytics/models/fastsam/__init__.py +7 -0
  138. ultralytics/models/fastsam/model.py +79 -0
  139. ultralytics/models/fastsam/predict.py +169 -0
  140. ultralytics/models/fastsam/utils.py +23 -0
  141. ultralytics/models/fastsam/val.py +38 -0
  142. ultralytics/models/nas/__init__.py +7 -0
  143. ultralytics/models/nas/model.py +98 -0
  144. ultralytics/models/nas/predict.py +56 -0
  145. ultralytics/models/nas/val.py +38 -0
  146. ultralytics/models/rtdetr/__init__.py +7 -0
  147. ultralytics/models/rtdetr/model.py +63 -0
  148. ultralytics/models/rtdetr/predict.py +88 -0
  149. ultralytics/models/rtdetr/train.py +89 -0
  150. ultralytics/models/rtdetr/val.py +216 -0
  151. ultralytics/models/sam/__init__.py +25 -0
  152. ultralytics/models/sam/amg.py +275 -0
  153. ultralytics/models/sam/build.py +365 -0
  154. ultralytics/models/sam/build_sam3.py +377 -0
  155. ultralytics/models/sam/model.py +169 -0
  156. ultralytics/models/sam/modules/__init__.py +1 -0
  157. ultralytics/models/sam/modules/blocks.py +1067 -0
  158. ultralytics/models/sam/modules/decoders.py +495 -0
  159. ultralytics/models/sam/modules/encoders.py +794 -0
  160. ultralytics/models/sam/modules/memory_attention.py +298 -0
  161. ultralytics/models/sam/modules/sam.py +1160 -0
  162. ultralytics/models/sam/modules/tiny_encoder.py +979 -0
  163. ultralytics/models/sam/modules/transformer.py +344 -0
  164. ultralytics/models/sam/modules/utils.py +512 -0
  165. ultralytics/models/sam/predict.py +3940 -0
  166. ultralytics/models/sam/sam3/__init__.py +3 -0
  167. ultralytics/models/sam/sam3/decoder.py +546 -0
  168. ultralytics/models/sam/sam3/encoder.py +529 -0
  169. ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
  170. ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
  171. ultralytics/models/sam/sam3/model_misc.py +199 -0
  172. ultralytics/models/sam/sam3/necks.py +129 -0
  173. ultralytics/models/sam/sam3/sam3_image.py +339 -0
  174. ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
  175. ultralytics/models/sam/sam3/vitdet.py +547 -0
  176. ultralytics/models/sam/sam3/vl_combiner.py +160 -0
  177. ultralytics/models/utils/__init__.py +1 -0
  178. ultralytics/models/utils/loss.py +466 -0
  179. ultralytics/models/utils/ops.py +315 -0
  180. ultralytics/models/yolo/__init__.py +7 -0
  181. ultralytics/models/yolo/classify/__init__.py +7 -0
  182. ultralytics/models/yolo/classify/predict.py +90 -0
  183. ultralytics/models/yolo/classify/train.py +202 -0
  184. ultralytics/models/yolo/classify/val.py +216 -0
  185. ultralytics/models/yolo/detect/__init__.py +7 -0
  186. ultralytics/models/yolo/detect/predict.py +122 -0
  187. ultralytics/models/yolo/detect/train.py +227 -0
  188. ultralytics/models/yolo/detect/val.py +507 -0
  189. ultralytics/models/yolo/model.py +430 -0
  190. ultralytics/models/yolo/obb/__init__.py +7 -0
  191. ultralytics/models/yolo/obb/predict.py +56 -0
  192. ultralytics/models/yolo/obb/train.py +79 -0
  193. ultralytics/models/yolo/obb/val.py +302 -0
  194. ultralytics/models/yolo/pose/__init__.py +7 -0
  195. ultralytics/models/yolo/pose/predict.py +65 -0
  196. ultralytics/models/yolo/pose/train.py +110 -0
  197. ultralytics/models/yolo/pose/val.py +248 -0
  198. ultralytics/models/yolo/segment/__init__.py +7 -0
  199. ultralytics/models/yolo/segment/predict.py +109 -0
  200. ultralytics/models/yolo/segment/train.py +69 -0
  201. ultralytics/models/yolo/segment/val.py +307 -0
  202. ultralytics/models/yolo/world/__init__.py +5 -0
  203. ultralytics/models/yolo/world/train.py +173 -0
  204. ultralytics/models/yolo/world/train_world.py +178 -0
  205. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  206. ultralytics/models/yolo/yoloe/predict.py +162 -0
  207. ultralytics/models/yolo/yoloe/train.py +287 -0
  208. ultralytics/models/yolo/yoloe/train_seg.py +122 -0
  209. ultralytics/models/yolo/yoloe/val.py +206 -0
  210. ultralytics/nn/__init__.py +27 -0
  211. ultralytics/nn/autobackend.py +958 -0
  212. ultralytics/nn/modules/__init__.py +182 -0
  213. ultralytics/nn/modules/activation.py +54 -0
  214. ultralytics/nn/modules/block.py +1947 -0
  215. ultralytics/nn/modules/conv.py +669 -0
  216. ultralytics/nn/modules/head.py +1183 -0
  217. ultralytics/nn/modules/transformer.py +793 -0
  218. ultralytics/nn/modules/utils.py +159 -0
  219. ultralytics/nn/tasks.py +1768 -0
  220. ultralytics/nn/text_model.py +356 -0
  221. ultralytics/py.typed +1 -0
  222. ultralytics/solutions/__init__.py +41 -0
  223. ultralytics/solutions/ai_gym.py +108 -0
  224. ultralytics/solutions/analytics.py +264 -0
  225. ultralytics/solutions/config.py +107 -0
  226. ultralytics/solutions/distance_calculation.py +123 -0
  227. ultralytics/solutions/heatmap.py +125 -0
  228. ultralytics/solutions/instance_segmentation.py +86 -0
  229. ultralytics/solutions/object_blurrer.py +89 -0
  230. ultralytics/solutions/object_counter.py +190 -0
  231. ultralytics/solutions/object_cropper.py +87 -0
  232. ultralytics/solutions/parking_management.py +280 -0
  233. ultralytics/solutions/queue_management.py +93 -0
  234. ultralytics/solutions/region_counter.py +133 -0
  235. ultralytics/solutions/security_alarm.py +151 -0
  236. ultralytics/solutions/similarity_search.py +219 -0
  237. ultralytics/solutions/solutions.py +828 -0
  238. ultralytics/solutions/speed_estimation.py +114 -0
  239. ultralytics/solutions/streamlit_inference.py +260 -0
  240. ultralytics/solutions/templates/similarity-search.html +156 -0
  241. ultralytics/solutions/trackzone.py +88 -0
  242. ultralytics/solutions/vision_eye.py +67 -0
  243. ultralytics/trackers/__init__.py +7 -0
  244. ultralytics/trackers/basetrack.py +115 -0
  245. ultralytics/trackers/bot_sort.py +257 -0
  246. ultralytics/trackers/byte_tracker.py +469 -0
  247. ultralytics/trackers/track.py +116 -0
  248. ultralytics/trackers/utils/__init__.py +1 -0
  249. ultralytics/trackers/utils/gmc.py +339 -0
  250. ultralytics/trackers/utils/kalman_filter.py +482 -0
  251. ultralytics/trackers/utils/matching.py +154 -0
  252. ultralytics/utils/__init__.py +1450 -0
  253. ultralytics/utils/autobatch.py +118 -0
  254. ultralytics/utils/autodevice.py +205 -0
  255. ultralytics/utils/benchmarks.py +728 -0
  256. ultralytics/utils/callbacks/__init__.py +5 -0
  257. ultralytics/utils/callbacks/base.py +233 -0
  258. ultralytics/utils/callbacks/clearml.py +146 -0
  259. ultralytics/utils/callbacks/comet.py +625 -0
  260. ultralytics/utils/callbacks/dvc.py +197 -0
  261. ultralytics/utils/callbacks/hub.py +110 -0
  262. ultralytics/utils/callbacks/mlflow.py +134 -0
  263. ultralytics/utils/callbacks/neptune.py +126 -0
  264. ultralytics/utils/callbacks/platform.py +313 -0
  265. ultralytics/utils/callbacks/raytune.py +42 -0
  266. ultralytics/utils/callbacks/tensorboard.py +123 -0
  267. ultralytics/utils/callbacks/wb.py +188 -0
  268. ultralytics/utils/checks.py +1006 -0
  269. ultralytics/utils/cpu.py +85 -0
  270. ultralytics/utils/dist.py +123 -0
  271. ultralytics/utils/downloads.py +529 -0
  272. ultralytics/utils/errors.py +35 -0
  273. ultralytics/utils/events.py +113 -0
  274. ultralytics/utils/export/__init__.py +7 -0
  275. ultralytics/utils/export/engine.py +237 -0
  276. ultralytics/utils/export/imx.py +315 -0
  277. ultralytics/utils/export/tensorflow.py +231 -0
  278. ultralytics/utils/files.py +219 -0
  279. ultralytics/utils/git.py +137 -0
  280. ultralytics/utils/instance.py +484 -0
  281. ultralytics/utils/logger.py +501 -0
  282. ultralytics/utils/loss.py +849 -0
  283. ultralytics/utils/metrics.py +1563 -0
  284. ultralytics/utils/nms.py +337 -0
  285. ultralytics/utils/ops.py +664 -0
  286. ultralytics/utils/patches.py +201 -0
  287. ultralytics/utils/plotting.py +1045 -0
  288. ultralytics/utils/tal.py +403 -0
  289. ultralytics/utils/torch_utils.py +984 -0
  290. ultralytics/utils/tqdm.py +440 -0
  291. ultralytics/utils/triton.py +112 -0
  292. ultralytics/utils/tuner.py +160 -0
  293. ultralytics_opencv_headless-8.3.246.dist-info/METADATA +374 -0
  294. ultralytics_opencv_headless-8.3.246.dist-info/RECORD +298 -0
  295. ultralytics_opencv_headless-8.3.246.dist-info/WHEEL +5 -0
  296. ultralytics_opencv_headless-8.3.246.dist-info/entry_points.txt +3 -0
  297. ultralytics_opencv_headless-8.3.246.dist-info/licenses/LICENSE +661 -0
  298. ultralytics_opencv_headless-8.3.246.dist-info/top_level.txt +1 -0
@@ -0,0 +1,495 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ from __future__ import annotations
4
+
5
+ import torch
6
+ from torch import nn
7
+
8
+ from ultralytics.nn.modules import MLP, LayerNorm2d
9
+
10
+
11
+ class MaskDecoder(nn.Module):
12
+ """Decoder module for generating masks and their associated quality scores using a transformer architecture.
13
+
14
+ This class predicts masks given image and prompt embeddings, utilizing a transformer to process the inputs and
15
+ generate mask predictions along with their quality scores.
16
+
17
+ Attributes:
18
+ transformer_dim (int): Channel dimension for the transformer module.
19
+ transformer (nn.Module): Transformer module used for mask prediction.
20
+ num_multimask_outputs (int): Number of masks to predict for disambiguating masks.
21
+ iou_token (nn.Embedding): Embedding for the IoU token.
22
+ num_mask_tokens (int): Number of mask tokens.
23
+ mask_tokens (nn.Embedding): Embedding for the mask tokens.
24
+ output_upscaling (nn.Sequential): Neural network sequence for upscaling the output.
25
+ output_hypernetworks_mlps (nn.ModuleList): Hypernetwork MLPs for generating masks.
26
+ iou_prediction_head (nn.Module): MLP for predicting mask quality.
27
+
28
+ Methods:
29
+ forward: Predict masks given image and prompt embeddings.
30
+ predict_masks: Internal method for mask prediction.
31
+
32
+ Examples:
33
+ >>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module)
34
+ >>> masks, iou_pred = decoder(
35
+ ... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, multimask_output=True
36
+ ... )
37
+ >>> print(f"Predicted masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}")
38
+ """
39
+
40
+ def __init__(
41
+ self,
42
+ transformer_dim: int,
43
+ transformer: nn.Module,
44
+ num_multimask_outputs: int = 3,
45
+ activation: type[nn.Module] = nn.GELU,
46
+ iou_head_depth: int = 3,
47
+ iou_head_hidden_dim: int = 256,
48
+ ) -> None:
49
+ """Initialize the MaskDecoder module for generating masks and their associated quality scores.
50
+
51
+ Args:
52
+ transformer_dim (int): Channel dimension for the transformer module.
53
+ transformer (nn.Module): Transformer module used for mask prediction.
54
+ num_multimask_outputs (int): Number of masks to predict for disambiguating masks.
55
+ activation (Type[nn.Module]): Type of activation to use when upscaling masks.
56
+ iou_head_depth (int): Depth of the MLP used to predict mask quality.
57
+ iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality.
58
+ """
59
+ super().__init__()
60
+ self.transformer_dim = transformer_dim
61
+ self.transformer = transformer
62
+
63
+ self.num_multimask_outputs = num_multimask_outputs
64
+
65
+ self.iou_token = nn.Embedding(1, transformer_dim)
66
+ self.num_mask_tokens = num_multimask_outputs + 1
67
+ self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
68
+
69
+ self.output_upscaling = nn.Sequential(
70
+ nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
71
+ LayerNorm2d(transformer_dim // 4),
72
+ activation(),
73
+ nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
74
+ activation(),
75
+ )
76
+ self.output_hypernetworks_mlps = nn.ModuleList(
77
+ [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
78
+ )
79
+
80
+ self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
81
+
82
+ def forward(
83
+ self,
84
+ image_embeddings: torch.Tensor,
85
+ image_pe: torch.Tensor,
86
+ sparse_prompt_embeddings: torch.Tensor,
87
+ dense_prompt_embeddings: torch.Tensor,
88
+ multimask_output: bool,
89
+ ) -> tuple[torch.Tensor, torch.Tensor]:
90
+ """Predict masks given image and prompt embeddings.
91
+
92
+ Args:
93
+ image_embeddings (torch.Tensor): Embeddings from the image encoder.
94
+ image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings.
95
+ sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes.
96
+ dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs.
97
+ multimask_output (bool): Whether to return multiple masks or a single mask.
98
+
99
+ Returns:
100
+ masks (torch.Tensor): Batched predicted masks.
101
+ iou_pred (torch.Tensor): Batched predictions of mask quality.
102
+
103
+ Examples:
104
+ >>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module)
105
+ >>> image_emb = torch.rand(1, 256, 64, 64)
106
+ >>> image_pe = torch.rand(1, 256, 64, 64)
107
+ >>> sparse_emb = torch.rand(1, 2, 256)
108
+ >>> dense_emb = torch.rand(1, 256, 64, 64)
109
+ >>> masks, iou_pred = decoder(image_emb, image_pe, sparse_emb, dense_emb, multimask_output=True)
110
+ >>> print(f"Masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}")
111
+ """
112
+ masks, iou_pred = self.predict_masks(
113
+ image_embeddings=image_embeddings,
114
+ image_pe=image_pe,
115
+ sparse_prompt_embeddings=sparse_prompt_embeddings,
116
+ dense_prompt_embeddings=dense_prompt_embeddings,
117
+ )
118
+
119
+ # Select the correct mask or masks for output
120
+ mask_slice = slice(1, None) if multimask_output else slice(0, 1)
121
+ masks = masks[:, mask_slice, :, :]
122
+ iou_pred = iou_pred[:, mask_slice]
123
+
124
+ return masks, iou_pred
125
+
126
+ def predict_masks(
127
+ self,
128
+ image_embeddings: torch.Tensor,
129
+ image_pe: torch.Tensor,
130
+ sparse_prompt_embeddings: torch.Tensor,
131
+ dense_prompt_embeddings: torch.Tensor,
132
+ ) -> tuple[torch.Tensor, torch.Tensor]:
133
+ """Predict masks and quality scores using image and prompt embeddings via transformer architecture."""
134
+ # Concatenate output tokens
135
+ output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
136
+ output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1)
137
+ tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
138
+
139
+ # Expand per-image data in batch direction to be per-mask
140
+ src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
141
+ src = src + dense_prompt_embeddings
142
+ pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
143
+ b, c, h, w = src.shape
144
+
145
+ # Run the transformer
146
+ hs, src = self.transformer(src, pos_src, tokens)
147
+ iou_token_out = hs[:, 0, :]
148
+ mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
149
+
150
+ # Upscale mask embeddings and predict masks using the mask tokens
151
+ src = src.transpose(1, 2).view(b, c, h, w)
152
+ upscaled_embedding = self.output_upscaling(src)
153
+ hyper_in_list: list[torch.Tensor] = [
154
+ self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
155
+ ]
156
+ hyper_in = torch.stack(hyper_in_list, dim=1)
157
+ b, c, h, w = upscaled_embedding.shape
158
+ masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
159
+
160
+ # Generate mask quality predictions
161
+ iou_pred = self.iou_prediction_head(iou_token_out)
162
+
163
+ return masks, iou_pred
164
+
165
+
166
+ class SAM2MaskDecoder(nn.Module):
167
+ """Transformer-based decoder for predicting instance segmentation masks from image and prompt embeddings.
168
+
169
+ This class extends the functionality of the MaskDecoder, incorporating additional features such as high-resolution
170
+ feature processing, dynamic multimask output, and object score prediction.
171
+
172
+ Attributes:
173
+ transformer_dim (int): Channel dimension of the transformer.
174
+ transformer (nn.Module): Transformer used to predict masks.
175
+ num_multimask_outputs (int): Number of masks to predict when disambiguating masks.
176
+ iou_token (nn.Embedding): Embedding for IOU token.
177
+ num_mask_tokens (int): Total number of mask tokens.
178
+ mask_tokens (nn.Embedding): Embedding for mask tokens.
179
+ pred_obj_scores (bool): Whether to predict object scores.
180
+ obj_score_token (nn.Embedding): Embedding for object score token.
181
+ use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.
182
+ output_upscaling (nn.Sequential): Upscaling layers for output.
183
+ use_high_res_features (bool): Whether to use high-resolution features.
184
+ conv_s0 (nn.Conv2d): Convolutional layer for high-resolution features (s0).
185
+ conv_s1 (nn.Conv2d): Convolutional layer for high-resolution features (s1).
186
+ output_hypernetworks_mlps (nn.ModuleList): List of MLPs for output hypernetworks.
187
+ iou_prediction_head (MLP): MLP for IOU prediction.
188
+ pred_obj_score_head (nn.Linear | MLP): Linear layer or MLP for object score prediction.
189
+ dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.
190
+ dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.
191
+ dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability.
192
+
193
+ Methods:
194
+ forward: Predict masks given image and prompt embeddings.
195
+ predict_masks: Predict instance segmentation masks from image and prompt embeddings.
196
+ _get_stability_scores: Compute mask stability scores based on IoU between thresholds.
197
+ _dynamic_multimask_via_stability: Dynamically select the most stable mask output.
198
+
199
+ Examples:
200
+ >>> image_embeddings = torch.rand(1, 256, 64, 64)
201
+ >>> image_pe = torch.rand(1, 256, 64, 64)
202
+ >>> sparse_prompt_embeddings = torch.rand(1, 2, 256)
203
+ >>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)
204
+ >>> decoder = SAM2MaskDecoder(256, transformer)
205
+ >>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward(
206
+ ... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False
207
+ ... )
208
+ """
209
+
210
+ def __init__(
211
+ self,
212
+ transformer_dim: int,
213
+ transformer: nn.Module,
214
+ num_multimask_outputs: int = 3,
215
+ activation: type[nn.Module] = nn.GELU,
216
+ iou_head_depth: int = 3,
217
+ iou_head_hidden_dim: int = 256,
218
+ use_high_res_features: bool = False,
219
+ iou_prediction_use_sigmoid=False,
220
+ dynamic_multimask_via_stability=False,
221
+ dynamic_multimask_stability_delta=0.05,
222
+ dynamic_multimask_stability_thresh=0.98,
223
+ pred_obj_scores: bool = False,
224
+ pred_obj_scores_mlp: bool = False,
225
+ use_multimask_token_for_obj_ptr: bool = False,
226
+ ) -> None:
227
+ """Initialize the SAM2MaskDecoder module for predicting instance segmentation masks.
228
+
229
+ This decoder extends the functionality of MaskDecoder, incorporating additional features such as high-resolution
230
+ feature processing, dynamic multimask output, and object score prediction.
231
+
232
+ Args:
233
+ transformer_dim (int): Channel dimension of the transformer.
234
+ transformer (nn.Module): Transformer used to predict masks.
235
+ num_multimask_outputs (int): Number of masks to predict when disambiguating masks.
236
+ activation (Type[nn.Module]): Type of activation to use when upscaling masks.
237
+ iou_head_depth (int): Depth of the MLP used to predict mask quality.
238
+ iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality.
239
+ use_high_res_features (bool): Whether to use high-resolution features.
240
+ iou_prediction_use_sigmoid (bool): Whether to use sigmoid for IOU prediction.
241
+ dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.
242
+ dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.
243
+ dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability.
244
+ pred_obj_scores (bool): Whether to predict object scores.
245
+ pred_obj_scores_mlp (bool): Whether to use MLP for object score prediction.
246
+ use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.
247
+ """
248
+ super().__init__()
249
+ self.transformer_dim = transformer_dim
250
+ self.transformer = transformer
251
+
252
+ self.num_multimask_outputs = num_multimask_outputs
253
+
254
+ self.iou_token = nn.Embedding(1, transformer_dim)
255
+ self.num_mask_tokens = num_multimask_outputs + 1
256
+ self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
257
+
258
+ self.pred_obj_scores = pred_obj_scores
259
+ if self.pred_obj_scores:
260
+ self.obj_score_token = nn.Embedding(1, transformer_dim)
261
+ self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
262
+
263
+ self.output_upscaling = nn.Sequential(
264
+ nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
265
+ LayerNorm2d(transformer_dim // 4),
266
+ activation(),
267
+ nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
268
+ activation(),
269
+ )
270
+ self.use_high_res_features = use_high_res_features
271
+ if use_high_res_features:
272
+ self.conv_s0 = nn.Conv2d(transformer_dim, transformer_dim // 8, kernel_size=1, stride=1)
273
+ self.conv_s1 = nn.Conv2d(transformer_dim, transformer_dim // 4, kernel_size=1, stride=1)
274
+
275
+ self.output_hypernetworks_mlps = nn.ModuleList(
276
+ [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
277
+ )
278
+
279
+ self.iou_prediction_head = MLP(
280
+ transformer_dim,
281
+ iou_head_hidden_dim,
282
+ self.num_mask_tokens,
283
+ iou_head_depth,
284
+ sigmoid=iou_prediction_use_sigmoid,
285
+ )
286
+ if self.pred_obj_scores:
287
+ self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
288
+ if pred_obj_scores_mlp:
289
+ self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
290
+
291
+ # When outputting a single mask, optionally we can dynamically fall back to the best
292
+ # multimask output token if the single mask output token gives low stability scores.
293
+ self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
294
+ self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
295
+ self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
296
+
297
+ def forward(
298
+ self,
299
+ image_embeddings: torch.Tensor,
300
+ image_pe: torch.Tensor,
301
+ sparse_prompt_embeddings: torch.Tensor,
302
+ dense_prompt_embeddings: torch.Tensor,
303
+ multimask_output: bool,
304
+ repeat_image: bool,
305
+ high_res_features: list[torch.Tensor] | None = None,
306
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
307
+ """Predict masks given image and prompt embeddings.
308
+
309
+ Args:
310
+ image_embeddings (torch.Tensor): Embeddings from the image encoder with shape (B, C, H, W).
311
+ image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings (B, C, H, W).
312
+ sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes with shape (B, N, C).
313
+ dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs with shape (B, C, H, W).
314
+ multimask_output (bool): Whether to return multiple masks or a single mask.
315
+ repeat_image (bool): Flag to repeat the image embeddings.
316
+ high_res_features (list[torch.Tensor] | None, optional): Optional high-resolution features.
317
+
318
+ Returns:
319
+ masks (torch.Tensor): Batched predicted masks with shape (B, N, H, W).
320
+ iou_pred (torch.Tensor): Batched predictions of mask quality with shape (B, N).
321
+ sam_tokens_out (torch.Tensor): Batched SAM token for mask output with shape (B, N, C).
322
+ object_score_logits (torch.Tensor): Batched object score logits with shape (B, 1).
323
+
324
+ Examples:
325
+ >>> image_embeddings = torch.rand(1, 256, 64, 64)
326
+ >>> image_pe = torch.rand(1, 256, 64, 64)
327
+ >>> sparse_prompt_embeddings = torch.rand(1, 2, 256)
328
+ >>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)
329
+ >>> decoder = SAM2MaskDecoder(256, transformer)
330
+ >>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward(
331
+ ... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False
332
+ ... )
333
+ """
334
+ masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
335
+ image_embeddings=image_embeddings,
336
+ image_pe=image_pe,
337
+ sparse_prompt_embeddings=sparse_prompt_embeddings,
338
+ dense_prompt_embeddings=dense_prompt_embeddings,
339
+ repeat_image=repeat_image,
340
+ high_res_features=high_res_features,
341
+ )
342
+
343
+ # Select the correct mask or masks for output
344
+ if multimask_output:
345
+ masks = masks[:, 1:, :, :]
346
+ iou_pred = iou_pred[:, 1:]
347
+ elif self.dynamic_multimask_via_stability and not self.training:
348
+ masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
349
+ else:
350
+ masks = masks[:, 0:1, :, :]
351
+ iou_pred = iou_pred[:, 0:1]
352
+
353
+ if multimask_output and self.use_multimask_token_for_obj_ptr:
354
+ sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
355
+ else:
356
+ # Take the mask output token. Here we *always* use the token for single mask output.
357
+ # At test time, even if we track after 1-click (and using multimask_output=True),
358
+ # we still take the single mask token here. The rationale is that we always track
359
+ # after multiple clicks during training, so the past tokens seen during training
360
+ # are always the single mask token (and we'll let it be the object-memory token).
361
+ sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
362
+
363
+ return masks, iou_pred, sam_tokens_out, object_score_logits
364
+
365
+ def predict_masks(
366
+ self,
367
+ image_embeddings: torch.Tensor,
368
+ image_pe: torch.Tensor,
369
+ sparse_prompt_embeddings: torch.Tensor,
370
+ dense_prompt_embeddings: torch.Tensor,
371
+ repeat_image: bool,
372
+ high_res_features: list[torch.Tensor] | None = None,
373
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
374
+ """Predict instance segmentation masks from image and prompt embeddings using a transformer."""
375
+ # Concatenate output tokens
376
+ s = 0
377
+ if self.pred_obj_scores:
378
+ output_tokens = torch.cat(
379
+ [
380
+ self.obj_score_token.weight,
381
+ self.iou_token.weight,
382
+ self.mask_tokens.weight,
383
+ ],
384
+ dim=0,
385
+ )
386
+ s = 1
387
+ else:
388
+ output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
389
+ output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1)
390
+ tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
391
+
392
+ # Expand per-image data in batch direction to be per-mask
393
+ if repeat_image:
394
+ src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
395
+ else:
396
+ assert image_embeddings.shape[0] == tokens.shape[0]
397
+ src = image_embeddings
398
+ src = src + dense_prompt_embeddings
399
+ assert image_pe.shape[0] == 1, "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
400
+ pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
401
+ b, c, h, w = src.shape
402
+
403
+ # Run the transformer
404
+ hs, src = self.transformer(src, pos_src, tokens)
405
+ iou_token_out = hs[:, s, :]
406
+ mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
407
+
408
+ # Upscale mask embeddings and predict masks using the mask tokens
409
+ src = src.transpose(1, 2).view(b, c, h, w)
410
+ if not self.use_high_res_features or high_res_features is None:
411
+ upscaled_embedding = self.output_upscaling(src)
412
+ else:
413
+ dc1, ln1, act1, dc2, act2 = self.output_upscaling
414
+ feat_s0, feat_s1 = high_res_features
415
+ upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
416
+ upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
417
+
418
+ hyper_in_list: list[torch.Tensor] = [
419
+ self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
420
+ ]
421
+ hyper_in = torch.stack(hyper_in_list, dim=1)
422
+ b, c, h, w = upscaled_embedding.shape
423
+ masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
424
+
425
+ # Generate mask quality predictions
426
+ iou_pred = self.iou_prediction_head(iou_token_out)
427
+ if self.pred_obj_scores:
428
+ assert s == 1
429
+ object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
430
+ else:
431
+ # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
432
+ object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
433
+
434
+ return masks, iou_pred, mask_tokens_out, object_score_logits
435
+
436
+ def _get_stability_scores(self, mask_logits):
437
+ """Compute mask stability scores based on IoU between upper and lower thresholds."""
438
+ mask_logits = mask_logits.flatten(-2)
439
+ area_i = torch.sum(mask_logits > self.dynamic_multimask_stability_delta, dim=-1).float()
440
+ area_u = torch.sum(mask_logits > -self.dynamic_multimask_stability_delta, dim=-1).float()
441
+ return torch.where(area_u > 0, area_i / area_u, 1.0)
442
+
443
+ def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
444
+ """Dynamically select the most stable mask output based on stability scores and IoU predictions.
445
+
446
+ This method is used when outputting a single mask. If the stability score from the current single-mask output
447
+ (based on output token 0) falls below a threshold, it instead selects from multi-mask outputs (based on output
448
+ tokens 1-3) the mask with the highest predicted IoU score. This ensures a valid mask for both clicking and
449
+ tracking scenarios.
450
+
451
+ Args:
452
+ all_mask_logits (torch.Tensor): Logits for all predicted masks, shape (B, N, H, W) where B is batch size, N
453
+ is number of masks (typically 4), and H, W are mask dimensions.
454
+ all_iou_scores (torch.Tensor): Predicted IoU scores for all masks, shape (B, N).
455
+
456
+ Returns:
457
+ mask_logits_out (torch.Tensor): Selected mask logits, shape (B, 1, H, W).
458
+ iou_scores_out (torch.Tensor): Selected IoU scores, shape (B, 1).
459
+
460
+ Examples:
461
+ >>> decoder = SAM2MaskDecoder(...)
462
+ >>> all_mask_logits = torch.rand(2, 4, 256, 256) # 2 images, 4 masks each
463
+ >>> all_iou_scores = torch.rand(2, 4)
464
+ >>> mask_logits, iou_scores = decoder._dynamic_multimask_via_stability(all_mask_logits, all_iou_scores)
465
+ >>> print(mask_logits.shape, iou_scores.shape)
466
+ torch.Size([2, 1, 256, 256]) torch.Size([2, 1])
467
+ """
468
+ # The best mask from multimask output tokens (1~3)
469
+ multimask_logits = all_mask_logits[:, 1:, :, :]
470
+ multimask_iou_scores = all_iou_scores[:, 1:]
471
+ best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
472
+ batch_inds = torch.arange(multimask_iou_scores.shape[0], device=all_iou_scores.device)
473
+ best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
474
+ best_multimask_logits = best_multimask_logits.unsqueeze(1)
475
+ best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
476
+ best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
477
+
478
+ # The mask from singlemask output token 0 and its stability score
479
+ singlemask_logits = all_mask_logits[:, 0:1, :, :]
480
+ singlemask_iou_scores = all_iou_scores[:, 0:1]
481
+ stability_scores = self._get_stability_scores(singlemask_logits)
482
+ is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
483
+
484
+ # Dynamically fall back to best multimask output upon low stability scores.
485
+ mask_logits_out = torch.where(
486
+ is_stable[..., None, None].expand_as(singlemask_logits),
487
+ singlemask_logits,
488
+ best_multimask_logits,
489
+ )
490
+ iou_scores_out = torch.where(
491
+ is_stable.expand_as(singlemask_iou_scores),
492
+ singlemask_iou_scores,
493
+ best_multimask_iou_scores,
494
+ )
495
+ return mask_logits_out, iou_scores_out