ultralytics-opencv-headless 8.3.246__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +23 -0
- tests/conftest.py +59 -0
- tests/test_cli.py +131 -0
- tests/test_cuda.py +216 -0
- tests/test_engine.py +157 -0
- tests/test_exports.py +309 -0
- tests/test_integrations.py +151 -0
- tests/test_python.py +777 -0
- tests/test_solutions.py +371 -0
- ultralytics/__init__.py +48 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1026 -0
- ultralytics/cfg/datasets/Argoverse.yaml +78 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +32 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +447 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/VOC.yaml +102 -0
- ultralytics/cfg/datasets/VisDrone.yaml +87 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +22 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +64 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-grayscale.yaml +103 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +47 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +52 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +50 -0
- ultralytics/cfg/datasets/kitti.yaml +27 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +21 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +663 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +41 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +130 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +48 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +48 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +21 -0
- ultralytics/cfg/trackers/bytetrack.yaml +12 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2801 -0
- ultralytics/data/base.py +435 -0
- ultralytics/data/build.py +437 -0
- ultralytics/data/converter.py +855 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +704 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +138 -0
- ultralytics/data/split_dota.py +344 -0
- ultralytics/data/utils.py +798 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1578 -0
- ultralytics/engine/model.py +1124 -0
- ultralytics/engine/predictor.py +508 -0
- ultralytics/engine/results.py +1522 -0
- ultralytics/engine/trainer.py +974 -0
- ultralytics/engine/tuner.py +448 -0
- ultralytics/engine/validator.py +384 -0
- ultralytics/hub/__init__.py +166 -0
- ultralytics/hub/auth.py +151 -0
- ultralytics/hub/google/__init__.py +174 -0
- ultralytics/hub/session.py +422 -0
- ultralytics/hub/utils.py +162 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +79 -0
- ultralytics/models/fastsam/predict.py +169 -0
- ultralytics/models/fastsam/utils.py +23 -0
- ultralytics/models/fastsam/val.py +38 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +98 -0
- ultralytics/models/nas/predict.py +56 -0
- ultralytics/models/nas/val.py +38 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +88 -0
- ultralytics/models/rtdetr/train.py +89 -0
- ultralytics/models/rtdetr/val.py +216 -0
- ultralytics/models/sam/__init__.py +25 -0
- ultralytics/models/sam/amg.py +275 -0
- ultralytics/models/sam/build.py +365 -0
- ultralytics/models/sam/build_sam3.py +377 -0
- ultralytics/models/sam/model.py +169 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1067 -0
- ultralytics/models/sam/modules/decoders.py +495 -0
- ultralytics/models/sam/modules/encoders.py +794 -0
- ultralytics/models/sam/modules/memory_attention.py +298 -0
- ultralytics/models/sam/modules/sam.py +1160 -0
- ultralytics/models/sam/modules/tiny_encoder.py +979 -0
- ultralytics/models/sam/modules/transformer.py +344 -0
- ultralytics/models/sam/modules/utils.py +512 -0
- ultralytics/models/sam/predict.py +3940 -0
- ultralytics/models/sam/sam3/__init__.py +3 -0
- ultralytics/models/sam/sam3/decoder.py +546 -0
- ultralytics/models/sam/sam3/encoder.py +529 -0
- ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
- ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
- ultralytics/models/sam/sam3/model_misc.py +199 -0
- ultralytics/models/sam/sam3/necks.py +129 -0
- ultralytics/models/sam/sam3/sam3_image.py +339 -0
- ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
- ultralytics/models/sam/sam3/vitdet.py +547 -0
- ultralytics/models/sam/sam3/vl_combiner.py +160 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +466 -0
- ultralytics/models/utils/ops.py +315 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +90 -0
- ultralytics/models/yolo/classify/train.py +202 -0
- ultralytics/models/yolo/classify/val.py +216 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +122 -0
- ultralytics/models/yolo/detect/train.py +227 -0
- ultralytics/models/yolo/detect/val.py +507 -0
- ultralytics/models/yolo/model.py +430 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +56 -0
- ultralytics/models/yolo/obb/train.py +79 -0
- ultralytics/models/yolo/obb/val.py +302 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +65 -0
- ultralytics/models/yolo/pose/train.py +110 -0
- ultralytics/models/yolo/pose/val.py +248 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +109 -0
- ultralytics/models/yolo/segment/train.py +69 -0
- ultralytics/models/yolo/segment/val.py +307 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +173 -0
- ultralytics/models/yolo/world/train_world.py +178 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +162 -0
- ultralytics/models/yolo/yoloe/train.py +287 -0
- ultralytics/models/yolo/yoloe/train_seg.py +122 -0
- ultralytics/models/yolo/yoloe/val.py +206 -0
- ultralytics/nn/__init__.py +27 -0
- ultralytics/nn/autobackend.py +958 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +54 -0
- ultralytics/nn/modules/block.py +1947 -0
- ultralytics/nn/modules/conv.py +669 -0
- ultralytics/nn/modules/head.py +1183 -0
- ultralytics/nn/modules/transformer.py +793 -0
- ultralytics/nn/modules/utils.py +159 -0
- ultralytics/nn/tasks.py +1768 -0
- ultralytics/nn/text_model.py +356 -0
- ultralytics/py.typed +1 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +108 -0
- ultralytics/solutions/analytics.py +264 -0
- ultralytics/solutions/config.py +107 -0
- ultralytics/solutions/distance_calculation.py +123 -0
- ultralytics/solutions/heatmap.py +125 -0
- ultralytics/solutions/instance_segmentation.py +86 -0
- ultralytics/solutions/object_blurrer.py +89 -0
- ultralytics/solutions/object_counter.py +190 -0
- ultralytics/solutions/object_cropper.py +87 -0
- ultralytics/solutions/parking_management.py +280 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +133 -0
- ultralytics/solutions/security_alarm.py +151 -0
- ultralytics/solutions/similarity_search.py +219 -0
- ultralytics/solutions/solutions.py +828 -0
- ultralytics/solutions/speed_estimation.py +114 -0
- ultralytics/solutions/streamlit_inference.py +260 -0
- ultralytics/solutions/templates/similarity-search.html +156 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +67 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +115 -0
- ultralytics/trackers/bot_sort.py +257 -0
- ultralytics/trackers/byte_tracker.py +469 -0
- ultralytics/trackers/track.py +116 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +339 -0
- ultralytics/trackers/utils/kalman_filter.py +482 -0
- ultralytics/trackers/utils/matching.py +154 -0
- ultralytics/utils/__init__.py +1450 -0
- ultralytics/utils/autobatch.py +118 -0
- ultralytics/utils/autodevice.py +205 -0
- ultralytics/utils/benchmarks.py +728 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +233 -0
- ultralytics/utils/callbacks/clearml.py +146 -0
- ultralytics/utils/callbacks/comet.py +625 -0
- ultralytics/utils/callbacks/dvc.py +197 -0
- ultralytics/utils/callbacks/hub.py +110 -0
- ultralytics/utils/callbacks/mlflow.py +134 -0
- ultralytics/utils/callbacks/neptune.py +126 -0
- ultralytics/utils/callbacks/platform.py +313 -0
- ultralytics/utils/callbacks/raytune.py +42 -0
- ultralytics/utils/callbacks/tensorboard.py +123 -0
- ultralytics/utils/callbacks/wb.py +188 -0
- ultralytics/utils/checks.py +1006 -0
- ultralytics/utils/cpu.py +85 -0
- ultralytics/utils/dist.py +123 -0
- ultralytics/utils/downloads.py +529 -0
- ultralytics/utils/errors.py +35 -0
- ultralytics/utils/events.py +113 -0
- ultralytics/utils/export/__init__.py +7 -0
- ultralytics/utils/export/engine.py +237 -0
- ultralytics/utils/export/imx.py +315 -0
- ultralytics/utils/export/tensorflow.py +231 -0
- ultralytics/utils/files.py +219 -0
- ultralytics/utils/git.py +137 -0
- ultralytics/utils/instance.py +484 -0
- ultralytics/utils/logger.py +501 -0
- ultralytics/utils/loss.py +849 -0
- ultralytics/utils/metrics.py +1563 -0
- ultralytics/utils/nms.py +337 -0
- ultralytics/utils/ops.py +664 -0
- ultralytics/utils/patches.py +201 -0
- ultralytics/utils/plotting.py +1045 -0
- ultralytics/utils/tal.py +403 -0
- ultralytics/utils/torch_utils.py +984 -0
- ultralytics/utils/tqdm.py +440 -0
- ultralytics/utils/triton.py +112 -0
- ultralytics/utils/tuner.py +160 -0
- ultralytics_opencv_headless-8.3.246.dist-info/METADATA +374 -0
- ultralytics_opencv_headless-8.3.246.dist-info/RECORD +298 -0
- ultralytics_opencv_headless-8.3.246.dist-info/WHEEL +5 -0
- ultralytics_opencv_headless-8.3.246.dist-info/entry_points.txt +3 -0
- ultralytics_opencv_headless-8.3.246.dist-info/licenses/LICENSE +661 -0
- ultralytics_opencv_headless-8.3.246.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,302 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
from pathlib import Path
|
|
6
|
+
from typing import Any
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import torch
|
|
10
|
+
|
|
11
|
+
from ultralytics.models.yolo.detect import DetectionValidator
|
|
12
|
+
from ultralytics.utils import LOGGER, ops
|
|
13
|
+
from ultralytics.utils.metrics import OBBMetrics, batch_probiou
|
|
14
|
+
from ultralytics.utils.nms import TorchNMS
|
|
15
|
+
from ultralytics.utils.plotting import plot_images
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class OBBValidator(DetectionValidator):
|
|
19
|
+
"""A class extending the DetectionValidator class for validation based on an Oriented Bounding Box (OBB) model.
|
|
20
|
+
|
|
21
|
+
This validator specializes in evaluating models that predict rotated bounding boxes, commonly used for aerial and
|
|
22
|
+
satellite imagery where objects can appear at various orientations.
|
|
23
|
+
|
|
24
|
+
Attributes:
|
|
25
|
+
args (dict): Configuration arguments for the validator.
|
|
26
|
+
metrics (OBBMetrics): Metrics object for evaluating OBB model performance.
|
|
27
|
+
is_dota (bool): Flag indicating whether the validation dataset is in DOTA format.
|
|
28
|
+
|
|
29
|
+
Methods:
|
|
30
|
+
init_metrics: Initialize evaluation metrics for YOLO.
|
|
31
|
+
_process_batch: Process batch of detections and ground truth boxes to compute IoU matrix.
|
|
32
|
+
_prepare_batch: Prepare batch data for OBB validation.
|
|
33
|
+
_prepare_pred: Prepare predictions with scaled and padded bounding boxes.
|
|
34
|
+
plot_predictions: Plot predicted bounding boxes on input images.
|
|
35
|
+
pred_to_json: Serialize YOLO predictions to COCO json format.
|
|
36
|
+
save_one_txt: Save YOLO detections to a txt file in normalized coordinates.
|
|
37
|
+
eval_json: Evaluate YOLO output in JSON format and return performance statistics.
|
|
38
|
+
|
|
39
|
+
Examples:
|
|
40
|
+
>>> from ultralytics.models.yolo.obb import OBBValidator
|
|
41
|
+
>>> args = dict(model="yolo11n-obb.pt", data="dota8.yaml")
|
|
42
|
+
>>> validator = OBBValidator(args=args)
|
|
43
|
+
>>> validator(model=args["model"])
|
|
44
|
+
"""
|
|
45
|
+
|
|
46
|
+
def __init__(self, dataloader=None, save_dir=None, args=None, _callbacks=None) -> None:
|
|
47
|
+
"""Initialize OBBValidator and set task to 'obb', metrics to OBBMetrics.
|
|
48
|
+
|
|
49
|
+
This constructor initializes an OBBValidator instance for validating Oriented Bounding Box (OBB) models. It
|
|
50
|
+
extends the DetectionValidator class and configures it specifically for the OBB task.
|
|
51
|
+
|
|
52
|
+
Args:
|
|
53
|
+
dataloader (torch.utils.data.DataLoader, optional): DataLoader to be used for validation.
|
|
54
|
+
save_dir (str | Path, optional): Directory to save results.
|
|
55
|
+
args (dict | SimpleNamespace, optional): Arguments containing validation parameters.
|
|
56
|
+
_callbacks (list, optional): List of callback functions to be called during validation.
|
|
57
|
+
"""
|
|
58
|
+
super().__init__(dataloader, save_dir, args, _callbacks)
|
|
59
|
+
self.args.task = "obb"
|
|
60
|
+
self.metrics = OBBMetrics()
|
|
61
|
+
|
|
62
|
+
def init_metrics(self, model: torch.nn.Module) -> None:
|
|
63
|
+
"""Initialize evaluation metrics for YOLO obb validation.
|
|
64
|
+
|
|
65
|
+
Args:
|
|
66
|
+
model (torch.nn.Module): Model to validate.
|
|
67
|
+
"""
|
|
68
|
+
super().init_metrics(model)
|
|
69
|
+
val = self.data.get(self.args.split, "") # validation path
|
|
70
|
+
self.is_dota = isinstance(val, str) and "DOTA" in val # check if dataset is DOTA format
|
|
71
|
+
self.confusion_matrix.task = "obb" # set confusion matrix task to 'obb'
|
|
72
|
+
|
|
73
|
+
def _process_batch(self, preds: dict[str, torch.Tensor], batch: dict[str, torch.Tensor]) -> dict[str, np.ndarray]:
|
|
74
|
+
"""Compute the correct prediction matrix for a batch of detections and ground truth bounding boxes.
|
|
75
|
+
|
|
76
|
+
Args:
|
|
77
|
+
preds (dict[str, torch.Tensor]): Prediction dictionary containing 'cls' and 'bboxes' keys with detected
|
|
78
|
+
class labels and bounding boxes.
|
|
79
|
+
batch (dict[str, torch.Tensor]): Batch dictionary containing 'cls' and 'bboxes' keys with ground truth class
|
|
80
|
+
labels and bounding boxes.
|
|
81
|
+
|
|
82
|
+
Returns:
|
|
83
|
+
(dict[str, np.ndarray]): Dictionary containing 'tp' key with the correct prediction matrix as a numpy array
|
|
84
|
+
with shape (N, 10), which includes 10 IoU levels for each detection, indicating the accuracy of
|
|
85
|
+
predictions compared to the ground truth.
|
|
86
|
+
|
|
87
|
+
Examples:
|
|
88
|
+
>>> detections = torch.rand(100, 7) # 100 sample detections
|
|
89
|
+
>>> gt_bboxes = torch.rand(50, 5) # 50 sample ground truth boxes
|
|
90
|
+
>>> gt_cls = torch.randint(0, 5, (50,)) # 50 ground truth class labels
|
|
91
|
+
>>> correct_matrix = validator._process_batch(detections, gt_bboxes, gt_cls)
|
|
92
|
+
"""
|
|
93
|
+
if batch["cls"].shape[0] == 0 or preds["cls"].shape[0] == 0:
|
|
94
|
+
return {"tp": np.zeros((preds["cls"].shape[0], self.niou), dtype=bool)}
|
|
95
|
+
iou = batch_probiou(batch["bboxes"], preds["bboxes"])
|
|
96
|
+
return {"tp": self.match_predictions(preds["cls"], batch["cls"], iou).cpu().numpy()}
|
|
97
|
+
|
|
98
|
+
def postprocess(self, preds: torch.Tensor) -> list[dict[str, torch.Tensor]]:
|
|
99
|
+
"""Postprocess OBB predictions.
|
|
100
|
+
|
|
101
|
+
Args:
|
|
102
|
+
preds (torch.Tensor): Raw predictions from the model.
|
|
103
|
+
|
|
104
|
+
Returns:
|
|
105
|
+
(list[dict[str, torch.Tensor]]): Processed predictions with angle information concatenated to bboxes.
|
|
106
|
+
"""
|
|
107
|
+
preds = super().postprocess(preds)
|
|
108
|
+
for pred in preds:
|
|
109
|
+
pred["bboxes"] = torch.cat([pred["bboxes"], pred.pop("extra")], dim=-1) # concatenate angle
|
|
110
|
+
return preds
|
|
111
|
+
|
|
112
|
+
def _prepare_batch(self, si: int, batch: dict[str, Any]) -> dict[str, Any]:
|
|
113
|
+
"""Prepare batch data for OBB validation with proper scaling and formatting.
|
|
114
|
+
|
|
115
|
+
Args:
|
|
116
|
+
si (int): Batch index to process.
|
|
117
|
+
batch (dict[str, Any]): Dictionary containing batch data with keys:
|
|
118
|
+
- batch_idx: Tensor of batch indices
|
|
119
|
+
- cls: Tensor of class labels
|
|
120
|
+
- bboxes: Tensor of bounding boxes
|
|
121
|
+
- ori_shape: Original image shapes
|
|
122
|
+
- img: Batch of images
|
|
123
|
+
- ratio_pad: Ratio and padding information
|
|
124
|
+
|
|
125
|
+
Returns:
|
|
126
|
+
(dict[str, Any]): Prepared batch data with scaled bounding boxes and metadata.
|
|
127
|
+
"""
|
|
128
|
+
idx = batch["batch_idx"] == si
|
|
129
|
+
cls = batch["cls"][idx].squeeze(-1)
|
|
130
|
+
bbox = batch["bboxes"][idx]
|
|
131
|
+
ori_shape = batch["ori_shape"][si]
|
|
132
|
+
imgsz = batch["img"].shape[2:]
|
|
133
|
+
ratio_pad = batch["ratio_pad"][si]
|
|
134
|
+
if cls.shape[0]:
|
|
135
|
+
bbox[..., :4].mul_(torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]]) # target boxes
|
|
136
|
+
return {
|
|
137
|
+
"cls": cls,
|
|
138
|
+
"bboxes": bbox,
|
|
139
|
+
"ori_shape": ori_shape,
|
|
140
|
+
"imgsz": imgsz,
|
|
141
|
+
"ratio_pad": ratio_pad,
|
|
142
|
+
"im_file": batch["im_file"][si],
|
|
143
|
+
}
|
|
144
|
+
|
|
145
|
+
def plot_predictions(self, batch: dict[str, Any], preds: list[dict[str, torch.Tensor]], ni: int) -> None:
|
|
146
|
+
"""Plot predicted bounding boxes on input images and save the result.
|
|
147
|
+
|
|
148
|
+
Args:
|
|
149
|
+
batch (dict[str, Any]): Batch data containing images, file paths, and other metadata.
|
|
150
|
+
preds (list[dict[str, torch.Tensor]]): List of prediction dictionaries for each image in the batch.
|
|
151
|
+
ni (int): Batch index used for naming the output file.
|
|
152
|
+
|
|
153
|
+
Examples:
|
|
154
|
+
>>> validator = OBBValidator()
|
|
155
|
+
>>> batch = {"img": images, "im_file": paths}
|
|
156
|
+
>>> preds = [{"bboxes": torch.rand(10, 5), "cls": torch.zeros(10), "conf": torch.rand(10)}]
|
|
157
|
+
>>> validator.plot_predictions(batch, preds, 0)
|
|
158
|
+
"""
|
|
159
|
+
if not preds:
|
|
160
|
+
return
|
|
161
|
+
for i, pred in enumerate(preds):
|
|
162
|
+
pred["batch_idx"] = torch.ones_like(pred["conf"]) * i
|
|
163
|
+
keys = preds[0].keys()
|
|
164
|
+
batched_preds = {k: torch.cat([x[k] for x in preds], dim=0) for k in keys}
|
|
165
|
+
plot_images(
|
|
166
|
+
images=batch["img"],
|
|
167
|
+
labels=batched_preds,
|
|
168
|
+
paths=batch["im_file"],
|
|
169
|
+
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
|
|
170
|
+
names=self.names,
|
|
171
|
+
on_plot=self.on_plot,
|
|
172
|
+
)
|
|
173
|
+
|
|
174
|
+
def pred_to_json(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> None:
|
|
175
|
+
"""Convert YOLO predictions to COCO JSON format with rotated bounding box information.
|
|
176
|
+
|
|
177
|
+
Args:
|
|
178
|
+
predn (dict[str, torch.Tensor]): Prediction dictionary containing 'bboxes', 'conf', and 'cls' keys with
|
|
179
|
+
bounding box coordinates, confidence scores, and class predictions.
|
|
180
|
+
pbatch (dict[str, Any]): Batch dictionary containing 'imgsz', 'ori_shape', 'ratio_pad', and 'im_file'.
|
|
181
|
+
|
|
182
|
+
Notes:
|
|
183
|
+
This method processes rotated bounding box predictions and converts them to both rbox format
|
|
184
|
+
(x, y, w, h, angle) and polygon format (x1, y1, x2, y2, x3, y3, x4, y4) before adding them
|
|
185
|
+
to the JSON dictionary.
|
|
186
|
+
"""
|
|
187
|
+
path = Path(pbatch["im_file"])
|
|
188
|
+
stem = path.stem
|
|
189
|
+
image_id = int(stem) if stem.isnumeric() else stem
|
|
190
|
+
rbox = predn["bboxes"]
|
|
191
|
+
poly = ops.xywhr2xyxyxyxy(rbox).view(-1, 8)
|
|
192
|
+
for r, b, s, c in zip(rbox.tolist(), poly.tolist(), predn["conf"].tolist(), predn["cls"].tolist()):
|
|
193
|
+
self.jdict.append(
|
|
194
|
+
{
|
|
195
|
+
"image_id": image_id,
|
|
196
|
+
"file_name": path.name,
|
|
197
|
+
"category_id": self.class_map[int(c)],
|
|
198
|
+
"score": round(s, 5),
|
|
199
|
+
"rbox": [round(x, 3) for x in r],
|
|
200
|
+
"poly": [round(x, 3) for x in b],
|
|
201
|
+
}
|
|
202
|
+
)
|
|
203
|
+
|
|
204
|
+
def save_one_txt(self, predn: dict[str, torch.Tensor], save_conf: bool, shape: tuple[int, int], file: Path) -> None:
|
|
205
|
+
"""Save YOLO OBB detections to a text file in normalized coordinates.
|
|
206
|
+
|
|
207
|
+
Args:
|
|
208
|
+
predn (torch.Tensor): Predicted detections with shape (N, 7) containing bounding boxes, confidence scores,
|
|
209
|
+
class predictions, and angles in format (x, y, w, h, conf, cls, angle).
|
|
210
|
+
save_conf (bool): Whether to save confidence scores in the text file.
|
|
211
|
+
shape (tuple[int, int]): Original image shape in format (height, width).
|
|
212
|
+
file (Path): Output file path to save detections.
|
|
213
|
+
|
|
214
|
+
Examples:
|
|
215
|
+
>>> validator = OBBValidator()
|
|
216
|
+
>>> predn = torch.tensor([[100, 100, 50, 30, 0.9, 0, 45]]) # One detection: x,y,w,h,conf,cls,angle
|
|
217
|
+
>>> validator.save_one_txt(predn, True, (640, 480), "detection.txt")
|
|
218
|
+
"""
|
|
219
|
+
import numpy as np
|
|
220
|
+
|
|
221
|
+
from ultralytics.engine.results import Results
|
|
222
|
+
|
|
223
|
+
Results(
|
|
224
|
+
np.zeros((shape[0], shape[1]), dtype=np.uint8),
|
|
225
|
+
path=None,
|
|
226
|
+
names=self.names,
|
|
227
|
+
obb=torch.cat([predn["bboxes"], predn["conf"].unsqueeze(-1), predn["cls"].unsqueeze(-1)], dim=1),
|
|
228
|
+
).save_txt(file, save_conf=save_conf)
|
|
229
|
+
|
|
230
|
+
def scale_preds(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> dict[str, torch.Tensor]:
|
|
231
|
+
"""Scales predictions to the original image size."""
|
|
232
|
+
return {
|
|
233
|
+
**predn,
|
|
234
|
+
"bboxes": ops.scale_boxes(
|
|
235
|
+
pbatch["imgsz"], predn["bboxes"].clone(), pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"], xywh=True
|
|
236
|
+
),
|
|
237
|
+
}
|
|
238
|
+
|
|
239
|
+
def eval_json(self, stats: dict[str, Any]) -> dict[str, Any]:
|
|
240
|
+
"""Evaluate YOLO output in JSON format and save predictions in DOTA format.
|
|
241
|
+
|
|
242
|
+
Args:
|
|
243
|
+
stats (dict[str, Any]): Performance statistics dictionary.
|
|
244
|
+
|
|
245
|
+
Returns:
|
|
246
|
+
(dict[str, Any]): Updated performance statistics.
|
|
247
|
+
"""
|
|
248
|
+
if self.args.save_json and self.is_dota and len(self.jdict):
|
|
249
|
+
import json
|
|
250
|
+
import re
|
|
251
|
+
from collections import defaultdict
|
|
252
|
+
|
|
253
|
+
pred_json = self.save_dir / "predictions.json" # predictions
|
|
254
|
+
pred_txt = self.save_dir / "predictions_txt" # predictions
|
|
255
|
+
pred_txt.mkdir(parents=True, exist_ok=True)
|
|
256
|
+
data = json.load(open(pred_json))
|
|
257
|
+
# Save split results
|
|
258
|
+
LOGGER.info(f"Saving predictions with DOTA format to {pred_txt}...")
|
|
259
|
+
for d in data:
|
|
260
|
+
image_id = d["image_id"]
|
|
261
|
+
score = d["score"]
|
|
262
|
+
classname = self.names[d["category_id"] - 1].replace(" ", "-")
|
|
263
|
+
p = d["poly"]
|
|
264
|
+
|
|
265
|
+
with open(f"{pred_txt / f'Task1_{classname}'}.txt", "a", encoding="utf-8") as f:
|
|
266
|
+
f.writelines(f"{image_id} {score} {p[0]} {p[1]} {p[2]} {p[3]} {p[4]} {p[5]} {p[6]} {p[7]}\n")
|
|
267
|
+
# Save merged results, this could result slightly lower map than using official merging script,
|
|
268
|
+
# because of the probiou calculation.
|
|
269
|
+
pred_merged_txt = self.save_dir / "predictions_merged_txt" # predictions
|
|
270
|
+
pred_merged_txt.mkdir(parents=True, exist_ok=True)
|
|
271
|
+
merged_results = defaultdict(list)
|
|
272
|
+
LOGGER.info(f"Saving merged predictions with DOTA format to {pred_merged_txt}...")
|
|
273
|
+
for d in data:
|
|
274
|
+
image_id = d["image_id"].split("__", 1)[0]
|
|
275
|
+
pattern = re.compile(r"\d+___\d+")
|
|
276
|
+
x, y = (int(c) for c in re.findall(pattern, d["image_id"])[0].split("___"))
|
|
277
|
+
bbox, score, cls = d["rbox"], d["score"], d["category_id"] - 1
|
|
278
|
+
bbox[0] += x
|
|
279
|
+
bbox[1] += y
|
|
280
|
+
bbox.extend([score, cls])
|
|
281
|
+
merged_results[image_id].append(bbox)
|
|
282
|
+
for image_id, bbox in merged_results.items():
|
|
283
|
+
bbox = torch.tensor(bbox)
|
|
284
|
+
max_wh = torch.max(bbox[:, :2]).item() * 2
|
|
285
|
+
c = bbox[:, 6:7] * max_wh # classes
|
|
286
|
+
scores = bbox[:, 5] # scores
|
|
287
|
+
b = bbox[:, :5].clone()
|
|
288
|
+
b[:, :2] += c
|
|
289
|
+
# 0.3 could get results close to the ones from official merging script, even slightly better.
|
|
290
|
+
i = TorchNMS.fast_nms(b, scores, 0.3, iou_func=batch_probiou)
|
|
291
|
+
bbox = bbox[i]
|
|
292
|
+
|
|
293
|
+
b = ops.xywhr2xyxyxyxy(bbox[:, :5]).view(-1, 8)
|
|
294
|
+
for x in torch.cat([b, bbox[:, 5:7]], dim=-1).tolist():
|
|
295
|
+
classname = self.names[int(x[-1])].replace(" ", "-")
|
|
296
|
+
p = [round(i, 3) for i in x[:-2]] # poly
|
|
297
|
+
score = round(x[-2], 3)
|
|
298
|
+
|
|
299
|
+
with open(f"{pred_merged_txt / f'Task1_{classname}'}.txt", "a", encoding="utf-8") as f:
|
|
300
|
+
f.writelines(f"{image_id} {score} {p[0]} {p[1]} {p[2]} {p[3]} {p[4]} {p[5]} {p[6]} {p[7]}\n")
|
|
301
|
+
|
|
302
|
+
return stats
|
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
from ultralytics.models.yolo.detect.predict import DetectionPredictor
|
|
4
|
+
from ultralytics.utils import DEFAULT_CFG, ops
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class PosePredictor(DetectionPredictor):
|
|
8
|
+
"""A class extending the DetectionPredictor class for prediction based on a pose model.
|
|
9
|
+
|
|
10
|
+
This class specializes in pose estimation, handling keypoints detection alongside standard object detection
|
|
11
|
+
capabilities inherited from DetectionPredictor.
|
|
12
|
+
|
|
13
|
+
Attributes:
|
|
14
|
+
args (namespace): Configuration arguments for the predictor.
|
|
15
|
+
model (torch.nn.Module): The loaded YOLO pose model with keypoint detection capabilities.
|
|
16
|
+
|
|
17
|
+
Methods:
|
|
18
|
+
construct_result: Construct the result object from the prediction, including keypoints.
|
|
19
|
+
|
|
20
|
+
Examples:
|
|
21
|
+
>>> from ultralytics.utils import ASSETS
|
|
22
|
+
>>> from ultralytics.models.yolo.pose import PosePredictor
|
|
23
|
+
>>> args = dict(model="yolo11n-pose.pt", source=ASSETS)
|
|
24
|
+
>>> predictor = PosePredictor(overrides=args)
|
|
25
|
+
>>> predictor.predict_cli()
|
|
26
|
+
"""
|
|
27
|
+
|
|
28
|
+
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|
29
|
+
"""Initialize PosePredictor for pose estimation tasks.
|
|
30
|
+
|
|
31
|
+
Sets up a PosePredictor instance, configuring it for pose detection tasks and handling device-specific warnings
|
|
32
|
+
for Apple MPS.
|
|
33
|
+
|
|
34
|
+
Args:
|
|
35
|
+
cfg (Any): Configuration for the predictor.
|
|
36
|
+
overrides (dict, optional): Configuration overrides that take precedence over cfg.
|
|
37
|
+
_callbacks (list, optional): List of callback functions to be invoked during prediction.
|
|
38
|
+
"""
|
|
39
|
+
super().__init__(cfg, overrides, _callbacks)
|
|
40
|
+
self.args.task = "pose"
|
|
41
|
+
|
|
42
|
+
def construct_result(self, pred, img, orig_img, img_path):
|
|
43
|
+
"""Construct the result object from the prediction, including keypoints.
|
|
44
|
+
|
|
45
|
+
Extends the parent class implementation by extracting keypoint data from predictions and adding them to the
|
|
46
|
+
result object.
|
|
47
|
+
|
|
48
|
+
Args:
|
|
49
|
+
pred (torch.Tensor): The predicted bounding boxes, scores, and keypoints with shape (N, 6+K*D) where N is
|
|
50
|
+
the number of detections, K is the number of keypoints, and D is the keypoint dimension.
|
|
51
|
+
img (torch.Tensor): The processed input image tensor with shape (B, C, H, W).
|
|
52
|
+
orig_img (np.ndarray): The original unprocessed image as a numpy array.
|
|
53
|
+
img_path (str): The path to the original image file.
|
|
54
|
+
|
|
55
|
+
Returns:
|
|
56
|
+
(Results): The result object containing the original image, image path, class names, bounding boxes, and
|
|
57
|
+
keypoints.
|
|
58
|
+
"""
|
|
59
|
+
result = super().construct_result(pred, img, orig_img, img_path)
|
|
60
|
+
# Extract keypoints from prediction and reshape according to model's keypoint shape
|
|
61
|
+
pred_kpts = pred[:, 6:].view(pred.shape[0], *self.model.kpt_shape)
|
|
62
|
+
# Scale keypoints coordinates to match the original image dimensions
|
|
63
|
+
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape)
|
|
64
|
+
result.update(keypoints=pred_kpts)
|
|
65
|
+
return result
|
|
@@ -0,0 +1,110 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
from copy import copy
|
|
6
|
+
from pathlib import Path
|
|
7
|
+
from typing import Any
|
|
8
|
+
|
|
9
|
+
from ultralytics.models import yolo
|
|
10
|
+
from ultralytics.nn.tasks import PoseModel
|
|
11
|
+
from ultralytics.utils import DEFAULT_CFG
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class PoseTrainer(yolo.detect.DetectionTrainer):
|
|
15
|
+
"""A class extending the DetectionTrainer class for training YOLO pose estimation models.
|
|
16
|
+
|
|
17
|
+
This trainer specializes in handling pose estimation tasks, managing model training, validation, and visualization
|
|
18
|
+
of pose keypoints alongside bounding boxes.
|
|
19
|
+
|
|
20
|
+
Attributes:
|
|
21
|
+
args (dict): Configuration arguments for training.
|
|
22
|
+
model (PoseModel): The pose estimation model being trained.
|
|
23
|
+
data (dict): Dataset configuration including keypoint shape information.
|
|
24
|
+
loss_names (tuple): Names of the loss components used in training.
|
|
25
|
+
|
|
26
|
+
Methods:
|
|
27
|
+
get_model: Retrieve a pose estimation model with specified configuration.
|
|
28
|
+
set_model_attributes: Set keypoints shape attribute on the model.
|
|
29
|
+
get_validator: Create a validator instance for model evaluation.
|
|
30
|
+
plot_training_samples: Visualize training samples with keypoints.
|
|
31
|
+
get_dataset: Retrieve the dataset and ensure it contains required kpt_shape key.
|
|
32
|
+
|
|
33
|
+
Examples:
|
|
34
|
+
>>> from ultralytics.models.yolo.pose import PoseTrainer
|
|
35
|
+
>>> args = dict(model="yolo11n-pose.pt", data="coco8-pose.yaml", epochs=3)
|
|
36
|
+
>>> trainer = PoseTrainer(overrides=args)
|
|
37
|
+
>>> trainer.train()
|
|
38
|
+
"""
|
|
39
|
+
|
|
40
|
+
def __init__(self, cfg=DEFAULT_CFG, overrides: dict[str, Any] | None = None, _callbacks=None):
|
|
41
|
+
"""Initialize a PoseTrainer object for training YOLO pose estimation models.
|
|
42
|
+
|
|
43
|
+
Args:
|
|
44
|
+
cfg (dict, optional): Default configuration dictionary containing training parameters.
|
|
45
|
+
overrides (dict, optional): Dictionary of parameter overrides for the default configuration.
|
|
46
|
+
_callbacks (list, optional): List of callback functions to be executed during training.
|
|
47
|
+
|
|
48
|
+
Notes:
|
|
49
|
+
This trainer will automatically set the task to 'pose' regardless of what is provided in overrides.
|
|
50
|
+
A warning is issued when using Apple MPS device due to known bugs with pose models.
|
|
51
|
+
"""
|
|
52
|
+
if overrides is None:
|
|
53
|
+
overrides = {}
|
|
54
|
+
overrides["task"] = "pose"
|
|
55
|
+
super().__init__(cfg, overrides, _callbacks)
|
|
56
|
+
|
|
57
|
+
def get_model(
|
|
58
|
+
self,
|
|
59
|
+
cfg: str | Path | dict[str, Any] | None = None,
|
|
60
|
+
weights: str | Path | None = None,
|
|
61
|
+
verbose: bool = True,
|
|
62
|
+
) -> PoseModel:
|
|
63
|
+
"""Get pose estimation model with specified configuration and weights.
|
|
64
|
+
|
|
65
|
+
Args:
|
|
66
|
+
cfg (str | Path | dict, optional): Model configuration file path or dictionary.
|
|
67
|
+
weights (str | Path, optional): Path to the model weights file.
|
|
68
|
+
verbose (bool): Whether to display model information.
|
|
69
|
+
|
|
70
|
+
Returns:
|
|
71
|
+
(PoseModel): Initialized pose estimation model.
|
|
72
|
+
"""
|
|
73
|
+
model = PoseModel(
|
|
74
|
+
cfg, nc=self.data["nc"], ch=self.data["channels"], data_kpt_shape=self.data["kpt_shape"], verbose=verbose
|
|
75
|
+
)
|
|
76
|
+
if weights:
|
|
77
|
+
model.load(weights)
|
|
78
|
+
|
|
79
|
+
return model
|
|
80
|
+
|
|
81
|
+
def set_model_attributes(self):
|
|
82
|
+
"""Set keypoints shape attribute of PoseModel."""
|
|
83
|
+
super().set_model_attributes()
|
|
84
|
+
self.model.kpt_shape = self.data["kpt_shape"]
|
|
85
|
+
kpt_names = self.data.get("kpt_names")
|
|
86
|
+
if not kpt_names:
|
|
87
|
+
names = list(map(str, range(self.model.kpt_shape[0])))
|
|
88
|
+
kpt_names = {i: names for i in range(self.model.nc)}
|
|
89
|
+
self.model.kpt_names = kpt_names
|
|
90
|
+
|
|
91
|
+
def get_validator(self):
|
|
92
|
+
"""Return an instance of the PoseValidator class for validation."""
|
|
93
|
+
self.loss_names = "box_loss", "pose_loss", "kobj_loss", "cls_loss", "dfl_loss"
|
|
94
|
+
return yolo.pose.PoseValidator(
|
|
95
|
+
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
def get_dataset(self) -> dict[str, Any]:
|
|
99
|
+
"""Retrieve the dataset and ensure it contains the required `kpt_shape` key.
|
|
100
|
+
|
|
101
|
+
Returns:
|
|
102
|
+
(dict): A dictionary containing the training/validation/test dataset and category names.
|
|
103
|
+
|
|
104
|
+
Raises:
|
|
105
|
+
KeyError: If the `kpt_shape` key is not present in the dataset.
|
|
106
|
+
"""
|
|
107
|
+
data = super().get_dataset()
|
|
108
|
+
if "kpt_shape" not in data:
|
|
109
|
+
raise KeyError(f"No `kpt_shape` in the {self.args.data}. See https://docs.ultralytics.com/datasets/pose/")
|
|
110
|
+
return data
|