transformers 5.0.0rc0__py3-none-any.whl → 5.0.0rc1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (539) hide show
  1. transformers/__init__.py +30 -3
  2. transformers/cli/serve.py +47 -17
  3. transformers/conversion_mapping.py +15 -2
  4. transformers/convert_slow_tokenizer.py +225 -10
  5. transformers/core_model_loading.py +196 -135
  6. transformers/data/data_collator.py +12 -4
  7. transformers/dependency_versions_table.py +1 -2
  8. transformers/dynamic_module_utils.py +1 -2
  9. transformers/feature_extraction_utils.py +1 -2
  10. transformers/file_utils.py +0 -1
  11. transformers/generation/__init__.py +11 -1
  12. transformers/generation/configuration_utils.py +3 -2
  13. transformers/generation/continuous_batching/__init__.py +4 -0
  14. transformers/generation/continuous_batching/continuous_api.py +134 -79
  15. transformers/image_processing_base.py +1 -2
  16. transformers/integrations/__init__.py +4 -2
  17. transformers/integrations/accelerate.py +15 -3
  18. transformers/integrations/aqlm.py +38 -66
  19. transformers/integrations/awq.py +48 -514
  20. transformers/integrations/bitnet.py +45 -100
  21. transformers/integrations/bitsandbytes.py +79 -191
  22. transformers/integrations/deepspeed.py +1 -0
  23. transformers/integrations/eetq.py +84 -79
  24. transformers/integrations/fbgemm_fp8.py +191 -145
  25. transformers/integrations/finegrained_fp8.py +236 -193
  26. transformers/integrations/fp_quant.py +92 -0
  27. transformers/integrations/ggml.py +11 -1
  28. transformers/integrations/higgs.py +40 -62
  29. transformers/integrations/hub_kernels.py +42 -3
  30. transformers/integrations/integration_utils.py +10 -0
  31. transformers/integrations/mxfp4.py +25 -65
  32. transformers/integrations/peft.py +7 -29
  33. transformers/integrations/quanto.py +73 -55
  34. transformers/integrations/quark.py +55 -0
  35. transformers/integrations/spqr.py +44 -90
  36. transformers/integrations/torchao.py +32 -38
  37. transformers/integrations/vptq.py +42 -59
  38. transformers/modelcard.py +1 -2
  39. transformers/modeling_gguf_pytorch_utils.py +8 -0
  40. transformers/modeling_rope_utils.py +30 -6
  41. transformers/modeling_utils.py +116 -112
  42. transformers/models/__init__.py +3 -0
  43. transformers/models/afmoe/modeling_afmoe.py +4 -4
  44. transformers/models/albert/tokenization_albert.py +6 -12
  45. transformers/models/align/modeling_align.py +2 -0
  46. transformers/models/altclip/modeling_altclip.py +4 -0
  47. transformers/models/apertus/modeling_apertus.py +4 -4
  48. transformers/models/arcee/modeling_arcee.py +4 -4
  49. transformers/models/aria/modeling_aria.py +4 -4
  50. transformers/models/audioflamingo3/modeling_audioflamingo3.py +1 -0
  51. transformers/models/audioflamingo3/modular_audioflamingo3.py +1 -0
  52. transformers/models/auto/configuration_auto.py +11 -0
  53. transformers/models/auto/feature_extraction_auto.py +2 -0
  54. transformers/models/auto/image_processing_auto.py +1 -0
  55. transformers/models/auto/modeling_auto.py +6 -0
  56. transformers/models/auto/processing_auto.py +18 -10
  57. transformers/models/auto/tokenization_auto.py +74 -472
  58. transformers/models/autoformer/modeling_autoformer.py +4 -0
  59. transformers/models/bamba/modeling_bamba.py +4 -3
  60. transformers/models/bark/modeling_bark.py +2 -0
  61. transformers/models/bart/modeling_bart.py +7 -0
  62. transformers/models/barthez/tokenization_barthez.py +5 -10
  63. transformers/models/beit/modeling_beit.py +6 -1
  64. transformers/models/bert/tokenization_bert.py +8 -21
  65. transformers/models/big_bird/modeling_big_bird.py +6 -0
  66. transformers/models/big_bird/tokenization_big_bird.py +18 -42
  67. transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +8 -2
  68. transformers/models/biogpt/modeling_biogpt.py +2 -0
  69. transformers/models/biogpt/modular_biogpt.py +2 -0
  70. transformers/models/bit/modeling_bit.py +11 -2
  71. transformers/models/bitnet/modeling_bitnet.py +4 -4
  72. transformers/models/blenderbot/modeling_blenderbot.py +5 -0
  73. transformers/models/blenderbot/tokenization_blenderbot.py +12 -16
  74. transformers/models/blenderbot_small/modeling_blenderbot_small.py +5 -0
  75. transformers/models/blip/modeling_blip_text.py +2 -0
  76. transformers/models/blip_2/modeling_blip_2.py +2 -1
  77. transformers/models/bloom/modeling_bloom.py +4 -0
  78. transformers/models/blt/modeling_blt.py +2 -2
  79. transformers/models/blt/modular_blt.py +2 -2
  80. transformers/models/bridgetower/modeling_bridgetower.py +5 -1
  81. transformers/models/bros/modeling_bros.py +4 -0
  82. transformers/models/camembert/tokenization_camembert.py +8 -12
  83. transformers/models/canine/modeling_canine.py +5 -0
  84. transformers/models/chameleon/modeling_chameleon.py +2 -1
  85. transformers/models/chinese_clip/modeling_chinese_clip.py +3 -0
  86. transformers/models/clap/modeling_clap.py +5 -0
  87. transformers/models/clip/tokenization_clip.py +22 -44
  88. transformers/models/clipseg/modeling_clipseg.py +5 -0
  89. transformers/models/clvp/modeling_clvp.py +5 -0
  90. transformers/models/clvp/tokenization_clvp.py +1 -63
  91. transformers/models/code_llama/tokenization_code_llama.py +20 -43
  92. transformers/models/codegen/tokenization_codegen.py +14 -43
  93. transformers/models/cohere/modeling_cohere.py +4 -3
  94. transformers/models/cohere/modular_cohere.py +2 -1
  95. transformers/models/cohere/tokenization_cohere.py +12 -42
  96. transformers/models/cohere2/modeling_cohere2.py +7 -6
  97. transformers/models/cohere2/modular_cohere2.py +5 -5
  98. transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +4 -3
  99. transformers/models/cohere2_vision/modular_cohere2_vision.py +4 -3
  100. transformers/models/colqwen2/modeling_colqwen2.py +1 -0
  101. transformers/models/colqwen2/modular_colqwen2.py +1 -0
  102. transformers/models/conditional_detr/modeling_conditional_detr.py +5 -0
  103. transformers/models/convbert/modeling_convbert.py +6 -0
  104. transformers/models/convnext/modeling_convnext.py +2 -4
  105. transformers/models/convnextv2/modeling_convnextv2.py +2 -4
  106. transformers/models/csm/modeling_csm.py +4 -3
  107. transformers/models/ctrl/modeling_ctrl.py +1 -0
  108. transformers/models/cvt/modeling_cvt.py +2 -0
  109. transformers/models/cwm/modeling_cwm.py +4 -4
  110. transformers/models/d_fine/modeling_d_fine.py +2 -0
  111. transformers/models/d_fine/modular_d_fine.py +1 -0
  112. transformers/models/dab_detr/modeling_dab_detr.py +4 -0
  113. transformers/models/dac/modeling_dac.py +2 -2
  114. transformers/models/data2vec/modeling_data2vec_audio.py +5 -0
  115. transformers/models/data2vec/modeling_data2vec_vision.py +4 -1
  116. transformers/models/dbrx/modeling_dbrx.py +2 -2
  117. transformers/models/deberta/modeling_deberta.py +5 -0
  118. transformers/models/deberta/tokenization_deberta.py +11 -20
  119. transformers/models/deberta_v2/modeling_deberta_v2.py +6 -0
  120. transformers/models/deberta_v2/tokenization_deberta_v2.py +13 -28
  121. transformers/models/decision_transformer/modeling_decision_transformer.py +4 -1
  122. transformers/models/deepseek_v2/modeling_deepseek_v2.py +2 -3
  123. transformers/models/deepseek_v2/modular_deepseek_v2.py +2 -2
  124. transformers/models/deepseek_v3/modeling_deepseek_v3.py +3 -2
  125. transformers/models/deepseek_v3/modular_deepseek_v3.py +1 -0
  126. transformers/models/deformable_detr/modeling_deformable_detr.py +4 -0
  127. transformers/models/depth_anything/modeling_depth_anything.py +1 -0
  128. transformers/models/depth_pro/modeling_depth_pro.py +2 -0
  129. transformers/models/detr/modeling_detr.py +5 -0
  130. transformers/models/dia/modeling_dia.py +4 -3
  131. transformers/models/dia/modular_dia.py +0 -1
  132. transformers/models/diffllama/modeling_diffllama.py +2 -2
  133. transformers/models/dinat/modeling_dinat.py +3 -0
  134. transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +1 -1
  135. transformers/models/dinov3_vit/modeling_dinov3_vit.py +2 -2
  136. transformers/models/dinov3_vit/modular_dinov3_vit.py +2 -2
  137. transformers/models/distilbert/tokenization_distilbert.py +13 -0
  138. transformers/models/doge/modeling_doge.py +2 -3
  139. transformers/models/doge/modular_doge.py +0 -1
  140. transformers/models/donut/modeling_donut_swin.py +2 -0
  141. transformers/models/dots1/modeling_dots1.py +10 -7
  142. transformers/models/dots1/modular_dots1.py +5 -3
  143. transformers/models/dpr/modeling_dpr.py +5 -0
  144. transformers/models/dpr/tokenization_dpr.py +12 -0
  145. transformers/models/edgetam/modeling_edgetam.py +1 -1
  146. transformers/models/edgetam_video/modeling_edgetam_video.py +1 -0
  147. transformers/models/edgetam_video/modular_edgetam_video.py +1 -0
  148. transformers/models/efficientloftr/modeling_efficientloftr.py +2 -2
  149. transformers/models/efficientnet/modeling_efficientnet.py +2 -0
  150. transformers/models/emu3/modeling_emu3.py +4 -4
  151. transformers/models/eomt/image_processing_eomt.py +13 -1
  152. transformers/models/eomt/image_processing_eomt_fast.py +14 -2
  153. transformers/models/ernie4_5/modeling_ernie4_5.py +4 -4
  154. transformers/models/ernie4_5/modular_ernie4_5.py +2 -1
  155. transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +5 -5
  156. transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +2 -2
  157. transformers/models/esm/modeling_esmfold.py +5 -4
  158. transformers/models/evolla/modeling_evolla.py +4 -4
  159. transformers/models/exaone4/modeling_exaone4.py +2 -2
  160. transformers/models/exaone4/modular_exaone4.py +0 -1
  161. transformers/models/falcon/modeling_falcon.py +6 -1
  162. transformers/models/falcon_h1/modeling_falcon_h1.py +4 -3
  163. transformers/models/falcon_mamba/modeling_falcon_mamba.py +25 -35
  164. transformers/models/falcon_mamba/modular_falcon_mamba.py +12 -31
  165. transformers/{kernels/falcon_mamba → models/fast_vlm}/__init__.py +15 -3
  166. transformers/models/fast_vlm/configuration_fast_vlm.py +137 -0
  167. transformers/models/fast_vlm/modeling_fast_vlm.py +455 -0
  168. transformers/models/fast_vlm/modular_fast_vlm.py +273 -0
  169. transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +8 -3
  170. transformers/models/flaubert/modeling_flaubert.py +7 -0
  171. transformers/models/flava/modeling_flava.py +6 -1
  172. transformers/models/flex_olmo/modeling_flex_olmo.py +4 -5
  173. transformers/models/florence2/modeling_florence2.py +2 -1
  174. transformers/models/florence2/modular_florence2.py +2 -1
  175. transformers/models/fnet/modeling_fnet.py +7 -0
  176. transformers/models/focalnet/modeling_focalnet.py +4 -0
  177. transformers/models/fsmt/modeling_fsmt.py +2 -0
  178. transformers/models/funnel/modeling_funnel.py +8 -0
  179. transformers/models/funnel/tokenization_funnel.py +17 -24
  180. transformers/models/fuyu/processing_fuyu.py +3 -3
  181. transformers/models/gemma/modeling_gemma.py +4 -4
  182. transformers/models/gemma/tokenization_gemma.py +10 -27
  183. transformers/models/gemma2/modeling_gemma2.py +4 -4
  184. transformers/models/gemma2/modular_gemma2.py +2 -1
  185. transformers/models/gemma3/modeling_gemma3.py +14 -84
  186. transformers/models/gemma3/modular_gemma3.py +12 -81
  187. transformers/models/gemma3n/modeling_gemma3n.py +18 -209
  188. transformers/models/gemma3n/modular_gemma3n.py +17 -59
  189. transformers/models/git/modeling_git.py +2 -0
  190. transformers/models/glm/modeling_glm.py +4 -4
  191. transformers/models/glm4/modeling_glm4.py +4 -4
  192. transformers/models/glm4_moe/modeling_glm4_moe.py +5 -3
  193. transformers/models/glm4v/configuration_glm4v.py +3 -1
  194. transformers/models/glm4v/modeling_glm4v.py +3 -3
  195. transformers/models/glm4v/modular_glm4v.py +6 -4
  196. transformers/models/glm4v_moe/configuration_glm4v_moe.py +3 -1
  197. transformers/models/glm4v_moe/modeling_glm4v_moe.py +6 -5
  198. transformers/models/glm4v_moe/modular_glm4v_moe.py +1 -1
  199. transformers/models/glpn/modeling_glpn.py +2 -0
  200. transformers/models/gpt2/modeling_gpt2.py +5 -1
  201. transformers/models/gpt2/tokenization_gpt2.py +16 -44
  202. transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +1 -0
  203. transformers/models/gpt_neo/modeling_gpt_neo.py +4 -0
  204. transformers/models/gpt_neox/modeling_gpt_neox.py +5 -2
  205. transformers/models/gpt_neox/modular_gpt_neox.py +3 -0
  206. transformers/models/gpt_neox/tokenization_gpt_neox.py +10 -49
  207. transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +3 -1
  208. transformers/models/gpt_oss/modeling_gpt_oss.py +5 -6
  209. transformers/models/gpt_oss/modular_gpt_oss.py +3 -5
  210. transformers/models/gptj/modeling_gptj.py +3 -0
  211. transformers/models/granite/modeling_granite.py +4 -4
  212. transformers/models/granitemoe/modeling_granitemoe.py +4 -6
  213. transformers/models/granitemoe/modular_granitemoe.py +0 -2
  214. transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +4 -6
  215. transformers/models/granitemoeshared/modeling_granitemoeshared.py +4 -6
  216. transformers/models/grounding_dino/modeling_grounding_dino.py +4 -0
  217. transformers/models/groupvit/modeling_groupvit.py +3 -0
  218. transformers/models/helium/modeling_helium.py +4 -3
  219. transformers/models/herbert/tokenization_herbert.py +9 -25
  220. transformers/models/hgnet_v2/modeling_hgnet_v2.py +6 -1
  221. transformers/models/hgnet_v2/modular_hgnet_v2.py +6 -1
  222. transformers/models/hiera/modeling_hiera.py +4 -0
  223. transformers/models/hubert/modeling_hubert.py +3 -0
  224. transformers/models/hubert/modular_hubert.py +1 -0
  225. transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +4 -4
  226. transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +4 -4
  227. transformers/models/ibert/modeling_ibert.py +6 -0
  228. transformers/models/idefics/modeling_idefics.py +5 -21
  229. transformers/models/imagegpt/modeling_imagegpt.py +2 -1
  230. transformers/models/informer/modeling_informer.py +4 -0
  231. transformers/models/informer/modular_informer.py +1 -0
  232. transformers/models/internvl/modeling_internvl.py +2 -4
  233. transformers/models/internvl/modular_internvl.py +2 -4
  234. transformers/models/jamba/modeling_jamba.py +2 -2
  235. transformers/models/janus/modeling_janus.py +1 -0
  236. transformers/models/janus/modular_janus.py +1 -0
  237. transformers/models/jetmoe/modeling_jetmoe.py +2 -2
  238. transformers/models/kosmos2/modeling_kosmos2.py +1 -0
  239. transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +3 -1
  240. transformers/models/lasr/__init__.py +29 -0
  241. transformers/models/lasr/configuration_lasr.py +244 -0
  242. transformers/models/lasr/feature_extraction_lasr.py +277 -0
  243. transformers/models/lasr/modeling_lasr.py +729 -0
  244. transformers/models/lasr/modular_lasr.py +569 -0
  245. transformers/models/lasr/processing_lasr.py +96 -0
  246. transformers/models/lasr/tokenization_lasr.py +186 -0
  247. transformers/models/layoutlm/modeling_layoutlm.py +5 -0
  248. transformers/models/layoutlmv2/modeling_layoutlmv2.py +4 -0
  249. transformers/models/layoutlmv2/tokenization_layoutlmv2.py +10 -53
  250. transformers/models/layoutlmv3/modeling_layoutlmv3.py +4 -0
  251. transformers/models/layoutlmv3/tokenization_layoutlmv3.py +12 -61
  252. transformers/models/layoutxlm/tokenization_layoutxlm.py +13 -38
  253. transformers/models/led/modeling_led.py +6 -0
  254. transformers/models/levit/modeling_levit.py +3 -0
  255. transformers/models/lfm2/modeling_lfm2.py +4 -5
  256. transformers/models/lfm2/modular_lfm2.py +0 -1
  257. transformers/models/lfm2_moe/modeling_lfm2_moe.py +4 -5
  258. transformers/models/lightglue/modeling_lightglue.py +3 -1
  259. transformers/models/lightglue/modular_lightglue.py +1 -0
  260. transformers/models/lilt/modeling_lilt.py +4 -0
  261. transformers/models/llama/modeling_llama.py +4 -4
  262. transformers/models/llama/tokenization_llama.py +15 -43
  263. transformers/models/llama4/modeling_llama4.py +3 -2
  264. transformers/models/longcat_flash/modeling_longcat_flash.py +4 -4
  265. transformers/models/longcat_flash/modular_longcat_flash.py +2 -2
  266. transformers/models/longformer/modeling_longformer.py +6 -0
  267. transformers/models/longt5/modeling_longt5.py +4 -0
  268. transformers/models/luke/modeling_luke.py +9 -0
  269. transformers/models/luke/tokenization_luke.py +11 -38
  270. transformers/models/lxmert/modeling_lxmert.py +2 -0
  271. transformers/models/m2m_100/modeling_m2m_100.py +4 -0
  272. transformers/models/mamba/modeling_mamba.py +14 -22
  273. transformers/models/marian/modeling_marian.py +5 -0
  274. transformers/models/markuplm/modeling_markuplm.py +4 -0
  275. transformers/models/markuplm/tokenization_markuplm.py +28 -61
  276. transformers/models/mask2former/modeling_mask2former.py +2 -0
  277. transformers/models/maskformer/modeling_maskformer.py +2 -0
  278. transformers/models/maskformer/modeling_maskformer_swin.py +2 -0
  279. transformers/models/mbart/modeling_mbart.py +7 -0
  280. transformers/models/mbart/tokenization_mbart.py +11 -52
  281. transformers/models/mbart50/tokenization_mbart50.py +7 -10
  282. transformers/models/megatron_bert/modeling_megatron_bert.py +7 -0
  283. transformers/models/mgp_str/modeling_mgp_str.py +2 -0
  284. transformers/models/mimi/modeling_mimi.py +3 -1
  285. transformers/models/minimax/modeling_minimax.py +4 -4
  286. transformers/models/ministral/modeling_ministral.py +4 -4
  287. transformers/models/ministral3/configuration_ministral3.py +1 -1
  288. transformers/models/ministral3/modeling_ministral3.py +4 -3
  289. transformers/models/mistral/modeling_mistral.py +4 -3
  290. transformers/models/mixtral/modeling_mixtral.py +4 -4
  291. transformers/models/mllama/modeling_mllama.py +2 -2
  292. transformers/models/mluke/tokenization_mluke.py +6 -6
  293. transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +4 -0
  294. transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +2 -0
  295. transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +3 -0
  296. transformers/models/mobilevit/modeling_mobilevit.py +3 -0
  297. transformers/models/mobilevitv2/modeling_mobilevitv2.py +3 -0
  298. transformers/models/modernbert/modeling_modernbert.py +4 -1
  299. transformers/models/modernbert/modular_modernbert.py +2 -0
  300. transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +8 -9
  301. transformers/models/modernbert_decoder/modular_modernbert_decoder.py +6 -7
  302. transformers/models/moonshine/modeling_moonshine.py +4 -2
  303. transformers/models/moshi/modeling_moshi.py +5 -2
  304. transformers/models/mpnet/modeling_mpnet.py +5 -0
  305. transformers/models/mpnet/tokenization_mpnet.py +5 -13
  306. transformers/models/mpt/modeling_mpt.py +2 -0
  307. transformers/models/mra/modeling_mra.py +6 -0
  308. transformers/models/mt5/modeling_mt5.py +7 -0
  309. transformers/models/musicgen/modeling_musicgen.py +2 -0
  310. transformers/models/musicgen_melody/modeling_musicgen_melody.py +3 -0
  311. transformers/models/mvp/modeling_mvp.py +7 -0
  312. transformers/models/nanochat/modeling_nanochat.py +4 -4
  313. transformers/models/nemotron/modeling_nemotron.py +4 -2
  314. transformers/models/nllb/tokenization_nllb.py +8 -22
  315. transformers/models/nougat/tokenization_nougat.py +11 -59
  316. transformers/models/nystromformer/modeling_nystromformer.py +6 -0
  317. transformers/models/olmo/modeling_olmo.py +4 -4
  318. transformers/models/olmo/modular_olmo.py +2 -2
  319. transformers/models/olmo2/modeling_olmo2.py +4 -5
  320. transformers/models/olmo2/modular_olmo2.py +0 -1
  321. transformers/models/olmo3/modeling_olmo3.py +4 -4
  322. transformers/models/olmoe/modeling_olmoe.py +4 -4
  323. transformers/models/omdet_turbo/modeling_omdet_turbo.py +2 -0
  324. transformers/models/oneformer/modeling_oneformer.py +4 -1
  325. transformers/models/openai/modeling_openai.py +3 -0
  326. transformers/models/openai/tokenization_openai.py +10 -46
  327. transformers/models/opt/modeling_opt.py +2 -0
  328. transformers/models/owlv2/modeling_owlv2.py +4 -0
  329. transformers/models/owlvit/modeling_owlvit.py +4 -0
  330. transformers/models/paddleocr_vl/__init__.py +32 -0
  331. transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +336 -0
  332. transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +503 -0
  333. transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +209 -0
  334. transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +1668 -0
  335. transformers/models/paddleocr_vl/modular_paddleocr_vl.py +1349 -0
  336. transformers/models/paddleocr_vl/processing_paddleocr_vl.py +135 -0
  337. transformers/models/parakeet/configuration_parakeet.py +4 -6
  338. transformers/models/parakeet/modeling_parakeet.py +9 -6
  339. transformers/models/parakeet/modular_parakeet.py +2 -2
  340. transformers/models/parakeet/processing_parakeet.py +1 -0
  341. transformers/models/patchtsmixer/modeling_patchtsmixer.py +6 -0
  342. transformers/models/patchtst/modeling_patchtst.py +20 -2
  343. transformers/models/pegasus/modeling_pegasus.py +5 -0
  344. transformers/models/pegasus/tokenization_pegasus.py +17 -44
  345. transformers/models/pegasus_x/modeling_pegasus_x.py +4 -0
  346. transformers/models/perceiver/modeling_perceiver.py +8 -0
  347. transformers/models/persimmon/modeling_persimmon.py +2 -1
  348. transformers/models/phi/modeling_phi.py +4 -5
  349. transformers/models/phi/modular_phi.py +0 -1
  350. transformers/models/phi3/modeling_phi3.py +2 -1
  351. transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +5 -5
  352. transformers/models/phi4_multimodal/modular_phi4_multimodal.py +4 -4
  353. transformers/models/phimoe/modeling_phimoe.py +4 -4
  354. transformers/models/phimoe/modular_phimoe.py +2 -2
  355. transformers/models/pix2struct/modeling_pix2struct.py +2 -0
  356. transformers/models/pixtral/modeling_pixtral.py +2 -1
  357. transformers/models/plbart/modeling_plbart.py +6 -0
  358. transformers/models/plbart/modular_plbart.py +2 -0
  359. transformers/models/plbart/tokenization_plbart.py +0 -2
  360. transformers/models/poolformer/modeling_poolformer.py +2 -0
  361. transformers/models/pop2piano/modeling_pop2piano.py +2 -0
  362. transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +1 -0
  363. transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +1 -0
  364. transformers/models/prophetnet/modeling_prophetnet.py +3 -0
  365. transformers/models/pvt/modeling_pvt.py +2 -0
  366. transformers/models/pvt_v2/modeling_pvt_v2.py +3 -0
  367. transformers/models/qwen2/modeling_qwen2.py +4 -4
  368. transformers/models/qwen2/tokenization_qwen2.py +14 -18
  369. transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +4 -2
  370. transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +13 -16
  371. transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +14 -16
  372. transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +1 -1
  373. transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +5 -6
  374. transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +3 -5
  375. transformers/models/qwen2_audio/modeling_qwen2_audio.py +2 -0
  376. transformers/models/qwen2_moe/modeling_qwen2_moe.py +4 -4
  377. transformers/models/qwen2_vl/configuration_qwen2_vl.py +1 -1
  378. transformers/models/qwen2_vl/modeling_qwen2_vl.py +6 -16
  379. transformers/models/qwen3/modeling_qwen3.py +4 -4
  380. transformers/models/qwen3_moe/modeling_qwen3_moe.py +4 -4
  381. transformers/models/qwen3_next/modeling_qwen3_next.py +4 -3
  382. transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +21 -23
  383. transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +14 -16
  384. transformers/models/qwen3_vl/modeling_qwen3_vl.py +39 -37
  385. transformers/models/qwen3_vl/modular_qwen3_vl.py +37 -35
  386. transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +39 -37
  387. transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +4 -1
  388. transformers/models/rag/modeling_rag.py +1 -0
  389. transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +15 -1
  390. transformers/models/reformer/modeling_reformer.py +4 -0
  391. transformers/models/reformer/tokenization_reformer.py +11 -28
  392. transformers/models/regnet/modeling_regnet.py +6 -1
  393. transformers/models/rembert/modeling_rembert.py +6 -0
  394. transformers/models/rembert/tokenization_rembert.py +3 -10
  395. transformers/models/resnet/modeling_resnet.py +11 -2
  396. transformers/models/roberta/tokenization_roberta.py +18 -27
  397. transformers/models/roformer/modeling_roformer.py +6 -0
  398. transformers/models/roformer/tokenization_roformer.py +77 -412
  399. transformers/models/rt_detr/modeling_rt_detr.py +2 -0
  400. transformers/models/rt_detr/modeling_rt_detr_resnet.py +5 -1
  401. transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +2 -0
  402. transformers/models/rwkv/modeling_rwkv.py +1 -0
  403. transformers/models/sam2/modeling_sam2.py +2 -2
  404. transformers/models/sam2/modular_sam2.py +2 -2
  405. transformers/models/sam2_video/modeling_sam2_video.py +1 -0
  406. transformers/models/sam2_video/modular_sam2_video.py +1 -0
  407. transformers/models/sam3/modeling_sam3.py +77 -80
  408. transformers/models/sam3_tracker/modeling_sam3_tracker.py +6 -1
  409. transformers/models/sam3_tracker/modular_sam3_tracker.py +6 -1
  410. transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +1 -0
  411. transformers/models/sam3_video/modeling_sam3_video.py +1 -0
  412. transformers/models/seamless_m4t/modeling_seamless_m4t.py +5 -1
  413. transformers/models/seamless_m4t/tokenization_seamless_m4t.py +27 -59
  414. transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +5 -1
  415. transformers/models/seed_oss/modeling_seed_oss.py +2 -2
  416. transformers/models/segformer/modeling_segformer.py +4 -1
  417. transformers/models/seggpt/modeling_seggpt.py +2 -0
  418. transformers/models/sew/modeling_sew.py +3 -0
  419. transformers/models/sew/modular_sew.py +1 -0
  420. transformers/models/sew_d/modeling_sew_d.py +3 -0
  421. transformers/models/siglip2/modeling_siglip2.py +4 -0
  422. transformers/models/siglip2/modular_siglip2.py +4 -0
  423. transformers/models/smollm3/modeling_smollm3.py +4 -4
  424. transformers/models/smolvlm/processing_smolvlm.py +0 -7
  425. transformers/models/speech_to_text/modeling_speech_to_text.py +4 -0
  426. transformers/models/speecht5/modeling_speecht5.py +13 -1
  427. transformers/models/splinter/modeling_splinter.py +3 -0
  428. transformers/models/splinter/tokenization_splinter.py +9 -28
  429. transformers/models/squeezebert/modeling_squeezebert.py +6 -0
  430. transformers/models/stablelm/modeling_stablelm.py +3 -1
  431. transformers/models/starcoder2/modeling_starcoder2.py +4 -3
  432. transformers/models/superglue/modeling_superglue.py +1 -0
  433. transformers/models/superpoint/modeling_superpoint.py +1 -0
  434. transformers/models/swiftformer/modeling_swiftformer.py +2 -0
  435. transformers/models/swin/modeling_swin.py +4 -0
  436. transformers/models/swin2sr/modeling_swin2sr.py +2 -0
  437. transformers/models/swinv2/modeling_swinv2.py +4 -0
  438. transformers/models/t5/modeling_t5.py +7 -0
  439. transformers/models/t5/tokenization_t5.py +4 -8
  440. transformers/models/t5gemma/modeling_t5gemma.py +5 -5
  441. transformers/models/t5gemma2/modeling_t5gemma2.py +6 -6
  442. transformers/models/table_transformer/modeling_table_transformer.py +4 -0
  443. transformers/models/tapas/modeling_tapas.py +3 -0
  444. transformers/models/textnet/modeling_textnet.py +11 -2
  445. transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -0
  446. transformers/models/timesfm/modeling_timesfm.py +2 -0
  447. transformers/models/timesfm/modular_timesfm.py +2 -0
  448. transformers/models/timesformer/modeling_timesformer.py +2 -0
  449. transformers/models/timm_wrapper/modeling_timm_wrapper.py +1 -1
  450. transformers/models/trocr/modeling_trocr.py +2 -0
  451. transformers/models/tvp/modeling_tvp.py +2 -0
  452. transformers/models/udop/modeling_udop.py +4 -0
  453. transformers/models/udop/tokenization_udop.py +5 -13
  454. transformers/models/umt5/modeling_umt5.py +7 -0
  455. transformers/models/unispeech/modeling_unispeech.py +4 -0
  456. transformers/models/unispeech/modular_unispeech.py +2 -0
  457. transformers/models/unispeech_sat/modeling_unispeech_sat.py +6 -0
  458. transformers/models/unispeech_sat/modular_unispeech_sat.py +2 -0
  459. transformers/models/univnet/modeling_univnet.py +1 -0
  460. transformers/models/upernet/modeling_upernet.py +1 -0
  461. transformers/models/vaultgemma/modeling_vaultgemma.py +4 -4
  462. transformers/models/vilt/modeling_vilt.py +6 -0
  463. transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +1 -0
  464. transformers/models/visual_bert/modeling_visual_bert.py +6 -0
  465. transformers/models/vitdet/modeling_vitdet.py +2 -0
  466. transformers/models/vitmatte/modeling_vitmatte.py +1 -0
  467. transformers/models/vits/modeling_vits.py +1 -0
  468. transformers/models/vjepa2/modeling_vjepa2.py +1 -0
  469. transformers/models/wav2vec2/modeling_wav2vec2.py +7 -0
  470. transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +5 -0
  471. transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +5 -0
  472. transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +6 -0
  473. transformers/models/wavlm/modeling_wavlm.py +5 -0
  474. transformers/models/whisper/modeling_whisper.py +6 -0
  475. transformers/models/whisper/tokenization_whisper.py +4 -15
  476. transformers/models/x_clip/modeling_x_clip.py +3 -0
  477. transformers/models/xglm/modeling_xglm.py +1 -0
  478. transformers/models/xglm/tokenization_xglm.py +4 -9
  479. transformers/models/xlm/modeling_xlm.py +5 -0
  480. transformers/models/xlm_roberta/tokenization_xlm_roberta.py +9 -16
  481. transformers/models/xlnet/tokenization_xlnet.py +3 -7
  482. transformers/models/yoso/modeling_yoso.py +6 -0
  483. transformers/models/zamba/modeling_zamba.py +2 -0
  484. transformers/models/zamba2/modeling_zamba2.py +4 -2
  485. transformers/models/zamba2/modular_zamba2.py +1 -1
  486. transformers/models/zoedepth/modeling_zoedepth.py +1 -0
  487. transformers/pipelines/__init__.py +2 -3
  488. transformers/pipelines/base.py +1 -9
  489. transformers/pipelines/document_question_answering.py +3 -1
  490. transformers/pipelines/text_generation.py +1 -1
  491. transformers/processing_utils.py +23 -11
  492. transformers/quantizers/base.py +35 -110
  493. transformers/quantizers/quantizer_aqlm.py +1 -5
  494. transformers/quantizers/quantizer_auto_round.py +1 -2
  495. transformers/quantizers/quantizer_awq.py +17 -81
  496. transformers/quantizers/quantizer_bitnet.py +3 -8
  497. transformers/quantizers/quantizer_bnb_4bit.py +13 -110
  498. transformers/quantizers/quantizer_bnb_8bit.py +16 -92
  499. transformers/quantizers/quantizer_compressed_tensors.py +1 -5
  500. transformers/quantizers/quantizer_eetq.py +14 -62
  501. transformers/quantizers/quantizer_fbgemm_fp8.py +34 -125
  502. transformers/quantizers/quantizer_finegrained_fp8.py +13 -105
  503. transformers/quantizers/quantizer_fp_quant.py +48 -78
  504. transformers/quantizers/quantizer_gptq.py +7 -24
  505. transformers/quantizers/quantizer_higgs.py +40 -54
  506. transformers/quantizers/quantizer_hqq.py +144 -153
  507. transformers/quantizers/quantizer_mxfp4.py +13 -167
  508. transformers/quantizers/quantizer_quanto.py +20 -64
  509. transformers/quantizers/quantizer_quark.py +36 -17
  510. transformers/quantizers/quantizer_spqr.py +1 -4
  511. transformers/quantizers/quantizer_torchao.py +23 -202
  512. transformers/quantizers/quantizer_vptq.py +8 -22
  513. transformers/quantizers/quantizers_utils.py +20 -0
  514. transformers/testing_utils.py +297 -36
  515. transformers/tokenization_mistral_common.py +4 -0
  516. transformers/tokenization_utils_base.py +113 -222
  517. transformers/tokenization_utils_tokenizers.py +168 -107
  518. transformers/trainer.py +28 -31
  519. transformers/trainer_jit_checkpoint.py +126 -0
  520. transformers/trainer_utils.py +1 -1
  521. transformers/training_args.py +66 -28
  522. transformers/utils/__init__.py +3 -4
  523. transformers/utils/auto_docstring.py +1 -0
  524. transformers/utils/generic.py +27 -1
  525. transformers/utils/hub.py +5 -15
  526. transformers/utils/import_utils.py +61 -16
  527. transformers/utils/kernel_config.py +4 -2
  528. transformers/utils/loading_report.py +19 -10
  529. transformers/utils/quantization_config.py +75 -242
  530. transformers/video_processing_utils.py +1 -2
  531. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/METADATA +274 -227
  532. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/RECORD +536 -520
  533. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/WHEEL +1 -1
  534. transformers/kernels/__init__.py +0 -0
  535. transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +0 -529
  536. transformers/models/roformer/tokenization_roformer_fast.py +0 -160
  537. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/entry_points.txt +0 -0
  538. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info/licenses}/LICENSE +0 -0
  539. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/top_level.txt +0 -0
@@ -12,300 +12,29 @@
12
12
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
13
  # See the License for the specific language governing permissions and
14
14
  # limitations under the License.
15
- """Tokenization classes for RoFormer."""
15
+ """Tokenization class for RoFormer backed by 🤗 Tokenizers."""
16
16
 
17
- import collections
18
- import os
19
- import unicodedata
20
17
  from typing import Optional
21
18
 
22
- from ...tokenization_python import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
19
+ from tokenizers import Tokenizer, decoders, models, normalizers, pre_tokenizers, processors
20
+ from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
21
+
22
+ from ...tokenization_utils_tokenizers import PreTrainedTokenizerFast
23
23
  from ...utils import logging
24
+ from .tokenization_utils import JiebaPreTokenizer
24
25
 
25
26
 
26
27
  logger = logging.get_logger(__name__)
27
28
 
28
- VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
29
-
30
-
31
- def load_vocab(vocab_file):
32
- """Loads a vocabulary file into a dictionary."""
33
- vocab = collections.OrderedDict()
34
- with open(vocab_file, "r", encoding="utf-8") as reader:
35
- tokens = reader.readlines()
36
- for index, token in enumerate(tokens):
37
- token = token.rstrip("\n")
38
- vocab[token] = index
39
- return vocab
40
-
41
-
42
- def whitespace_tokenize(text):
43
- """Runs basic whitespace cleaning and splitting on a piece of text."""
44
- text = text.strip()
45
- if not text:
46
- return []
47
- tokens = text.split()
48
- return tokens
49
-
50
-
51
- class BasicTokenizer:
52
- """
53
- Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
54
-
55
- Args:
56
- do_lower_case (`bool`, *optional*, defaults to `True`):
57
- Whether or not to lowercase the input when tokenizing.
58
- never_split (`Iterable`, *optional*):
59
- Collection of tokens which will never be split during tokenization. Only has an effect when
60
- `do_basic_tokenize=True`
61
- tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
62
- Whether or not to tokenize Chinese characters.
63
-
64
- This should likely be deactivated for Japanese (see this
65
- [issue](https://github.com/huggingface/transformers/issues/328)).
66
- strip_accents (`bool`, *optional*):
67
- Whether or not to strip all accents. If this option is not specified, then it will be determined by the
68
- value for `lowercase` (as in the original BERT).
69
- do_split_on_punc (`bool`, *optional*, defaults to `True`):
70
- In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
71
- the full context of the words, such as contractions.
72
- """
73
-
74
- def __init__(
75
- self,
76
- do_lower_case=True,
77
- never_split=None,
78
- tokenize_chinese_chars=True,
79
- strip_accents=None,
80
- do_split_on_punc=True,
81
- ):
82
- if never_split is None:
83
- never_split = []
84
- self.do_lower_case = do_lower_case
85
- self.never_split = set(never_split)
86
- self.tokenize_chinese_chars = tokenize_chinese_chars
87
- self.strip_accents = strip_accents
88
- self.do_split_on_punc = do_split_on_punc
89
-
90
- def tokenize(self, text, never_split=None):
91
- """
92
- Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
93
-
94
- Args:
95
- never_split (`List[str]`, *optional*)
96
- Kept for backward compatibility purposes. Now implemented directly at the base class level (see
97
- [`PreTrainedTokenizer.tokenize`]) List of token not to split.
98
- """
99
- # union() returns a new set by concatenating the two sets.
100
- never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
101
- text = self._clean_text(text)
102
-
103
- # This was added on November 1st, 2018 for the multilingual and Chinese
104
- # models. This is also applied to the English models now, but it doesn't
105
- # matter since the English models were not trained on any Chinese data
106
- # and generally don't have any Chinese data in them (there are Chinese
107
- # characters in the vocabulary because Wikipedia does have some Chinese
108
- # words in the English Wikipedia.).
109
- if self.tokenize_chinese_chars:
110
- text = self._tokenize_chinese_chars(text)
111
- # prevents treating the same character with different unicode codepoints as different characters
112
- unicode_normalized_text = unicodedata.normalize("NFC", text)
113
- orig_tokens = whitespace_tokenize(unicode_normalized_text)
114
- split_tokens = []
115
- for token in orig_tokens:
116
- if token not in never_split:
117
- if self.do_lower_case:
118
- token = token.lower()
119
- if self.strip_accents is not False:
120
- token = self._run_strip_accents(token)
121
- elif self.strip_accents:
122
- token = self._run_strip_accents(token)
123
- split_tokens.extend(self._run_split_on_punc(token, never_split))
124
-
125
- output_tokens = whitespace_tokenize(" ".join(split_tokens))
126
- return output_tokens
127
-
128
- def _run_strip_accents(self, text):
129
- """Strips accents from a piece of text."""
130
- text = unicodedata.normalize("NFD", text)
131
- output = []
132
- for char in text:
133
- cat = unicodedata.category(char)
134
- if cat == "Mn":
135
- continue
136
- output.append(char)
137
- return "".join(output)
138
-
139
- def _run_split_on_punc(self, text, never_split=None):
140
- """Splits punctuation on a piece of text."""
141
- if not self.do_split_on_punc or (never_split is not None and text in never_split):
142
- return [text]
143
- chars = list(text)
144
- i = 0
145
- start_new_word = True
146
- output = []
147
- while i < len(chars):
148
- char = chars[i]
149
- if _is_punctuation(char):
150
- output.append([char])
151
- start_new_word = True
152
- else:
153
- if start_new_word:
154
- output.append([])
155
- start_new_word = False
156
- output[-1].append(char)
157
- i += 1
158
-
159
- return ["".join(x) for x in output]
160
-
161
- def _tokenize_chinese_chars(self, text):
162
- """Adds whitespace around any CJK character."""
163
- output = []
164
- for char in text:
165
- cp = ord(char)
166
- if self._is_chinese_char(cp):
167
- output.append(" ")
168
- output.append(char)
169
- output.append(" ")
170
- else:
171
- output.append(char)
172
- return "".join(output)
173
-
174
- def _is_chinese_char(self, cp):
175
- """Checks whether CP is the codepoint of a CJK character."""
176
- # This defines a "chinese character" as anything in the CJK Unicode block:
177
- # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
178
- #
179
- # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
180
- # despite its name. The modern Korean Hangul alphabet is a different block,
181
- # as is Japanese Hiragana and Katakana. Those alphabets are used to write
182
- # space-separated words, so they are not treated specially and handled
183
- # like the all of the other languages.
184
- if (
185
- (cp >= 0x4E00 and cp <= 0x9FFF)
186
- or (cp >= 0x3400 and cp <= 0x4DBF)
187
- or (cp >= 0x20000 and cp <= 0x2A6DF)
188
- or (cp >= 0x2A700 and cp <= 0x2B73F)
189
- or (cp >= 0x2B740 and cp <= 0x2B81F)
190
- or (cp >= 0x2B820 and cp <= 0x2CEAF)
191
- or (cp >= 0xF900 and cp <= 0xFAFF)
192
- or (cp >= 0x2F800 and cp <= 0x2FA1F)
193
- ):
194
- return True
195
-
196
- return False
197
-
198
- def _clean_text(self, text):
199
- """Performs invalid character removal and whitespace cleanup on text."""
200
- output = []
201
- for char in text:
202
- cp = ord(char)
203
- if cp == 0 or cp == 0xFFFD or _is_control(char):
204
- continue
205
- if _is_whitespace(char):
206
- output.append(" ")
207
- else:
208
- output.append(char)
209
- return "".join(output)
210
-
211
-
212
- class WordpieceTokenizer:
213
- """Runs WordPiece tokenization."""
214
-
215
- def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
216
- self.vocab = vocab
217
- self.unk_token = unk_token
218
- self.max_input_chars_per_word = max_input_chars_per_word
219
-
220
- def tokenize(self, text):
221
- """
222
- Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
223
- tokenization using the given vocabulary.
224
-
225
- For example, `input = "unaffable"` will return as output `["un", "##aff", "##able"]`.
29
+ VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
226
30
 
227
- Args:
228
- text: A single token or whitespace separated tokens. This should have
229
- already been passed through *BasicTokenizer*.
230
31
 
231
- Returns:
232
- A list of wordpiece tokens.
233
- """
234
-
235
- output_tokens = []
236
- for token in whitespace_tokenize(text):
237
- chars = list(token)
238
- if len(chars) > self.max_input_chars_per_word:
239
- output_tokens.append(self.unk_token)
240
- continue
241
-
242
- is_bad = False
243
- start = 0
244
- sub_tokens = []
245
- while start < len(chars):
246
- end = len(chars)
247
- cur_substr = None
248
- while start < end:
249
- substr = "".join(chars[start:end])
250
- if start > 0:
251
- substr = "##" + substr
252
- if substr in self.vocab:
253
- cur_substr = substr
254
- break
255
- end -= 1
256
- if cur_substr is None:
257
- is_bad = True
258
- break
259
- sub_tokens.append(cur_substr)
260
- start = end
261
-
262
- if is_bad:
263
- output_tokens.append(self.unk_token)
264
- else:
265
- output_tokens.extend(sub_tokens)
266
- return output_tokens
267
-
268
-
269
- class RoFormerTokenizer(PreTrainedTokenizer):
32
+ class RoFormerTokenizer(PreTrainedTokenizerFast):
270
33
  r"""
271
34
  Construct a RoFormer tokenizer. Based on [Rust Jieba](https://pypi.org/project/rjieba/).
272
35
 
273
- This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
274
- this superclass for more information regarding those methods.
275
-
276
- Args:
277
- vocab_file (`str`):
278
- File containing the vocabulary.
279
- do_lower_case (`bool`, *optional*, defaults to `True`):
280
- Whether or not to lowercase the input when tokenizing.
281
- do_basic_tokenize (`bool`, *optional*, defaults to `True`):
282
- Whether or not to do basic tokenization before WordPiece.
283
- never_split (`Iterable`, *optional*):
284
- Collection of tokens which will never be split during tokenization. Only has an effect when
285
- `do_basic_tokenize=True`
286
- unk_token (`str`, *optional*, defaults to `"[UNK]"`):
287
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
288
- token instead.
289
- sep_token (`str`, *optional*, defaults to `"[SEP]"`):
290
- The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
291
- sequence classification or for a text and a question for question answering. It is also used as the last
292
- token of a sequence built with special tokens.
293
- pad_token (`str`, *optional*, defaults to `"[PAD]"`):
294
- The token used for padding, for example when batching sequences of different lengths.
295
- cls_token (`str`, *optional*, defaults to `"[CLS]"`):
296
- The classifier token which is used when doing sequence classification (classification of the whole sequence
297
- instead of per-token classification). It is the first token of the sequence when built with special tokens.
298
- mask_token (`str`, *optional*, defaults to `"[MASK]"`):
299
- The token used for masking values. This is the token used when training this model with masked language
300
- modeling. This is the token which the model will try to predict.
301
- tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
302
- Whether or not to tokenize Chinese characters.
303
-
304
- This should likely be deactivated for Japanese (see this
305
- [issue](https://github.com/huggingface/transformers/issues/328)).
306
- strip_accents (`bool`, *optional*):
307
- Whether or not to strip all accents. If this option is not specified, then it will be determined by the
308
- value for `lowercase` (as in the original BERT).
36
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
37
+ refer to this superclass for more information regarding those methods.
309
38
 
310
39
  Example:
311
40
 
@@ -315,16 +44,15 @@ class RoFormerTokenizer(PreTrainedTokenizer):
315
44
  >>> tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base")
316
45
  >>> tokenizer.tokenize("今天天气非常好。")
317
46
  ['今', '天', '天', '气', '非常', '好', '。']
318
- ```"""
47
+ ```
48
+ """
319
49
 
320
50
  vocab_files_names = VOCAB_FILES_NAMES
321
51
 
322
52
  def __init__(
323
53
  self,
324
- vocab_file,
54
+ vocab: Optional[dict[str, int]] = None,
325
55
  do_lower_case=True,
326
- do_basic_tokenize=True,
327
- never_split=None,
328
56
  unk_token="[UNK]",
329
57
  sep_token="[SEP]",
330
58
  pad_token="[PAD]",
@@ -334,35 +62,19 @@ class RoFormerTokenizer(PreTrainedTokenizer):
334
62
  strip_accents=None,
335
63
  **kwargs,
336
64
  ):
337
- if not os.path.isfile(vocab_file):
338
- raise ValueError(
339
- f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
340
- " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
341
- )
342
- self.vocab = load_vocab(vocab_file)
343
- self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
344
- self.do_basic_tokenize = do_basic_tokenize
345
- if do_basic_tokenize:
346
- self.basic_tokenizer = BasicTokenizer(
347
- do_lower_case=do_lower_case,
348
- never_split=never_split,
349
- tokenize_chinese_chars=tokenize_chinese_chars,
350
- strip_accents=strip_accents,
351
- )
352
- self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
353
- try:
354
- import rjieba
355
- except ImportError:
356
- raise ImportError(
357
- "You need to install rjieba to use RoFormerTokenizer. "
358
- "See https://pypi.org/project/rjieba/ for installation."
359
- )
360
- self.jieba = rjieba
65
+ tokenizer = Tokenizer(models.WordPiece(vocab, unk_token=str(unk_token)))
66
+ tokenizer.normalizer = normalizers.BertNormalizer(
67
+ clean_text=True,
68
+ handle_chinese_chars=False,
69
+ strip_accents=strip_accents,
70
+ lowercase=do_lower_case,
71
+ )
72
+ tokenizer.pre_tokenizer = pre_tokenizers.PreTokenizer.custom(JiebaPreTokenizer(vocab))
361
73
 
74
+ tokenizer.decoder = decoders.WordPiece(prefix="##")
75
+ self._tokenizer = tokenizer
362
76
  super().__init__(
363
77
  do_lower_case=do_lower_case,
364
- do_basic_tokenize=do_basic_tokenize,
365
- never_split=never_split,
366
78
  unk_token=unk_token,
367
79
  sep_token=sep_token,
368
80
  pad_token=pad_token,
@@ -372,67 +84,30 @@ class RoFormerTokenizer(PreTrainedTokenizer):
372
84
  strip_accents=strip_accents,
373
85
  **kwargs,
374
86
  )
375
-
376
- @property
377
- def do_lower_case(self):
378
- return self.basic_tokenizer.do_lower_case
379
-
380
- @property
381
- def vocab_size(self):
382
- return len(self.vocab)
87
+ cls_ = str(cls_token)
88
+ sep_ = str(sep_token)
89
+ self._tokenizer.post_processor = processors.TemplateProcessing(
90
+ single=f"{cls_}:0 $A:0 {sep_}:0",
91
+ pair=f"{cls_}:0 $A:0 {sep_}:0 $B:1 {sep_}:1",
92
+ special_tokens=[
93
+ (cls_, self.cls_token_id),
94
+ (sep_, self.sep_token_id),
95
+ ],
96
+ )
383
97
 
384
98
  def __getstate__(self):
385
99
  state = self.__dict__.copy()
386
- state["jieba"] = None
100
+ tokenizer_copy = Tokenizer.from_str(state["_tokenizer"].to_str())
101
+ tokenizer_copy.pre_tokenizer = BertPreTokenizer()
102
+ state["_tokenizer"] = tokenizer_copy
387
103
  return state
388
104
 
389
105
  def __setstate__(self, d):
390
106
  self.__dict__ = d
391
- import rjieba
392
-
393
- self.jieba = rjieba
394
-
395
- def get_vocab(self):
396
- return dict(self.vocab, **self.added_tokens_encoder)
397
-
398
- def _tokenize(self, text, use_jieba=True):
399
- split_tokens = []
400
- if use_jieba:
401
- for wholword in self.jieba.cut(text, False):
402
- if wholword in self.vocab:
403
- split_tokens.append(wholword)
404
- else:
405
- # use bert tokenizer to _tokenize
406
- char_list = self._tokenize(wholword, use_jieba=False)
407
- split_tokens.extend(char_list)
408
- else:
409
- if self.do_basic_tokenize:
410
- for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
411
- # If the token is part of the never_split set
412
- if token in self.basic_tokenizer.never_split:
413
- split_tokens.append(token)
414
- else:
415
- split_tokens += self.wordpiece_tokenizer.tokenize(token)
416
- else:
417
- split_tokens = self.wordpiece_tokenizer.tokenize(text)
418
- return split_tokens
419
-
420
- def _convert_token_to_id(self, token):
421
- """Converts a token (str) in an id using the vocab."""
422
- return self.vocab.get(token, self.vocab.get(self.unk_token))
423
-
424
- def _convert_id_to_token(self, index):
425
- """Converts an index (integer) in a token (str) using the vocab."""
426
- return self.ids_to_tokens.get(index, self.unk_token)
427
-
428
- def convert_tokens_to_string(self, tokens):
429
- """Converts a sequence of tokens (string) in a single string."""
430
- out_string = " ".join(tokens).replace(" ##", "").strip()
431
- return out_string
432
-
433
- def build_inputs_with_special_tokens(
434
- self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None
435
- ) -> list[int]:
107
+ vocab = self.__dict__["_tokenizer"].get_vocab()
108
+ self.__dict__["_tokenizer"].pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer(vocab))
109
+
110
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
436
111
  """
437
112
  Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
438
113
  adding special tokens. A RoFormer sequence has the following format:
@@ -449,59 +124,49 @@ class RoFormerTokenizer(PreTrainedTokenizer):
449
124
  Returns:
450
125
  `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
451
126
  """
452
- if token_ids_1 is None:
453
- return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
454
- cls = [self.cls_token_id]
455
- sep = [self.sep_token_id]
456
- return cls + token_ids_0 + sep + token_ids_1 + sep
127
+ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
457
128
 
458
- def get_special_tokens_mask(
459
- self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None, already_has_special_tokens: bool = False
129
+ if token_ids_1 is not None:
130
+ output += token_ids_1 + [self.sep_token_id]
131
+
132
+ return output
133
+
134
+ def create_token_type_ids_from_sequences(
135
+ self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None
460
136
  ) -> list[int]:
461
137
  """
462
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
463
- special tokens using the tokenizer `prepare_for_model` method.
138
+ Create token type IDs for RoFormer sequence pairs.
464
139
 
465
- Args:
466
- token_ids_0 (`List[int]`):
467
- List of IDs.
468
- token_ids_1 (`List[int]`, *optional*):
469
- Optional second list of IDs for sequence pairs.
470
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
471
- Whether or not the token list is already formatted with special tokens for the model.
472
-
473
- Returns:
474
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
140
+ The first sequence and associated special tokens are mapped to 0, while the second sequence (if provided) and
141
+ its trailing separator are mapped to 1.
475
142
  """
143
+ sep = [self.sep_token_id]
144
+ cls = [self.cls_token_id]
476
145
 
477
- if already_has_special_tokens:
478
- return super().get_special_tokens_mask(
479
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
480
- )
146
+ if token_ids_1 is None:
147
+ return len(cls + token_ids_0 + sep) * [0]
481
148
 
482
- if token_ids_1 is not None:
483
- return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
484
- return [1] + ([0] * len(token_ids_0)) + [1]
149
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
485
150
 
486
151
  def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple[str]:
487
- index = 0
488
- if os.path.isdir(save_directory):
489
- vocab_file = os.path.join(
490
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
491
- )
492
- else:
493
- vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
494
- with open(vocab_file, "w", encoding="utf-8") as writer:
495
- for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
496
- if index != token_index:
497
- logger.warning(
498
- f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
499
- " Please check that the vocabulary is not corrupted!"
500
- )
501
- index = token_index
502
- writer.write(token + "\n")
503
- index += 1
504
- return (vocab_file,)
505
-
506
-
507
- __all__ = ["RoFormerTokenizer"]
152
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
153
+ return tuple(files)
154
+
155
+ def save_pretrained(
156
+ self,
157
+ save_directory,
158
+ legacy_format=None,
159
+ filename_prefix=None,
160
+ push_to_hub=False,
161
+ **kwargs,
162
+ ):
163
+ self.backend_tokenizer.pre_tokenizer = BertPreTokenizer()
164
+ result = super().save_pretrained(save_directory, legacy_format, filename_prefix, push_to_hub, **kwargs)
165
+ vocab = self.backend_tokenizer.get_vocab()
166
+ self.backend_tokenizer.pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer(vocab))
167
+ return result
168
+
169
+
170
+ RoFormerTokenizerFast = RoFormerTokenizer
171
+
172
+ __all__ = ["RoFormerTokenizer", "RoFormerTokenizerFast"]
@@ -1311,6 +1311,7 @@ class RTDetrDecoder(RTDetrPreTrainedModel):
1311
1311
  output_attentions=None,
1312
1312
  output_hidden_states=None,
1313
1313
  return_dict=None,
1314
+ **kwargs,
1314
1315
  ):
1315
1316
  r"""
1316
1317
  Args:
@@ -1592,6 +1593,7 @@ class RTDetrModel(RTDetrPreTrainedModel):
1592
1593
  output_attentions: Optional[bool] = None,
1593
1594
  output_hidden_states: Optional[bool] = None,
1594
1595
  return_dict: Optional[bool] = None,
1596
+ **kwargs,
1595
1597
  ) -> Union[tuple[torch.FloatTensor], RTDetrModelOutput]:
1596
1598
  r"""
1597
1599
  inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@@ -342,7 +342,11 @@ class RTDetrResNetBackbone(RTDetrResNetPreTrainedModel, BackboneMixin):
342
342
 
343
343
  @auto_docstring
344
344
  def forward(
345
- self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
345
+ self,
346
+ pixel_values: Tensor,
347
+ output_hidden_states: Optional[bool] = None,
348
+ return_dict: Optional[bool] = None,
349
+ **kwargs,
346
350
  ) -> BackboneOutput:
347
351
  r"""
348
352
  Examples:
@@ -591,6 +591,7 @@ class RTDetrV2Decoder(RTDetrV2PreTrainedModel):
591
591
  output_attentions=None,
592
592
  output_hidden_states=None,
593
593
  return_dict=None,
594
+ **kwargs,
594
595
  ):
595
596
  r"""
596
597
  Args:
@@ -1488,6 +1489,7 @@ class RTDetrV2Model(RTDetrV2PreTrainedModel):
1488
1489
  output_attentions: Optional[bool] = None,
1489
1490
  output_hidden_states: Optional[bool] = None,
1490
1491
  return_dict: Optional[bool] = None,
1492
+ **kwargs,
1491
1493
  ) -> Union[tuple[torch.FloatTensor], RTDetrV2ModelOutput]:
1492
1494
  r"""
1493
1495
  inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@@ -520,6 +520,7 @@ class RwkvModel(RwkvPreTrainedModel):
520
520
  output_attentions: Optional[bool] = None,
521
521
  output_hidden_states: Optional[bool] = None,
522
522
  return_dict: Optional[bool] = None,
523
+ **kwargs,
523
524
  ) -> Union[tuple, RwkvOutput]:
524
525
  r"""
525
526
  input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
@@ -143,7 +143,7 @@ class Sam2PatchEmbeddings(nn.Module):
143
143
 
144
144
  def forward(self, pixel_values):
145
145
  _, num_channels, height, width = pixel_values.shape
146
- embeddings = self.projection(pixel_values).permute(0, 2, 3, 1)
146
+ embeddings = self.projection(pixel_values.to(self.projection.weight.dtype)).permute(0, 2, 3, 1)
147
147
  return embeddings
148
148
 
149
149
 
@@ -221,7 +221,7 @@ class Sam2VisionNeck(nn.Module):
221
221
  n = len(self.convs) - 1
222
222
  for i in range(n, -1, -1):
223
223
  lateral_features = hidden_states[i].permute(0, 3, 1, 2)
224
- lateral_features = self.convs[n - i](lateral_features)
224
+ lateral_features = self.convs[n - i](lateral_features.to(self.convs[i].weight.dtype))
225
225
  if i not in self.fpn_top_down_levels or i == n:
226
226
  prev_features = lateral_features
227
227
  else:
@@ -387,7 +387,7 @@ class Sam2PatchEmbeddings(nn.Module):
387
387
 
388
388
  def forward(self, pixel_values):
389
389
  _, num_channels, height, width = pixel_values.shape
390
- embeddings = self.projection(pixel_values).permute(0, 2, 3, 1)
390
+ embeddings = self.projection(pixel_values.to(self.projection.weight.dtype)).permute(0, 2, 3, 1)
391
391
  return embeddings
392
392
 
393
393
 
@@ -422,7 +422,7 @@ class Sam2VisionNeck(nn.Module):
422
422
  n = len(self.convs) - 1
423
423
  for i in range(n, -1, -1):
424
424
  lateral_features = hidden_states[i].permute(0, 3, 1, 2)
425
- lateral_features = self.convs[n - i](lateral_features)
425
+ lateral_features = self.convs[n - i](lateral_features.to(self.convs[i].weight.dtype))
426
426
  if i not in self.fpn_top_down_levels or i == n:
427
427
  prev_features = lateral_features
428
428
  else:
@@ -1700,6 +1700,7 @@ class Sam2VideoModel(Sam2VideoPreTrainedModel):
1700
1700
  frame: Optional[torch.Tensor] = None,
1701
1701
  reverse: bool = False,
1702
1702
  run_mem_encoder: bool = True,
1703
+ **kwargs,
1703
1704
  ) -> Sam2VideoSegmentationOutput:
1704
1705
  r"""
1705
1706
  inference_session (`Sam2VideoInferenceSession`):
@@ -2337,6 +2337,7 @@ class Sam2VideoModel(Sam2Model):
2337
2337
  frame: Optional[torch.Tensor] = None,
2338
2338
  reverse: bool = False,
2339
2339
  run_mem_encoder: bool = True,
2340
+ **kwargs,
2340
2341
  ) -> Sam2VideoSegmentationOutput:
2341
2342
  r"""
2342
2343
  inference_session (`Sam2VideoInferenceSession`):