tnfr 4.5.2__py3-none-any.whl → 7.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tnfr might be problematic. Click here for more details.

Files changed (195) hide show
  1. tnfr/__init__.py +275 -51
  2. tnfr/__init__.pyi +33 -0
  3. tnfr/_compat.py +10 -0
  4. tnfr/_generated_version.py +34 -0
  5. tnfr/_version.py +49 -0
  6. tnfr/_version.pyi +7 -0
  7. tnfr/alias.py +117 -31
  8. tnfr/alias.pyi +108 -0
  9. tnfr/cache.py +6 -572
  10. tnfr/cache.pyi +16 -0
  11. tnfr/callback_utils.py +16 -38
  12. tnfr/callback_utils.pyi +79 -0
  13. tnfr/cli/__init__.py +34 -14
  14. tnfr/cli/__init__.pyi +26 -0
  15. tnfr/cli/arguments.py +211 -28
  16. tnfr/cli/arguments.pyi +27 -0
  17. tnfr/cli/execution.py +470 -50
  18. tnfr/cli/execution.pyi +70 -0
  19. tnfr/cli/utils.py +18 -3
  20. tnfr/cli/utils.pyi +8 -0
  21. tnfr/config/__init__.py +13 -0
  22. tnfr/config/__init__.pyi +10 -0
  23. tnfr/{constants_glyphs.py → config/constants.py} +26 -20
  24. tnfr/config/constants.pyi +12 -0
  25. tnfr/config/feature_flags.py +83 -0
  26. tnfr/{config.py → config/init.py} +11 -7
  27. tnfr/config/init.pyi +8 -0
  28. tnfr/config/operator_names.py +93 -0
  29. tnfr/config/operator_names.pyi +28 -0
  30. tnfr/config/presets.py +84 -0
  31. tnfr/config/presets.pyi +7 -0
  32. tnfr/constants/__init__.py +80 -29
  33. tnfr/constants/__init__.pyi +92 -0
  34. tnfr/constants/aliases.py +31 -0
  35. tnfr/constants/core.py +4 -4
  36. tnfr/constants/core.pyi +17 -0
  37. tnfr/constants/init.py +1 -1
  38. tnfr/constants/init.pyi +12 -0
  39. tnfr/constants/metric.py +7 -15
  40. tnfr/constants/metric.pyi +19 -0
  41. tnfr/dynamics/__init__.py +165 -633
  42. tnfr/dynamics/__init__.pyi +82 -0
  43. tnfr/dynamics/adaptation.py +267 -0
  44. tnfr/dynamics/aliases.py +23 -0
  45. tnfr/dynamics/coordination.py +385 -0
  46. tnfr/dynamics/dnfr.py +2283 -400
  47. tnfr/dynamics/dnfr.pyi +24 -0
  48. tnfr/dynamics/integrators.py +406 -98
  49. tnfr/dynamics/integrators.pyi +34 -0
  50. tnfr/dynamics/runtime.py +881 -0
  51. tnfr/dynamics/sampling.py +10 -5
  52. tnfr/dynamics/sampling.pyi +7 -0
  53. tnfr/dynamics/selectors.py +719 -0
  54. tnfr/execution.py +70 -48
  55. tnfr/execution.pyi +45 -0
  56. tnfr/flatten.py +13 -9
  57. tnfr/flatten.pyi +21 -0
  58. tnfr/gamma.py +66 -53
  59. tnfr/gamma.pyi +34 -0
  60. tnfr/glyph_history.py +110 -52
  61. tnfr/glyph_history.pyi +35 -0
  62. tnfr/glyph_runtime.py +16 -0
  63. tnfr/glyph_runtime.pyi +9 -0
  64. tnfr/immutable.py +69 -28
  65. tnfr/immutable.pyi +34 -0
  66. tnfr/initialization.py +16 -16
  67. tnfr/initialization.pyi +65 -0
  68. tnfr/io.py +6 -240
  69. tnfr/io.pyi +16 -0
  70. tnfr/locking.pyi +7 -0
  71. tnfr/mathematics/__init__.py +81 -0
  72. tnfr/mathematics/backend.py +426 -0
  73. tnfr/mathematics/dynamics.py +398 -0
  74. tnfr/mathematics/epi.py +254 -0
  75. tnfr/mathematics/generators.py +222 -0
  76. tnfr/mathematics/metrics.py +119 -0
  77. tnfr/mathematics/operators.py +233 -0
  78. tnfr/mathematics/operators_factory.py +71 -0
  79. tnfr/mathematics/projection.py +78 -0
  80. tnfr/mathematics/runtime.py +173 -0
  81. tnfr/mathematics/spaces.py +247 -0
  82. tnfr/mathematics/transforms.py +292 -0
  83. tnfr/metrics/__init__.py +10 -10
  84. tnfr/metrics/__init__.pyi +20 -0
  85. tnfr/metrics/coherence.py +993 -324
  86. tnfr/metrics/common.py +23 -16
  87. tnfr/metrics/common.pyi +46 -0
  88. tnfr/metrics/core.py +251 -35
  89. tnfr/metrics/core.pyi +13 -0
  90. tnfr/metrics/diagnosis.py +708 -111
  91. tnfr/metrics/diagnosis.pyi +85 -0
  92. tnfr/metrics/export.py +27 -15
  93. tnfr/metrics/glyph_timing.py +232 -42
  94. tnfr/metrics/reporting.py +33 -22
  95. tnfr/metrics/reporting.pyi +12 -0
  96. tnfr/metrics/sense_index.py +987 -43
  97. tnfr/metrics/sense_index.pyi +9 -0
  98. tnfr/metrics/trig.py +214 -23
  99. tnfr/metrics/trig.pyi +13 -0
  100. tnfr/metrics/trig_cache.py +115 -22
  101. tnfr/metrics/trig_cache.pyi +10 -0
  102. tnfr/node.py +542 -136
  103. tnfr/node.pyi +178 -0
  104. tnfr/observers.py +152 -35
  105. tnfr/observers.pyi +31 -0
  106. tnfr/ontosim.py +23 -19
  107. tnfr/ontosim.pyi +28 -0
  108. tnfr/operators/__init__.py +601 -82
  109. tnfr/operators/__init__.pyi +45 -0
  110. tnfr/operators/definitions.py +513 -0
  111. tnfr/operators/definitions.pyi +78 -0
  112. tnfr/operators/grammar.py +760 -0
  113. tnfr/operators/jitter.py +107 -38
  114. tnfr/operators/jitter.pyi +11 -0
  115. tnfr/operators/registry.py +75 -0
  116. tnfr/operators/registry.pyi +13 -0
  117. tnfr/operators/remesh.py +149 -88
  118. tnfr/py.typed +0 -0
  119. tnfr/rng.py +46 -143
  120. tnfr/rng.pyi +14 -0
  121. tnfr/schemas/__init__.py +8 -0
  122. tnfr/schemas/grammar.json +94 -0
  123. tnfr/selector.py +25 -19
  124. tnfr/selector.pyi +19 -0
  125. tnfr/sense.py +72 -62
  126. tnfr/sense.pyi +23 -0
  127. tnfr/structural.py +522 -262
  128. tnfr/structural.pyi +69 -0
  129. tnfr/telemetry/__init__.py +35 -0
  130. tnfr/telemetry/cache_metrics.py +226 -0
  131. tnfr/telemetry/nu_f.py +423 -0
  132. tnfr/telemetry/nu_f.pyi +123 -0
  133. tnfr/telemetry/verbosity.py +37 -0
  134. tnfr/tokens.py +1 -3
  135. tnfr/tokens.pyi +36 -0
  136. tnfr/trace.py +270 -113
  137. tnfr/trace.pyi +40 -0
  138. tnfr/types.py +574 -6
  139. tnfr/types.pyi +331 -0
  140. tnfr/units.py +69 -0
  141. tnfr/units.pyi +16 -0
  142. tnfr/utils/__init__.py +217 -0
  143. tnfr/utils/__init__.pyi +202 -0
  144. tnfr/utils/cache.py +2395 -0
  145. tnfr/utils/cache.pyi +468 -0
  146. tnfr/utils/chunks.py +104 -0
  147. tnfr/utils/chunks.pyi +21 -0
  148. tnfr/{collections_utils.py → utils/data.py} +147 -90
  149. tnfr/utils/data.pyi +64 -0
  150. tnfr/utils/graph.py +85 -0
  151. tnfr/utils/graph.pyi +10 -0
  152. tnfr/utils/init.py +770 -0
  153. tnfr/utils/init.pyi +78 -0
  154. tnfr/utils/io.py +456 -0
  155. tnfr/{helpers → utils}/numeric.py +51 -24
  156. tnfr/utils/numeric.pyi +21 -0
  157. tnfr/validation/__init__.py +113 -0
  158. tnfr/validation/__init__.pyi +77 -0
  159. tnfr/validation/compatibility.py +95 -0
  160. tnfr/validation/compatibility.pyi +6 -0
  161. tnfr/validation/grammar.py +71 -0
  162. tnfr/validation/grammar.pyi +40 -0
  163. tnfr/validation/graph.py +138 -0
  164. tnfr/validation/graph.pyi +17 -0
  165. tnfr/validation/rules.py +281 -0
  166. tnfr/validation/rules.pyi +55 -0
  167. tnfr/validation/runtime.py +263 -0
  168. tnfr/validation/runtime.pyi +31 -0
  169. tnfr/validation/soft_filters.py +170 -0
  170. tnfr/validation/soft_filters.pyi +37 -0
  171. tnfr/validation/spectral.py +159 -0
  172. tnfr/validation/spectral.pyi +46 -0
  173. tnfr/validation/syntax.py +40 -0
  174. tnfr/validation/syntax.pyi +10 -0
  175. tnfr/validation/window.py +39 -0
  176. tnfr/validation/window.pyi +1 -0
  177. tnfr/viz/__init__.py +9 -0
  178. tnfr/viz/matplotlib.py +246 -0
  179. tnfr-7.0.0.dist-info/METADATA +179 -0
  180. tnfr-7.0.0.dist-info/RECORD +185 -0
  181. {tnfr-4.5.2.dist-info → tnfr-7.0.0.dist-info}/licenses/LICENSE.md +1 -1
  182. tnfr/grammar.py +0 -344
  183. tnfr/graph_utils.py +0 -84
  184. tnfr/helpers/__init__.py +0 -71
  185. tnfr/import_utils.py +0 -228
  186. tnfr/json_utils.py +0 -162
  187. tnfr/logging_utils.py +0 -116
  188. tnfr/presets.py +0 -60
  189. tnfr/validators.py +0 -84
  190. tnfr/value_utils.py +0 -59
  191. tnfr-4.5.2.dist-info/METADATA +0 -379
  192. tnfr-4.5.2.dist-info/RECORD +0 -67
  193. {tnfr-4.5.2.dist-info → tnfr-7.0.0.dist-info}/WHEEL +0 -0
  194. {tnfr-4.5.2.dist-info → tnfr-7.0.0.dist-info}/entry_points.txt +0 -0
  195. {tnfr-4.5.2.dist-info → tnfr-7.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,9 @@
1
+ from typing import Any
2
+
3
+ __all__: Any
4
+
5
+ def __getattr__(name: str) -> Any: ...
6
+
7
+ compute_Si: Any
8
+ compute_Si_node: Any
9
+ get_Si_weights: Any
tnfr/metrics/trig.py CHANGED
@@ -7,18 +7,23 @@ Caching of cosine/sine values lives in :mod:`tnfr.metrics.trig_cache`.
7
7
  from __future__ import annotations
8
8
 
9
9
  import math
10
- from collections.abc import Iterable, Sequence
10
+ from collections.abc import Iterable, Iterator, Sequence
11
11
  from itertools import tee
12
- from typing import Any
12
+ from typing import TYPE_CHECKING, Any, cast, overload
13
13
 
14
- from ..import_utils import cached_import, get_numpy
15
- from ..helpers.numeric import kahan_sum_nd
14
+ from ..utils import kahan_sum_nd
15
+ from ..types import NodeId, Phase, TNFRGraph
16
+ from ..utils import cached_import, get_numpy
17
+
18
+ if TYPE_CHECKING: # pragma: no cover - typing only
19
+ from ..node import NodeProtocol
16
20
 
17
21
  __all__ = (
18
22
  "accumulate_cos_sin",
19
23
  "_phase_mean_from_iter",
20
24
  "_neighbor_phase_mean_core",
21
25
  "_neighbor_phase_mean_generic",
26
+ "neighbor_phase_mean_bulk",
22
27
  "neighbor_phase_mean_list",
23
28
  "neighbor_phase_mean",
24
29
  )
@@ -37,7 +42,7 @@ def accumulate_cos_sin(
37
42
 
38
43
  processed = False
39
44
 
40
- def iter_real_pairs():
45
+ def iter_real_pairs() -> Iterator[tuple[float, float]]:
41
46
  nonlocal processed
42
47
  for cs in it:
43
48
  if cs is None:
@@ -82,12 +87,12 @@ def _neighbor_phase_mean_core(
82
87
  neigh: Sequence[Any],
83
88
  cos_map: dict[Any, float],
84
89
  sin_map: dict[Any, float],
85
- np,
90
+ np: Any | None,
86
91
  fallback: float,
87
92
  ) -> float:
88
93
  """Return circular mean of neighbour phases given trig mappings."""
89
94
 
90
- def _iter_pairs():
95
+ def _iter_pairs() -> Iterator[tuple[float, float]]:
91
96
  for v in neigh:
92
97
  c = cos_map.get(v)
93
98
  s = sin_map.get(v)
@@ -113,13 +118,13 @@ def _neighbor_phase_mean_core(
113
118
 
114
119
 
115
120
  def _neighbor_phase_mean_generic(
116
- obj,
121
+ obj: "NodeProtocol" | Sequence[Any],
117
122
  cos_map: dict[Any, float] | None = None,
118
123
  sin_map: dict[Any, float] | None = None,
119
- np=None,
124
+ np: Any | None = None,
120
125
  fallback: float = 0.0,
121
126
  ) -> float:
122
- """Internal helper delegating to :func:`_neighbor_phase_mean_core`.
127
+ """Compute the neighbour phase mean via :func:`_neighbor_phase_mean_core`.
123
128
 
124
129
  ``obj`` may be either a node bound to a graph or a sequence of neighbours.
125
130
  When ``cos_map`` and ``sin_map`` are ``None`` the function assumes ``obj`` is
@@ -132,11 +137,9 @@ def _neighbor_phase_mean_generic(
132
137
  np = get_numpy()
133
138
 
134
139
  if cos_map is None or sin_map is None:
135
- node = obj
140
+ node = cast("NodeProtocol", obj)
136
141
  if getattr(node, "G", None) is None:
137
- raise TypeError(
138
- "neighbor_phase_mean requires nodes bound to a graph"
139
- )
142
+ raise TypeError("neighbor_phase_mean requires nodes bound to a graph")
140
143
  from .trig_cache import get_trig_cache
141
144
 
142
145
  trig = get_trig_cache(node.G)
@@ -145,7 +148,7 @@ def _neighbor_phase_mean_generic(
145
148
  sin_map = trig.sin
146
149
  neigh = node.G[node.n]
147
150
  else:
148
- neigh = obj
151
+ neigh = cast(Sequence[Any], obj)
149
152
 
150
153
  return _neighbor_phase_mean_core(neigh, cos_map, sin_map, np, fallback)
151
154
 
@@ -154,7 +157,7 @@ def neighbor_phase_mean_list(
154
157
  neigh: Sequence[Any],
155
158
  cos_th: dict[Any, float],
156
159
  sin_th: dict[Any, float],
157
- np=None,
160
+ np: Any | None = None,
158
161
  fallback: float = 0.0,
159
162
  ) -> float:
160
163
  """Return circular mean of neighbour phases from cosine/sine mappings.
@@ -168,14 +171,202 @@ def neighbor_phase_mean_list(
168
171
  )
169
172
 
170
173
 
171
- def neighbor_phase_mean(obj, n=None) -> float:
172
- """Circular mean of neighbour phases.
174
+ def neighbor_phase_mean_bulk(
175
+ edge_src: Any,
176
+ edge_dst: Any,
177
+ *,
178
+ cos_values: Any,
179
+ sin_values: Any,
180
+ theta_values: Any,
181
+ node_count: int,
182
+ np: Any,
183
+ neighbor_cos_sum: Any | None = None,
184
+ neighbor_sin_sum: Any | None = None,
185
+ neighbor_counts: Any | None = None,
186
+ mean_cos: Any | None = None,
187
+ mean_sin: Any | None = None,
188
+ ) -> tuple[Any, Any]:
189
+ """Vectorised neighbour phase means for all nodes in a graph.
190
+
191
+ Parameters
192
+ ----------
193
+ edge_src, edge_dst:
194
+ Arrays describing the source (neighbour) and destination (node) indices
195
+ for each edge contribution. They must have matching shapes.
196
+ cos_values, sin_values:
197
+ Arrays containing the cosine and sine values of each node's phase. The
198
+ arrays must be indexed using the same positional indices referenced by
199
+ ``edge_src``.
200
+ theta_values:
201
+ Array with the baseline phase for each node. Positions that do not have
202
+ neighbours reuse this baseline as their mean phase.
203
+ node_count:
204
+ Total number of nodes represented in ``theta_values``.
205
+ np:
206
+ Numpy module used to materialise the vectorised operations.
207
+
208
+ Optional buffers
209
+ -----------------
210
+ neighbor_cos_sum, neighbor_sin_sum, neighbor_counts, mean_cos, mean_sin:
211
+ Preallocated arrays sized ``node_count`` reused to accumulate the
212
+ neighbour cosine/sine sums, neighbour sample counts, and the averaged
213
+ cosine/sine vectors. When omitted, the helper materialises fresh
214
+ buffers that match the previous semantics.
215
+
216
+ Returns
217
+ -------
218
+ tuple[Any, Any]
219
+ Tuple ``(mean_theta, has_neighbors)`` where ``mean_theta`` contains the
220
+ circular mean of neighbour phases for every node and ``has_neighbors``
221
+ is a boolean mask identifying which nodes contributed at least one
222
+ neighbour sample.
223
+ """
224
+
225
+ if node_count <= 0:
226
+ empty_mean = np.zeros(0, dtype=float)
227
+ return empty_mean, empty_mean.astype(bool)
228
+
229
+ edge_src_arr = np.asarray(edge_src, dtype=np.intp)
230
+ edge_dst_arr = np.asarray(edge_dst, dtype=np.intp)
231
+
232
+ if edge_src_arr.shape != edge_dst_arr.shape:
233
+ raise ValueError("edge_src and edge_dst must share the same shape")
234
+
235
+ theta_arr = np.asarray(theta_values, dtype=float)
236
+ if theta_arr.ndim != 1 or theta_arr.size != node_count:
237
+ raise ValueError("theta_values must be a 1-D array matching node_count")
238
+
239
+ cos_arr = np.asarray(cos_values, dtype=float)
240
+ sin_arr = np.asarray(sin_values, dtype=float)
241
+ if cos_arr.ndim != 1 or cos_arr.size != node_count:
242
+ raise ValueError("cos_values must be a 1-D array matching node_count")
243
+ if sin_arr.ndim != 1 or sin_arr.size != node_count:
244
+ raise ValueError("sin_values must be a 1-D array matching node_count")
245
+
246
+ edge_count = edge_dst_arr.size
247
+ def _coerce_buffer(buffer: Any | None, *, name: str) -> tuple[Any, bool]:
248
+ if buffer is None:
249
+ return None, False
250
+ arr = np.array(buffer, dtype=float, copy=False)
251
+ if arr.ndim != 1 or arr.size != node_count:
252
+ raise ValueError(f"{name} must be a 1-D array sized node_count")
253
+ arr.fill(0.0)
254
+ return arr, True
255
+
256
+ neighbor_cos_sum, has_cos_buffer = _coerce_buffer(
257
+ neighbor_cos_sum, name="neighbor_cos_sum"
258
+ )
259
+ neighbor_sin_sum, has_sin_buffer = _coerce_buffer(
260
+ neighbor_sin_sum, name="neighbor_sin_sum"
261
+ )
262
+ neighbor_counts, has_count_buffer = _coerce_buffer(
263
+ neighbor_counts, name="neighbor_counts"
264
+ )
265
+
266
+ if edge_count:
267
+ cos_bincount = np.bincount(
268
+ edge_dst_arr,
269
+ weights=cos_arr[edge_src_arr],
270
+ minlength=node_count,
271
+ )
272
+ sin_bincount = np.bincount(
273
+ edge_dst_arr,
274
+ weights=sin_arr[edge_src_arr],
275
+ minlength=node_count,
276
+ )
277
+ count_bincount = np.bincount(
278
+ edge_dst_arr,
279
+ minlength=node_count,
280
+ ).astype(float, copy=False)
281
+
282
+ if not has_cos_buffer:
283
+ neighbor_cos_sum = cos_bincount
284
+ else:
285
+ np.copyto(neighbor_cos_sum, cos_bincount)
286
+
287
+ if not has_sin_buffer:
288
+ neighbor_sin_sum = sin_bincount
289
+ else:
290
+ np.copyto(neighbor_sin_sum, sin_bincount)
291
+
292
+ if not has_count_buffer:
293
+ neighbor_counts = count_bincount
294
+ else:
295
+ np.copyto(neighbor_counts, count_bincount)
296
+ else:
297
+ if neighbor_cos_sum is None:
298
+ neighbor_cos_sum = np.zeros(node_count, dtype=float)
299
+ if neighbor_sin_sum is None:
300
+ neighbor_sin_sum = np.zeros(node_count, dtype=float)
301
+ if neighbor_counts is None:
302
+ neighbor_counts = np.zeros(node_count, dtype=float)
303
+
304
+ has_neighbors = neighbor_counts > 0.0
305
+
306
+ mean_cos, _ = _coerce_buffer(mean_cos, name="mean_cos")
307
+ mean_sin, _ = _coerce_buffer(mean_sin, name="mean_sin")
308
+
309
+ if mean_cos is None:
310
+ mean_cos = np.zeros(node_count, dtype=float)
311
+ if mean_sin is None:
312
+ mean_sin = np.zeros(node_count, dtype=float)
313
+
314
+ if edge_count:
315
+ with np.errstate(divide="ignore", invalid="ignore"):
316
+ np.divide(
317
+ neighbor_cos_sum,
318
+ neighbor_counts,
319
+ out=mean_cos,
320
+ where=has_neighbors,
321
+ )
322
+ np.divide(
323
+ neighbor_sin_sum,
324
+ neighbor_counts,
325
+ out=mean_sin,
326
+ where=has_neighbors,
327
+ )
328
+
329
+ mean_theta = np.where(has_neighbors, np.arctan2(mean_sin, mean_cos), theta_arr)
330
+ return mean_theta, has_neighbors
331
+
332
+
333
+ @overload
334
+ def neighbor_phase_mean(obj: "NodeProtocol", n: None = ...) -> Phase: ...
335
+
336
+
337
+ @overload
338
+ def neighbor_phase_mean(obj: TNFRGraph, n: NodeId) -> Phase: ...
339
+
340
+
341
+ def neighbor_phase_mean(
342
+ obj: "NodeProtocol" | TNFRGraph, n: NodeId | None = None
343
+ ) -> Phase:
344
+ """Circular mean of neighbour phases for ``obj``.
173
345
 
174
- The :class:`NodoNX` import is cached after the first call.
346
+ Parameters
347
+ ----------
348
+ obj:
349
+ Either a :class:`~tnfr.node.NodeProtocol` instance bound to a graph or a
350
+ :class:`~tnfr.types.TNFRGraph` from which the node ``n`` will be wrapped.
351
+ n:
352
+ Optional node identifier. Required when ``obj`` is a graph. Providing a
353
+ node identifier for a node object raises :class:`TypeError`.
175
354
  """
176
355
 
177
- NodoNX = cached_import("tnfr.node", "NodoNX")
178
- if NodoNX is None:
179
- raise ImportError("NodoNX is unavailable")
180
- node = NodoNX(obj, n) if n is not None else obj
356
+ NodeNX = cached_import("tnfr.node", "NodeNX")
357
+ if NodeNX is None:
358
+ raise ImportError("NodeNX is unavailable")
359
+ if n is None:
360
+ if hasattr(obj, "nodes"):
361
+ raise TypeError(
362
+ "neighbor_phase_mean requires a node identifier when passing a graph"
363
+ )
364
+ node = obj
365
+ else:
366
+ if hasattr(obj, "nodes"):
367
+ node = NodeNX(obj, n)
368
+ else:
369
+ raise TypeError(
370
+ "neighbor_phase_mean received a node and an explicit identifier"
371
+ )
181
372
  return _neighbor_phase_mean_generic(node)
tnfr/metrics/trig.pyi ADDED
@@ -0,0 +1,13 @@
1
+ from typing import Any
2
+
3
+ __all__: Any
4
+
5
+ def __getattr__(name: str) -> Any: ...
6
+
7
+ _neighbor_phase_mean_core: Any
8
+ _neighbor_phase_mean_generic: Any
9
+ _phase_mean_from_iter: Any
10
+ accumulate_cos_sin: Any
11
+ neighbor_phase_mean: Any
12
+ neighbor_phase_mean_bulk: Any
13
+ neighbor_phase_mean_list: Any
@@ -6,17 +6,15 @@ focused on pure mathematical utilities (phase means, compensated sums, etc.).
6
6
 
7
7
  from __future__ import annotations
8
8
 
9
+ import hashlib
9
10
  import math
11
+ import struct
10
12
  from dataclasses import dataclass
11
13
  from typing import Any, Iterable, Mapping
12
14
 
13
- from ..alias import get_attr
14
- from ..constants import get_aliases
15
- from ..cache import edge_version_cache
16
- from ..import_utils import get_numpy
17
- from ..types import GraphLike
18
-
19
- ALIAS_THETA = get_aliases("THETA")
15
+ from ..alias import get_theta_attr
16
+ from ..types import GraphLike, NodeAttrMap
17
+ from ..utils import edge_version_cache, get_numpy
20
18
 
21
19
  __all__ = ("TrigCache", "compute_theta_trig", "get_trig_cache", "_compute_trig_python")
22
20
 
@@ -28,37 +26,71 @@ class TrigCache:
28
26
  cos: dict[Any, float]
29
27
  sin: dict[Any, float]
30
28
  theta: dict[Any, float]
29
+ theta_checksums: dict[Any, bytes]
30
+ order: tuple[Any, ...]
31
+ cos_values: Any
32
+ sin_values: Any
33
+ theta_values: Any
34
+ index: dict[Any, int]
35
+ edge_src: Any | None = None
36
+ edge_dst: Any | None = None
31
37
 
32
38
 
33
39
  def _iter_theta_pairs(
34
- nodes: Iterable[tuple[Any, Mapping[str, Any] | float]],
40
+ nodes: Iterable[tuple[Any, NodeAttrMap | float]],
35
41
  ) -> Iterable[tuple[Any, float]]:
36
42
  """Yield ``(node, θ)`` pairs from ``nodes``."""
37
43
 
38
44
  for n, data in nodes:
39
45
  if isinstance(data, Mapping):
40
- yield n, get_attr(data, ALIAS_THETA, 0.0)
46
+ yield n, get_theta_attr(data, 0.0) or 0.0
41
47
  else:
42
48
  yield n, float(data)
43
49
 
44
50
 
45
51
  def _compute_trig_python(
46
- nodes: Iterable[tuple[Any, Mapping[str, Any] | float]],
52
+ nodes: Iterable[tuple[Any, NodeAttrMap | float]],
47
53
  ) -> TrigCache:
48
54
  """Compute trigonometric mappings using pure Python."""
49
55
 
56
+ pairs = list(_iter_theta_pairs(nodes))
57
+
50
58
  cos_th: dict[Any, float] = {}
51
59
  sin_th: dict[Any, float] = {}
52
60
  thetas: dict[Any, float] = {}
53
- for n, th in _iter_theta_pairs(nodes):
61
+ theta_checksums: dict[Any, bytes] = {}
62
+ order_list: list[Any] = []
63
+
64
+ for n, th in pairs:
65
+ order_list.append(n)
54
66
  thetas[n] = th
55
67
  cos_th[n] = math.cos(th)
56
68
  sin_th[n] = math.sin(th)
57
- return TrigCache(cos=cos_th, sin=sin_th, theta=thetas)
69
+ theta_checksums[n] = _theta_checksum(th)
70
+
71
+ order = tuple(order_list)
72
+ cos_values = tuple(cos_th[n] for n in order)
73
+ sin_values = tuple(sin_th[n] for n in order)
74
+ theta_values = tuple(thetas[n] for n in order)
75
+ index = {n: i for i, n in enumerate(order)}
76
+
77
+ return TrigCache(
78
+ cos=cos_th,
79
+ sin=sin_th,
80
+ theta=thetas,
81
+ theta_checksums=theta_checksums,
82
+ order=order,
83
+ cos_values=cos_values,
84
+ sin_values=sin_values,
85
+ theta_values=theta_values,
86
+ index=index,
87
+ edge_src=None,
88
+ edge_dst=None,
89
+ )
58
90
 
59
91
 
60
92
  def compute_theta_trig(
61
- nodes: Iterable[tuple[Any, Mapping[str, Any] | float]],
93
+ nodes: Iterable[tuple[Any, NodeAttrMap | float]],
62
94
  np: Any | None = None,
63
95
  ) -> TrigCache:
64
96
  """Return trigonometric mappings of ``θ`` per node."""
@@ -70,9 +102,22 @@ def compute_theta_trig(
70
102
 
71
103
  pairs = list(_iter_theta_pairs(nodes))
72
104
  if not pairs:
73
- return TrigCache(cos={}, sin={}, theta={})
105
+ return TrigCache(
106
+ cos={},
107
+ sin={},
108
+ theta={},
109
+ theta_checksums={},
110
+ order=(),
111
+ cos_values=(),
112
+ sin_values=(),
113
+ theta_values=(),
114
+ index={},
115
+ edge_src=None,
116
+ edge_dst=None,
117
+ )
74
118
 
75
119
  node_list, theta_vals = zip(*pairs)
120
+ node_list = tuple(node_list)
76
121
  theta_arr = np.fromiter(theta_vals, dtype=float)
77
122
  cos_arr = np.cos(theta_arr)
78
123
  sin_arr = np.sin(theta_arr)
@@ -80,7 +125,21 @@ def compute_theta_trig(
80
125
  cos_th = dict(zip(node_list, map(float, cos_arr)))
81
126
  sin_th = dict(zip(node_list, map(float, sin_arr)))
82
127
  thetas = dict(zip(node_list, map(float, theta_arr)))
83
- return TrigCache(cos=cos_th, sin=sin_th, theta=thetas)
128
+ theta_checksums = {node: _theta_checksum(float(theta)) for node, theta in pairs}
129
+ index = {n: i for i, n in enumerate(node_list)}
130
+ return TrigCache(
131
+ cos=cos_th,
132
+ sin=sin_th,
133
+ theta=thetas,
134
+ theta_checksums=theta_checksums,
135
+ order=node_list,
136
+ cos_values=cos_arr,
137
+ sin_values=sin_arr,
138
+ theta_values=theta_arr,
139
+ index=index,
140
+ edge_src=None,
141
+ edge_dst=None,
142
+ )
84
143
 
85
144
 
86
145
  def _build_trig_cache(G: GraphLike, np: Any | None = None) -> TrigCache:
@@ -99,11 +158,45 @@ def get_trig_cache(
99
158
 
100
159
  if np is None:
101
160
  np = get_numpy()
102
- version = G.graph.setdefault("_trig_version", 0)
161
+ graph = G.graph
162
+ version = graph.setdefault("_trig_version", 0)
103
163
  key = ("_trig", version)
104
- return edge_version_cache(
105
- G,
106
- key,
107
- lambda: _build_trig_cache(G, np=np),
108
- max_entries=cache_size,
109
- )
164
+
165
+ def builder() -> TrigCache:
166
+ return _build_trig_cache(G, np=np)
167
+
168
+ trig = edge_version_cache(G, key, builder, max_entries=cache_size)
169
+ current_checksums = _graph_theta_checksums(G)
170
+ trig_checksums = getattr(trig, "theta_checksums", None)
171
+ if trig_checksums is None:
172
+ trig_checksums = {}
173
+
174
+ if trig_checksums != current_checksums:
175
+ version = version + 1
176
+ graph["_trig_version"] = version
177
+ key = ("_trig", version)
178
+ trig = edge_version_cache(G, key, builder, max_entries=cache_size)
179
+ trig_checksums = getattr(trig, "theta_checksums", None)
180
+ if trig_checksums is None:
181
+ trig_checksums = {}
182
+ if trig_checksums != current_checksums:
183
+ current_checksums = _graph_theta_checksums(G)
184
+ if trig_checksums != current_checksums:
185
+ return trig
186
+ return trig
187
+
188
+
189
+ def _theta_checksum(theta: float) -> bytes:
190
+ """Return a deterministic checksum for ``theta``."""
191
+
192
+ packed = struct.pack("!d", float(theta))
193
+ return hashlib.blake2b(packed, digest_size=8).digest()
194
+
195
+
196
+ def _graph_theta_checksums(G: GraphLike) -> dict[Any, bytes]:
197
+ """Return checksum snapshot of the graph's current ``θ`` values."""
198
+
199
+ checksums: dict[Any, bytes] = {}
200
+ for node, theta in _iter_theta_pairs(G.nodes(data=True)):
201
+ checksums[node] = _theta_checksum(theta)
202
+ return checksums
@@ -0,0 +1,10 @@
1
+ from typing import Any
2
+
3
+ __all__: Any
4
+
5
+ def __getattr__(name: str) -> Any: ...
6
+
7
+ TrigCache: Any
8
+ _compute_trig_python: Any
9
+ compute_theta_trig: Any
10
+ get_trig_cache: Any