transformers 5.0.0rc0__py3-none-any.whl → 5.0.0rc1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +30 -3
- transformers/cli/serve.py +47 -17
- transformers/conversion_mapping.py +15 -2
- transformers/convert_slow_tokenizer.py +225 -10
- transformers/core_model_loading.py +196 -135
- transformers/data/data_collator.py +12 -4
- transformers/dependency_versions_table.py +1 -2
- transformers/dynamic_module_utils.py +1 -2
- transformers/feature_extraction_utils.py +1 -2
- transformers/file_utils.py +0 -1
- transformers/generation/__init__.py +11 -1
- transformers/generation/configuration_utils.py +3 -2
- transformers/generation/continuous_batching/__init__.py +4 -0
- transformers/generation/continuous_batching/continuous_api.py +134 -79
- transformers/image_processing_base.py +1 -2
- transformers/integrations/__init__.py +4 -2
- transformers/integrations/accelerate.py +15 -3
- transformers/integrations/aqlm.py +38 -66
- transformers/integrations/awq.py +48 -514
- transformers/integrations/bitnet.py +45 -100
- transformers/integrations/bitsandbytes.py +79 -191
- transformers/integrations/deepspeed.py +1 -0
- transformers/integrations/eetq.py +84 -79
- transformers/integrations/fbgemm_fp8.py +191 -145
- transformers/integrations/finegrained_fp8.py +236 -193
- transformers/integrations/fp_quant.py +92 -0
- transformers/integrations/ggml.py +11 -1
- transformers/integrations/higgs.py +40 -62
- transformers/integrations/hub_kernels.py +42 -3
- transformers/integrations/integration_utils.py +10 -0
- transformers/integrations/mxfp4.py +25 -65
- transformers/integrations/peft.py +7 -29
- transformers/integrations/quanto.py +73 -55
- transformers/integrations/quark.py +55 -0
- transformers/integrations/spqr.py +44 -90
- transformers/integrations/torchao.py +32 -38
- transformers/integrations/vptq.py +42 -59
- transformers/modelcard.py +1 -2
- transformers/modeling_gguf_pytorch_utils.py +8 -0
- transformers/modeling_rope_utils.py +30 -6
- transformers/modeling_utils.py +116 -112
- transformers/models/__init__.py +3 -0
- transformers/models/afmoe/modeling_afmoe.py +4 -4
- transformers/models/albert/tokenization_albert.py +6 -12
- transformers/models/align/modeling_align.py +2 -0
- transformers/models/altclip/modeling_altclip.py +4 -0
- transformers/models/apertus/modeling_apertus.py +4 -4
- transformers/models/arcee/modeling_arcee.py +4 -4
- transformers/models/aria/modeling_aria.py +4 -4
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/modular_audioflamingo3.py +1 -0
- transformers/models/auto/configuration_auto.py +11 -0
- transformers/models/auto/feature_extraction_auto.py +2 -0
- transformers/models/auto/image_processing_auto.py +1 -0
- transformers/models/auto/modeling_auto.py +6 -0
- transformers/models/auto/processing_auto.py +18 -10
- transformers/models/auto/tokenization_auto.py +74 -472
- transformers/models/autoformer/modeling_autoformer.py +4 -0
- transformers/models/bamba/modeling_bamba.py +4 -3
- transformers/models/bark/modeling_bark.py +2 -0
- transformers/models/bart/modeling_bart.py +7 -0
- transformers/models/barthez/tokenization_barthez.py +5 -10
- transformers/models/beit/modeling_beit.py +6 -1
- transformers/models/bert/tokenization_bert.py +8 -21
- transformers/models/big_bird/modeling_big_bird.py +6 -0
- transformers/models/big_bird/tokenization_big_bird.py +18 -42
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +8 -2
- transformers/models/biogpt/modeling_biogpt.py +2 -0
- transformers/models/biogpt/modular_biogpt.py +2 -0
- transformers/models/bit/modeling_bit.py +11 -2
- transformers/models/bitnet/modeling_bitnet.py +4 -4
- transformers/models/blenderbot/modeling_blenderbot.py +5 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +12 -16
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +5 -0
- transformers/models/blip/modeling_blip_text.py +2 -0
- transformers/models/blip_2/modeling_blip_2.py +2 -1
- transformers/models/bloom/modeling_bloom.py +4 -0
- transformers/models/blt/modeling_blt.py +2 -2
- transformers/models/blt/modular_blt.py +2 -2
- transformers/models/bridgetower/modeling_bridgetower.py +5 -1
- transformers/models/bros/modeling_bros.py +4 -0
- transformers/models/camembert/tokenization_camembert.py +8 -12
- transformers/models/canine/modeling_canine.py +5 -0
- transformers/models/chameleon/modeling_chameleon.py +2 -1
- transformers/models/chinese_clip/modeling_chinese_clip.py +3 -0
- transformers/models/clap/modeling_clap.py +5 -0
- transformers/models/clip/tokenization_clip.py +22 -44
- transformers/models/clipseg/modeling_clipseg.py +5 -0
- transformers/models/clvp/modeling_clvp.py +5 -0
- transformers/models/clvp/tokenization_clvp.py +1 -63
- transformers/models/code_llama/tokenization_code_llama.py +20 -43
- transformers/models/codegen/tokenization_codegen.py +14 -43
- transformers/models/cohere/modeling_cohere.py +4 -3
- transformers/models/cohere/modular_cohere.py +2 -1
- transformers/models/cohere/tokenization_cohere.py +12 -42
- transformers/models/cohere2/modeling_cohere2.py +7 -6
- transformers/models/cohere2/modular_cohere2.py +5 -5
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +4 -3
- transformers/models/cohere2_vision/modular_cohere2_vision.py +4 -3
- transformers/models/colqwen2/modeling_colqwen2.py +1 -0
- transformers/models/colqwen2/modular_colqwen2.py +1 -0
- transformers/models/conditional_detr/modeling_conditional_detr.py +5 -0
- transformers/models/convbert/modeling_convbert.py +6 -0
- transformers/models/convnext/modeling_convnext.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +2 -4
- transformers/models/csm/modeling_csm.py +4 -3
- transformers/models/ctrl/modeling_ctrl.py +1 -0
- transformers/models/cvt/modeling_cvt.py +2 -0
- transformers/models/cwm/modeling_cwm.py +4 -4
- transformers/models/d_fine/modeling_d_fine.py +2 -0
- transformers/models/d_fine/modular_d_fine.py +1 -0
- transformers/models/dab_detr/modeling_dab_detr.py +4 -0
- transformers/models/dac/modeling_dac.py +2 -2
- transformers/models/data2vec/modeling_data2vec_audio.py +5 -0
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -1
- transformers/models/dbrx/modeling_dbrx.py +2 -2
- transformers/models/deberta/modeling_deberta.py +5 -0
- transformers/models/deberta/tokenization_deberta.py +11 -20
- transformers/models/deberta_v2/modeling_deberta_v2.py +6 -0
- transformers/models/deberta_v2/tokenization_deberta_v2.py +13 -28
- transformers/models/decision_transformer/modeling_decision_transformer.py +4 -1
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +2 -3
- transformers/models/deepseek_v2/modular_deepseek_v2.py +2 -2
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +3 -2
- transformers/models/deepseek_v3/modular_deepseek_v3.py +1 -0
- transformers/models/deformable_detr/modeling_deformable_detr.py +4 -0
- transformers/models/depth_anything/modeling_depth_anything.py +1 -0
- transformers/models/depth_pro/modeling_depth_pro.py +2 -0
- transformers/models/detr/modeling_detr.py +5 -0
- transformers/models/dia/modeling_dia.py +4 -3
- transformers/models/dia/modular_dia.py +0 -1
- transformers/models/diffllama/modeling_diffllama.py +2 -2
- transformers/models/dinat/modeling_dinat.py +3 -0
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +1 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +2 -2
- transformers/models/dinov3_vit/modular_dinov3_vit.py +2 -2
- transformers/models/distilbert/tokenization_distilbert.py +13 -0
- transformers/models/doge/modeling_doge.py +2 -3
- transformers/models/doge/modular_doge.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +2 -0
- transformers/models/dots1/modeling_dots1.py +10 -7
- transformers/models/dots1/modular_dots1.py +5 -3
- transformers/models/dpr/modeling_dpr.py +5 -0
- transformers/models/dpr/tokenization_dpr.py +12 -0
- transformers/models/edgetam/modeling_edgetam.py +1 -1
- transformers/models/edgetam_video/modeling_edgetam_video.py +1 -0
- transformers/models/edgetam_video/modular_edgetam_video.py +1 -0
- transformers/models/efficientloftr/modeling_efficientloftr.py +2 -2
- transformers/models/efficientnet/modeling_efficientnet.py +2 -0
- transformers/models/emu3/modeling_emu3.py +4 -4
- transformers/models/eomt/image_processing_eomt.py +13 -1
- transformers/models/eomt/image_processing_eomt_fast.py +14 -2
- transformers/models/ernie4_5/modeling_ernie4_5.py +4 -4
- transformers/models/ernie4_5/modular_ernie4_5.py +2 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +5 -5
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +2 -2
- transformers/models/esm/modeling_esmfold.py +5 -4
- transformers/models/evolla/modeling_evolla.py +4 -4
- transformers/models/exaone4/modeling_exaone4.py +2 -2
- transformers/models/exaone4/modular_exaone4.py +0 -1
- transformers/models/falcon/modeling_falcon.py +6 -1
- transformers/models/falcon_h1/modeling_falcon_h1.py +4 -3
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +25 -35
- transformers/models/falcon_mamba/modular_falcon_mamba.py +12 -31
- transformers/{kernels/falcon_mamba → models/fast_vlm}/__init__.py +15 -3
- transformers/models/fast_vlm/configuration_fast_vlm.py +137 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +455 -0
- transformers/models/fast_vlm/modular_fast_vlm.py +273 -0
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +8 -3
- transformers/models/flaubert/modeling_flaubert.py +7 -0
- transformers/models/flava/modeling_flava.py +6 -1
- transformers/models/flex_olmo/modeling_flex_olmo.py +4 -5
- transformers/models/florence2/modeling_florence2.py +2 -1
- transformers/models/florence2/modular_florence2.py +2 -1
- transformers/models/fnet/modeling_fnet.py +7 -0
- transformers/models/focalnet/modeling_focalnet.py +4 -0
- transformers/models/fsmt/modeling_fsmt.py +2 -0
- transformers/models/funnel/modeling_funnel.py +8 -0
- transformers/models/funnel/tokenization_funnel.py +17 -24
- transformers/models/fuyu/processing_fuyu.py +3 -3
- transformers/models/gemma/modeling_gemma.py +4 -4
- transformers/models/gemma/tokenization_gemma.py +10 -27
- transformers/models/gemma2/modeling_gemma2.py +4 -4
- transformers/models/gemma2/modular_gemma2.py +2 -1
- transformers/models/gemma3/modeling_gemma3.py +14 -84
- transformers/models/gemma3/modular_gemma3.py +12 -81
- transformers/models/gemma3n/modeling_gemma3n.py +18 -209
- transformers/models/gemma3n/modular_gemma3n.py +17 -59
- transformers/models/git/modeling_git.py +2 -0
- transformers/models/glm/modeling_glm.py +4 -4
- transformers/models/glm4/modeling_glm4.py +4 -4
- transformers/models/glm4_moe/modeling_glm4_moe.py +5 -3
- transformers/models/glm4v/configuration_glm4v.py +3 -1
- transformers/models/glm4v/modeling_glm4v.py +3 -3
- transformers/models/glm4v/modular_glm4v.py +6 -4
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +3 -1
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +6 -5
- transformers/models/glm4v_moe/modular_glm4v_moe.py +1 -1
- transformers/models/glpn/modeling_glpn.py +2 -0
- transformers/models/gpt2/modeling_gpt2.py +5 -1
- transformers/models/gpt2/tokenization_gpt2.py +16 -44
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +1 -0
- transformers/models/gpt_neo/modeling_gpt_neo.py +4 -0
- transformers/models/gpt_neox/modeling_gpt_neox.py +5 -2
- transformers/models/gpt_neox/modular_gpt_neox.py +3 -0
- transformers/models/gpt_neox/tokenization_gpt_neox.py +10 -49
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +3 -1
- transformers/models/gpt_oss/modeling_gpt_oss.py +5 -6
- transformers/models/gpt_oss/modular_gpt_oss.py +3 -5
- transformers/models/gptj/modeling_gptj.py +3 -0
- transformers/models/granite/modeling_granite.py +4 -4
- transformers/models/granitemoe/modeling_granitemoe.py +4 -6
- transformers/models/granitemoe/modular_granitemoe.py +0 -2
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +4 -6
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +4 -6
- transformers/models/grounding_dino/modeling_grounding_dino.py +4 -0
- transformers/models/groupvit/modeling_groupvit.py +3 -0
- transformers/models/helium/modeling_helium.py +4 -3
- transformers/models/herbert/tokenization_herbert.py +9 -25
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +6 -1
- transformers/models/hgnet_v2/modular_hgnet_v2.py +6 -1
- transformers/models/hiera/modeling_hiera.py +4 -0
- transformers/models/hubert/modeling_hubert.py +3 -0
- transformers/models/hubert/modular_hubert.py +1 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +4 -4
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +4 -4
- transformers/models/ibert/modeling_ibert.py +6 -0
- transformers/models/idefics/modeling_idefics.py +5 -21
- transformers/models/imagegpt/modeling_imagegpt.py +2 -1
- transformers/models/informer/modeling_informer.py +4 -0
- transformers/models/informer/modular_informer.py +1 -0
- transformers/models/internvl/modeling_internvl.py +2 -4
- transformers/models/internvl/modular_internvl.py +2 -4
- transformers/models/jamba/modeling_jamba.py +2 -2
- transformers/models/janus/modeling_janus.py +1 -0
- transformers/models/janus/modular_janus.py +1 -0
- transformers/models/jetmoe/modeling_jetmoe.py +2 -2
- transformers/models/kosmos2/modeling_kosmos2.py +1 -0
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +3 -1
- transformers/models/lasr/__init__.py +29 -0
- transformers/models/lasr/configuration_lasr.py +244 -0
- transformers/models/lasr/feature_extraction_lasr.py +277 -0
- transformers/models/lasr/modeling_lasr.py +729 -0
- transformers/models/lasr/modular_lasr.py +569 -0
- transformers/models/lasr/processing_lasr.py +96 -0
- transformers/models/lasr/tokenization_lasr.py +186 -0
- transformers/models/layoutlm/modeling_layoutlm.py +5 -0
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +4 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +10 -53
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +4 -0
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +12 -61
- transformers/models/layoutxlm/tokenization_layoutxlm.py +13 -38
- transformers/models/led/modeling_led.py +6 -0
- transformers/models/levit/modeling_levit.py +3 -0
- transformers/models/lfm2/modeling_lfm2.py +4 -5
- transformers/models/lfm2/modular_lfm2.py +0 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +4 -5
- transformers/models/lightglue/modeling_lightglue.py +3 -1
- transformers/models/lightglue/modular_lightglue.py +1 -0
- transformers/models/lilt/modeling_lilt.py +4 -0
- transformers/models/llama/modeling_llama.py +4 -4
- transformers/models/llama/tokenization_llama.py +15 -43
- transformers/models/llama4/modeling_llama4.py +3 -2
- transformers/models/longcat_flash/modeling_longcat_flash.py +4 -4
- transformers/models/longcat_flash/modular_longcat_flash.py +2 -2
- transformers/models/longformer/modeling_longformer.py +6 -0
- transformers/models/longt5/modeling_longt5.py +4 -0
- transformers/models/luke/modeling_luke.py +9 -0
- transformers/models/luke/tokenization_luke.py +11 -38
- transformers/models/lxmert/modeling_lxmert.py +2 -0
- transformers/models/m2m_100/modeling_m2m_100.py +4 -0
- transformers/models/mamba/modeling_mamba.py +14 -22
- transformers/models/marian/modeling_marian.py +5 -0
- transformers/models/markuplm/modeling_markuplm.py +4 -0
- transformers/models/markuplm/tokenization_markuplm.py +28 -61
- transformers/models/mask2former/modeling_mask2former.py +2 -0
- transformers/models/maskformer/modeling_maskformer.py +2 -0
- transformers/models/maskformer/modeling_maskformer_swin.py +2 -0
- transformers/models/mbart/modeling_mbart.py +7 -0
- transformers/models/mbart/tokenization_mbart.py +11 -52
- transformers/models/mbart50/tokenization_mbart50.py +7 -10
- transformers/models/megatron_bert/modeling_megatron_bert.py +7 -0
- transformers/models/mgp_str/modeling_mgp_str.py +2 -0
- transformers/models/mimi/modeling_mimi.py +3 -1
- transformers/models/minimax/modeling_minimax.py +4 -4
- transformers/models/ministral/modeling_ministral.py +4 -4
- transformers/models/ministral3/configuration_ministral3.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +4 -3
- transformers/models/mistral/modeling_mistral.py +4 -3
- transformers/models/mixtral/modeling_mixtral.py +4 -4
- transformers/models/mllama/modeling_mllama.py +2 -2
- transformers/models/mluke/tokenization_mluke.py +6 -6
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +4 -0
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +2 -0
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +3 -0
- transformers/models/mobilevit/modeling_mobilevit.py +3 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +3 -0
- transformers/models/modernbert/modeling_modernbert.py +4 -1
- transformers/models/modernbert/modular_modernbert.py +2 -0
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +8 -9
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +6 -7
- transformers/models/moonshine/modeling_moonshine.py +4 -2
- transformers/models/moshi/modeling_moshi.py +5 -2
- transformers/models/mpnet/modeling_mpnet.py +5 -0
- transformers/models/mpnet/tokenization_mpnet.py +5 -13
- transformers/models/mpt/modeling_mpt.py +2 -0
- transformers/models/mra/modeling_mra.py +6 -0
- transformers/models/mt5/modeling_mt5.py +7 -0
- transformers/models/musicgen/modeling_musicgen.py +2 -0
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +3 -0
- transformers/models/mvp/modeling_mvp.py +7 -0
- transformers/models/nanochat/modeling_nanochat.py +4 -4
- transformers/models/nemotron/modeling_nemotron.py +4 -2
- transformers/models/nllb/tokenization_nllb.py +8 -22
- transformers/models/nougat/tokenization_nougat.py +11 -59
- transformers/models/nystromformer/modeling_nystromformer.py +6 -0
- transformers/models/olmo/modeling_olmo.py +4 -4
- transformers/models/olmo/modular_olmo.py +2 -2
- transformers/models/olmo2/modeling_olmo2.py +4 -5
- transformers/models/olmo2/modular_olmo2.py +0 -1
- transformers/models/olmo3/modeling_olmo3.py +4 -4
- transformers/models/olmoe/modeling_olmoe.py +4 -4
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +2 -0
- transformers/models/oneformer/modeling_oneformer.py +4 -1
- transformers/models/openai/modeling_openai.py +3 -0
- transformers/models/openai/tokenization_openai.py +10 -46
- transformers/models/opt/modeling_opt.py +2 -0
- transformers/models/owlv2/modeling_owlv2.py +4 -0
- transformers/models/owlvit/modeling_owlvit.py +4 -0
- transformers/models/paddleocr_vl/__init__.py +32 -0
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +336 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +503 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +209 -0
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +1668 -0
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +1349 -0
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +135 -0
- transformers/models/parakeet/configuration_parakeet.py +4 -6
- transformers/models/parakeet/modeling_parakeet.py +9 -6
- transformers/models/parakeet/modular_parakeet.py +2 -2
- transformers/models/parakeet/processing_parakeet.py +1 -0
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +6 -0
- transformers/models/patchtst/modeling_patchtst.py +20 -2
- transformers/models/pegasus/modeling_pegasus.py +5 -0
- transformers/models/pegasus/tokenization_pegasus.py +17 -44
- transformers/models/pegasus_x/modeling_pegasus_x.py +4 -0
- transformers/models/perceiver/modeling_perceiver.py +8 -0
- transformers/models/persimmon/modeling_persimmon.py +2 -1
- transformers/models/phi/modeling_phi.py +4 -5
- transformers/models/phi/modular_phi.py +0 -1
- transformers/models/phi3/modeling_phi3.py +2 -1
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +5 -5
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +4 -4
- transformers/models/phimoe/modeling_phimoe.py +4 -4
- transformers/models/phimoe/modular_phimoe.py +2 -2
- transformers/models/pix2struct/modeling_pix2struct.py +2 -0
- transformers/models/pixtral/modeling_pixtral.py +2 -1
- transformers/models/plbart/modeling_plbart.py +6 -0
- transformers/models/plbart/modular_plbart.py +2 -0
- transformers/models/plbart/tokenization_plbart.py +0 -2
- transformers/models/poolformer/modeling_poolformer.py +2 -0
- transformers/models/pop2piano/modeling_pop2piano.py +2 -0
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +1 -0
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +1 -0
- transformers/models/prophetnet/modeling_prophetnet.py +3 -0
- transformers/models/pvt/modeling_pvt.py +2 -0
- transformers/models/pvt_v2/modeling_pvt_v2.py +3 -0
- transformers/models/qwen2/modeling_qwen2.py +4 -4
- transformers/models/qwen2/tokenization_qwen2.py +14 -18
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +4 -2
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +13 -16
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +14 -16
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +1 -1
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +5 -6
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +3 -5
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +2 -0
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +4 -4
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +1 -1
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +6 -16
- transformers/models/qwen3/modeling_qwen3.py +4 -4
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +4 -4
- transformers/models/qwen3_next/modeling_qwen3_next.py +4 -3
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +21 -23
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +14 -16
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +39 -37
- transformers/models/qwen3_vl/modular_qwen3_vl.py +37 -35
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +39 -37
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +4 -1
- transformers/models/rag/modeling_rag.py +1 -0
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +15 -1
- transformers/models/reformer/modeling_reformer.py +4 -0
- transformers/models/reformer/tokenization_reformer.py +11 -28
- transformers/models/regnet/modeling_regnet.py +6 -1
- transformers/models/rembert/modeling_rembert.py +6 -0
- transformers/models/rembert/tokenization_rembert.py +3 -10
- transformers/models/resnet/modeling_resnet.py +11 -2
- transformers/models/roberta/tokenization_roberta.py +18 -27
- transformers/models/roformer/modeling_roformer.py +6 -0
- transformers/models/roformer/tokenization_roformer.py +77 -412
- transformers/models/rt_detr/modeling_rt_detr.py +2 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +5 -1
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +2 -0
- transformers/models/rwkv/modeling_rwkv.py +1 -0
- transformers/models/sam2/modeling_sam2.py +2 -2
- transformers/models/sam2/modular_sam2.py +2 -2
- transformers/models/sam2_video/modeling_sam2_video.py +1 -0
- transformers/models/sam2_video/modular_sam2_video.py +1 -0
- transformers/models/sam3/modeling_sam3.py +77 -80
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +6 -1
- transformers/models/sam3_tracker/modular_sam3_tracker.py +6 -1
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +1 -0
- transformers/models/sam3_video/modeling_sam3_video.py +1 -0
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +5 -1
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +27 -59
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +5 -1
- transformers/models/seed_oss/modeling_seed_oss.py +2 -2
- transformers/models/segformer/modeling_segformer.py +4 -1
- transformers/models/seggpt/modeling_seggpt.py +2 -0
- transformers/models/sew/modeling_sew.py +3 -0
- transformers/models/sew/modular_sew.py +1 -0
- transformers/models/sew_d/modeling_sew_d.py +3 -0
- transformers/models/siglip2/modeling_siglip2.py +4 -0
- transformers/models/siglip2/modular_siglip2.py +4 -0
- transformers/models/smollm3/modeling_smollm3.py +4 -4
- transformers/models/smolvlm/processing_smolvlm.py +0 -7
- transformers/models/speech_to_text/modeling_speech_to_text.py +4 -0
- transformers/models/speecht5/modeling_speecht5.py +13 -1
- transformers/models/splinter/modeling_splinter.py +3 -0
- transformers/models/splinter/tokenization_splinter.py +9 -28
- transformers/models/squeezebert/modeling_squeezebert.py +6 -0
- transformers/models/stablelm/modeling_stablelm.py +3 -1
- transformers/models/starcoder2/modeling_starcoder2.py +4 -3
- transformers/models/superglue/modeling_superglue.py +1 -0
- transformers/models/superpoint/modeling_superpoint.py +1 -0
- transformers/models/swiftformer/modeling_swiftformer.py +2 -0
- transformers/models/swin/modeling_swin.py +4 -0
- transformers/models/swin2sr/modeling_swin2sr.py +2 -0
- transformers/models/swinv2/modeling_swinv2.py +4 -0
- transformers/models/t5/modeling_t5.py +7 -0
- transformers/models/t5/tokenization_t5.py +4 -8
- transformers/models/t5gemma/modeling_t5gemma.py +5 -5
- transformers/models/t5gemma2/modeling_t5gemma2.py +6 -6
- transformers/models/table_transformer/modeling_table_transformer.py +4 -0
- transformers/models/tapas/modeling_tapas.py +3 -0
- transformers/models/textnet/modeling_textnet.py +11 -2
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -0
- transformers/models/timesfm/modeling_timesfm.py +2 -0
- transformers/models/timesfm/modular_timesfm.py +2 -0
- transformers/models/timesformer/modeling_timesformer.py +2 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +1 -1
- transformers/models/trocr/modeling_trocr.py +2 -0
- transformers/models/tvp/modeling_tvp.py +2 -0
- transformers/models/udop/modeling_udop.py +4 -0
- transformers/models/udop/tokenization_udop.py +5 -13
- transformers/models/umt5/modeling_umt5.py +7 -0
- transformers/models/unispeech/modeling_unispeech.py +4 -0
- transformers/models/unispeech/modular_unispeech.py +2 -0
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +6 -0
- transformers/models/unispeech_sat/modular_unispeech_sat.py +2 -0
- transformers/models/univnet/modeling_univnet.py +1 -0
- transformers/models/upernet/modeling_upernet.py +1 -0
- transformers/models/vaultgemma/modeling_vaultgemma.py +4 -4
- transformers/models/vilt/modeling_vilt.py +6 -0
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +1 -0
- transformers/models/visual_bert/modeling_visual_bert.py +6 -0
- transformers/models/vitdet/modeling_vitdet.py +2 -0
- transformers/models/vitmatte/modeling_vitmatte.py +1 -0
- transformers/models/vits/modeling_vits.py +1 -0
- transformers/models/vjepa2/modeling_vjepa2.py +1 -0
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -0
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +5 -0
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +5 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +6 -0
- transformers/models/wavlm/modeling_wavlm.py +5 -0
- transformers/models/whisper/modeling_whisper.py +6 -0
- transformers/models/whisper/tokenization_whisper.py +4 -15
- transformers/models/x_clip/modeling_x_clip.py +3 -0
- transformers/models/xglm/modeling_xglm.py +1 -0
- transformers/models/xglm/tokenization_xglm.py +4 -9
- transformers/models/xlm/modeling_xlm.py +5 -0
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +9 -16
- transformers/models/xlnet/tokenization_xlnet.py +3 -7
- transformers/models/yoso/modeling_yoso.py +6 -0
- transformers/models/zamba/modeling_zamba.py +2 -0
- transformers/models/zamba2/modeling_zamba2.py +4 -2
- transformers/models/zamba2/modular_zamba2.py +1 -1
- transformers/models/zoedepth/modeling_zoedepth.py +1 -0
- transformers/pipelines/__init__.py +2 -3
- transformers/pipelines/base.py +1 -9
- transformers/pipelines/document_question_answering.py +3 -1
- transformers/pipelines/text_generation.py +1 -1
- transformers/processing_utils.py +23 -11
- transformers/quantizers/base.py +35 -110
- transformers/quantizers/quantizer_aqlm.py +1 -5
- transformers/quantizers/quantizer_auto_round.py +1 -2
- transformers/quantizers/quantizer_awq.py +17 -81
- transformers/quantizers/quantizer_bitnet.py +3 -8
- transformers/quantizers/quantizer_bnb_4bit.py +13 -110
- transformers/quantizers/quantizer_bnb_8bit.py +16 -92
- transformers/quantizers/quantizer_compressed_tensors.py +1 -5
- transformers/quantizers/quantizer_eetq.py +14 -62
- transformers/quantizers/quantizer_fbgemm_fp8.py +34 -125
- transformers/quantizers/quantizer_finegrained_fp8.py +13 -105
- transformers/quantizers/quantizer_fp_quant.py +48 -78
- transformers/quantizers/quantizer_gptq.py +7 -24
- transformers/quantizers/quantizer_higgs.py +40 -54
- transformers/quantizers/quantizer_hqq.py +144 -153
- transformers/quantizers/quantizer_mxfp4.py +13 -167
- transformers/quantizers/quantizer_quanto.py +20 -64
- transformers/quantizers/quantizer_quark.py +36 -17
- transformers/quantizers/quantizer_spqr.py +1 -4
- transformers/quantizers/quantizer_torchao.py +23 -202
- transformers/quantizers/quantizer_vptq.py +8 -22
- transformers/quantizers/quantizers_utils.py +20 -0
- transformers/testing_utils.py +297 -36
- transformers/tokenization_mistral_common.py +4 -0
- transformers/tokenization_utils_base.py +113 -222
- transformers/tokenization_utils_tokenizers.py +168 -107
- transformers/trainer.py +28 -31
- transformers/trainer_jit_checkpoint.py +126 -0
- transformers/trainer_utils.py +1 -1
- transformers/training_args.py +66 -28
- transformers/utils/__init__.py +3 -4
- transformers/utils/auto_docstring.py +1 -0
- transformers/utils/generic.py +27 -1
- transformers/utils/hub.py +5 -15
- transformers/utils/import_utils.py +61 -16
- transformers/utils/kernel_config.py +4 -2
- transformers/utils/loading_report.py +19 -10
- transformers/utils/quantization_config.py +75 -242
- transformers/video_processing_utils.py +1 -2
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/METADATA +274 -227
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/RECORD +536 -520
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/WHEEL +1 -1
- transformers/kernels/__init__.py +0 -0
- transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +0 -529
- transformers/models/roformer/tokenization_roformer_fast.py +0 -160
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info/licenses}/LICENSE +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/top_level.txt +0 -0
transformers/kernels/__init__.py
DELETED
|
File without changes
|
|
@@ -1,529 +0,0 @@
|
|
|
1
|
-
# coding=utf-8
|
|
2
|
-
# Copyright 2024 Tri Dao, Albert Gu, Technological Innovation Institute and HuggingFace Inc. team.
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# Original code from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py
|
|
16
|
-
|
|
17
|
-
import torch
|
|
18
|
-
import torch.nn.functional as F
|
|
19
|
-
from einops import rearrange, repeat
|
|
20
|
-
from torch.cuda.amp import custom_bwd, custom_fwd
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
try:
|
|
24
|
-
import causal_conv1d_cuda
|
|
25
|
-
except ImportError:
|
|
26
|
-
causal_conv1d_cuda = None
|
|
27
|
-
|
|
28
|
-
import mamba_ssm
|
|
29
|
-
import selective_scan_cuda
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
# For BC for old mamba-ssm versions: https://github.com/huggingface/transformers/pull/33195#discussion_r1736401127
|
|
33
|
-
if hasattr(mamba_ssm.ops.triton, "layernorm"):
|
|
34
|
-
from mamba_ssm.ops.triton.layernorm import _layer_norm_fwd
|
|
35
|
-
else:
|
|
36
|
-
from mamba_ssm.ops.triton.layer_norm import _layer_norm_fwd
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
class SelectiveScanFn(torch.autograd.Function):
|
|
40
|
-
@staticmethod
|
|
41
|
-
def forward(
|
|
42
|
-
ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False
|
|
43
|
-
):
|
|
44
|
-
if u.stride(-1) != 1:
|
|
45
|
-
u = u.contiguous()
|
|
46
|
-
if delta.stride(-1) != 1:
|
|
47
|
-
delta = delta.contiguous()
|
|
48
|
-
if D is not None:
|
|
49
|
-
D = D.contiguous()
|
|
50
|
-
if B.stride(-1) != 1:
|
|
51
|
-
B = B.contiguous()
|
|
52
|
-
if C.stride(-1) != 1:
|
|
53
|
-
C = C.contiguous()
|
|
54
|
-
if z is not None and z.stride(-1) != 1:
|
|
55
|
-
z = z.contiguous()
|
|
56
|
-
if B.dim() == 3:
|
|
57
|
-
B = rearrange(B, "b dstate l -> b 1 dstate l")
|
|
58
|
-
ctx.squeeze_B = True
|
|
59
|
-
if C.dim() == 3:
|
|
60
|
-
C = rearrange(C, "b dstate l -> b 1 dstate l")
|
|
61
|
-
ctx.squeeze_C = True
|
|
62
|
-
out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus)
|
|
63
|
-
ctx.delta_softplus = delta_softplus
|
|
64
|
-
ctx.has_z = z is not None
|
|
65
|
-
last_state = x[:, :, -1, 1::2] # (batch, dim, dstate)
|
|
66
|
-
if not ctx.has_z:
|
|
67
|
-
ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x)
|
|
68
|
-
return out if not return_last_state else (out, last_state)
|
|
69
|
-
else:
|
|
70
|
-
ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x, out)
|
|
71
|
-
out_z = rest[0]
|
|
72
|
-
return out_z if not return_last_state else (out_z, last_state)
|
|
73
|
-
|
|
74
|
-
@staticmethod
|
|
75
|
-
def backward(ctx, dout, *args):
|
|
76
|
-
if not ctx.has_z:
|
|
77
|
-
u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors
|
|
78
|
-
z = None
|
|
79
|
-
out = None
|
|
80
|
-
else:
|
|
81
|
-
u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors
|
|
82
|
-
if dout.stride(-1) != 1:
|
|
83
|
-
dout = dout.contiguous()
|
|
84
|
-
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
|
|
85
|
-
# backward of selective_scan_cuda with the backward of chunk).
|
|
86
|
-
# Here we just pass in None and dz will be allocated in the C++ code.
|
|
87
|
-
du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd(
|
|
88
|
-
u,
|
|
89
|
-
delta,
|
|
90
|
-
A,
|
|
91
|
-
B,
|
|
92
|
-
C,
|
|
93
|
-
D,
|
|
94
|
-
z,
|
|
95
|
-
delta_bias,
|
|
96
|
-
dout,
|
|
97
|
-
x,
|
|
98
|
-
out,
|
|
99
|
-
None,
|
|
100
|
-
ctx.delta_softplus,
|
|
101
|
-
False, # option to recompute out_z, not used here
|
|
102
|
-
)
|
|
103
|
-
dz = rest[0] if ctx.has_z else None
|
|
104
|
-
dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB
|
|
105
|
-
dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC
|
|
106
|
-
return (
|
|
107
|
-
du,
|
|
108
|
-
ddelta,
|
|
109
|
-
dA,
|
|
110
|
-
dB,
|
|
111
|
-
dC,
|
|
112
|
-
dD if D is not None else None,
|
|
113
|
-
dz,
|
|
114
|
-
ddelta_bias if delta_bias is not None else None,
|
|
115
|
-
None,
|
|
116
|
-
None,
|
|
117
|
-
)
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
def rms_norm_forward(
|
|
121
|
-
x,
|
|
122
|
-
weight,
|
|
123
|
-
bias,
|
|
124
|
-
eps=1e-6,
|
|
125
|
-
is_rms_norm=True,
|
|
126
|
-
):
|
|
127
|
-
# x (b l) d
|
|
128
|
-
if x.stride(-1) != 1:
|
|
129
|
-
x = x.contiguous()
|
|
130
|
-
weight = weight.contiguous()
|
|
131
|
-
if bias is not None:
|
|
132
|
-
bias = bias.contiguous()
|
|
133
|
-
y = _layer_norm_fwd(x, weight, bias, eps, None, residual_dtype=None, is_rms_norm=is_rms_norm)[0]
|
|
134
|
-
# y (b l) d
|
|
135
|
-
return y
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
def selective_scan_fn(
|
|
139
|
-
u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False
|
|
140
|
-
):
|
|
141
|
-
"""if return_last_state is True, returns (out, last_state)
|
|
142
|
-
last_state has shape (batch, dim, dstate). Note that the gradient of the last state is
|
|
143
|
-
not considered in the backward pass.
|
|
144
|
-
"""
|
|
145
|
-
return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
def selective_scan_ref(
|
|
149
|
-
u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False
|
|
150
|
-
):
|
|
151
|
-
"""
|
|
152
|
-
u: r(B D L)
|
|
153
|
-
delta: r(B D L)
|
|
154
|
-
A: c(D N) or r(D N)
|
|
155
|
-
B: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
|
|
156
|
-
C: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
|
|
157
|
-
D: r(D)
|
|
158
|
-
z: r(B D L)
|
|
159
|
-
delta_bias: r(D), fp32
|
|
160
|
-
|
|
161
|
-
out: r(B D L)
|
|
162
|
-
last_state (optional): r(B D dstate) or c(B D dstate)
|
|
163
|
-
"""
|
|
164
|
-
dtype_in = u.dtype
|
|
165
|
-
u = u.float()
|
|
166
|
-
delta = delta.float()
|
|
167
|
-
if delta_bias is not None:
|
|
168
|
-
delta = delta + delta_bias[..., None].float()
|
|
169
|
-
if delta_softplus:
|
|
170
|
-
delta = F.softplus(delta)
|
|
171
|
-
batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
|
|
172
|
-
is_variable_B = B.dim() >= 3
|
|
173
|
-
is_variable_C = C.dim() >= 3
|
|
174
|
-
if A.is_complex():
|
|
175
|
-
if is_variable_B:
|
|
176
|
-
B = torch.view_as_complex(rearrange(B.float(), "... (L two) -> ... L two", two=2))
|
|
177
|
-
if is_variable_C:
|
|
178
|
-
C = torch.view_as_complex(rearrange(C.float(), "... (L two) -> ... L two", two=2))
|
|
179
|
-
else:
|
|
180
|
-
B = B.float()
|
|
181
|
-
C = C.float()
|
|
182
|
-
x = A.new_zeros((batch, dim, dstate))
|
|
183
|
-
ys = []
|
|
184
|
-
deltaA = torch.exp(torch.einsum("bdl,dn->bdln", delta, A))
|
|
185
|
-
if not is_variable_B:
|
|
186
|
-
deltaB_u = torch.einsum("bdl,dn,bdl->bdln", delta, B, u)
|
|
187
|
-
else:
|
|
188
|
-
if B.dim() == 3:
|
|
189
|
-
deltaB_u = torch.einsum("bdl,bnl,bdl->bdln", delta, B, u)
|
|
190
|
-
else:
|
|
191
|
-
B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1])
|
|
192
|
-
deltaB_u = torch.einsum("bdl,bdnl,bdl->bdln", delta, B, u)
|
|
193
|
-
if is_variable_C and C.dim() == 4:
|
|
194
|
-
C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1])
|
|
195
|
-
last_state = None
|
|
196
|
-
for i in range(u.shape[2]):
|
|
197
|
-
x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
|
|
198
|
-
if not is_variable_C:
|
|
199
|
-
y = torch.einsum("bdn,dn->bd", x, C)
|
|
200
|
-
else:
|
|
201
|
-
if C.dim() == 3:
|
|
202
|
-
y = torch.einsum("bdn,bn->bd", x, C[:, :, i])
|
|
203
|
-
else:
|
|
204
|
-
y = torch.einsum("bdn,bdn->bd", x, C[:, :, :, i])
|
|
205
|
-
if i == u.shape[2] - 1:
|
|
206
|
-
last_state = x
|
|
207
|
-
if y.is_complex():
|
|
208
|
-
y = y.real * 2
|
|
209
|
-
ys.append(y)
|
|
210
|
-
y = torch.stack(ys, dim=2) # (batch dim L)
|
|
211
|
-
out = y if D is None else y + u * rearrange(D, "d -> d 1")
|
|
212
|
-
if z is not None:
|
|
213
|
-
out = out * F.silu(z)
|
|
214
|
-
out = out.to(dtype=dtype_in)
|
|
215
|
-
return out if not return_last_state else (out, last_state)
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
class MambaInnerFn(torch.autograd.Function):
|
|
219
|
-
@staticmethod
|
|
220
|
-
@custom_fwd
|
|
221
|
-
def forward(
|
|
222
|
-
ctx,
|
|
223
|
-
xz,
|
|
224
|
-
conv1d_weight,
|
|
225
|
-
conv1d_bias,
|
|
226
|
-
x_proj_weight,
|
|
227
|
-
delta_proj_weight,
|
|
228
|
-
out_proj_weight,
|
|
229
|
-
out_proj_bias,
|
|
230
|
-
A,
|
|
231
|
-
B=None,
|
|
232
|
-
C=None,
|
|
233
|
-
D=None,
|
|
234
|
-
delta_bias=None,
|
|
235
|
-
B_proj_bias=None,
|
|
236
|
-
C_proj_bias=None,
|
|
237
|
-
delta_softplus=True,
|
|
238
|
-
checkpoint_lvl=1,
|
|
239
|
-
b_rms_weight=None,
|
|
240
|
-
c_rms_weight=None,
|
|
241
|
-
dt_rms_weight=None,
|
|
242
|
-
b_c_dt_rms_eps=1e-6,
|
|
243
|
-
):
|
|
244
|
-
"""
|
|
245
|
-
xz: (batch, dim, seqlen)
|
|
246
|
-
"""
|
|
247
|
-
assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d."
|
|
248
|
-
assert checkpoint_lvl in [0, 1]
|
|
249
|
-
L = xz.shape[-1]
|
|
250
|
-
delta_rank = delta_proj_weight.shape[1]
|
|
251
|
-
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
|
|
252
|
-
if torch.is_autocast_enabled():
|
|
253
|
-
# NOTE: `torch.get_autocast_dtype` is there starting from PyTorch 2.4
|
|
254
|
-
target_dtype = (
|
|
255
|
-
torch.get_autocast_dtype("cuda")
|
|
256
|
-
if hasattr(torch, "get_autocast_dtype")
|
|
257
|
-
else torch.get_autocast_gpu_dtype()
|
|
258
|
-
)
|
|
259
|
-
x_proj_weight = x_proj_weight.to(dtype=target_dtype)
|
|
260
|
-
delta_proj_weight = delta_proj_weight.to(dtype=target_dtype)
|
|
261
|
-
out_proj_weight = out_proj_weight.to(dtype=target_dtype)
|
|
262
|
-
out_proj_bias = out_proj_bias.to(dtype=target_dtype) if out_proj_bias is not None else None
|
|
263
|
-
if xz.stride(-1) != 1:
|
|
264
|
-
xz = xz.contiguous()
|
|
265
|
-
conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w")
|
|
266
|
-
x, z = xz.chunk(2, dim=1)
|
|
267
|
-
conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None
|
|
268
|
-
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, None, None, None, True)
|
|
269
|
-
# We're being very careful here about the layout, to avoid extra transposes.
|
|
270
|
-
# We want delta to have d as the slowest moving dimension
|
|
271
|
-
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
|
|
272
|
-
x_dbl = F.linear(rearrange(conv1d_out, "b d l -> (b l) d"), x_proj_weight) # (bl d)
|
|
273
|
-
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l=L)
|
|
274
|
-
ctx.is_variable_B = B is None
|
|
275
|
-
ctx.is_variable_C = C is None
|
|
276
|
-
ctx.B_proj_bias_is_None = B_proj_bias is None
|
|
277
|
-
ctx.C_proj_bias_is_None = C_proj_bias is None
|
|
278
|
-
if B is None: # variable B
|
|
279
|
-
B = x_dbl[:, delta_rank : delta_rank + d_state] # (bl dstate)
|
|
280
|
-
if B_proj_bias is not None:
|
|
281
|
-
B = B + B_proj_bias.to(dtype=B.dtype)
|
|
282
|
-
if not A.is_complex():
|
|
283
|
-
# B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
|
|
284
|
-
B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
|
|
285
|
-
else:
|
|
286
|
-
B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
|
|
287
|
-
else:
|
|
288
|
-
if B.stride(-1) != 1:
|
|
289
|
-
B = B.contiguous()
|
|
290
|
-
if C is None: # variable C
|
|
291
|
-
C = x_dbl[:, -d_state:] # (bl dstate)
|
|
292
|
-
if C_proj_bias is not None:
|
|
293
|
-
C = C + C_proj_bias.to(dtype=C.dtype)
|
|
294
|
-
if not A.is_complex():
|
|
295
|
-
# C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
|
|
296
|
-
C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
|
|
297
|
-
else:
|
|
298
|
-
C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
|
|
299
|
-
else:
|
|
300
|
-
if C.stride(-1) != 1:
|
|
301
|
-
C = C.contiguous()
|
|
302
|
-
if D is not None:
|
|
303
|
-
D = D.contiguous()
|
|
304
|
-
|
|
305
|
-
if b_rms_weight is not None:
|
|
306
|
-
B = rearrange(B, "b 1 dstate l -> (b l) dstate", l=L).contiguous()
|
|
307
|
-
B = rms_norm_forward(B, b_rms_weight, bias=None, eps=b_c_dt_rms_eps)
|
|
308
|
-
B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
|
|
309
|
-
if c_rms_weight is not None:
|
|
310
|
-
C = rearrange(C, "b 1 dstate l -> (b l) dstate", l=L).contiguous()
|
|
311
|
-
C = rms_norm_forward(C, c_rms_weight, bias=None, eps=b_c_dt_rms_eps)
|
|
312
|
-
C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
|
|
313
|
-
if dt_rms_weight is not None:
|
|
314
|
-
delta = rearrange(delta, "b d l -> (b l) d", l=L).contiguous()
|
|
315
|
-
delta = rms_norm_forward(delta, dt_rms_weight, bias=None, eps=b_c_dt_rms_eps)
|
|
316
|
-
delta = rearrange(delta, "(b l) d -> b d l", l=L).contiguous()
|
|
317
|
-
|
|
318
|
-
out, scan_intermediates, out_z = selective_scan_cuda.fwd(
|
|
319
|
-
conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus
|
|
320
|
-
)
|
|
321
|
-
ctx.delta_softplus = delta_softplus
|
|
322
|
-
ctx.out_proj_bias_is_None = out_proj_bias is None
|
|
323
|
-
ctx.checkpoint_lvl = checkpoint_lvl
|
|
324
|
-
ctx.b_rms_weight = b_rms_weight
|
|
325
|
-
ctx.c_rms_weight = c_rms_weight
|
|
326
|
-
ctx.dt_rms_weight = dt_rms_weight
|
|
327
|
-
ctx.b_c_dt_rms_eps = b_c_dt_rms_eps
|
|
328
|
-
if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass
|
|
329
|
-
conv1d_out, delta = None, None
|
|
330
|
-
ctx.save_for_backward(
|
|
331
|
-
xz,
|
|
332
|
-
conv1d_weight,
|
|
333
|
-
conv1d_bias,
|
|
334
|
-
x_dbl,
|
|
335
|
-
x_proj_weight,
|
|
336
|
-
delta_proj_weight,
|
|
337
|
-
out_proj_weight,
|
|
338
|
-
conv1d_out,
|
|
339
|
-
delta,
|
|
340
|
-
A,
|
|
341
|
-
B,
|
|
342
|
-
C,
|
|
343
|
-
D,
|
|
344
|
-
delta_bias,
|
|
345
|
-
scan_intermediates,
|
|
346
|
-
b_rms_weight,
|
|
347
|
-
c_rms_weight,
|
|
348
|
-
dt_rms_weight,
|
|
349
|
-
out,
|
|
350
|
-
)
|
|
351
|
-
return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
|
|
352
|
-
|
|
353
|
-
@staticmethod
|
|
354
|
-
@custom_bwd
|
|
355
|
-
def backward(ctx, dout):
|
|
356
|
-
# dout: (batch, seqlen, dim)
|
|
357
|
-
assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d."
|
|
358
|
-
(
|
|
359
|
-
xz,
|
|
360
|
-
conv1d_weight,
|
|
361
|
-
conv1d_bias,
|
|
362
|
-
x_dbl,
|
|
363
|
-
x_proj_weight,
|
|
364
|
-
delta_proj_weight,
|
|
365
|
-
out_proj_weight,
|
|
366
|
-
conv1d_out,
|
|
367
|
-
delta,
|
|
368
|
-
A,
|
|
369
|
-
B,
|
|
370
|
-
C,
|
|
371
|
-
D,
|
|
372
|
-
delta_bias,
|
|
373
|
-
scan_intermediates,
|
|
374
|
-
b_rms_weight,
|
|
375
|
-
c_rms_weight,
|
|
376
|
-
dt_rms_weight,
|
|
377
|
-
out,
|
|
378
|
-
) = ctx.saved_tensors
|
|
379
|
-
L = xz.shape[-1]
|
|
380
|
-
delta_rank = delta_proj_weight.shape[1]
|
|
381
|
-
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
|
|
382
|
-
x, z = xz.chunk(2, dim=1)
|
|
383
|
-
if dout.stride(-1) != 1:
|
|
384
|
-
dout = dout.contiguous()
|
|
385
|
-
if ctx.checkpoint_lvl == 1:
|
|
386
|
-
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, None, None, None, True)
|
|
387
|
-
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l=L)
|
|
388
|
-
if dt_rms_weight is not None:
|
|
389
|
-
delta = rearrange(delta, "b d l -> (b l) d", l=L).contiguous()
|
|
390
|
-
delta = rms_norm_forward(delta, ctx.dt_rms_weight, None, ctx.b_c_dt_rms_eps)
|
|
391
|
-
delta = rearrange(delta, "(b l) d -> b d l", l=L).contiguous()
|
|
392
|
-
if b_rms_weight is not None:
|
|
393
|
-
# Recompute & RMSNorm B
|
|
394
|
-
B = rearrange(B, "b 1 dstate l -> (b l) dstate", l=L).contiguous()
|
|
395
|
-
B = rms_norm_forward(B, ctx.b_rms_weight, None, ctx.b_c_dt_rms_eps)
|
|
396
|
-
B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
|
|
397
|
-
if c_rms_weight is not None:
|
|
398
|
-
# Recompute & RMSNorm C
|
|
399
|
-
C = rearrange(C, "b 1 dstate l -> (b l) dstate", l=L).contiguous()
|
|
400
|
-
C = rms_norm_forward(C, ctx.c_rms_weight, None, ctx.b_c_dt_rms_eps)
|
|
401
|
-
C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
|
|
402
|
-
|
|
403
|
-
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
|
|
404
|
-
# backward of selective_scan_cuda with the backward of chunk).
|
|
405
|
-
dxz = torch.empty_like(xz) # (batch, dim, seqlen)
|
|
406
|
-
dx, dz = dxz.chunk(2, dim=1)
|
|
407
|
-
dout = rearrange(dout, "b l e -> e (b l)")
|
|
408
|
-
dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L)
|
|
409
|
-
dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd(
|
|
410
|
-
conv1d_out,
|
|
411
|
-
delta,
|
|
412
|
-
A,
|
|
413
|
-
B,
|
|
414
|
-
C,
|
|
415
|
-
D,
|
|
416
|
-
z,
|
|
417
|
-
delta_bias,
|
|
418
|
-
dout_y,
|
|
419
|
-
scan_intermediates,
|
|
420
|
-
out,
|
|
421
|
-
dz,
|
|
422
|
-
ctx.delta_softplus,
|
|
423
|
-
True, # option to recompute out_z
|
|
424
|
-
)
|
|
425
|
-
dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)"))
|
|
426
|
-
dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None
|
|
427
|
-
dD = dD if D is not None else None
|
|
428
|
-
dx_dbl = torch.empty_like(x_dbl)
|
|
429
|
-
dB_proj_bias = None
|
|
430
|
-
if ctx.is_variable_B:
|
|
431
|
-
if not A.is_complex():
|
|
432
|
-
dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous()
|
|
433
|
-
else:
|
|
434
|
-
dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
|
|
435
|
-
dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None
|
|
436
|
-
dx_dbl[:, delta_rank : delta_rank + d_state] = dB # (bl d)
|
|
437
|
-
dB = None
|
|
438
|
-
dC_proj_bias = None
|
|
439
|
-
if ctx.is_variable_C:
|
|
440
|
-
if not A.is_complex():
|
|
441
|
-
dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous()
|
|
442
|
-
else:
|
|
443
|
-
dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
|
|
444
|
-
dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None
|
|
445
|
-
dx_dbl[:, -d_state:] = dC # (bl d)
|
|
446
|
-
dC = None
|
|
447
|
-
ddelta = rearrange(ddelta, "b d l -> d (b l)")
|
|
448
|
-
ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank])
|
|
449
|
-
dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight)
|
|
450
|
-
dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)")
|
|
451
|
-
dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d"))
|
|
452
|
-
dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out)
|
|
453
|
-
dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1])
|
|
454
|
-
# The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
|
|
455
|
-
# backward of conv1d with the backward of chunk).
|
|
456
|
-
dx, dconv1d_weight, dconv1d_bias, *_ = causal_conv1d_cuda.causal_conv1d_bwd(
|
|
457
|
-
x, conv1d_weight, conv1d_bias, dconv1d_out, None, None, None, dx, False, True
|
|
458
|
-
)
|
|
459
|
-
dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None
|
|
460
|
-
dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w")
|
|
461
|
-
return (
|
|
462
|
-
dxz,
|
|
463
|
-
dconv1d_weight,
|
|
464
|
-
dconv1d_bias,
|
|
465
|
-
dx_proj_weight,
|
|
466
|
-
ddelta_proj_weight,
|
|
467
|
-
dout_proj_weight,
|
|
468
|
-
dout_proj_bias,
|
|
469
|
-
dA,
|
|
470
|
-
dB,
|
|
471
|
-
dC,
|
|
472
|
-
dD,
|
|
473
|
-
ddelta_bias if delta_bias is not None else None,
|
|
474
|
-
# 6-None are delta_softplus, checkpoint_lvl, b_rms_weight, c_rms_weight, dt_rms_weight, b_c_dt_rms_eps
|
|
475
|
-
dB_proj_bias,
|
|
476
|
-
dC_proj_bias,
|
|
477
|
-
None,
|
|
478
|
-
None,
|
|
479
|
-
None,
|
|
480
|
-
None,
|
|
481
|
-
None,
|
|
482
|
-
None,
|
|
483
|
-
)
|
|
484
|
-
|
|
485
|
-
|
|
486
|
-
def mamba_inner_fn(
|
|
487
|
-
xz,
|
|
488
|
-
conv1d_weight,
|
|
489
|
-
conv1d_bias,
|
|
490
|
-
x_proj_weight,
|
|
491
|
-
delta_proj_weight,
|
|
492
|
-
out_proj_weight,
|
|
493
|
-
out_proj_bias,
|
|
494
|
-
A,
|
|
495
|
-
B=None,
|
|
496
|
-
C=None,
|
|
497
|
-
D=None,
|
|
498
|
-
delta_bias=None,
|
|
499
|
-
B_proj_bias=None,
|
|
500
|
-
C_proj_bias=None,
|
|
501
|
-
delta_softplus=True,
|
|
502
|
-
checkpoint_lvl=1,
|
|
503
|
-
b_rms_weight=None,
|
|
504
|
-
c_rms_weight=None,
|
|
505
|
-
dt_rms_weight=None,
|
|
506
|
-
b_c_dt_rms_eps=1e-6,
|
|
507
|
-
):
|
|
508
|
-
return MambaInnerFn.apply(
|
|
509
|
-
xz,
|
|
510
|
-
conv1d_weight,
|
|
511
|
-
conv1d_bias,
|
|
512
|
-
x_proj_weight,
|
|
513
|
-
delta_proj_weight,
|
|
514
|
-
out_proj_weight,
|
|
515
|
-
out_proj_bias,
|
|
516
|
-
A,
|
|
517
|
-
B,
|
|
518
|
-
C,
|
|
519
|
-
D,
|
|
520
|
-
delta_bias,
|
|
521
|
-
B_proj_bias,
|
|
522
|
-
C_proj_bias,
|
|
523
|
-
delta_softplus,
|
|
524
|
-
checkpoint_lvl,
|
|
525
|
-
b_rms_weight,
|
|
526
|
-
c_rms_weight,
|
|
527
|
-
dt_rms_weight,
|
|
528
|
-
b_c_dt_rms_eps,
|
|
529
|
-
)
|
|
@@ -1,160 +0,0 @@
|
|
|
1
|
-
# coding=utf-8
|
|
2
|
-
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
"""Tokenization classes for RoFormer."""
|
|
16
|
-
|
|
17
|
-
import json
|
|
18
|
-
from typing import Optional
|
|
19
|
-
|
|
20
|
-
from tokenizers import normalizers
|
|
21
|
-
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
|
|
22
|
-
|
|
23
|
-
from ...tokenization_utils_tokenizers import PreTrainedTokenizerFast
|
|
24
|
-
from ...utils import logging
|
|
25
|
-
from .tokenization_roformer import RoFormerTokenizer
|
|
26
|
-
from .tokenization_utils import JiebaPreTokenizer
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
logger = logging.get_logger(__name__)
|
|
30
|
-
|
|
31
|
-
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
class RoFormerTokenizerFast(PreTrainedTokenizerFast):
|
|
35
|
-
r"""
|
|
36
|
-
Construct a "fast" RoFormer tokenizer (backed by HuggingFace's *tokenizers* library).
|
|
37
|
-
|
|
38
|
-
[`RoFormerTokenizerFast`] is almost identical to [`BertTokenizerFast`] and runs end-to-end tokenization:
|
|
39
|
-
punctuation splitting and wordpiece. There are some difference between them when tokenizing Chinese.
|
|
40
|
-
|
|
41
|
-
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
|
42
|
-
refer to this superclass for more information regarding those methods.
|
|
43
|
-
|
|
44
|
-
Example:
|
|
45
|
-
|
|
46
|
-
```python
|
|
47
|
-
>>> from transformers import RoFormerTokenizerFast
|
|
48
|
-
|
|
49
|
-
>>> tokenizer = RoFormerTokenizerFast.from_pretrained("junnyu/roformer_chinese_base")
|
|
50
|
-
>>> tokenizer.tokenize("今天天气非常好。")
|
|
51
|
-
['今', '天', '天', '气', '非常', '好', '。']
|
|
52
|
-
```"""
|
|
53
|
-
|
|
54
|
-
vocab_files_names = VOCAB_FILES_NAMES
|
|
55
|
-
slow_tokenizer_class = RoFormerTokenizer
|
|
56
|
-
|
|
57
|
-
def __init__(
|
|
58
|
-
self,
|
|
59
|
-
vocab_file=None,
|
|
60
|
-
tokenizer_file=None,
|
|
61
|
-
do_lower_case=True,
|
|
62
|
-
unk_token="[UNK]",
|
|
63
|
-
sep_token="[SEP]",
|
|
64
|
-
pad_token="[PAD]",
|
|
65
|
-
cls_token="[CLS]",
|
|
66
|
-
mask_token="[MASK]",
|
|
67
|
-
tokenize_chinese_chars=True,
|
|
68
|
-
strip_accents=None,
|
|
69
|
-
**kwargs,
|
|
70
|
-
):
|
|
71
|
-
super().__init__(
|
|
72
|
-
vocab_file,
|
|
73
|
-
tokenizer_file=tokenizer_file,
|
|
74
|
-
do_lower_case=do_lower_case,
|
|
75
|
-
unk_token=unk_token,
|
|
76
|
-
sep_token=sep_token,
|
|
77
|
-
pad_token=pad_token,
|
|
78
|
-
cls_token=cls_token,
|
|
79
|
-
mask_token=mask_token,
|
|
80
|
-
tokenize_chinese_chars=tokenize_chinese_chars,
|
|
81
|
-
strip_accents=strip_accents,
|
|
82
|
-
**kwargs,
|
|
83
|
-
)
|
|
84
|
-
|
|
85
|
-
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
|
|
86
|
-
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
|
|
87
|
-
normalizer_state["lowercase"] = do_lower_case
|
|
88
|
-
normalizer_state["strip_accents"] = strip_accents
|
|
89
|
-
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
|
|
90
|
-
|
|
91
|
-
vocab = self.backend_tokenizer.get_vocab()
|
|
92
|
-
self.backend_tokenizer.pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer(vocab))
|
|
93
|
-
|
|
94
|
-
self.do_lower_case = do_lower_case
|
|
95
|
-
self.strip_accents = strip_accents
|
|
96
|
-
|
|
97
|
-
def _post_init(self):
|
|
98
|
-
super()._post_init()
|
|
99
|
-
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
|
|
100
|
-
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
|
|
101
|
-
normalizer_state["lowercase"] = self.do_lower_case
|
|
102
|
-
normalizer_state["strip_accents"] = getattr(self, "strip_accents", None)
|
|
103
|
-
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
|
|
104
|
-
vocab = self.backend_tokenizer.get_vocab()
|
|
105
|
-
self.backend_tokenizer.pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer(vocab))
|
|
106
|
-
|
|
107
|
-
def __getstate__(self):
|
|
108
|
-
state = self.__dict__.copy()
|
|
109
|
-
state["_tokenizer"].pre_tokenizer = BertPreTokenizer()
|
|
110
|
-
return state
|
|
111
|
-
|
|
112
|
-
def __setstate__(self, d):
|
|
113
|
-
self.__dict__ = d
|
|
114
|
-
vocab = self.__dict__["_tokenizer"].get_vocab()
|
|
115
|
-
self.__dict__["_tokenizer"].pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer(vocab))
|
|
116
|
-
|
|
117
|
-
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
|
118
|
-
"""
|
|
119
|
-
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
120
|
-
adding special tokens. A RoFormer sequence has the following format:
|
|
121
|
-
|
|
122
|
-
- single sequence: `[CLS] X [SEP]`
|
|
123
|
-
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
|
124
|
-
|
|
125
|
-
Args:
|
|
126
|
-
token_ids_0 (`List[int]`):
|
|
127
|
-
List of IDs to which the special tokens will be added.
|
|
128
|
-
token_ids_1 (`List[int]`, *optional*):
|
|
129
|
-
Optional second list of IDs for sequence pairs.
|
|
130
|
-
|
|
131
|
-
Returns:
|
|
132
|
-
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
|
133
|
-
"""
|
|
134
|
-
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
|
135
|
-
|
|
136
|
-
if token_ids_1 is not None:
|
|
137
|
-
output += token_ids_1 + [self.sep_token_id]
|
|
138
|
-
|
|
139
|
-
return output
|
|
140
|
-
|
|
141
|
-
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple[str]:
|
|
142
|
-
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
|
143
|
-
return tuple(files)
|
|
144
|
-
|
|
145
|
-
def save_pretrained(
|
|
146
|
-
self,
|
|
147
|
-
save_directory,
|
|
148
|
-
legacy_format=None,
|
|
149
|
-
filename_prefix=None,
|
|
150
|
-
push_to_hub=False,
|
|
151
|
-
**kwargs,
|
|
152
|
-
):
|
|
153
|
-
self.backend_tokenizer.pre_tokenizer = BertPreTokenizer()
|
|
154
|
-
result = super().save_pretrained(save_directory, legacy_format, filename_prefix, push_to_hub, **kwargs)
|
|
155
|
-
vocab = self.backend_tokenizer.get_vocab()
|
|
156
|
-
self.backend_tokenizer.pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer(vocab))
|
|
157
|
-
return result
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
__all__ = ["RoFormerTokenizerFast"]
|
|
File without changes
|
|
File without changes
|