transformers 5.0.0rc0__py3-none-any.whl → 5.0.0rc1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +30 -3
- transformers/cli/serve.py +47 -17
- transformers/conversion_mapping.py +15 -2
- transformers/convert_slow_tokenizer.py +225 -10
- transformers/core_model_loading.py +196 -135
- transformers/data/data_collator.py +12 -4
- transformers/dependency_versions_table.py +1 -2
- transformers/dynamic_module_utils.py +1 -2
- transformers/feature_extraction_utils.py +1 -2
- transformers/file_utils.py +0 -1
- transformers/generation/__init__.py +11 -1
- transformers/generation/configuration_utils.py +3 -2
- transformers/generation/continuous_batching/__init__.py +4 -0
- transformers/generation/continuous_batching/continuous_api.py +134 -79
- transformers/image_processing_base.py +1 -2
- transformers/integrations/__init__.py +4 -2
- transformers/integrations/accelerate.py +15 -3
- transformers/integrations/aqlm.py +38 -66
- transformers/integrations/awq.py +48 -514
- transformers/integrations/bitnet.py +45 -100
- transformers/integrations/bitsandbytes.py +79 -191
- transformers/integrations/deepspeed.py +1 -0
- transformers/integrations/eetq.py +84 -79
- transformers/integrations/fbgemm_fp8.py +191 -145
- transformers/integrations/finegrained_fp8.py +236 -193
- transformers/integrations/fp_quant.py +92 -0
- transformers/integrations/ggml.py +11 -1
- transformers/integrations/higgs.py +40 -62
- transformers/integrations/hub_kernels.py +42 -3
- transformers/integrations/integration_utils.py +10 -0
- transformers/integrations/mxfp4.py +25 -65
- transformers/integrations/peft.py +7 -29
- transformers/integrations/quanto.py +73 -55
- transformers/integrations/quark.py +55 -0
- transformers/integrations/spqr.py +44 -90
- transformers/integrations/torchao.py +32 -38
- transformers/integrations/vptq.py +42 -59
- transformers/modelcard.py +1 -2
- transformers/modeling_gguf_pytorch_utils.py +8 -0
- transformers/modeling_rope_utils.py +30 -6
- transformers/modeling_utils.py +116 -112
- transformers/models/__init__.py +3 -0
- transformers/models/afmoe/modeling_afmoe.py +4 -4
- transformers/models/albert/tokenization_albert.py +6 -12
- transformers/models/align/modeling_align.py +2 -0
- transformers/models/altclip/modeling_altclip.py +4 -0
- transformers/models/apertus/modeling_apertus.py +4 -4
- transformers/models/arcee/modeling_arcee.py +4 -4
- transformers/models/aria/modeling_aria.py +4 -4
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/modular_audioflamingo3.py +1 -0
- transformers/models/auto/configuration_auto.py +11 -0
- transformers/models/auto/feature_extraction_auto.py +2 -0
- transformers/models/auto/image_processing_auto.py +1 -0
- transformers/models/auto/modeling_auto.py +6 -0
- transformers/models/auto/processing_auto.py +18 -10
- transformers/models/auto/tokenization_auto.py +74 -472
- transformers/models/autoformer/modeling_autoformer.py +4 -0
- transformers/models/bamba/modeling_bamba.py +4 -3
- transformers/models/bark/modeling_bark.py +2 -0
- transformers/models/bart/modeling_bart.py +7 -0
- transformers/models/barthez/tokenization_barthez.py +5 -10
- transformers/models/beit/modeling_beit.py +6 -1
- transformers/models/bert/tokenization_bert.py +8 -21
- transformers/models/big_bird/modeling_big_bird.py +6 -0
- transformers/models/big_bird/tokenization_big_bird.py +18 -42
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +8 -2
- transformers/models/biogpt/modeling_biogpt.py +2 -0
- transformers/models/biogpt/modular_biogpt.py +2 -0
- transformers/models/bit/modeling_bit.py +11 -2
- transformers/models/bitnet/modeling_bitnet.py +4 -4
- transformers/models/blenderbot/modeling_blenderbot.py +5 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +12 -16
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +5 -0
- transformers/models/blip/modeling_blip_text.py +2 -0
- transformers/models/blip_2/modeling_blip_2.py +2 -1
- transformers/models/bloom/modeling_bloom.py +4 -0
- transformers/models/blt/modeling_blt.py +2 -2
- transformers/models/blt/modular_blt.py +2 -2
- transformers/models/bridgetower/modeling_bridgetower.py +5 -1
- transformers/models/bros/modeling_bros.py +4 -0
- transformers/models/camembert/tokenization_camembert.py +8 -12
- transformers/models/canine/modeling_canine.py +5 -0
- transformers/models/chameleon/modeling_chameleon.py +2 -1
- transformers/models/chinese_clip/modeling_chinese_clip.py +3 -0
- transformers/models/clap/modeling_clap.py +5 -0
- transformers/models/clip/tokenization_clip.py +22 -44
- transformers/models/clipseg/modeling_clipseg.py +5 -0
- transformers/models/clvp/modeling_clvp.py +5 -0
- transformers/models/clvp/tokenization_clvp.py +1 -63
- transformers/models/code_llama/tokenization_code_llama.py +20 -43
- transformers/models/codegen/tokenization_codegen.py +14 -43
- transformers/models/cohere/modeling_cohere.py +4 -3
- transformers/models/cohere/modular_cohere.py +2 -1
- transformers/models/cohere/tokenization_cohere.py +12 -42
- transformers/models/cohere2/modeling_cohere2.py +7 -6
- transformers/models/cohere2/modular_cohere2.py +5 -5
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +4 -3
- transformers/models/cohere2_vision/modular_cohere2_vision.py +4 -3
- transformers/models/colqwen2/modeling_colqwen2.py +1 -0
- transformers/models/colqwen2/modular_colqwen2.py +1 -0
- transformers/models/conditional_detr/modeling_conditional_detr.py +5 -0
- transformers/models/convbert/modeling_convbert.py +6 -0
- transformers/models/convnext/modeling_convnext.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +2 -4
- transformers/models/csm/modeling_csm.py +4 -3
- transformers/models/ctrl/modeling_ctrl.py +1 -0
- transformers/models/cvt/modeling_cvt.py +2 -0
- transformers/models/cwm/modeling_cwm.py +4 -4
- transformers/models/d_fine/modeling_d_fine.py +2 -0
- transformers/models/d_fine/modular_d_fine.py +1 -0
- transformers/models/dab_detr/modeling_dab_detr.py +4 -0
- transformers/models/dac/modeling_dac.py +2 -2
- transformers/models/data2vec/modeling_data2vec_audio.py +5 -0
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -1
- transformers/models/dbrx/modeling_dbrx.py +2 -2
- transformers/models/deberta/modeling_deberta.py +5 -0
- transformers/models/deberta/tokenization_deberta.py +11 -20
- transformers/models/deberta_v2/modeling_deberta_v2.py +6 -0
- transformers/models/deberta_v2/tokenization_deberta_v2.py +13 -28
- transformers/models/decision_transformer/modeling_decision_transformer.py +4 -1
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +2 -3
- transformers/models/deepseek_v2/modular_deepseek_v2.py +2 -2
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +3 -2
- transformers/models/deepseek_v3/modular_deepseek_v3.py +1 -0
- transformers/models/deformable_detr/modeling_deformable_detr.py +4 -0
- transformers/models/depth_anything/modeling_depth_anything.py +1 -0
- transformers/models/depth_pro/modeling_depth_pro.py +2 -0
- transformers/models/detr/modeling_detr.py +5 -0
- transformers/models/dia/modeling_dia.py +4 -3
- transformers/models/dia/modular_dia.py +0 -1
- transformers/models/diffllama/modeling_diffllama.py +2 -2
- transformers/models/dinat/modeling_dinat.py +3 -0
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +1 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +2 -2
- transformers/models/dinov3_vit/modular_dinov3_vit.py +2 -2
- transformers/models/distilbert/tokenization_distilbert.py +13 -0
- transformers/models/doge/modeling_doge.py +2 -3
- transformers/models/doge/modular_doge.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +2 -0
- transformers/models/dots1/modeling_dots1.py +10 -7
- transformers/models/dots1/modular_dots1.py +5 -3
- transformers/models/dpr/modeling_dpr.py +5 -0
- transformers/models/dpr/tokenization_dpr.py +12 -0
- transformers/models/edgetam/modeling_edgetam.py +1 -1
- transformers/models/edgetam_video/modeling_edgetam_video.py +1 -0
- transformers/models/edgetam_video/modular_edgetam_video.py +1 -0
- transformers/models/efficientloftr/modeling_efficientloftr.py +2 -2
- transformers/models/efficientnet/modeling_efficientnet.py +2 -0
- transformers/models/emu3/modeling_emu3.py +4 -4
- transformers/models/eomt/image_processing_eomt.py +13 -1
- transformers/models/eomt/image_processing_eomt_fast.py +14 -2
- transformers/models/ernie4_5/modeling_ernie4_5.py +4 -4
- transformers/models/ernie4_5/modular_ernie4_5.py +2 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +5 -5
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +2 -2
- transformers/models/esm/modeling_esmfold.py +5 -4
- transformers/models/evolla/modeling_evolla.py +4 -4
- transformers/models/exaone4/modeling_exaone4.py +2 -2
- transformers/models/exaone4/modular_exaone4.py +0 -1
- transformers/models/falcon/modeling_falcon.py +6 -1
- transformers/models/falcon_h1/modeling_falcon_h1.py +4 -3
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +25 -35
- transformers/models/falcon_mamba/modular_falcon_mamba.py +12 -31
- transformers/{kernels/falcon_mamba → models/fast_vlm}/__init__.py +15 -3
- transformers/models/fast_vlm/configuration_fast_vlm.py +137 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +455 -0
- transformers/models/fast_vlm/modular_fast_vlm.py +273 -0
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +8 -3
- transformers/models/flaubert/modeling_flaubert.py +7 -0
- transformers/models/flava/modeling_flava.py +6 -1
- transformers/models/flex_olmo/modeling_flex_olmo.py +4 -5
- transformers/models/florence2/modeling_florence2.py +2 -1
- transformers/models/florence2/modular_florence2.py +2 -1
- transformers/models/fnet/modeling_fnet.py +7 -0
- transformers/models/focalnet/modeling_focalnet.py +4 -0
- transformers/models/fsmt/modeling_fsmt.py +2 -0
- transformers/models/funnel/modeling_funnel.py +8 -0
- transformers/models/funnel/tokenization_funnel.py +17 -24
- transformers/models/fuyu/processing_fuyu.py +3 -3
- transformers/models/gemma/modeling_gemma.py +4 -4
- transformers/models/gemma/tokenization_gemma.py +10 -27
- transformers/models/gemma2/modeling_gemma2.py +4 -4
- transformers/models/gemma2/modular_gemma2.py +2 -1
- transformers/models/gemma3/modeling_gemma3.py +14 -84
- transformers/models/gemma3/modular_gemma3.py +12 -81
- transformers/models/gemma3n/modeling_gemma3n.py +18 -209
- transformers/models/gemma3n/modular_gemma3n.py +17 -59
- transformers/models/git/modeling_git.py +2 -0
- transformers/models/glm/modeling_glm.py +4 -4
- transformers/models/glm4/modeling_glm4.py +4 -4
- transformers/models/glm4_moe/modeling_glm4_moe.py +5 -3
- transformers/models/glm4v/configuration_glm4v.py +3 -1
- transformers/models/glm4v/modeling_glm4v.py +3 -3
- transformers/models/glm4v/modular_glm4v.py +6 -4
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +3 -1
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +6 -5
- transformers/models/glm4v_moe/modular_glm4v_moe.py +1 -1
- transformers/models/glpn/modeling_glpn.py +2 -0
- transformers/models/gpt2/modeling_gpt2.py +5 -1
- transformers/models/gpt2/tokenization_gpt2.py +16 -44
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +1 -0
- transformers/models/gpt_neo/modeling_gpt_neo.py +4 -0
- transformers/models/gpt_neox/modeling_gpt_neox.py +5 -2
- transformers/models/gpt_neox/modular_gpt_neox.py +3 -0
- transformers/models/gpt_neox/tokenization_gpt_neox.py +10 -49
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +3 -1
- transformers/models/gpt_oss/modeling_gpt_oss.py +5 -6
- transformers/models/gpt_oss/modular_gpt_oss.py +3 -5
- transformers/models/gptj/modeling_gptj.py +3 -0
- transformers/models/granite/modeling_granite.py +4 -4
- transformers/models/granitemoe/modeling_granitemoe.py +4 -6
- transformers/models/granitemoe/modular_granitemoe.py +0 -2
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +4 -6
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +4 -6
- transformers/models/grounding_dino/modeling_grounding_dino.py +4 -0
- transformers/models/groupvit/modeling_groupvit.py +3 -0
- transformers/models/helium/modeling_helium.py +4 -3
- transformers/models/herbert/tokenization_herbert.py +9 -25
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +6 -1
- transformers/models/hgnet_v2/modular_hgnet_v2.py +6 -1
- transformers/models/hiera/modeling_hiera.py +4 -0
- transformers/models/hubert/modeling_hubert.py +3 -0
- transformers/models/hubert/modular_hubert.py +1 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +4 -4
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +4 -4
- transformers/models/ibert/modeling_ibert.py +6 -0
- transformers/models/idefics/modeling_idefics.py +5 -21
- transformers/models/imagegpt/modeling_imagegpt.py +2 -1
- transformers/models/informer/modeling_informer.py +4 -0
- transformers/models/informer/modular_informer.py +1 -0
- transformers/models/internvl/modeling_internvl.py +2 -4
- transformers/models/internvl/modular_internvl.py +2 -4
- transformers/models/jamba/modeling_jamba.py +2 -2
- transformers/models/janus/modeling_janus.py +1 -0
- transformers/models/janus/modular_janus.py +1 -0
- transformers/models/jetmoe/modeling_jetmoe.py +2 -2
- transformers/models/kosmos2/modeling_kosmos2.py +1 -0
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +3 -1
- transformers/models/lasr/__init__.py +29 -0
- transformers/models/lasr/configuration_lasr.py +244 -0
- transformers/models/lasr/feature_extraction_lasr.py +277 -0
- transformers/models/lasr/modeling_lasr.py +729 -0
- transformers/models/lasr/modular_lasr.py +569 -0
- transformers/models/lasr/processing_lasr.py +96 -0
- transformers/models/lasr/tokenization_lasr.py +186 -0
- transformers/models/layoutlm/modeling_layoutlm.py +5 -0
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +4 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +10 -53
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +4 -0
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +12 -61
- transformers/models/layoutxlm/tokenization_layoutxlm.py +13 -38
- transformers/models/led/modeling_led.py +6 -0
- transformers/models/levit/modeling_levit.py +3 -0
- transformers/models/lfm2/modeling_lfm2.py +4 -5
- transformers/models/lfm2/modular_lfm2.py +0 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +4 -5
- transformers/models/lightglue/modeling_lightglue.py +3 -1
- transformers/models/lightglue/modular_lightglue.py +1 -0
- transformers/models/lilt/modeling_lilt.py +4 -0
- transformers/models/llama/modeling_llama.py +4 -4
- transformers/models/llama/tokenization_llama.py +15 -43
- transformers/models/llama4/modeling_llama4.py +3 -2
- transformers/models/longcat_flash/modeling_longcat_flash.py +4 -4
- transformers/models/longcat_flash/modular_longcat_flash.py +2 -2
- transformers/models/longformer/modeling_longformer.py +6 -0
- transformers/models/longt5/modeling_longt5.py +4 -0
- transformers/models/luke/modeling_luke.py +9 -0
- transformers/models/luke/tokenization_luke.py +11 -38
- transformers/models/lxmert/modeling_lxmert.py +2 -0
- transformers/models/m2m_100/modeling_m2m_100.py +4 -0
- transformers/models/mamba/modeling_mamba.py +14 -22
- transformers/models/marian/modeling_marian.py +5 -0
- transformers/models/markuplm/modeling_markuplm.py +4 -0
- transformers/models/markuplm/tokenization_markuplm.py +28 -61
- transformers/models/mask2former/modeling_mask2former.py +2 -0
- transformers/models/maskformer/modeling_maskformer.py +2 -0
- transformers/models/maskformer/modeling_maskformer_swin.py +2 -0
- transformers/models/mbart/modeling_mbart.py +7 -0
- transformers/models/mbart/tokenization_mbart.py +11 -52
- transformers/models/mbart50/tokenization_mbart50.py +7 -10
- transformers/models/megatron_bert/modeling_megatron_bert.py +7 -0
- transformers/models/mgp_str/modeling_mgp_str.py +2 -0
- transformers/models/mimi/modeling_mimi.py +3 -1
- transformers/models/minimax/modeling_minimax.py +4 -4
- transformers/models/ministral/modeling_ministral.py +4 -4
- transformers/models/ministral3/configuration_ministral3.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +4 -3
- transformers/models/mistral/modeling_mistral.py +4 -3
- transformers/models/mixtral/modeling_mixtral.py +4 -4
- transformers/models/mllama/modeling_mllama.py +2 -2
- transformers/models/mluke/tokenization_mluke.py +6 -6
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +4 -0
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +2 -0
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +3 -0
- transformers/models/mobilevit/modeling_mobilevit.py +3 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +3 -0
- transformers/models/modernbert/modeling_modernbert.py +4 -1
- transformers/models/modernbert/modular_modernbert.py +2 -0
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +8 -9
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +6 -7
- transformers/models/moonshine/modeling_moonshine.py +4 -2
- transformers/models/moshi/modeling_moshi.py +5 -2
- transformers/models/mpnet/modeling_mpnet.py +5 -0
- transformers/models/mpnet/tokenization_mpnet.py +5 -13
- transformers/models/mpt/modeling_mpt.py +2 -0
- transformers/models/mra/modeling_mra.py +6 -0
- transformers/models/mt5/modeling_mt5.py +7 -0
- transformers/models/musicgen/modeling_musicgen.py +2 -0
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +3 -0
- transformers/models/mvp/modeling_mvp.py +7 -0
- transformers/models/nanochat/modeling_nanochat.py +4 -4
- transformers/models/nemotron/modeling_nemotron.py +4 -2
- transformers/models/nllb/tokenization_nllb.py +8 -22
- transformers/models/nougat/tokenization_nougat.py +11 -59
- transformers/models/nystromformer/modeling_nystromformer.py +6 -0
- transformers/models/olmo/modeling_olmo.py +4 -4
- transformers/models/olmo/modular_olmo.py +2 -2
- transformers/models/olmo2/modeling_olmo2.py +4 -5
- transformers/models/olmo2/modular_olmo2.py +0 -1
- transformers/models/olmo3/modeling_olmo3.py +4 -4
- transformers/models/olmoe/modeling_olmoe.py +4 -4
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +2 -0
- transformers/models/oneformer/modeling_oneformer.py +4 -1
- transformers/models/openai/modeling_openai.py +3 -0
- transformers/models/openai/tokenization_openai.py +10 -46
- transformers/models/opt/modeling_opt.py +2 -0
- transformers/models/owlv2/modeling_owlv2.py +4 -0
- transformers/models/owlvit/modeling_owlvit.py +4 -0
- transformers/models/paddleocr_vl/__init__.py +32 -0
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +336 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +503 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +209 -0
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +1668 -0
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +1349 -0
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +135 -0
- transformers/models/parakeet/configuration_parakeet.py +4 -6
- transformers/models/parakeet/modeling_parakeet.py +9 -6
- transformers/models/parakeet/modular_parakeet.py +2 -2
- transformers/models/parakeet/processing_parakeet.py +1 -0
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +6 -0
- transformers/models/patchtst/modeling_patchtst.py +20 -2
- transformers/models/pegasus/modeling_pegasus.py +5 -0
- transformers/models/pegasus/tokenization_pegasus.py +17 -44
- transformers/models/pegasus_x/modeling_pegasus_x.py +4 -0
- transformers/models/perceiver/modeling_perceiver.py +8 -0
- transformers/models/persimmon/modeling_persimmon.py +2 -1
- transformers/models/phi/modeling_phi.py +4 -5
- transformers/models/phi/modular_phi.py +0 -1
- transformers/models/phi3/modeling_phi3.py +2 -1
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +5 -5
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +4 -4
- transformers/models/phimoe/modeling_phimoe.py +4 -4
- transformers/models/phimoe/modular_phimoe.py +2 -2
- transformers/models/pix2struct/modeling_pix2struct.py +2 -0
- transformers/models/pixtral/modeling_pixtral.py +2 -1
- transformers/models/plbart/modeling_plbart.py +6 -0
- transformers/models/plbart/modular_plbart.py +2 -0
- transformers/models/plbart/tokenization_plbart.py +0 -2
- transformers/models/poolformer/modeling_poolformer.py +2 -0
- transformers/models/pop2piano/modeling_pop2piano.py +2 -0
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +1 -0
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +1 -0
- transformers/models/prophetnet/modeling_prophetnet.py +3 -0
- transformers/models/pvt/modeling_pvt.py +2 -0
- transformers/models/pvt_v2/modeling_pvt_v2.py +3 -0
- transformers/models/qwen2/modeling_qwen2.py +4 -4
- transformers/models/qwen2/tokenization_qwen2.py +14 -18
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +4 -2
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +13 -16
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +14 -16
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +1 -1
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +5 -6
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +3 -5
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +2 -0
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +4 -4
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +1 -1
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +6 -16
- transformers/models/qwen3/modeling_qwen3.py +4 -4
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +4 -4
- transformers/models/qwen3_next/modeling_qwen3_next.py +4 -3
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +21 -23
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +14 -16
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +39 -37
- transformers/models/qwen3_vl/modular_qwen3_vl.py +37 -35
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +39 -37
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +4 -1
- transformers/models/rag/modeling_rag.py +1 -0
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +15 -1
- transformers/models/reformer/modeling_reformer.py +4 -0
- transformers/models/reformer/tokenization_reformer.py +11 -28
- transformers/models/regnet/modeling_regnet.py +6 -1
- transformers/models/rembert/modeling_rembert.py +6 -0
- transformers/models/rembert/tokenization_rembert.py +3 -10
- transformers/models/resnet/modeling_resnet.py +11 -2
- transformers/models/roberta/tokenization_roberta.py +18 -27
- transformers/models/roformer/modeling_roformer.py +6 -0
- transformers/models/roformer/tokenization_roformer.py +77 -412
- transformers/models/rt_detr/modeling_rt_detr.py +2 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +5 -1
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +2 -0
- transformers/models/rwkv/modeling_rwkv.py +1 -0
- transformers/models/sam2/modeling_sam2.py +2 -2
- transformers/models/sam2/modular_sam2.py +2 -2
- transformers/models/sam2_video/modeling_sam2_video.py +1 -0
- transformers/models/sam2_video/modular_sam2_video.py +1 -0
- transformers/models/sam3/modeling_sam3.py +77 -80
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +6 -1
- transformers/models/sam3_tracker/modular_sam3_tracker.py +6 -1
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +1 -0
- transformers/models/sam3_video/modeling_sam3_video.py +1 -0
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +5 -1
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +27 -59
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +5 -1
- transformers/models/seed_oss/modeling_seed_oss.py +2 -2
- transformers/models/segformer/modeling_segformer.py +4 -1
- transformers/models/seggpt/modeling_seggpt.py +2 -0
- transformers/models/sew/modeling_sew.py +3 -0
- transformers/models/sew/modular_sew.py +1 -0
- transformers/models/sew_d/modeling_sew_d.py +3 -0
- transformers/models/siglip2/modeling_siglip2.py +4 -0
- transformers/models/siglip2/modular_siglip2.py +4 -0
- transformers/models/smollm3/modeling_smollm3.py +4 -4
- transformers/models/smolvlm/processing_smolvlm.py +0 -7
- transformers/models/speech_to_text/modeling_speech_to_text.py +4 -0
- transformers/models/speecht5/modeling_speecht5.py +13 -1
- transformers/models/splinter/modeling_splinter.py +3 -0
- transformers/models/splinter/tokenization_splinter.py +9 -28
- transformers/models/squeezebert/modeling_squeezebert.py +6 -0
- transformers/models/stablelm/modeling_stablelm.py +3 -1
- transformers/models/starcoder2/modeling_starcoder2.py +4 -3
- transformers/models/superglue/modeling_superglue.py +1 -0
- transformers/models/superpoint/modeling_superpoint.py +1 -0
- transformers/models/swiftformer/modeling_swiftformer.py +2 -0
- transformers/models/swin/modeling_swin.py +4 -0
- transformers/models/swin2sr/modeling_swin2sr.py +2 -0
- transformers/models/swinv2/modeling_swinv2.py +4 -0
- transformers/models/t5/modeling_t5.py +7 -0
- transformers/models/t5/tokenization_t5.py +4 -8
- transformers/models/t5gemma/modeling_t5gemma.py +5 -5
- transformers/models/t5gemma2/modeling_t5gemma2.py +6 -6
- transformers/models/table_transformer/modeling_table_transformer.py +4 -0
- transformers/models/tapas/modeling_tapas.py +3 -0
- transformers/models/textnet/modeling_textnet.py +11 -2
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -0
- transformers/models/timesfm/modeling_timesfm.py +2 -0
- transformers/models/timesfm/modular_timesfm.py +2 -0
- transformers/models/timesformer/modeling_timesformer.py +2 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +1 -1
- transformers/models/trocr/modeling_trocr.py +2 -0
- transformers/models/tvp/modeling_tvp.py +2 -0
- transformers/models/udop/modeling_udop.py +4 -0
- transformers/models/udop/tokenization_udop.py +5 -13
- transformers/models/umt5/modeling_umt5.py +7 -0
- transformers/models/unispeech/modeling_unispeech.py +4 -0
- transformers/models/unispeech/modular_unispeech.py +2 -0
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +6 -0
- transformers/models/unispeech_sat/modular_unispeech_sat.py +2 -0
- transformers/models/univnet/modeling_univnet.py +1 -0
- transformers/models/upernet/modeling_upernet.py +1 -0
- transformers/models/vaultgemma/modeling_vaultgemma.py +4 -4
- transformers/models/vilt/modeling_vilt.py +6 -0
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +1 -0
- transformers/models/visual_bert/modeling_visual_bert.py +6 -0
- transformers/models/vitdet/modeling_vitdet.py +2 -0
- transformers/models/vitmatte/modeling_vitmatte.py +1 -0
- transformers/models/vits/modeling_vits.py +1 -0
- transformers/models/vjepa2/modeling_vjepa2.py +1 -0
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -0
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +5 -0
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +5 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +6 -0
- transformers/models/wavlm/modeling_wavlm.py +5 -0
- transformers/models/whisper/modeling_whisper.py +6 -0
- transformers/models/whisper/tokenization_whisper.py +4 -15
- transformers/models/x_clip/modeling_x_clip.py +3 -0
- transformers/models/xglm/modeling_xglm.py +1 -0
- transformers/models/xglm/tokenization_xglm.py +4 -9
- transformers/models/xlm/modeling_xlm.py +5 -0
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +9 -16
- transformers/models/xlnet/tokenization_xlnet.py +3 -7
- transformers/models/yoso/modeling_yoso.py +6 -0
- transformers/models/zamba/modeling_zamba.py +2 -0
- transformers/models/zamba2/modeling_zamba2.py +4 -2
- transformers/models/zamba2/modular_zamba2.py +1 -1
- transformers/models/zoedepth/modeling_zoedepth.py +1 -0
- transformers/pipelines/__init__.py +2 -3
- transformers/pipelines/base.py +1 -9
- transformers/pipelines/document_question_answering.py +3 -1
- transformers/pipelines/text_generation.py +1 -1
- transformers/processing_utils.py +23 -11
- transformers/quantizers/base.py +35 -110
- transformers/quantizers/quantizer_aqlm.py +1 -5
- transformers/quantizers/quantizer_auto_round.py +1 -2
- transformers/quantizers/quantizer_awq.py +17 -81
- transformers/quantizers/quantizer_bitnet.py +3 -8
- transformers/quantizers/quantizer_bnb_4bit.py +13 -110
- transformers/quantizers/quantizer_bnb_8bit.py +16 -92
- transformers/quantizers/quantizer_compressed_tensors.py +1 -5
- transformers/quantizers/quantizer_eetq.py +14 -62
- transformers/quantizers/quantizer_fbgemm_fp8.py +34 -125
- transformers/quantizers/quantizer_finegrained_fp8.py +13 -105
- transformers/quantizers/quantizer_fp_quant.py +48 -78
- transformers/quantizers/quantizer_gptq.py +7 -24
- transformers/quantizers/quantizer_higgs.py +40 -54
- transformers/quantizers/quantizer_hqq.py +144 -153
- transformers/quantizers/quantizer_mxfp4.py +13 -167
- transformers/quantizers/quantizer_quanto.py +20 -64
- transformers/quantizers/quantizer_quark.py +36 -17
- transformers/quantizers/quantizer_spqr.py +1 -4
- transformers/quantizers/quantizer_torchao.py +23 -202
- transformers/quantizers/quantizer_vptq.py +8 -22
- transformers/quantizers/quantizers_utils.py +20 -0
- transformers/testing_utils.py +297 -36
- transformers/tokenization_mistral_common.py +4 -0
- transformers/tokenization_utils_base.py +113 -222
- transformers/tokenization_utils_tokenizers.py +168 -107
- transformers/trainer.py +28 -31
- transformers/trainer_jit_checkpoint.py +126 -0
- transformers/trainer_utils.py +1 -1
- transformers/training_args.py +66 -28
- transformers/utils/__init__.py +3 -4
- transformers/utils/auto_docstring.py +1 -0
- transformers/utils/generic.py +27 -1
- transformers/utils/hub.py +5 -15
- transformers/utils/import_utils.py +61 -16
- transformers/utils/kernel_config.py +4 -2
- transformers/utils/loading_report.py +19 -10
- transformers/utils/quantization_config.py +75 -242
- transformers/video_processing_utils.py +1 -2
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/METADATA +274 -227
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/RECORD +536 -520
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/WHEEL +1 -1
- transformers/kernels/__init__.py +0 -0
- transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +0 -529
- transformers/models/roformer/tokenization_roformer_fast.py +0 -160
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info/licenses}/LICENSE +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/top_level.txt +0 -0
|
@@ -13,10 +13,8 @@
|
|
|
13
13
|
# See the License for the specific language governing permissions and
|
|
14
14
|
# limitations under the License.
|
|
15
15
|
|
|
16
|
-
import re
|
|
17
|
-
from typing import Optional
|
|
18
|
-
|
|
19
16
|
from ..core_model_loading import ConversionOps
|
|
17
|
+
from ..quantizers.quantizers_utils import should_convert_module
|
|
20
18
|
from ..utils import is_accelerate_available, is_torch_accelerator_available, is_torch_available, logging
|
|
21
19
|
|
|
22
20
|
|
|
@@ -158,6 +156,79 @@ def _w8a8_block_fp8_matmul(
|
|
|
158
156
|
tl.store(c_ptrs, c, mask=c_mask)
|
|
159
157
|
|
|
160
158
|
|
|
159
|
+
@triton.jit
|
|
160
|
+
def _w8a8_block_fp8_matmul_per_tensor(
|
|
161
|
+
# Pointers to inputs and output
|
|
162
|
+
A,
|
|
163
|
+
B,
|
|
164
|
+
C,
|
|
165
|
+
As,
|
|
166
|
+
Bs,
|
|
167
|
+
# Shape for matmul
|
|
168
|
+
M,
|
|
169
|
+
N,
|
|
170
|
+
K,
|
|
171
|
+
# Block size for block-wise quantization
|
|
172
|
+
group_n,
|
|
173
|
+
group_k,
|
|
174
|
+
# Stride for inputs and output
|
|
175
|
+
stride_am,
|
|
176
|
+
stride_ak,
|
|
177
|
+
stride_bk,
|
|
178
|
+
stride_bn,
|
|
179
|
+
stride_cm,
|
|
180
|
+
stride_cn,
|
|
181
|
+
# Meta-parameters
|
|
182
|
+
BLOCK_SIZE_M: tl.constexpr,
|
|
183
|
+
BLOCK_SIZE_N: tl.constexpr,
|
|
184
|
+
BLOCK_SIZE_K: tl.constexpr,
|
|
185
|
+
GROUP_SIZE_M: tl.constexpr,
|
|
186
|
+
):
|
|
187
|
+
"""Triton-accelerated function used to perform linear operations (dot
|
|
188
|
+
product) on input tensors `A` and `B` with per-tensor quantization, and
|
|
189
|
+
store the result in output tensor `C`.
|
|
190
|
+
"""
|
|
191
|
+
|
|
192
|
+
pid = tl.program_id(axis=0)
|
|
193
|
+
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
|
194
|
+
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
|
195
|
+
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
|
196
|
+
group_id = pid // num_pid_in_group
|
|
197
|
+
first_pid_m = group_id * GROUP_SIZE_M
|
|
198
|
+
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
|
199
|
+
pid_m = first_pid_m + (pid % group_size_m)
|
|
200
|
+
pid_n = (pid % num_pid_in_group) // group_size_m
|
|
201
|
+
|
|
202
|
+
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
|
|
203
|
+
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
|
|
204
|
+
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
|
205
|
+
a_ptrs = A + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
|
|
206
|
+
b_ptrs = B + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
|
|
207
|
+
scale_a = tl.load(As)
|
|
208
|
+
scale_b = tl.load(Bs)
|
|
209
|
+
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
|
210
|
+
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
|
|
211
|
+
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)
|
|
212
|
+
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
|
|
213
|
+
|
|
214
|
+
accumulator += tl.dot(a, b) * scale_a * scale_b
|
|
215
|
+
a_ptrs += BLOCK_SIZE_K * stride_ak
|
|
216
|
+
b_ptrs += BLOCK_SIZE_K * stride_bk
|
|
217
|
+
|
|
218
|
+
if C.dtype.element_ty == tl.bfloat16:
|
|
219
|
+
c = accumulator.to(tl.bfloat16)
|
|
220
|
+
elif C.dtype.element_ty == tl.float16:
|
|
221
|
+
c = accumulator.to(tl.float16)
|
|
222
|
+
else:
|
|
223
|
+
c = accumulator.to(tl.float32)
|
|
224
|
+
|
|
225
|
+
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
226
|
+
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
|
227
|
+
c_ptrs = C + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
|
|
228
|
+
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
|
|
229
|
+
tl.store(c_ptrs, c, mask=c_mask)
|
|
230
|
+
|
|
231
|
+
|
|
161
232
|
def w8a8_block_fp8_matmul_triton(
|
|
162
233
|
A: torch.Tensor,
|
|
163
234
|
B: torch.Tensor,
|
|
@@ -181,19 +252,31 @@ def w8a8_block_fp8_matmul_triton(
|
|
|
181
252
|
Returns:
|
|
182
253
|
torch.Tensor: The result of matmul.
|
|
183
254
|
"""
|
|
184
|
-
|
|
185
|
-
|
|
255
|
+
if block_size is None:
|
|
256
|
+
block_n, block_k = 128, 128
|
|
257
|
+
else:
|
|
258
|
+
assert len(block_size) == 2
|
|
259
|
+
block_n, block_k = block_size[0], block_size[1]
|
|
260
|
+
|
|
261
|
+
# if we have per-tensor quantization, we use 128x128 block size for tiled matmul multiplication
|
|
262
|
+
if block_n == B.shape[-2] and block_k == B.shape[-1]:
|
|
263
|
+
block_n = 128
|
|
264
|
+
block_k = 128
|
|
186
265
|
|
|
187
266
|
assert A.shape[-1] == B.shape[-1]
|
|
188
267
|
|
|
189
|
-
|
|
190
|
-
|
|
268
|
+
if As.numel() != 1:
|
|
269
|
+
assert A.shape[:-1] == As.shape[:-1] and A.is_contiguous()
|
|
270
|
+
assert triton.cdiv(A.shape[-1], block_k) == As.shape[-1]
|
|
271
|
+
|
|
191
272
|
M = A.numel() // A.shape[-1]
|
|
192
273
|
|
|
193
|
-
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
|
|
194
274
|
N, K = B.shape
|
|
195
|
-
assert
|
|
196
|
-
|
|
275
|
+
assert B.ndim == 2 and B.is_contiguous()
|
|
276
|
+
if Bs.numel() != 1:
|
|
277
|
+
assert Bs.ndim == 2
|
|
278
|
+
assert triton.cdiv(N, block_n) == Bs.shape[0], f"{N}, {block_n}, {Bs.shape}"
|
|
279
|
+
assert triton.cdiv(K, block_k) == Bs.shape[1], f"{K}, {block_k}, {Bs.shape}"
|
|
197
280
|
|
|
198
281
|
C_shape = A.shape[:-1] + (N,)
|
|
199
282
|
C = A.new_empty(C_shape, dtype=output_dtype)
|
|
@@ -209,32 +292,56 @@ def w8a8_block_fp8_matmul_triton(
|
|
|
209
292
|
def grid(META):
|
|
210
293
|
return (triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]),)
|
|
211
294
|
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
295
|
+
if As.numel() == 1 and Bs.numel() == 1:
|
|
296
|
+
_w8a8_block_fp8_matmul_per_tensor[grid](
|
|
297
|
+
A,
|
|
298
|
+
B,
|
|
299
|
+
C,
|
|
300
|
+
As,
|
|
301
|
+
Bs,
|
|
302
|
+
M,
|
|
303
|
+
N,
|
|
304
|
+
K,
|
|
305
|
+
block_n,
|
|
306
|
+
block_k,
|
|
307
|
+
A.stride(-2),
|
|
308
|
+
A.stride(-1),
|
|
309
|
+
B.stride(1),
|
|
310
|
+
B.stride(0),
|
|
311
|
+
C.stride(-2),
|
|
312
|
+
C.stride(-1),
|
|
313
|
+
BLOCK_SIZE_M=BLOCK_SIZE_M,
|
|
314
|
+
BLOCK_SIZE_N=BLOCK_SIZE_N,
|
|
315
|
+
BLOCK_SIZE_K=BLOCK_SIZE_K,
|
|
316
|
+
GROUP_SIZE_M=8,
|
|
317
|
+
)
|
|
318
|
+
else:
|
|
319
|
+
_w8a8_block_fp8_matmul[grid](
|
|
320
|
+
A,
|
|
321
|
+
B,
|
|
322
|
+
C,
|
|
323
|
+
As,
|
|
324
|
+
Bs,
|
|
325
|
+
M,
|
|
326
|
+
N,
|
|
327
|
+
K,
|
|
328
|
+
block_n,
|
|
329
|
+
block_k,
|
|
330
|
+
A.stride(-2),
|
|
331
|
+
A.stride(-1),
|
|
332
|
+
B.stride(1),
|
|
333
|
+
B.stride(0),
|
|
334
|
+
C.stride(-2),
|
|
335
|
+
C.stride(-1),
|
|
336
|
+
As.stride(-2),
|
|
337
|
+
As.stride(-1),
|
|
338
|
+
Bs.stride(1),
|
|
339
|
+
Bs.stride(0),
|
|
340
|
+
BLOCK_SIZE_M=BLOCK_SIZE_M,
|
|
341
|
+
BLOCK_SIZE_N=BLOCK_SIZE_N,
|
|
342
|
+
BLOCK_SIZE_K=BLOCK_SIZE_K,
|
|
343
|
+
GROUP_SIZE_M=8,
|
|
344
|
+
)
|
|
238
345
|
|
|
239
346
|
return C
|
|
240
347
|
|
|
@@ -307,44 +414,34 @@ def w8a8_block_fp8_matmul_compile(
|
|
|
307
414
|
|
|
308
415
|
|
|
309
416
|
class FP8Linear(nn.Linear):
|
|
310
|
-
dtype = torch.float8_e4m3fn
|
|
311
|
-
|
|
312
417
|
def __init__(
|
|
313
418
|
self,
|
|
314
419
|
in_features: int,
|
|
315
420
|
out_features: int,
|
|
316
421
|
bias: bool = False,
|
|
317
|
-
dtype=
|
|
422
|
+
dtype=torch.float8_e4m3fn,
|
|
318
423
|
block_size: tuple[int, int] | None = None,
|
|
319
|
-
device=None,
|
|
320
424
|
activation_scheme="dynamic",
|
|
321
425
|
):
|
|
322
426
|
super().__init__(in_features, out_features)
|
|
323
|
-
self.in_features = in_features
|
|
324
|
-
self.out_features = out_features
|
|
325
427
|
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
self.block_size = (out_features, in_features)
|
|
428
|
+
# If block size is None, it means that we are doing per-tensor quantization
|
|
429
|
+
self.block_size = block_size
|
|
430
|
+
self.activation_scheme = activation_scheme
|
|
330
431
|
|
|
331
|
-
self.weight = torch.nn.Parameter(torch.empty(out_features, in_features, dtype=
|
|
432
|
+
self.weight = torch.nn.Parameter(torch.empty(out_features, in_features, dtype=dtype))
|
|
332
433
|
|
|
333
|
-
if self.
|
|
434
|
+
if self.block_size is None:
|
|
435
|
+
self.weight_scale_inv = nn.Parameter(torch.tensor(1.0, dtype=torch.float32))
|
|
436
|
+
else:
|
|
334
437
|
scale_out_features = (out_features + self.block_size[0] - 1) // self.block_size[0]
|
|
335
438
|
scale_in_features = (in_features + self.block_size[1] - 1) // self.block_size[1]
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
self.weight_scale_inv = nn.Parameter(
|
|
340
|
-
torch.empty(scale_out_features, scale_in_features, dtype=torch.float32, device=device)
|
|
341
|
-
)
|
|
342
|
-
else:
|
|
343
|
-
self.register_parameter("weight_scale_inv", None)
|
|
344
|
-
self.activation_scheme = activation_scheme
|
|
439
|
+
self.weight_scale_inv = nn.Parameter(
|
|
440
|
+
torch.empty(scale_out_features, scale_in_features, dtype=torch.float32)
|
|
441
|
+
)
|
|
345
442
|
|
|
346
443
|
if self.activation_scheme == "static":
|
|
347
|
-
self.activation_scale = nn.Parameter(torch.tensor(1.0, dtype=torch.float32
|
|
444
|
+
self.activation_scale = nn.Parameter(torch.tensor(1.0, dtype=torch.float32))
|
|
348
445
|
|
|
349
446
|
if bias:
|
|
350
447
|
self.bias = nn.Parameter(torch.empty(self.out_features))
|
|
@@ -368,30 +465,28 @@ class FP8Linear(nn.Linear):
|
|
|
368
465
|
if self.activation_scheme == "dynamic":
|
|
369
466
|
qinput, scale = act_quant(input, self.block_size[1])
|
|
370
467
|
elif self.activation_scheme == "static":
|
|
371
|
-
scale = self.activation_scale
|
|
372
|
-
qinput = (input / scale).to(torch.float8_e4m3fn)
|
|
468
|
+
scale = self.activation_scale.to(torch.float32)
|
|
469
|
+
qinput = (input / scale).clamp(min=_FP8_MIN, max=_FP8_MAX).to(torch.float8_e4m3fn)
|
|
470
|
+
|
|
373
471
|
else:
|
|
374
472
|
raise NotImplementedError("Not supported")
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
scale_inv,
|
|
385
|
-
self.block_size,
|
|
386
|
-
output_dtype=input.dtype,
|
|
387
|
-
)
|
|
473
|
+
|
|
474
|
+
output = w8a8_block_fp8_matmul_triton(
|
|
475
|
+
qinput,
|
|
476
|
+
weight,
|
|
477
|
+
scale,
|
|
478
|
+
scale_inv,
|
|
479
|
+
self.block_size,
|
|
480
|
+
output_dtype=input.dtype,
|
|
481
|
+
)
|
|
388
482
|
|
|
389
483
|
# Blocks the CPU until all accelerator operations on the specified device are complete. It is used to ensure that the results of the
|
|
390
484
|
# preceding operations are ready before proceeding
|
|
391
485
|
torch_accelerator_module.synchronize()
|
|
392
486
|
if self.bias is not None:
|
|
393
487
|
output = output + self.bias
|
|
394
|
-
|
|
488
|
+
|
|
489
|
+
# output = torch.nan_to_num(output, nan=0.0)
|
|
395
490
|
return output.to(dtype=input.dtype)
|
|
396
491
|
|
|
397
492
|
|
|
@@ -400,9 +495,7 @@ def _ceil_div(a, b):
|
|
|
400
495
|
|
|
401
496
|
|
|
402
497
|
class FP8Expert(nn.Module):
|
|
403
|
-
dtype
|
|
404
|
-
|
|
405
|
-
def __init__(self, config, block_size, device):
|
|
498
|
+
def __init__(self, config, block_size, dtype=torch.float8_e4m3fn):
|
|
406
499
|
super().__init__()
|
|
407
500
|
|
|
408
501
|
from ..activations import ACT2FN
|
|
@@ -415,34 +508,24 @@ class FP8Expert(nn.Module):
|
|
|
415
508
|
Wg_out, Wg_in = 2 * self.intermediate_dim, self.hidden_dim
|
|
416
509
|
Wd_out, Wd_in = self.hidden_dim, self.intermediate_dim
|
|
417
510
|
|
|
418
|
-
self.gate_up_proj = nn.Parameter(
|
|
419
|
-
|
|
420
|
-
)
|
|
421
|
-
self.down_proj = nn.Parameter(
|
|
422
|
-
torch.zeros(self.num_experts, Wd_out, Wd_in, dtype=FP8Expert.dtype, device=device)
|
|
423
|
-
)
|
|
511
|
+
self.gate_up_proj = nn.Parameter(torch.zeros(self.num_experts, Wg_out, Wg_in, dtype=dtype))
|
|
512
|
+
self.down_proj = nn.Parameter(torch.zeros(self.num_experts, Wd_out, Wd_in, dtype=dtype))
|
|
424
513
|
|
|
425
|
-
|
|
426
|
-
if self.gate_up_proj.element_size() == 1:
|
|
427
|
-
bo, bi = self.block_size
|
|
514
|
+
bo, bi = self.block_size
|
|
428
515
|
|
|
429
|
-
|
|
430
|
-
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
|
|
434
|
-
|
|
516
|
+
# gate_up tiles: ceil(Wg_out/bo) x ceil(Wg_in/bi)
|
|
517
|
+
gu_scale_o = _ceil_div(Wg_out, bo)
|
|
518
|
+
gu_scale_i = _ceil_div(Wg_in, bi)
|
|
519
|
+
self.gate_up_proj_scale_inv = nn.Parameter(
|
|
520
|
+
torch.zeros(self.num_experts, gu_scale_o, gu_scale_i, dtype=torch.float32)
|
|
521
|
+
)
|
|
435
522
|
|
|
436
|
-
|
|
437
|
-
|
|
438
|
-
|
|
439
|
-
|
|
440
|
-
|
|
441
|
-
|
|
442
|
-
else:
|
|
443
|
-
# Match FP8Linear behavior when not using 1-byte weights
|
|
444
|
-
self.register_parameter("gate_up_proj_scale_inv", None)
|
|
445
|
-
self.register_parameter("down_proj_scale_inv", None)
|
|
523
|
+
# down tiles: ceil(Wd_out/bo) x ceil(Wd_in/bi)
|
|
524
|
+
dp_scale_o = _ceil_div(Wd_out, bo)
|
|
525
|
+
dp_scale_i = _ceil_div(Wd_in, bi)
|
|
526
|
+
self.down_proj_scale_inv = nn.Parameter(
|
|
527
|
+
torch.zeros(self.num_experts, dp_scale_o, dp_scale_i, dtype=torch.float32)
|
|
528
|
+
)
|
|
446
529
|
|
|
447
530
|
# (Optional) bias per projection — many MoEs omit bias; keep None to match your FP8Linear default
|
|
448
531
|
self.register_parameter("gate_up_bias", None)
|
|
@@ -508,90 +591,56 @@ class FP8Expert(nn.Module):
|
|
|
508
591
|
return output.to(dtype=input.dtype)
|
|
509
592
|
|
|
510
593
|
|
|
511
|
-
# TODO: we do need this.... but not recursive...
|
|
512
|
-
def _replace_with_fp8_linear(
|
|
513
|
-
model,
|
|
514
|
-
tp_plan=None,
|
|
515
|
-
modules_to_not_convert=None,
|
|
516
|
-
current_key_name=None,
|
|
517
|
-
quantization_config=None,
|
|
518
|
-
has_been_replaced=False,
|
|
519
|
-
):
|
|
520
|
-
iterator = list(model.named_parameters()).copy()
|
|
521
|
-
for name, empty_tensor in iterator:
|
|
522
|
-
current_key_name = name
|
|
523
|
-
name = name.rsplit(".", 1)[0] if "." in name else name
|
|
524
|
-
module = model.get_submodule(name)
|
|
525
|
-
|
|
526
|
-
current_key_name_str = re.sub(r"\d+", "*", current_key_name)
|
|
527
|
-
if not any(key in current_key_name_str for key in (modules_to_not_convert or [])):
|
|
528
|
-
with init_empty_weights():
|
|
529
|
-
if (
|
|
530
|
-
"gate_up_proj" in current_key_name
|
|
531
|
-
or "down_proj" in current_key_name
|
|
532
|
-
and "experts" in current_key_name
|
|
533
|
-
): # Experts!
|
|
534
|
-
in_features = empty_tensor.size(-2)
|
|
535
|
-
out_features = empty_tensor.size(-1)
|
|
536
|
-
model.set_submodule(
|
|
537
|
-
name,
|
|
538
|
-
FP8Expert(
|
|
539
|
-
config=model.config,
|
|
540
|
-
block_size=quantization_config.weight_block_size,
|
|
541
|
-
device=empty_tensor.device,
|
|
542
|
-
),
|
|
543
|
-
)
|
|
544
|
-
|
|
545
|
-
elif isinstance(module, nn.Linear):
|
|
546
|
-
in_features = module.in_features
|
|
547
|
-
out_features = module.out_features
|
|
548
|
-
model.set_submodule(
|
|
549
|
-
name,
|
|
550
|
-
FP8Linear(
|
|
551
|
-
in_features=in_features,
|
|
552
|
-
out_features=out_features,
|
|
553
|
-
bias=module.bias is not None,
|
|
554
|
-
device=module.weight.device,
|
|
555
|
-
dtype=module.weight.dtype,
|
|
556
|
-
activation_scheme=quantization_config.activation_scheme,
|
|
557
|
-
block_size=quantization_config.weight_block_size,
|
|
558
|
-
),
|
|
559
|
-
)
|
|
560
|
-
has_been_replaced = True
|
|
561
|
-
# when changing a layer the TP PLAN for that layer should be updated. TODO
|
|
562
|
-
|
|
563
|
-
return model, has_been_replaced
|
|
564
|
-
|
|
565
|
-
|
|
566
594
|
def replace_with_fp8_linear(
|
|
567
|
-
model,
|
|
568
|
-
modules_to_not_convert=None,
|
|
569
|
-
quantization_config=None,
|
|
595
|
+
model, modules_to_not_convert: list[str] | None = None, quantization_config=None, pre_quantized=False
|
|
570
596
|
):
|
|
571
|
-
"""
|
|
597
|
+
"""
|
|
598
|
+
A helper function to replace all `torch.nn.Linear` modules by `FP8Linear` modules.
|
|
599
|
+
|
|
600
|
+
Parameters:
|
|
601
|
+
model (`torch.nn.Module`):
|
|
602
|
+
Input model or `torch.nn.Module` as the function is run recursively.
|
|
603
|
+
modules_to_not_convert (`list[`str`]`, *optional*, defaults to `None`):
|
|
604
|
+
Names of the modules to not convert. In practice we keep the `lm_head` in full precision for numerical stability reasons.
|
|
605
|
+
quantization_config (`FbgemmFp8Config`):
|
|
606
|
+
The quantization config object that contains the quantization parameters.
|
|
607
|
+
pre_quantized (`book`, defaults to `False`):
|
|
608
|
+
Whether the model is pre-quantized or not
|
|
609
|
+
"""
|
|
610
|
+
|
|
572
611
|
if quantization_config.dequantize:
|
|
573
612
|
return model
|
|
574
613
|
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
|
|
578
|
-
|
|
579
|
-
|
|
580
|
-
|
|
581
|
-
|
|
582
|
-
|
|
583
|
-
|
|
584
|
-
|
|
585
|
-
|
|
586
|
-
|
|
587
|
-
|
|
614
|
+
has_been_replaced = False
|
|
615
|
+
for module_name, module in model.named_modules():
|
|
616
|
+
if not should_convert_module(module_name, modules_to_not_convert):
|
|
617
|
+
continue
|
|
618
|
+
# we need this to correctly materialize the weights during quantization
|
|
619
|
+
module_kwargs = {} if pre_quantized else {"dtype": None}
|
|
620
|
+
new_module = None
|
|
621
|
+
with init_empty_weights():
|
|
622
|
+
if module_name.endswith(".experts"):
|
|
623
|
+
new_module = FP8Expert(
|
|
624
|
+
config=model.config, block_size=quantization_config.weight_block_size, **module_kwargs
|
|
625
|
+
)
|
|
626
|
+
elif isinstance(module, nn.Linear):
|
|
627
|
+
new_module = FP8Linear(
|
|
628
|
+
in_features=module.in_features,
|
|
629
|
+
out_features=module.out_features,
|
|
630
|
+
bias=module.bias is not None,
|
|
631
|
+
activation_scheme=quantization_config.activation_scheme,
|
|
632
|
+
block_size=quantization_config.weight_block_size,
|
|
633
|
+
**module_kwargs,
|
|
634
|
+
)
|
|
635
|
+
if new_module is not None:
|
|
636
|
+
model.set_submodule(module_name, new_module)
|
|
637
|
+
has_been_replaced = True
|
|
588
638
|
|
|
589
639
|
if not has_been_replaced:
|
|
590
640
|
logger.warning(
|
|
591
641
|
"You are loading your model using fp8 but no linear modules were found in your model."
|
|
592
642
|
" Please double check your model architecture."
|
|
593
643
|
)
|
|
594
|
-
|
|
595
644
|
return model
|
|
596
645
|
|
|
597
646
|
|
|
@@ -606,7 +655,7 @@ class Fp8Quantize(ConversionOps):
|
|
|
606
655
|
def convert(self, input_dict: torch.Tensor, **kwargs) -> dict[str, torch.Tensor]:
|
|
607
656
|
# Unpack single key/value (value may be wrapped in a list)
|
|
608
657
|
target_keys, value = tuple(input_dict.items())[0]
|
|
609
|
-
value = value[0]
|
|
658
|
+
value = value[0]
|
|
610
659
|
|
|
611
660
|
# Resolve block size (support dict-like or attr-like quant_config)
|
|
612
661
|
block_size = None
|
|
@@ -681,36 +730,30 @@ class Fp8Dequantize(ConversionOps):
|
|
|
681
730
|
def convert(
|
|
682
731
|
self,
|
|
683
732
|
input_dict: dict[str, torch.Tensor],
|
|
684
|
-
model: Optional[torch.nn.Module] = None,
|
|
685
733
|
full_layer_name: str | None = None,
|
|
686
|
-
missing_keys=None,
|
|
687
734
|
**kwargs,
|
|
688
735
|
) -> dict[str, torch.Tensor]:
|
|
689
|
-
if len(input_dict)
|
|
690
|
-
#
|
|
691
|
-
return {
|
|
692
|
-
|
|
693
|
-
|
|
694
|
-
|
|
695
|
-
}
|
|
696
|
-
quantized = input_dict["weight$"][0] if isinstance(input_dict["weight$"], list) else input_dict["weight$"]
|
|
697
|
-
scales = (
|
|
698
|
-
input_dict["weight_scale_inv"][0]
|
|
699
|
-
if isinstance(input_dict["weight_scale_inv"], list)
|
|
700
|
-
else input_dict["weight_scale_inv"]
|
|
701
|
-
)
|
|
736
|
+
if len(input_dict) < 2:
|
|
737
|
+
# case where we only got weights, need to check for "weight$"
|
|
738
|
+
return {full_layer_name: input_dict["weight$"]}
|
|
739
|
+
|
|
740
|
+
quantized = input_dict["weight$"][0]
|
|
741
|
+
scales = input_dict["weight_scale_inv"][0]
|
|
702
742
|
|
|
703
743
|
rows, cols = quantized.shape[-2:]
|
|
704
744
|
block_size = self.hf_quantizer.quantization_config.weight_block_size
|
|
745
|
+
if block_size is None:
|
|
746
|
+
block_size = (quantized.shape[-2], quantized.shape[-1])
|
|
705
747
|
|
|
706
748
|
block_m, block_n = block_size
|
|
749
|
+
|
|
707
750
|
if rows % block_m != 0 or cols % block_n != 0:
|
|
708
751
|
raise ValueError(
|
|
709
752
|
f"Matrix dimensions ({rows}, {cols}) must be divisible by block sizes ({block_m}, {block_n})."
|
|
710
753
|
)
|
|
711
|
-
|
|
754
|
+
quantized = quantized.to(scales.dtype)
|
|
712
755
|
reshaped = quantized.reshape(-1, rows // block_m, block_m, cols // block_n, block_n)
|
|
713
|
-
expanded_scales = scales.
|
|
756
|
+
expanded_scales = scales.reshape(-1, rows // block_m, cols // block_n)
|
|
714
757
|
expanded_scales = expanded_scales.unsqueeze(-1).unsqueeze(2)
|
|
715
758
|
dequantized = reshaped * expanded_scales
|
|
716
759
|
|
|
@@ -13,6 +13,10 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
"FP-Quant integration file"
|
|
15
15
|
|
|
16
|
+
from typing import Optional
|
|
17
|
+
|
|
18
|
+
import torch
|
|
19
|
+
|
|
16
20
|
from ..utils import (
|
|
17
21
|
is_fp_quant_available,
|
|
18
22
|
)
|
|
@@ -24,6 +28,94 @@ if is_fp_quant_available():
|
|
|
24
28
|
|
|
25
29
|
from transformers.utils.quantization_config import FPQuantConfig
|
|
26
30
|
|
|
31
|
+
from ..core_model_loading import ConversionOps
|
|
32
|
+
from ..quantizers.quantizers_utils import get_module_from_name
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class FpQuantQuantize(ConversionOps):
|
|
36
|
+
def __init__(self, hf_quantizer):
|
|
37
|
+
self.hf_quantizer = hf_quantizer
|
|
38
|
+
|
|
39
|
+
def convert(
|
|
40
|
+
self,
|
|
41
|
+
input_dict: torch.Tensor,
|
|
42
|
+
model: Optional[torch.nn.Module] = None,
|
|
43
|
+
missing_keys: Optional[list[str]] = None,
|
|
44
|
+
**kwargs,
|
|
45
|
+
) -> dict[str, torch.Tensor]:
|
|
46
|
+
target_key, value = tuple(input_dict.items())[0]
|
|
47
|
+
value = value[0]
|
|
48
|
+
# Loading master weights or an unquantized checkpoint
|
|
49
|
+
weight = torch.nn.Parameter(value)
|
|
50
|
+
module, _ = get_module_from_name(model, target_key)
|
|
51
|
+
module.weight = weight
|
|
52
|
+
|
|
53
|
+
# Let pre-forward handle the quantization and set None where necessary
|
|
54
|
+
# This operation will quantize the weights internally
|
|
55
|
+
with torch.cuda.device(value.device):
|
|
56
|
+
module.pre_forward()
|
|
57
|
+
|
|
58
|
+
prefix_target_key = target_key.rsplit(".", 1)[0]
|
|
59
|
+
|
|
60
|
+
# keys are set inside the module.pre_forward() method, we don't need remove them from the missing keys list
|
|
61
|
+
missing_keys.discard(target_key)
|
|
62
|
+
missing_keys.discard(f"{prefix_target_key}.backward_hadamard_matrix")
|
|
63
|
+
missing_keys.discard(f"{prefix_target_key}.forward_hadamard_matrix")
|
|
64
|
+
missing_keys.discard(f"{prefix_target_key}.act_global_scale")
|
|
65
|
+
missing_keys.discard(f"{prefix_target_key}.weight_global_scale")
|
|
66
|
+
missing_keys.discard(f"{prefix_target_key}.qweight")
|
|
67
|
+
missing_keys.discard(f"{prefix_target_key}.scales")
|
|
68
|
+
missing_keys.discard(f"{prefix_target_key}.dqweight")
|
|
69
|
+
return {}
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class FpQuantDeserialize(ConversionOps):
|
|
73
|
+
def __init__(self, hf_quantizer):
|
|
74
|
+
self.hf_quantizer = hf_quantizer
|
|
75
|
+
|
|
76
|
+
def convert(
|
|
77
|
+
self,
|
|
78
|
+
input_dict: torch.Tensor,
|
|
79
|
+
model: Optional[torch.nn.Module] = None,
|
|
80
|
+
full_layer_name: str | None = None,
|
|
81
|
+
missing_keys: Optional[list[str]] = None,
|
|
82
|
+
**kwargs,
|
|
83
|
+
) -> dict[str, torch.Tensor]:
|
|
84
|
+
target_key, value = tuple(input_dict.items())[0]
|
|
85
|
+
value = value[0] if isinstance(value, list) else value
|
|
86
|
+
module, _ = get_module_from_name(model, target_key)
|
|
87
|
+
# The module holds either:
|
|
88
|
+
# * `weight` when `store_master_weights=True`
|
|
89
|
+
# * `qweight` and `scales` when `store_master_weights=False` and `pseudoquantization=False`
|
|
90
|
+
# * `dqweight` when `store_master_weights=False` and `pseudoquantization=True`
|
|
91
|
+
if target_key == ".qweight":
|
|
92
|
+
# Loading a real quantized checkpoint without master weights
|
|
93
|
+
qweight = torch.nn.Parameter(
|
|
94
|
+
value,
|
|
95
|
+
requires_grad=False,
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
return {
|
|
99
|
+
".qweight": qweight,
|
|
100
|
+
# the way the FPQuantLinear module is designed, these parameters are expected in the model
|
|
101
|
+
# even though they are not used so we need to set them to zeros
|
|
102
|
+
".weight": torch.nn.Parameter(torch.zeros(0)),
|
|
103
|
+
".dqweight": torch.nn.Parameter(torch.zeros(0)),
|
|
104
|
+
}
|
|
105
|
+
|
|
106
|
+
if target_key == ".dqweight":
|
|
107
|
+
# Loading a pseudo-quantized checkpoint without master weights
|
|
108
|
+
dqweight = torch.nn.Parameter(value)
|
|
109
|
+
|
|
110
|
+
return {
|
|
111
|
+
".dqweight": dqweight,
|
|
112
|
+
# the way the FPQuantLinear module ips designed, these parameters are expected in the model
|
|
113
|
+
# even though they are not used so we need to set them to zeros
|
|
114
|
+
".weight": torch.nn.Parameter(torch.zeros(0)),
|
|
115
|
+
".qweight": torch.nn.Parameter(torch.zeros(0)),
|
|
116
|
+
".scales": torch.nn.Parameter(torch.zeros(0)),
|
|
117
|
+
}
|
|
118
|
+
|
|
27
119
|
|
|
28
120
|
def adapt_fp_quant_config(config: FPQuantConfig):
|
|
29
121
|
if config.forward_dtype == "mxfp4":
|