transformers 5.0.0rc0__py3-none-any.whl → 5.0.0rc1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (539) hide show
  1. transformers/__init__.py +30 -3
  2. transformers/cli/serve.py +47 -17
  3. transformers/conversion_mapping.py +15 -2
  4. transformers/convert_slow_tokenizer.py +225 -10
  5. transformers/core_model_loading.py +196 -135
  6. transformers/data/data_collator.py +12 -4
  7. transformers/dependency_versions_table.py +1 -2
  8. transformers/dynamic_module_utils.py +1 -2
  9. transformers/feature_extraction_utils.py +1 -2
  10. transformers/file_utils.py +0 -1
  11. transformers/generation/__init__.py +11 -1
  12. transformers/generation/configuration_utils.py +3 -2
  13. transformers/generation/continuous_batching/__init__.py +4 -0
  14. transformers/generation/continuous_batching/continuous_api.py +134 -79
  15. transformers/image_processing_base.py +1 -2
  16. transformers/integrations/__init__.py +4 -2
  17. transformers/integrations/accelerate.py +15 -3
  18. transformers/integrations/aqlm.py +38 -66
  19. transformers/integrations/awq.py +48 -514
  20. transformers/integrations/bitnet.py +45 -100
  21. transformers/integrations/bitsandbytes.py +79 -191
  22. transformers/integrations/deepspeed.py +1 -0
  23. transformers/integrations/eetq.py +84 -79
  24. transformers/integrations/fbgemm_fp8.py +191 -145
  25. transformers/integrations/finegrained_fp8.py +236 -193
  26. transformers/integrations/fp_quant.py +92 -0
  27. transformers/integrations/ggml.py +11 -1
  28. transformers/integrations/higgs.py +40 -62
  29. transformers/integrations/hub_kernels.py +42 -3
  30. transformers/integrations/integration_utils.py +10 -0
  31. transformers/integrations/mxfp4.py +25 -65
  32. transformers/integrations/peft.py +7 -29
  33. transformers/integrations/quanto.py +73 -55
  34. transformers/integrations/quark.py +55 -0
  35. transformers/integrations/spqr.py +44 -90
  36. transformers/integrations/torchao.py +32 -38
  37. transformers/integrations/vptq.py +42 -59
  38. transformers/modelcard.py +1 -2
  39. transformers/modeling_gguf_pytorch_utils.py +8 -0
  40. transformers/modeling_rope_utils.py +30 -6
  41. transformers/modeling_utils.py +116 -112
  42. transformers/models/__init__.py +3 -0
  43. transformers/models/afmoe/modeling_afmoe.py +4 -4
  44. transformers/models/albert/tokenization_albert.py +6 -12
  45. transformers/models/align/modeling_align.py +2 -0
  46. transformers/models/altclip/modeling_altclip.py +4 -0
  47. transformers/models/apertus/modeling_apertus.py +4 -4
  48. transformers/models/arcee/modeling_arcee.py +4 -4
  49. transformers/models/aria/modeling_aria.py +4 -4
  50. transformers/models/audioflamingo3/modeling_audioflamingo3.py +1 -0
  51. transformers/models/audioflamingo3/modular_audioflamingo3.py +1 -0
  52. transformers/models/auto/configuration_auto.py +11 -0
  53. transformers/models/auto/feature_extraction_auto.py +2 -0
  54. transformers/models/auto/image_processing_auto.py +1 -0
  55. transformers/models/auto/modeling_auto.py +6 -0
  56. transformers/models/auto/processing_auto.py +18 -10
  57. transformers/models/auto/tokenization_auto.py +74 -472
  58. transformers/models/autoformer/modeling_autoformer.py +4 -0
  59. transformers/models/bamba/modeling_bamba.py +4 -3
  60. transformers/models/bark/modeling_bark.py +2 -0
  61. transformers/models/bart/modeling_bart.py +7 -0
  62. transformers/models/barthez/tokenization_barthez.py +5 -10
  63. transformers/models/beit/modeling_beit.py +6 -1
  64. transformers/models/bert/tokenization_bert.py +8 -21
  65. transformers/models/big_bird/modeling_big_bird.py +6 -0
  66. transformers/models/big_bird/tokenization_big_bird.py +18 -42
  67. transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +8 -2
  68. transformers/models/biogpt/modeling_biogpt.py +2 -0
  69. transformers/models/biogpt/modular_biogpt.py +2 -0
  70. transformers/models/bit/modeling_bit.py +11 -2
  71. transformers/models/bitnet/modeling_bitnet.py +4 -4
  72. transformers/models/blenderbot/modeling_blenderbot.py +5 -0
  73. transformers/models/blenderbot/tokenization_blenderbot.py +12 -16
  74. transformers/models/blenderbot_small/modeling_blenderbot_small.py +5 -0
  75. transformers/models/blip/modeling_blip_text.py +2 -0
  76. transformers/models/blip_2/modeling_blip_2.py +2 -1
  77. transformers/models/bloom/modeling_bloom.py +4 -0
  78. transformers/models/blt/modeling_blt.py +2 -2
  79. transformers/models/blt/modular_blt.py +2 -2
  80. transformers/models/bridgetower/modeling_bridgetower.py +5 -1
  81. transformers/models/bros/modeling_bros.py +4 -0
  82. transformers/models/camembert/tokenization_camembert.py +8 -12
  83. transformers/models/canine/modeling_canine.py +5 -0
  84. transformers/models/chameleon/modeling_chameleon.py +2 -1
  85. transformers/models/chinese_clip/modeling_chinese_clip.py +3 -0
  86. transformers/models/clap/modeling_clap.py +5 -0
  87. transformers/models/clip/tokenization_clip.py +22 -44
  88. transformers/models/clipseg/modeling_clipseg.py +5 -0
  89. transformers/models/clvp/modeling_clvp.py +5 -0
  90. transformers/models/clvp/tokenization_clvp.py +1 -63
  91. transformers/models/code_llama/tokenization_code_llama.py +20 -43
  92. transformers/models/codegen/tokenization_codegen.py +14 -43
  93. transformers/models/cohere/modeling_cohere.py +4 -3
  94. transformers/models/cohere/modular_cohere.py +2 -1
  95. transformers/models/cohere/tokenization_cohere.py +12 -42
  96. transformers/models/cohere2/modeling_cohere2.py +7 -6
  97. transformers/models/cohere2/modular_cohere2.py +5 -5
  98. transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +4 -3
  99. transformers/models/cohere2_vision/modular_cohere2_vision.py +4 -3
  100. transformers/models/colqwen2/modeling_colqwen2.py +1 -0
  101. transformers/models/colqwen2/modular_colqwen2.py +1 -0
  102. transformers/models/conditional_detr/modeling_conditional_detr.py +5 -0
  103. transformers/models/convbert/modeling_convbert.py +6 -0
  104. transformers/models/convnext/modeling_convnext.py +2 -4
  105. transformers/models/convnextv2/modeling_convnextv2.py +2 -4
  106. transformers/models/csm/modeling_csm.py +4 -3
  107. transformers/models/ctrl/modeling_ctrl.py +1 -0
  108. transformers/models/cvt/modeling_cvt.py +2 -0
  109. transformers/models/cwm/modeling_cwm.py +4 -4
  110. transformers/models/d_fine/modeling_d_fine.py +2 -0
  111. transformers/models/d_fine/modular_d_fine.py +1 -0
  112. transformers/models/dab_detr/modeling_dab_detr.py +4 -0
  113. transformers/models/dac/modeling_dac.py +2 -2
  114. transformers/models/data2vec/modeling_data2vec_audio.py +5 -0
  115. transformers/models/data2vec/modeling_data2vec_vision.py +4 -1
  116. transformers/models/dbrx/modeling_dbrx.py +2 -2
  117. transformers/models/deberta/modeling_deberta.py +5 -0
  118. transformers/models/deberta/tokenization_deberta.py +11 -20
  119. transformers/models/deberta_v2/modeling_deberta_v2.py +6 -0
  120. transformers/models/deberta_v2/tokenization_deberta_v2.py +13 -28
  121. transformers/models/decision_transformer/modeling_decision_transformer.py +4 -1
  122. transformers/models/deepseek_v2/modeling_deepseek_v2.py +2 -3
  123. transformers/models/deepseek_v2/modular_deepseek_v2.py +2 -2
  124. transformers/models/deepseek_v3/modeling_deepseek_v3.py +3 -2
  125. transformers/models/deepseek_v3/modular_deepseek_v3.py +1 -0
  126. transformers/models/deformable_detr/modeling_deformable_detr.py +4 -0
  127. transformers/models/depth_anything/modeling_depth_anything.py +1 -0
  128. transformers/models/depth_pro/modeling_depth_pro.py +2 -0
  129. transformers/models/detr/modeling_detr.py +5 -0
  130. transformers/models/dia/modeling_dia.py +4 -3
  131. transformers/models/dia/modular_dia.py +0 -1
  132. transformers/models/diffllama/modeling_diffllama.py +2 -2
  133. transformers/models/dinat/modeling_dinat.py +3 -0
  134. transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +1 -1
  135. transformers/models/dinov3_vit/modeling_dinov3_vit.py +2 -2
  136. transformers/models/dinov3_vit/modular_dinov3_vit.py +2 -2
  137. transformers/models/distilbert/tokenization_distilbert.py +13 -0
  138. transformers/models/doge/modeling_doge.py +2 -3
  139. transformers/models/doge/modular_doge.py +0 -1
  140. transformers/models/donut/modeling_donut_swin.py +2 -0
  141. transformers/models/dots1/modeling_dots1.py +10 -7
  142. transformers/models/dots1/modular_dots1.py +5 -3
  143. transformers/models/dpr/modeling_dpr.py +5 -0
  144. transformers/models/dpr/tokenization_dpr.py +12 -0
  145. transformers/models/edgetam/modeling_edgetam.py +1 -1
  146. transformers/models/edgetam_video/modeling_edgetam_video.py +1 -0
  147. transformers/models/edgetam_video/modular_edgetam_video.py +1 -0
  148. transformers/models/efficientloftr/modeling_efficientloftr.py +2 -2
  149. transformers/models/efficientnet/modeling_efficientnet.py +2 -0
  150. transformers/models/emu3/modeling_emu3.py +4 -4
  151. transformers/models/eomt/image_processing_eomt.py +13 -1
  152. transformers/models/eomt/image_processing_eomt_fast.py +14 -2
  153. transformers/models/ernie4_5/modeling_ernie4_5.py +4 -4
  154. transformers/models/ernie4_5/modular_ernie4_5.py +2 -1
  155. transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +5 -5
  156. transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +2 -2
  157. transformers/models/esm/modeling_esmfold.py +5 -4
  158. transformers/models/evolla/modeling_evolla.py +4 -4
  159. transformers/models/exaone4/modeling_exaone4.py +2 -2
  160. transformers/models/exaone4/modular_exaone4.py +0 -1
  161. transformers/models/falcon/modeling_falcon.py +6 -1
  162. transformers/models/falcon_h1/modeling_falcon_h1.py +4 -3
  163. transformers/models/falcon_mamba/modeling_falcon_mamba.py +25 -35
  164. transformers/models/falcon_mamba/modular_falcon_mamba.py +12 -31
  165. transformers/{kernels/falcon_mamba → models/fast_vlm}/__init__.py +15 -3
  166. transformers/models/fast_vlm/configuration_fast_vlm.py +137 -0
  167. transformers/models/fast_vlm/modeling_fast_vlm.py +455 -0
  168. transformers/models/fast_vlm/modular_fast_vlm.py +273 -0
  169. transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +8 -3
  170. transformers/models/flaubert/modeling_flaubert.py +7 -0
  171. transformers/models/flava/modeling_flava.py +6 -1
  172. transformers/models/flex_olmo/modeling_flex_olmo.py +4 -5
  173. transformers/models/florence2/modeling_florence2.py +2 -1
  174. transformers/models/florence2/modular_florence2.py +2 -1
  175. transformers/models/fnet/modeling_fnet.py +7 -0
  176. transformers/models/focalnet/modeling_focalnet.py +4 -0
  177. transformers/models/fsmt/modeling_fsmt.py +2 -0
  178. transformers/models/funnel/modeling_funnel.py +8 -0
  179. transformers/models/funnel/tokenization_funnel.py +17 -24
  180. transformers/models/fuyu/processing_fuyu.py +3 -3
  181. transformers/models/gemma/modeling_gemma.py +4 -4
  182. transformers/models/gemma/tokenization_gemma.py +10 -27
  183. transformers/models/gemma2/modeling_gemma2.py +4 -4
  184. transformers/models/gemma2/modular_gemma2.py +2 -1
  185. transformers/models/gemma3/modeling_gemma3.py +14 -84
  186. transformers/models/gemma3/modular_gemma3.py +12 -81
  187. transformers/models/gemma3n/modeling_gemma3n.py +18 -209
  188. transformers/models/gemma3n/modular_gemma3n.py +17 -59
  189. transformers/models/git/modeling_git.py +2 -0
  190. transformers/models/glm/modeling_glm.py +4 -4
  191. transformers/models/glm4/modeling_glm4.py +4 -4
  192. transformers/models/glm4_moe/modeling_glm4_moe.py +5 -3
  193. transformers/models/glm4v/configuration_glm4v.py +3 -1
  194. transformers/models/glm4v/modeling_glm4v.py +3 -3
  195. transformers/models/glm4v/modular_glm4v.py +6 -4
  196. transformers/models/glm4v_moe/configuration_glm4v_moe.py +3 -1
  197. transformers/models/glm4v_moe/modeling_glm4v_moe.py +6 -5
  198. transformers/models/glm4v_moe/modular_glm4v_moe.py +1 -1
  199. transformers/models/glpn/modeling_glpn.py +2 -0
  200. transformers/models/gpt2/modeling_gpt2.py +5 -1
  201. transformers/models/gpt2/tokenization_gpt2.py +16 -44
  202. transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +1 -0
  203. transformers/models/gpt_neo/modeling_gpt_neo.py +4 -0
  204. transformers/models/gpt_neox/modeling_gpt_neox.py +5 -2
  205. transformers/models/gpt_neox/modular_gpt_neox.py +3 -0
  206. transformers/models/gpt_neox/tokenization_gpt_neox.py +10 -49
  207. transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +3 -1
  208. transformers/models/gpt_oss/modeling_gpt_oss.py +5 -6
  209. transformers/models/gpt_oss/modular_gpt_oss.py +3 -5
  210. transformers/models/gptj/modeling_gptj.py +3 -0
  211. transformers/models/granite/modeling_granite.py +4 -4
  212. transformers/models/granitemoe/modeling_granitemoe.py +4 -6
  213. transformers/models/granitemoe/modular_granitemoe.py +0 -2
  214. transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +4 -6
  215. transformers/models/granitemoeshared/modeling_granitemoeshared.py +4 -6
  216. transformers/models/grounding_dino/modeling_grounding_dino.py +4 -0
  217. transformers/models/groupvit/modeling_groupvit.py +3 -0
  218. transformers/models/helium/modeling_helium.py +4 -3
  219. transformers/models/herbert/tokenization_herbert.py +9 -25
  220. transformers/models/hgnet_v2/modeling_hgnet_v2.py +6 -1
  221. transformers/models/hgnet_v2/modular_hgnet_v2.py +6 -1
  222. transformers/models/hiera/modeling_hiera.py +4 -0
  223. transformers/models/hubert/modeling_hubert.py +3 -0
  224. transformers/models/hubert/modular_hubert.py +1 -0
  225. transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +4 -4
  226. transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +4 -4
  227. transformers/models/ibert/modeling_ibert.py +6 -0
  228. transformers/models/idefics/modeling_idefics.py +5 -21
  229. transformers/models/imagegpt/modeling_imagegpt.py +2 -1
  230. transformers/models/informer/modeling_informer.py +4 -0
  231. transformers/models/informer/modular_informer.py +1 -0
  232. transformers/models/internvl/modeling_internvl.py +2 -4
  233. transformers/models/internvl/modular_internvl.py +2 -4
  234. transformers/models/jamba/modeling_jamba.py +2 -2
  235. transformers/models/janus/modeling_janus.py +1 -0
  236. transformers/models/janus/modular_janus.py +1 -0
  237. transformers/models/jetmoe/modeling_jetmoe.py +2 -2
  238. transformers/models/kosmos2/modeling_kosmos2.py +1 -0
  239. transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +3 -1
  240. transformers/models/lasr/__init__.py +29 -0
  241. transformers/models/lasr/configuration_lasr.py +244 -0
  242. transformers/models/lasr/feature_extraction_lasr.py +277 -0
  243. transformers/models/lasr/modeling_lasr.py +729 -0
  244. transformers/models/lasr/modular_lasr.py +569 -0
  245. transformers/models/lasr/processing_lasr.py +96 -0
  246. transformers/models/lasr/tokenization_lasr.py +186 -0
  247. transformers/models/layoutlm/modeling_layoutlm.py +5 -0
  248. transformers/models/layoutlmv2/modeling_layoutlmv2.py +4 -0
  249. transformers/models/layoutlmv2/tokenization_layoutlmv2.py +10 -53
  250. transformers/models/layoutlmv3/modeling_layoutlmv3.py +4 -0
  251. transformers/models/layoutlmv3/tokenization_layoutlmv3.py +12 -61
  252. transformers/models/layoutxlm/tokenization_layoutxlm.py +13 -38
  253. transformers/models/led/modeling_led.py +6 -0
  254. transformers/models/levit/modeling_levit.py +3 -0
  255. transformers/models/lfm2/modeling_lfm2.py +4 -5
  256. transformers/models/lfm2/modular_lfm2.py +0 -1
  257. transformers/models/lfm2_moe/modeling_lfm2_moe.py +4 -5
  258. transformers/models/lightglue/modeling_lightglue.py +3 -1
  259. transformers/models/lightglue/modular_lightglue.py +1 -0
  260. transformers/models/lilt/modeling_lilt.py +4 -0
  261. transformers/models/llama/modeling_llama.py +4 -4
  262. transformers/models/llama/tokenization_llama.py +15 -43
  263. transformers/models/llama4/modeling_llama4.py +3 -2
  264. transformers/models/longcat_flash/modeling_longcat_flash.py +4 -4
  265. transformers/models/longcat_flash/modular_longcat_flash.py +2 -2
  266. transformers/models/longformer/modeling_longformer.py +6 -0
  267. transformers/models/longt5/modeling_longt5.py +4 -0
  268. transformers/models/luke/modeling_luke.py +9 -0
  269. transformers/models/luke/tokenization_luke.py +11 -38
  270. transformers/models/lxmert/modeling_lxmert.py +2 -0
  271. transformers/models/m2m_100/modeling_m2m_100.py +4 -0
  272. transformers/models/mamba/modeling_mamba.py +14 -22
  273. transformers/models/marian/modeling_marian.py +5 -0
  274. transformers/models/markuplm/modeling_markuplm.py +4 -0
  275. transformers/models/markuplm/tokenization_markuplm.py +28 -61
  276. transformers/models/mask2former/modeling_mask2former.py +2 -0
  277. transformers/models/maskformer/modeling_maskformer.py +2 -0
  278. transformers/models/maskformer/modeling_maskformer_swin.py +2 -0
  279. transformers/models/mbart/modeling_mbart.py +7 -0
  280. transformers/models/mbart/tokenization_mbart.py +11 -52
  281. transformers/models/mbart50/tokenization_mbart50.py +7 -10
  282. transformers/models/megatron_bert/modeling_megatron_bert.py +7 -0
  283. transformers/models/mgp_str/modeling_mgp_str.py +2 -0
  284. transformers/models/mimi/modeling_mimi.py +3 -1
  285. transformers/models/minimax/modeling_minimax.py +4 -4
  286. transformers/models/ministral/modeling_ministral.py +4 -4
  287. transformers/models/ministral3/configuration_ministral3.py +1 -1
  288. transformers/models/ministral3/modeling_ministral3.py +4 -3
  289. transformers/models/mistral/modeling_mistral.py +4 -3
  290. transformers/models/mixtral/modeling_mixtral.py +4 -4
  291. transformers/models/mllama/modeling_mllama.py +2 -2
  292. transformers/models/mluke/tokenization_mluke.py +6 -6
  293. transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +4 -0
  294. transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +2 -0
  295. transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +3 -0
  296. transformers/models/mobilevit/modeling_mobilevit.py +3 -0
  297. transformers/models/mobilevitv2/modeling_mobilevitv2.py +3 -0
  298. transformers/models/modernbert/modeling_modernbert.py +4 -1
  299. transformers/models/modernbert/modular_modernbert.py +2 -0
  300. transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +8 -9
  301. transformers/models/modernbert_decoder/modular_modernbert_decoder.py +6 -7
  302. transformers/models/moonshine/modeling_moonshine.py +4 -2
  303. transformers/models/moshi/modeling_moshi.py +5 -2
  304. transformers/models/mpnet/modeling_mpnet.py +5 -0
  305. transformers/models/mpnet/tokenization_mpnet.py +5 -13
  306. transformers/models/mpt/modeling_mpt.py +2 -0
  307. transformers/models/mra/modeling_mra.py +6 -0
  308. transformers/models/mt5/modeling_mt5.py +7 -0
  309. transformers/models/musicgen/modeling_musicgen.py +2 -0
  310. transformers/models/musicgen_melody/modeling_musicgen_melody.py +3 -0
  311. transformers/models/mvp/modeling_mvp.py +7 -0
  312. transformers/models/nanochat/modeling_nanochat.py +4 -4
  313. transformers/models/nemotron/modeling_nemotron.py +4 -2
  314. transformers/models/nllb/tokenization_nllb.py +8 -22
  315. transformers/models/nougat/tokenization_nougat.py +11 -59
  316. transformers/models/nystromformer/modeling_nystromformer.py +6 -0
  317. transformers/models/olmo/modeling_olmo.py +4 -4
  318. transformers/models/olmo/modular_olmo.py +2 -2
  319. transformers/models/olmo2/modeling_olmo2.py +4 -5
  320. transformers/models/olmo2/modular_olmo2.py +0 -1
  321. transformers/models/olmo3/modeling_olmo3.py +4 -4
  322. transformers/models/olmoe/modeling_olmoe.py +4 -4
  323. transformers/models/omdet_turbo/modeling_omdet_turbo.py +2 -0
  324. transformers/models/oneformer/modeling_oneformer.py +4 -1
  325. transformers/models/openai/modeling_openai.py +3 -0
  326. transformers/models/openai/tokenization_openai.py +10 -46
  327. transformers/models/opt/modeling_opt.py +2 -0
  328. transformers/models/owlv2/modeling_owlv2.py +4 -0
  329. transformers/models/owlvit/modeling_owlvit.py +4 -0
  330. transformers/models/paddleocr_vl/__init__.py +32 -0
  331. transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +336 -0
  332. transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +503 -0
  333. transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +209 -0
  334. transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +1668 -0
  335. transformers/models/paddleocr_vl/modular_paddleocr_vl.py +1349 -0
  336. transformers/models/paddleocr_vl/processing_paddleocr_vl.py +135 -0
  337. transformers/models/parakeet/configuration_parakeet.py +4 -6
  338. transformers/models/parakeet/modeling_parakeet.py +9 -6
  339. transformers/models/parakeet/modular_parakeet.py +2 -2
  340. transformers/models/parakeet/processing_parakeet.py +1 -0
  341. transformers/models/patchtsmixer/modeling_patchtsmixer.py +6 -0
  342. transformers/models/patchtst/modeling_patchtst.py +20 -2
  343. transformers/models/pegasus/modeling_pegasus.py +5 -0
  344. transformers/models/pegasus/tokenization_pegasus.py +17 -44
  345. transformers/models/pegasus_x/modeling_pegasus_x.py +4 -0
  346. transformers/models/perceiver/modeling_perceiver.py +8 -0
  347. transformers/models/persimmon/modeling_persimmon.py +2 -1
  348. transformers/models/phi/modeling_phi.py +4 -5
  349. transformers/models/phi/modular_phi.py +0 -1
  350. transformers/models/phi3/modeling_phi3.py +2 -1
  351. transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +5 -5
  352. transformers/models/phi4_multimodal/modular_phi4_multimodal.py +4 -4
  353. transformers/models/phimoe/modeling_phimoe.py +4 -4
  354. transformers/models/phimoe/modular_phimoe.py +2 -2
  355. transformers/models/pix2struct/modeling_pix2struct.py +2 -0
  356. transformers/models/pixtral/modeling_pixtral.py +2 -1
  357. transformers/models/plbart/modeling_plbart.py +6 -0
  358. transformers/models/plbart/modular_plbart.py +2 -0
  359. transformers/models/plbart/tokenization_plbart.py +0 -2
  360. transformers/models/poolformer/modeling_poolformer.py +2 -0
  361. transformers/models/pop2piano/modeling_pop2piano.py +2 -0
  362. transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +1 -0
  363. transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +1 -0
  364. transformers/models/prophetnet/modeling_prophetnet.py +3 -0
  365. transformers/models/pvt/modeling_pvt.py +2 -0
  366. transformers/models/pvt_v2/modeling_pvt_v2.py +3 -0
  367. transformers/models/qwen2/modeling_qwen2.py +4 -4
  368. transformers/models/qwen2/tokenization_qwen2.py +14 -18
  369. transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +4 -2
  370. transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +13 -16
  371. transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +14 -16
  372. transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +1 -1
  373. transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +5 -6
  374. transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +3 -5
  375. transformers/models/qwen2_audio/modeling_qwen2_audio.py +2 -0
  376. transformers/models/qwen2_moe/modeling_qwen2_moe.py +4 -4
  377. transformers/models/qwen2_vl/configuration_qwen2_vl.py +1 -1
  378. transformers/models/qwen2_vl/modeling_qwen2_vl.py +6 -16
  379. transformers/models/qwen3/modeling_qwen3.py +4 -4
  380. transformers/models/qwen3_moe/modeling_qwen3_moe.py +4 -4
  381. transformers/models/qwen3_next/modeling_qwen3_next.py +4 -3
  382. transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +21 -23
  383. transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +14 -16
  384. transformers/models/qwen3_vl/modeling_qwen3_vl.py +39 -37
  385. transformers/models/qwen3_vl/modular_qwen3_vl.py +37 -35
  386. transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +39 -37
  387. transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +4 -1
  388. transformers/models/rag/modeling_rag.py +1 -0
  389. transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +15 -1
  390. transformers/models/reformer/modeling_reformer.py +4 -0
  391. transformers/models/reformer/tokenization_reformer.py +11 -28
  392. transformers/models/regnet/modeling_regnet.py +6 -1
  393. transformers/models/rembert/modeling_rembert.py +6 -0
  394. transformers/models/rembert/tokenization_rembert.py +3 -10
  395. transformers/models/resnet/modeling_resnet.py +11 -2
  396. transformers/models/roberta/tokenization_roberta.py +18 -27
  397. transformers/models/roformer/modeling_roformer.py +6 -0
  398. transformers/models/roformer/tokenization_roformer.py +77 -412
  399. transformers/models/rt_detr/modeling_rt_detr.py +2 -0
  400. transformers/models/rt_detr/modeling_rt_detr_resnet.py +5 -1
  401. transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +2 -0
  402. transformers/models/rwkv/modeling_rwkv.py +1 -0
  403. transformers/models/sam2/modeling_sam2.py +2 -2
  404. transformers/models/sam2/modular_sam2.py +2 -2
  405. transformers/models/sam2_video/modeling_sam2_video.py +1 -0
  406. transformers/models/sam2_video/modular_sam2_video.py +1 -0
  407. transformers/models/sam3/modeling_sam3.py +77 -80
  408. transformers/models/sam3_tracker/modeling_sam3_tracker.py +6 -1
  409. transformers/models/sam3_tracker/modular_sam3_tracker.py +6 -1
  410. transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +1 -0
  411. transformers/models/sam3_video/modeling_sam3_video.py +1 -0
  412. transformers/models/seamless_m4t/modeling_seamless_m4t.py +5 -1
  413. transformers/models/seamless_m4t/tokenization_seamless_m4t.py +27 -59
  414. transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +5 -1
  415. transformers/models/seed_oss/modeling_seed_oss.py +2 -2
  416. transformers/models/segformer/modeling_segformer.py +4 -1
  417. transformers/models/seggpt/modeling_seggpt.py +2 -0
  418. transformers/models/sew/modeling_sew.py +3 -0
  419. transformers/models/sew/modular_sew.py +1 -0
  420. transformers/models/sew_d/modeling_sew_d.py +3 -0
  421. transformers/models/siglip2/modeling_siglip2.py +4 -0
  422. transformers/models/siglip2/modular_siglip2.py +4 -0
  423. transformers/models/smollm3/modeling_smollm3.py +4 -4
  424. transformers/models/smolvlm/processing_smolvlm.py +0 -7
  425. transformers/models/speech_to_text/modeling_speech_to_text.py +4 -0
  426. transformers/models/speecht5/modeling_speecht5.py +13 -1
  427. transformers/models/splinter/modeling_splinter.py +3 -0
  428. transformers/models/splinter/tokenization_splinter.py +9 -28
  429. transformers/models/squeezebert/modeling_squeezebert.py +6 -0
  430. transformers/models/stablelm/modeling_stablelm.py +3 -1
  431. transformers/models/starcoder2/modeling_starcoder2.py +4 -3
  432. transformers/models/superglue/modeling_superglue.py +1 -0
  433. transformers/models/superpoint/modeling_superpoint.py +1 -0
  434. transformers/models/swiftformer/modeling_swiftformer.py +2 -0
  435. transformers/models/swin/modeling_swin.py +4 -0
  436. transformers/models/swin2sr/modeling_swin2sr.py +2 -0
  437. transformers/models/swinv2/modeling_swinv2.py +4 -0
  438. transformers/models/t5/modeling_t5.py +7 -0
  439. transformers/models/t5/tokenization_t5.py +4 -8
  440. transformers/models/t5gemma/modeling_t5gemma.py +5 -5
  441. transformers/models/t5gemma2/modeling_t5gemma2.py +6 -6
  442. transformers/models/table_transformer/modeling_table_transformer.py +4 -0
  443. transformers/models/tapas/modeling_tapas.py +3 -0
  444. transformers/models/textnet/modeling_textnet.py +11 -2
  445. transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -0
  446. transformers/models/timesfm/modeling_timesfm.py +2 -0
  447. transformers/models/timesfm/modular_timesfm.py +2 -0
  448. transformers/models/timesformer/modeling_timesformer.py +2 -0
  449. transformers/models/timm_wrapper/modeling_timm_wrapper.py +1 -1
  450. transformers/models/trocr/modeling_trocr.py +2 -0
  451. transformers/models/tvp/modeling_tvp.py +2 -0
  452. transformers/models/udop/modeling_udop.py +4 -0
  453. transformers/models/udop/tokenization_udop.py +5 -13
  454. transformers/models/umt5/modeling_umt5.py +7 -0
  455. transformers/models/unispeech/modeling_unispeech.py +4 -0
  456. transformers/models/unispeech/modular_unispeech.py +2 -0
  457. transformers/models/unispeech_sat/modeling_unispeech_sat.py +6 -0
  458. transformers/models/unispeech_sat/modular_unispeech_sat.py +2 -0
  459. transformers/models/univnet/modeling_univnet.py +1 -0
  460. transformers/models/upernet/modeling_upernet.py +1 -0
  461. transformers/models/vaultgemma/modeling_vaultgemma.py +4 -4
  462. transformers/models/vilt/modeling_vilt.py +6 -0
  463. transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +1 -0
  464. transformers/models/visual_bert/modeling_visual_bert.py +6 -0
  465. transformers/models/vitdet/modeling_vitdet.py +2 -0
  466. transformers/models/vitmatte/modeling_vitmatte.py +1 -0
  467. transformers/models/vits/modeling_vits.py +1 -0
  468. transformers/models/vjepa2/modeling_vjepa2.py +1 -0
  469. transformers/models/wav2vec2/modeling_wav2vec2.py +7 -0
  470. transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +5 -0
  471. transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +5 -0
  472. transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +6 -0
  473. transformers/models/wavlm/modeling_wavlm.py +5 -0
  474. transformers/models/whisper/modeling_whisper.py +6 -0
  475. transformers/models/whisper/tokenization_whisper.py +4 -15
  476. transformers/models/x_clip/modeling_x_clip.py +3 -0
  477. transformers/models/xglm/modeling_xglm.py +1 -0
  478. transformers/models/xglm/tokenization_xglm.py +4 -9
  479. transformers/models/xlm/modeling_xlm.py +5 -0
  480. transformers/models/xlm_roberta/tokenization_xlm_roberta.py +9 -16
  481. transformers/models/xlnet/tokenization_xlnet.py +3 -7
  482. transformers/models/yoso/modeling_yoso.py +6 -0
  483. transformers/models/zamba/modeling_zamba.py +2 -0
  484. transformers/models/zamba2/modeling_zamba2.py +4 -2
  485. transformers/models/zamba2/modular_zamba2.py +1 -1
  486. transformers/models/zoedepth/modeling_zoedepth.py +1 -0
  487. transformers/pipelines/__init__.py +2 -3
  488. transformers/pipelines/base.py +1 -9
  489. transformers/pipelines/document_question_answering.py +3 -1
  490. transformers/pipelines/text_generation.py +1 -1
  491. transformers/processing_utils.py +23 -11
  492. transformers/quantizers/base.py +35 -110
  493. transformers/quantizers/quantizer_aqlm.py +1 -5
  494. transformers/quantizers/quantizer_auto_round.py +1 -2
  495. transformers/quantizers/quantizer_awq.py +17 -81
  496. transformers/quantizers/quantizer_bitnet.py +3 -8
  497. transformers/quantizers/quantizer_bnb_4bit.py +13 -110
  498. transformers/quantizers/quantizer_bnb_8bit.py +16 -92
  499. transformers/quantizers/quantizer_compressed_tensors.py +1 -5
  500. transformers/quantizers/quantizer_eetq.py +14 -62
  501. transformers/quantizers/quantizer_fbgemm_fp8.py +34 -125
  502. transformers/quantizers/quantizer_finegrained_fp8.py +13 -105
  503. transformers/quantizers/quantizer_fp_quant.py +48 -78
  504. transformers/quantizers/quantizer_gptq.py +7 -24
  505. transformers/quantizers/quantizer_higgs.py +40 -54
  506. transformers/quantizers/quantizer_hqq.py +144 -153
  507. transformers/quantizers/quantizer_mxfp4.py +13 -167
  508. transformers/quantizers/quantizer_quanto.py +20 -64
  509. transformers/quantizers/quantizer_quark.py +36 -17
  510. transformers/quantizers/quantizer_spqr.py +1 -4
  511. transformers/quantizers/quantizer_torchao.py +23 -202
  512. transformers/quantizers/quantizer_vptq.py +8 -22
  513. transformers/quantizers/quantizers_utils.py +20 -0
  514. transformers/testing_utils.py +297 -36
  515. transformers/tokenization_mistral_common.py +4 -0
  516. transformers/tokenization_utils_base.py +113 -222
  517. transformers/tokenization_utils_tokenizers.py +168 -107
  518. transformers/trainer.py +28 -31
  519. transformers/trainer_jit_checkpoint.py +126 -0
  520. transformers/trainer_utils.py +1 -1
  521. transformers/training_args.py +66 -28
  522. transformers/utils/__init__.py +3 -4
  523. transformers/utils/auto_docstring.py +1 -0
  524. transformers/utils/generic.py +27 -1
  525. transformers/utils/hub.py +5 -15
  526. transformers/utils/import_utils.py +61 -16
  527. transformers/utils/kernel_config.py +4 -2
  528. transformers/utils/loading_report.py +19 -10
  529. transformers/utils/quantization_config.py +75 -242
  530. transformers/video_processing_utils.py +1 -2
  531. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/METADATA +274 -227
  532. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/RECORD +536 -520
  533. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/WHEEL +1 -1
  534. transformers/kernels/__init__.py +0 -0
  535. transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +0 -529
  536. transformers/models/roformer/tokenization_roformer_fast.py +0 -160
  537. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/entry_points.txt +0 -0
  538. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info/licenses}/LICENSE +0 -0
  539. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc1.dist-info}/top_level.txt +0 -0
@@ -38,7 +38,7 @@ from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
38
38
  from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
39
39
  from ...processing_utils import Unpack
40
40
  from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging
41
- from ...utils.generic import OutputRecorder, check_model_inputs
41
+ from ...utils.generic import OutputRecorder, check_model_inputs, maybe_autocast
42
42
  from .configuration_jetmoe import JetMoeConfig
43
43
 
44
44
 
@@ -122,7 +122,7 @@ class JetMoeRotaryEmbedding(nn.Module):
122
122
  position_ids_expanded = position_ids[:, None, :].float()
123
123
 
124
124
  device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
125
- with torch.autocast(device_type=device_type, enabled=False): # Force float32
125
+ with maybe_autocast(device_type=device_type, enabled=False): # Force float32
126
126
  freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
127
127
  emb = torch.cat((freqs, freqs), dim=-1)
128
128
  cos = emb.cos() * self.attention_scaling
@@ -1199,6 +1199,7 @@ class Kosmos2VisionModel(Kosmos2PreTrainedModel):
1199
1199
  output_hidden_states: Optional[bool] = None,
1200
1200
  interpolate_pos_encoding: bool = False,
1201
1201
  return_dict: Optional[bool] = None,
1202
+ **kwargs,
1202
1203
  ) -> Union[tuple, BaseModelOutputWithPooling]:
1203
1204
  return self.model(
1204
1205
  pixel_values=pixel_values,
@@ -39,6 +39,7 @@ from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
39
39
  from ...modeling_utils import PreTrainedModel
40
40
  from ...processing_utils import Unpack
41
41
  from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
42
+ from ...utils.generic import maybe_autocast
42
43
  from ..auto import AutoModel
43
44
  from .configuration_kyutai_speech_to_text import KyutaiSpeechToTextConfig
44
45
 
@@ -315,7 +316,7 @@ class KyutaiSpeechToTextRotaryEmbedding(nn.Module):
315
316
  position_ids_expanded = position_ids[:, None, :].float()
316
317
 
317
318
  device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
318
- with torch.autocast(device_type=device_type, enabled=False): # Force float32
319
+ with maybe_autocast(device_type=device_type, enabled=False): # Force float32
319
320
  freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
320
321
  emb = torch.cat((freqs, freqs), dim=-1)
321
322
  cos = emb.cos() * self.attention_scaling
@@ -837,6 +838,7 @@ class KyutaiSpeechToTextModel(KyutaiSpeechToTextPreTrainedModel):
837
838
  output_hidden_states: Optional[bool] = None,
838
839
  return_dict: Optional[bool] = None,
839
840
  cache_position: Optional[torch.LongTensor] = None,
841
+ **kwargs,
840
842
  ) -> Union[tuple, BaseModelOutputWithPast]:
841
843
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
842
844
  output_hidden_states = (
@@ -0,0 +1,29 @@
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import _LazyModule
17
+ from ...utils.import_utils import define_import_structure
18
+
19
+
20
+ if TYPE_CHECKING:
21
+ from .configuration_lasr import *
22
+ from .feature_extraction_lasr import *
23
+ from .modeling_lasr import *
24
+ from .tokenization_lasr import *
25
+ else:
26
+ import sys
27
+
28
+ _file = globals()["__file__"]
29
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
@@ -0,0 +1,244 @@
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/lasr/modular_lasr.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_lasr.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ # coding=utf-8
8
+ # Copyright 2025 The HuggingFace Inc. team and Google LLC. All rights reserved.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+ from typing import Union
23
+
24
+ from ...configuration_utils import PreTrainedConfig
25
+
26
+
27
+ class LasrEncoderConfig(PreTrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`LasrEncoder`]. It is used to instantiate a
30
+ `LasrEncoder` model according to the specified arguments, defining the model architecture.
31
+
32
+ Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PreTrainedConfig`] for more information.
34
+
35
+ Args:
36
+ hidden_size (`int`, *optional*, defaults to 512):
37
+ Dimension of the layers and the hidden states.
38
+ num_hidden_layers (`int`, *optional*, defaults to 17):
39
+ Number of hidden layers in the Transformer encoder.
40
+ num_attention_heads (`int`, *optional*, defaults to 8):
41
+ Number of attention heads for each attention layer in the Transformer encoder.
42
+ intermediate_size (`int`, *optional*, defaults to 2048):
43
+ Dimension of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler.
46
+ attention_bias (`bool`, *optional*, defaults to `False`):
47
+ Whether to use bias in the attention layers.
48
+ convolution_bias (`bool`, *optional*, defaults to `False`):
49
+ Whether to use bias in convolutions of the conformer's convolution module.
50
+ conv_kernel_size (`int`, *optional*, defaults to 32):
51
+ The kernel size of the convolution layers in the Conformer block.
52
+ subsampling_conv_channels (`int`, *optional*, defaults to 256):
53
+ The number of channels in the subsampling convolution layers.
54
+ subsampling_conv_kernel_size (`int`, *optional*, defaults to 5):
55
+ The kernel size of the subsampling convolution layers.
56
+ subsampling_conv_stride (`int`, *optional*, defaults to 2):
57
+ The stride of the subsampling convolution layers.
58
+ num_mel_bins (`int`, *optional*, defaults to 128):
59
+ Number of mel features.
60
+ dropout (`float`, *optional*, defaults to 0.1):
61
+ The dropout ratio for all fully connected layers in the embeddings, encoder, and pooler.
62
+ dropout_positions (`float`, *optional*, defaults to 0.0):
63
+ The dropout ratio for the positions in the input sequence.
64
+ layerdrop (`float`, *optional*, defaults to 0.1):
65
+ The dropout ratio for the layers in the encoder.
66
+ activation_dropout (`float`, *optional*, defaults to 0.1):
67
+ The dropout ratio for activations inside the fully connected layer.
68
+ attention_dropout (`float`, *optional*, defaults to 0.1):
69
+ The dropout ratio for the attention layers.
70
+ max_position_embeddings (`int`, *optional*, defaults to 10000):
71
+ The maximum sequence length that this model might ever be used with.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
75
+ The epsilon used by the layer normalization layers.
76
+ feed_forward_residual_weights (`tuple[float, float]`, *optional*, defaults to `[1.5, 0.5]`):
77
+ The residual weights for the feed forward layers.
78
+ conv_residual_weights (`tuple[float, float]`, *optional*, defaults to `[2.0, 1.0]`):
79
+ The residual weights for the convolution layers.
80
+ batch_norm_momentum (`float`, *optional*, defaults to 0.01):
81
+ The momentum for the batch normalization layers.
82
+ rope_parameters (`RopeParameters`, *optional*):
83
+ Dictionary containing the configuration parameters for the RoPE embeddings. The dictionary should contain
84
+ a value for `rope_theta` and optionally parameters used for scaling in case you want to use RoPE
85
+ with longer `max_position_embeddings`.
86
+
87
+ Example:
88
+ ```python
89
+ >>> from transformers import LasrEncoderModel, LasrEncoderConfig
90
+
91
+ >>> # Initializing a `LasrEncoder` configuration
92
+ >>> configuration = LasrEncoderConfig()
93
+
94
+ >>> # Initializing a model from the configuration
95
+ >>> model = LasrEncoderModel(configuration)
96
+
97
+ >>> # Accessing the model configuration
98
+ >>> configuration = model.config
99
+ ```
100
+
101
+ This configuration class is based on the LasrEncoder architecture from Google Health AI. You can find more details
102
+ and pre-trained models at [TODO/TODO](https://huggingface.co/TODO/TODO).
103
+ """
104
+
105
+ model_type = "lasr_encoder"
106
+ keys_to_ignore_at_inference = ["past_key_values"]
107
+
108
+ def __init__(
109
+ self,
110
+ hidden_size=512,
111
+ num_hidden_layers=17,
112
+ num_attention_heads=8,
113
+ intermediate_size=2048,
114
+ hidden_act="silu",
115
+ attention_bias=False,
116
+ convolution_bias=False,
117
+ conv_kernel_size=32,
118
+ subsampling_conv_channels=256,
119
+ subsampling_conv_kernel_size=5,
120
+ subsampling_conv_stride=2,
121
+ num_mel_bins=128,
122
+ dropout=0.1,
123
+ dropout_positions=0.0,
124
+ layerdrop=0.1,
125
+ activation_dropout=0.1,
126
+ attention_dropout=0.1,
127
+ max_position_embeddings=10000,
128
+ initializer_range=0.02,
129
+ layer_norm_eps=1e-6,
130
+ feed_forward_residual_weights=[1.5, 0.5],
131
+ conv_residual_weights=[2.0, 1.0],
132
+ batch_norm_momentum=0.01,
133
+ rope_parameters=None,
134
+ **kwargs,
135
+ ):
136
+ self.rope_parameters = rope_parameters
137
+ self.layer_norm_eps = layer_norm_eps
138
+ self.feed_forward_residual_weights = feed_forward_residual_weights
139
+ self.conv_residual_weights = conv_residual_weights
140
+ self.batch_norm_momentum = batch_norm_momentum
141
+ self.hidden_size = hidden_size
142
+ self.num_hidden_layers = num_hidden_layers
143
+ self.num_attention_heads = num_attention_heads
144
+ self.num_key_value_heads = num_attention_heads # LlamaAttention compatibility
145
+ self.intermediate_size = intermediate_size
146
+ self.hidden_act = hidden_act
147
+ self.attention_bias = attention_bias
148
+ self.convolution_bias = convolution_bias
149
+
150
+ self.conv_kernel_size = conv_kernel_size
151
+ self.subsampling_conv_kernel_size = subsampling_conv_kernel_size
152
+ self.subsampling_conv_stride = subsampling_conv_stride
153
+ self.subsampling_conv_channels = subsampling_conv_channels
154
+ self.num_mel_bins = num_mel_bins
155
+
156
+ self.dropout = dropout
157
+ self.dropout_positions = dropout_positions
158
+ self.layerdrop = layerdrop
159
+ self.activation_dropout = activation_dropout
160
+ self.attention_dropout = attention_dropout
161
+ self.max_position_embeddings = max_position_embeddings
162
+ self.initializer_range = initializer_range
163
+
164
+ super().__init__(
165
+ **kwargs,
166
+ )
167
+
168
+
169
+ class LasrCTCConfig(PreTrainedConfig):
170
+ r"""
171
+ This is the configuration class to store the configuration of a [`LasrForCTC`]. It is used to instantiate a
172
+ Lasr CTC model according to the specified arguments, defining the model architecture.
173
+ Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the
174
+ documentation from [`PreTrainedConfig`] for more information.
175
+ Args:
176
+ vocab_size (`int`, *optional*, defaults to 512):
177
+ Vocabulary size of the model.
178
+ ctc_loss_reduction (`str`, *optional*, defaults to `"mean"`):
179
+ Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
180
+ instance of [`LasrForCTC`].
181
+ ctc_zero_infinity (`bool`, *optional*, defaults to `True`):
182
+ Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
183
+ occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
184
+ of [`LasrForCTC`].
185
+ encoder_config (`Union[dict, LasrEncoderConfig]`, *optional*):
186
+ The config object or dictionary of the encoder.
187
+ pad_token_id (`int`, *optional*, defaults to 0):
188
+ Padding token id. Also used as blank token id.
189
+ Example:
190
+ ```python
191
+ >>> from transformers import LasrForCTC, LasrCTCConfig
192
+ >>> # Initializing a Lasr configuration
193
+ >>> configuration = LasrCTCConfig()
194
+ >>> # Initializing a model from the configuration
195
+ >>> model = LasrForCTC(configuration)
196
+ >>> # Accessing the model configuration
197
+ >>> configuration = model.config
198
+ ```
199
+ This configuration class is based on the Lasr CTC architecture from Google Health AI. You can find more details
200
+ and pre-trained models at [TODO/TODO](https://huggingface.co/TODO/TODO).
201
+ """
202
+
203
+ model_type = "lasr_ctc"
204
+ sub_configs = {"encoder_config": LasrEncoderConfig}
205
+
206
+ def __init__(
207
+ self,
208
+ vocab_size=512,
209
+ ctc_loss_reduction="mean",
210
+ ctc_zero_infinity=True,
211
+ encoder_config: Union[dict, LasrEncoderConfig] = None,
212
+ pad_token_id=0,
213
+ **kwargs,
214
+ ):
215
+ self.vocab_size = vocab_size
216
+ self.ctc_loss_reduction = ctc_loss_reduction
217
+ self.ctc_zero_infinity = ctc_zero_infinity
218
+
219
+ if isinstance(encoder_config, dict):
220
+ self.encoder_config = LasrEncoderConfig(**encoder_config)
221
+ elif encoder_config is None:
222
+ self.encoder_config = LasrEncoderConfig()
223
+
224
+ self.encoder_config = self.encoder_config
225
+ self.initializer_range = self.encoder_config.initializer_range
226
+
227
+ super().__init__(
228
+ pad_token_id=pad_token_id,
229
+ **kwargs,
230
+ )
231
+
232
+ @classmethod
233
+ def from_encoder_config(cls, encoder_config: LasrEncoderConfig, **kwargs):
234
+ r"""
235
+ Instantiate a [`LasrCTCConfig`] (or a derived class) from lasr encoder model configuration.
236
+
237
+ Returns:
238
+ [`LasrCTCConfig`]: An instance of a configuration object
239
+ """
240
+
241
+ return cls(encoder_config=encoder_config.to_dict(), **kwargs)
242
+
243
+
244
+ __all__ = ["LasrEncoderConfig", "LasrCTCConfig"]
@@ -0,0 +1,277 @@
1
+ # coding=utf-8
2
+ # Copyright 2025 The HuggingFace Inc. team and Google LLC. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ from typing import Optional, Union
16
+
17
+ import numpy as np
18
+ import torch
19
+
20
+ from ...audio_utils import hertz_to_mel
21
+ from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
22
+ from ...feature_extraction_utils import BatchFeature
23
+ from ...utils import TensorType, logging
24
+ from ...utils.import_utils import requires
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ # TODO: @eustlb, we should be able to remove this and use mel_filter_bank from audio_utils
31
+ def linear_to_mel_weight_matrix(
32
+ num_mel_bins: int,
33
+ num_spectrogram_bins: int,
34
+ sample_rate: float,
35
+ lower_edge_hertz: float,
36
+ upper_edge_hertz: float,
37
+ dtype,
38
+ ) -> np.ndarray:
39
+ """NumPy-port of the JAX mel weight matrix logic."""
40
+ # We use float64 for precision, matching the JAX implementation.
41
+ internal_dtype = np.float64
42
+
43
+ # HTK excludes the spectrogram DC bin.
44
+ bands_to_zero = 1
45
+ nyquist_hertz = sample_rate / 2.0
46
+ linear_frequencies = np.linspace(0.0, nyquist_hertz, num_spectrogram_bins, dtype=internal_dtype)[bands_to_zero:]
47
+ spectrogram_bins_mel = hertz_to_mel(linear_frequencies, mel_scale="kaldi")[:, np.newaxis]
48
+
49
+ edges = np.linspace(
50
+ hertz_to_mel(lower_edge_hertz, mel_scale="kaldi"),
51
+ hertz_to_mel(upper_edge_hertz, mel_scale="kaldi"),
52
+ num_mel_bins + 2,
53
+ dtype=internal_dtype,
54
+ )
55
+
56
+ lower_edge_mel, center_mel, upper_edge_mel = (
57
+ edges[:-2][np.newaxis, :],
58
+ edges[1:-1][np.newaxis, :],
59
+ edges[2:][np.newaxis, :],
60
+ )
61
+
62
+ lower_slopes = (spectrogram_bins_mel - lower_edge_mel) / (center_mel - lower_edge_mel)
63
+ upper_slopes = (upper_edge_mel - spectrogram_bins_mel) / (upper_edge_mel - center_mel)
64
+ mel_weights_matrix = np.maximum(0.0, np.minimum(lower_slopes, upper_slopes))
65
+ return np.pad(mel_weights_matrix, [[bands_to_zero, 0], [0, 0]]).astype(dtype)
66
+
67
+
68
+ @requires(backends=("torch",))
69
+ class LasrFeatureExtractor(SequenceFeatureExtractor):
70
+ r"""
71
+ Constructs a LASR feature extractor.
72
+
73
+ This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
74
+ most of the main methods. Users should refer to this superclass for more information regarding those methods.
75
+
76
+ This class extracts mel-filter bank features from raw speech using a custom numpy implementation of the `Short Time
77
+ Fourier Transform` which should match pytorch's `torch.stft` equivalent.
78
+
79
+ Args:
80
+ feature_size (`int`, *optional*, defaults to 128):
81
+ The feature dimension of the extracted features.
82
+ sampling_rate (`int`, *optional*, defaults to 16000):
83
+ The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
84
+ hop_length (`int`, *optional*, defaults to 160):
85
+ Length of the overlapping windows for the STFT used to obtain the Mel Frequency coefficients.
86
+ n_fft (`int`, *optional*, defaults to 512):
87
+ Size of the Fourier transform.
88
+ win_length (`int`, *optional*, defaults to 400):
89
+ The window length for the STFT computation.
90
+ padding_value (`float`, *optional*, defaults to 0.0):
91
+ Padding value used to pad the audio. Should correspond to silences.
92
+ """
93
+
94
+ model_input_names = ["input_features", "attention_mask"]
95
+
96
+ def __init__(
97
+ self,
98
+ feature_size=128,
99
+ sampling_rate=16000,
100
+ hop_length=160,
101
+ n_fft=512,
102
+ win_length=400,
103
+ padding_value=0.0,
104
+ **kwargs,
105
+ ):
106
+ super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
107
+
108
+ self.hop_length = hop_length
109
+ self.n_fft = n_fft
110
+ self.win_length = win_length
111
+ self.mel_filters = torch.from_numpy(
112
+ linear_to_mel_weight_matrix(
113
+ num_mel_bins=feature_size,
114
+ num_spectrogram_bins=n_fft // 2 + 1,
115
+ sample_rate=sampling_rate,
116
+ lower_edge_hertz=125.0,
117
+ upper_edge_hertz=7500.0,
118
+ dtype=np.float64,
119
+ )
120
+ )
121
+
122
+ def _torch_extract_fbank_features(self, waveform, device="cpu"):
123
+ # spectrogram
124
+ window = torch.hann_window(self.win_length, periodic=False, device=device, dtype=torch.float64)
125
+ waveform = waveform.to(torch.float64)
126
+
127
+ # TODO: @eustlb, to be standardized
128
+ # here we cannot use directly torch.stft because every fft frame is padded with zeros
129
+ # due to unfold then rfft, while torch.stft unfolds with the number of fft points
130
+ frames = waveform.unfold(-1, self.win_length, self.hop_length)
131
+ stft = torch.fft.rfft(window * frames, n=self.n_fft)
132
+ power_spec = torch.abs(stft) ** 2
133
+
134
+ # log mel spectrogram
135
+ mel_filters = self.mel_filters.to(device)
136
+ mel_spec = torch.clamp(power_spec @ mel_filters, min=1e-5)
137
+ mel_spec = torch.log(mel_spec)
138
+
139
+ return mel_spec
140
+
141
+ def __call__(
142
+ self,
143
+ raw_speech: Union[np.ndarray, list[float], list[np.ndarray], list[list[float]]],
144
+ truncation: bool = False,
145
+ pad_to_multiple_of: Optional[int] = None,
146
+ return_tensors: Optional[Union[str, TensorType]] = None,
147
+ return_attention_mask: Optional[bool] = None,
148
+ padding: Optional[str] = "longest",
149
+ max_length: Optional[int] = None,
150
+ sampling_rate: Optional[int] = None,
151
+ do_normalize: Optional[bool] = None,
152
+ device: Optional[str] = "cpu",
153
+ return_token_timestamps: Optional[bool] = None,
154
+ **kwargs,
155
+ ) -> BatchFeature:
156
+ """
157
+ Main method to featurize and prepare for the model one or several sequence(s). Implementation uses PyTorch for
158
+ the STFT computation if available, otherwise a slower NumPy based one.
159
+
160
+ Args:
161
+ raw_speech (`np.ndarray`, `list[float]`, `list[np.ndarray]`, `list[list[float]]`):
162
+ The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
163
+ values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
164
+ stereo, i.e. single float per timestep.
165
+ truncation (`bool`, *optional*, default to `True`):
166
+ Activates truncation to cut input sequences longer than *max_length* to *max_length*.
167
+ pad_to_multiple_of (`int`, *optional*, defaults to None):
168
+ If set will pad the sequence to a multiple of the provided value.
169
+
170
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
171
+ `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
172
+ return_attention_mask (`bool`, *optional*):
173
+ Whether to return the attention mask. If left to the default, will return the attention mask according
174
+ to the specific feature_extractor's default.
175
+
176
+ [What are attention masks?](../glossary#attention-mask)
177
+
178
+ <Tip>
179
+
180
+ For Parakeet models, `attention_mask` should always be passed for batched inference, to avoid subtle
181
+ bugs.
182
+
183
+ </Tip>
184
+
185
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
186
+ If set, will return tensors instead of list of python integers. Acceptable values are:
187
+
188
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
189
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
190
+ - `'np'`: Return Numpy `np.ndarray` objects.
191
+ sampling_rate (`int`, *optional*):
192
+ The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
193
+ `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
194
+ pipeline.
195
+ padding_value (`float`, *optional*, defaults to 0.0):
196
+ The value that is used to fill the padding values / vectors.
197
+ do_normalize (`bool`, *optional*, defaults to `False`):
198
+ Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly
199
+ improve the performance of the model.
200
+ device (`str`, *optional*, defaults to `'cpu'`):
201
+ Specifies the device for computation of the log-mel spectrogram of audio signals in the
202
+ `_torch_extract_fbank_features` method. (e.g., "cpu", "cuda")
203
+ return_token_timestamps (`bool`, *optional*, defaults to `None`):
204
+ Deprecated. Use `return_attention_mask` instead from which the number of frames can be inferred.
205
+
206
+ Whether or not to return the number of frames of the input raw_speech.
207
+ These num_frames can be used by the model to compute word level timestamps.
208
+ """
209
+ if sampling_rate is not None:
210
+ if sampling_rate != self.sampling_rate:
211
+ raise ValueError(
212
+ f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
213
+ f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
214
+ f" was sampled with {self.sampling_rate} and not {sampling_rate}."
215
+ )
216
+ else:
217
+ logger.warning(
218
+ f"It is strongly recommended to pass the `sampling_rate` argument to `{self.__class__.__name__}()`. "
219
+ "Failing to do so can result in silent errors that might be hard to debug."
220
+ )
221
+
222
+ # Convert to torch tensor
223
+ if isinstance(raw_speech, np.ndarray):
224
+ raw_speech = torch.tensor(raw_speech)
225
+ elif isinstance(raw_speech, (list, tuple)):
226
+ if isinstance(raw_speech[0], (list, np.ndarray)):
227
+ raw_speech = [torch.tensor(speech) for speech in raw_speech]
228
+ else: # list[float]
229
+ raw_speech = torch.tensor(raw_speech)
230
+
231
+ is_batched_torch = isinstance(raw_speech, torch.Tensor) and len(raw_speech.shape) > 1
232
+ if is_batched_torch and len(raw_speech.shape) > 2:
233
+ logger.warning(
234
+ f"Only mono-channel audio is supported for input to {self.__class__.__name__}. "
235
+ "We will take the mean of the channels to convert to mono."
236
+ )
237
+ raw_speech = raw_speech.mean(-1)
238
+
239
+ is_batched_sequence = isinstance(raw_speech, (list, tuple))
240
+ if is_batched_sequence:
241
+ for speech in raw_speech:
242
+ if len(speech.shape) > 1:
243
+ logger.warning(
244
+ f"Only mono-channel audio is supported for input to {self.__class__.__name__}. "
245
+ "We will take the mean of the channels to convert to mono."
246
+ )
247
+ speech = speech.mean(-1)
248
+
249
+ if is_batched_torch or is_batched_sequence:
250
+ raw_speech = [speech[:, None].to(torch.float32) for speech in raw_speech]
251
+ else:
252
+ raw_speech = [raw_speech[:, None].to(torch.float32)]
253
+
254
+ batched_speech = BatchFeature({"input_features": raw_speech})
255
+ padded_inputs = self.pad(
256
+ batched_speech,
257
+ padding=padding,
258
+ max_length=max_length,
259
+ truncation=truncation,
260
+ pad_to_multiple_of=pad_to_multiple_of,
261
+ return_attention_mask=return_attention_mask,
262
+ return_tensors="pt",
263
+ )
264
+ input_features = padded_inputs.input_features.squeeze(-1)
265
+ input_features = self._torch_extract_fbank_features(input_features, device)
266
+ data = {
267
+ "input_features": input_features.to(torch.float32),
268
+ }
269
+
270
+ if return_attention_mask:
271
+ attention_mask = padded_inputs.attention_mask[:, self.win_length - 1 :: self.hop_length]
272
+ data["attention_mask"] = attention_mask.to(torch.bool)
273
+
274
+ return BatchFeature(data=data, tensor_type=return_tensors)
275
+
276
+
277
+ __all__ = ["LasrFeatureExtractor"]