tensorcircuit-nightly 1.3.0.dev20250728__py3-none-any.whl → 1.4.0.dev20251103__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tensorcircuit-nightly might be problematic. Click here for more details.
- tensorcircuit/__init__.py +5 -1
- tensorcircuit/abstractcircuit.py +4 -0
- tensorcircuit/analogcircuit.py +413 -0
- tensorcircuit/applications/layers.py +1 -1
- tensorcircuit/applications/van.py +1 -1
- tensorcircuit/backends/abstract_backend.py +312 -5
- tensorcircuit/backends/cupy_backend.py +3 -1
- tensorcircuit/backends/jax_backend.py +92 -3
- tensorcircuit/backends/jax_ops.py +108 -0
- tensorcircuit/backends/numpy_backend.py +49 -3
- tensorcircuit/backends/pytorch_backend.py +92 -3
- tensorcircuit/backends/tensorflow_backend.py +102 -3
- tensorcircuit/basecircuit.py +123 -82
- tensorcircuit/circuit.py +67 -57
- tensorcircuit/cloud/local.py +1 -1
- tensorcircuit/cloud/quafu_provider.py +1 -1
- tensorcircuit/cloud/tencent.py +1 -1
- tensorcircuit/compiler/simple_compiler.py +2 -2
- tensorcircuit/cons.py +1 -0
- tensorcircuit/densitymatrix.py +16 -11
- tensorcircuit/experimental.py +7 -152
- tensorcircuit/fgs.py +5 -6
- tensorcircuit/gates.py +66 -22
- tensorcircuit/keras.py +3 -3
- tensorcircuit/mpscircuit.py +109 -61
- tensorcircuit/quantum.py +697 -133
- tensorcircuit/quditcircuit.py +733 -0
- tensorcircuit/quditgates.py +618 -0
- tensorcircuit/results/counts.py +45 -31
- tensorcircuit/shadows.py +1 -1
- tensorcircuit/simplify.py +3 -1
- tensorcircuit/stabilizercircuit.py +4 -2
- tensorcircuit/templates/blocks.py +2 -2
- tensorcircuit/templates/hamiltonians.py +29 -8
- tensorcircuit/templates/lattice.py +676 -335
- tensorcircuit/timeevol.py +896 -0
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/METADATA +50 -25
- tensorcircuit_nightly-1.4.0.dev20251103.dist-info/RECORD +96 -0
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/top_level.txt +0 -1
- tensorcircuit_nightly-1.3.0.dev20250728.dist-info/RECORD +0 -122
- tests/__init__.py +0 -0
- tests/conftest.py +0 -67
- tests/test_backends.py +0 -1035
- tests/test_calibrating.py +0 -149
- tests/test_channels.py +0 -409
- tests/test_circuit.py +0 -1713
- tests/test_cloud.py +0 -219
- tests/test_compiler.py +0 -147
- tests/test_dmcircuit.py +0 -555
- tests/test_ensemble.py +0 -72
- tests/test_fgs.py +0 -318
- tests/test_gates.py +0 -156
- tests/test_hamiltonians.py +0 -159
- tests/test_interfaces.py +0 -557
- tests/test_keras.py +0 -160
- tests/test_lattice.py +0 -1666
- tests/test_miscs.py +0 -334
- tests/test_mpscircuit.py +0 -341
- tests/test_noisemodel.py +0 -156
- tests/test_qaoa.py +0 -86
- tests/test_qem.py +0 -152
- tests/test_quantum.py +0 -549
- tests/test_quantum_attr.py +0 -42
- tests/test_results.py +0 -379
- tests/test_shadows.py +0 -160
- tests/test_simplify.py +0 -46
- tests/test_stabilizer.py +0 -226
- tests/test_templates.py +0 -218
- tests/test_torchnn.py +0 -99
- tests/test_van.py +0 -102
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/WHEEL +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/licenses/LICENSE +0 -0
tests/test_quantum.py
DELETED
|
@@ -1,549 +0,0 @@
|
|
|
1
|
-
# pylint: disable=invalid-name
|
|
2
|
-
|
|
3
|
-
import os
|
|
4
|
-
import sys
|
|
5
|
-
from functools import partial
|
|
6
|
-
|
|
7
|
-
import numpy as np
|
|
8
|
-
import pytest
|
|
9
|
-
import tensornetwork as tn
|
|
10
|
-
from pytest_lazyfixture import lazy_fixture as lf
|
|
11
|
-
|
|
12
|
-
thisfile = os.path.abspath(__file__)
|
|
13
|
-
modulepath = os.path.dirname(os.path.dirname(thisfile))
|
|
14
|
-
|
|
15
|
-
sys.path.insert(0, modulepath)
|
|
16
|
-
import tensorcircuit as tc
|
|
17
|
-
from tensorcircuit import quantum as qu
|
|
18
|
-
|
|
19
|
-
# Note that the first version of this file is adpated from source code of tensornetwork: (Apache2)
|
|
20
|
-
# https://github.com/google/TensorNetwork/blob/master/tensornetwork/quantum/quantum_test.py
|
|
21
|
-
|
|
22
|
-
# tc.set_contractor("greedy")
|
|
23
|
-
atol = 1e-5 # relax jax 32 precision
|
|
24
|
-
decimal = 5
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
28
|
-
def test_constructor(backend):
|
|
29
|
-
psi_tensor = np.random.rand(2, 2)
|
|
30
|
-
psi_node = tn.Node(psi_tensor)
|
|
31
|
-
|
|
32
|
-
op = qu.quantum_constructor([psi_node[0]], [psi_node[1]])
|
|
33
|
-
assert not op.is_scalar()
|
|
34
|
-
assert not op.is_vector()
|
|
35
|
-
assert not op.is_adjoint_vector()
|
|
36
|
-
assert len(op.out_edges) == 1
|
|
37
|
-
assert len(op.in_edges) == 1
|
|
38
|
-
assert op.out_edges[0] is psi_node[0]
|
|
39
|
-
assert op.in_edges[0] is psi_node[1]
|
|
40
|
-
|
|
41
|
-
op = qu.quantum_constructor([psi_node[0], psi_node[1]], [])
|
|
42
|
-
assert not op.is_scalar()
|
|
43
|
-
assert op.is_vector()
|
|
44
|
-
assert not op.is_adjoint_vector()
|
|
45
|
-
assert len(op.out_edges) == 2
|
|
46
|
-
assert len(op.in_edges) == 0
|
|
47
|
-
assert op.out_edges[0] is psi_node[0]
|
|
48
|
-
assert op.out_edges[1] is psi_node[1]
|
|
49
|
-
|
|
50
|
-
op = qu.quantum_constructor([], [psi_node[0], psi_node[1]])
|
|
51
|
-
assert not op.is_scalar()
|
|
52
|
-
assert not op.is_vector()
|
|
53
|
-
assert op.is_adjoint_vector()
|
|
54
|
-
assert len(op.out_edges) == 0
|
|
55
|
-
assert len(op.in_edges) == 2
|
|
56
|
-
assert op.in_edges[0] is psi_node[0]
|
|
57
|
-
assert op.in_edges[1] is psi_node[1]
|
|
58
|
-
|
|
59
|
-
with pytest.raises(ValueError):
|
|
60
|
-
op = qu.quantum_constructor([], [], [psi_node])
|
|
61
|
-
|
|
62
|
-
_ = psi_node[0] ^ psi_node[1]
|
|
63
|
-
op = qu.quantum_constructor([], [], [psi_node])
|
|
64
|
-
assert op.is_scalar()
|
|
65
|
-
assert not op.is_vector()
|
|
66
|
-
assert not op.is_adjoint_vector()
|
|
67
|
-
assert len(op.out_edges) == 0
|
|
68
|
-
assert len(op.in_edges) == 0
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
72
|
-
def test_checks(backend):
|
|
73
|
-
node1 = tn.Node(np.random.rand(2, 2))
|
|
74
|
-
node2 = tn.Node(np.random.rand(2, 2))
|
|
75
|
-
_ = node1[1] ^ node2[0]
|
|
76
|
-
|
|
77
|
-
# extra dangling edges must be explicitly ignored
|
|
78
|
-
with pytest.raises(ValueError):
|
|
79
|
-
_ = qu.QuVector([node1[0]])
|
|
80
|
-
|
|
81
|
-
# correctly ignore the extra edge
|
|
82
|
-
_ = qu.QuVector([node1[0]], ignore_edges=[node2[1]])
|
|
83
|
-
|
|
84
|
-
# in/out edges must be dangling
|
|
85
|
-
with pytest.raises(ValueError):
|
|
86
|
-
_ = qu.QuVector([node1[0], node1[1], node2[1]])
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
90
|
-
def test_from_tensor(backend):
|
|
91
|
-
psi_tensor = np.random.rand(2, 2)
|
|
92
|
-
|
|
93
|
-
op = qu.QuOperator.from_tensor(psi_tensor, [0], [1])
|
|
94
|
-
assert not op.is_scalar()
|
|
95
|
-
assert not op.is_vector()
|
|
96
|
-
assert not op.is_adjoint_vector()
|
|
97
|
-
np.testing.assert_almost_equal(op.eval(), psi_tensor, decimal=decimal)
|
|
98
|
-
|
|
99
|
-
op = qu.QuVector.from_tensor(psi_tensor, [0, 1])
|
|
100
|
-
assert not op.is_scalar()
|
|
101
|
-
assert op.is_vector()
|
|
102
|
-
assert not op.is_adjoint_vector()
|
|
103
|
-
np.testing.assert_almost_equal(op.eval(), psi_tensor, decimal=decimal)
|
|
104
|
-
|
|
105
|
-
op = qu.QuAdjointVector.from_tensor(psi_tensor, [0, 1])
|
|
106
|
-
assert not op.is_scalar()
|
|
107
|
-
assert not op.is_vector()
|
|
108
|
-
assert op.is_adjoint_vector()
|
|
109
|
-
np.testing.assert_almost_equal(op.eval(), psi_tensor, decimal=decimal)
|
|
110
|
-
|
|
111
|
-
op = qu.QuScalar.from_tensor(1.0)
|
|
112
|
-
assert op.is_scalar()
|
|
113
|
-
assert not op.is_vector()
|
|
114
|
-
assert not op.is_adjoint_vector()
|
|
115
|
-
assert op.eval() == 1.0
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
119
|
-
def test_identity(backend):
|
|
120
|
-
E = qu.identity((2, 3, 4), dtype=np.float64)
|
|
121
|
-
for n in E.nodes:
|
|
122
|
-
assert isinstance(n, tn.CopyNode)
|
|
123
|
-
twentyfour = E.trace()
|
|
124
|
-
for n in twentyfour.nodes:
|
|
125
|
-
assert isinstance(n, tn.CopyNode)
|
|
126
|
-
assert twentyfour.eval() == 24
|
|
127
|
-
|
|
128
|
-
tensor = np.random.rand(2, 2)
|
|
129
|
-
psi = qu.QuVector.from_tensor(tensor)
|
|
130
|
-
E = qu.identity((2, 2), dtype=np.float64)
|
|
131
|
-
np.testing.assert_allclose((E @ psi).eval(), psi.eval(), atol=atol)
|
|
132
|
-
|
|
133
|
-
np.testing.assert_allclose(
|
|
134
|
-
(psi.adjoint() @ E @ psi).eval(), psi.norm().eval(), atol=atol
|
|
135
|
-
)
|
|
136
|
-
|
|
137
|
-
op = qu.QuOperator.from_tensor(tensor, [0], [1])
|
|
138
|
-
op_I = op.tensor_product(E)
|
|
139
|
-
op_times_4 = op_I.partial_trace([1, 2])
|
|
140
|
-
np.testing.assert_allclose(op_times_4.eval(), 4 * op.eval(), atol=atol)
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
144
|
-
def test_tensor_product(backend):
|
|
145
|
-
psi = qu.QuVector.from_tensor(np.random.rand(2, 2))
|
|
146
|
-
psi_psi = psi.tensor_product(psi)
|
|
147
|
-
assert len(psi_psi.subsystem_edges) == 4
|
|
148
|
-
np.testing.assert_almost_equal(
|
|
149
|
-
psi_psi.norm().eval(), psi.norm().eval() ** 2, decimal=decimal
|
|
150
|
-
)
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
154
|
-
def test_matmul(backend):
|
|
155
|
-
mat = np.random.rand(2, 2)
|
|
156
|
-
op = qu.QuOperator.from_tensor(mat, [0], [1])
|
|
157
|
-
res = (op @ op).eval()
|
|
158
|
-
np.testing.assert_allclose(res, mat @ mat, atol=atol)
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
162
|
-
def test_mul(backend):
|
|
163
|
-
mat = np.eye(2)
|
|
164
|
-
scal = np.float64(0.5)
|
|
165
|
-
op = qu.QuOperator.from_tensor(mat, [0], [1])
|
|
166
|
-
scal_op = qu.QuScalar.from_tensor(scal)
|
|
167
|
-
|
|
168
|
-
res = (op * scal_op).eval()
|
|
169
|
-
np.testing.assert_allclose(res, mat * 0.5, atol=atol)
|
|
170
|
-
|
|
171
|
-
res = (scal_op * op).eval()
|
|
172
|
-
np.testing.assert_allclose(res, mat * 0.5, atol=atol)
|
|
173
|
-
|
|
174
|
-
res = (scal_op * scal_op).eval()
|
|
175
|
-
np.testing.assert_almost_equal(res, 0.25, decimal=decimal)
|
|
176
|
-
|
|
177
|
-
res = (op * np.float64(0.5)).eval()
|
|
178
|
-
np.testing.assert_allclose(res, mat * 0.5, atol=atol)
|
|
179
|
-
|
|
180
|
-
res = (np.float64(0.5) * op).eval()
|
|
181
|
-
np.testing.assert_allclose(res, mat * 0.5, atol=atol)
|
|
182
|
-
|
|
183
|
-
with pytest.raises(ValueError):
|
|
184
|
-
_ = op * op
|
|
185
|
-
|
|
186
|
-
with pytest.raises(ValueError):
|
|
187
|
-
_ = op * mat
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
191
|
-
def test_expectations(backend):
|
|
192
|
-
psi_tensor = np.random.rand(2, 2, 2) + 1.0j * np.random.rand(2, 2, 2)
|
|
193
|
-
op_tensor = np.random.rand(2, 2) + 1.0j * np.random.rand(2, 2)
|
|
194
|
-
|
|
195
|
-
psi = qu.QuVector.from_tensor(psi_tensor)
|
|
196
|
-
op = qu.QuOperator.from_tensor(op_tensor, [0], [1])
|
|
197
|
-
|
|
198
|
-
op_3 = op.tensor_product(qu.identity((2, 2), dtype=psi_tensor.dtype))
|
|
199
|
-
res1 = (psi.adjoint() @ op_3 @ psi).eval()
|
|
200
|
-
|
|
201
|
-
rho_1 = psi.reduced_density([1, 2]) # trace out sites 2 and 3
|
|
202
|
-
res2 = (op @ rho_1).trace().eval()
|
|
203
|
-
|
|
204
|
-
np.testing.assert_almost_equal(res1, res2, decimal=decimal)
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
208
|
-
def test_projector(backend):
|
|
209
|
-
psi_tensor = np.random.rand(2, 2)
|
|
210
|
-
psi_tensor /= np.linalg.norm(psi_tensor)
|
|
211
|
-
psi = qu.QuVector.from_tensor(psi_tensor)
|
|
212
|
-
P = psi.projector()
|
|
213
|
-
np.testing.assert_allclose((P @ psi).eval(), psi_tensor, atol=atol)
|
|
214
|
-
|
|
215
|
-
np.testing.assert_allclose((P @ P).eval(), P.eval(), atol=atol)
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
219
|
-
def test_nonsquare_quop(backend):
|
|
220
|
-
op = qu.QuOperator.from_tensor(np.ones([2, 2, 2, 2, 2]), [0, 1, 2], [3, 4])
|
|
221
|
-
op2 = qu.QuOperator.from_tensor(np.ones([2, 2, 2, 2, 2]), [0, 1], [2, 3, 4])
|
|
222
|
-
np.testing.assert_allclose(
|
|
223
|
-
(op @ op2).eval(), 4 * np.ones([2, 2, 2, 2, 2, 2]), atol=atol
|
|
224
|
-
)
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
228
|
-
def test_expectation_local_tensor(backend):
|
|
229
|
-
op = qu.QuOperator.from_local_tensor(
|
|
230
|
-
np.array([[1.0, 0.0], [0.0, 1.0]]), space=[2, 2, 2, 2], loc=[1]
|
|
231
|
-
)
|
|
232
|
-
state = np.zeros([2, 2, 2, 2])
|
|
233
|
-
state[0, 0, 0, 0] = 1.0
|
|
234
|
-
psi = qu.QuVector.from_tensor(state)
|
|
235
|
-
psi_d = psi.adjoint()
|
|
236
|
-
np.testing.assert_allclose((psi_d @ op @ psi).eval(), 1.0, atol=atol)
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
240
|
-
def test_rm_state_vs_mps(backend):
|
|
241
|
-
@partial(tc.backend.jit, jit_compile=False, static_argnums=(1, 2))
|
|
242
|
-
def entanglement1(param, n, nlayers):
|
|
243
|
-
c = tc.Circuit(n)
|
|
244
|
-
c = tc.templates.blocks.example_block(c, param, nlayers)
|
|
245
|
-
w = c.wavefunction()
|
|
246
|
-
rm = qu.reduced_density_matrix(w, int(n / 2))
|
|
247
|
-
return qu.entropy(rm)
|
|
248
|
-
|
|
249
|
-
@partial(tc.backend.jit, jit_compile=False, static_argnums=(1, 2))
|
|
250
|
-
def entanglement2(param, n, nlayers):
|
|
251
|
-
c = tc.Circuit(n)
|
|
252
|
-
c = tc.templates.blocks.example_block(c, param, nlayers)
|
|
253
|
-
w = c.get_quvector()
|
|
254
|
-
rm = w.reduced_density([i for i in range(int(n / 2))])
|
|
255
|
-
return qu.entropy(rm)
|
|
256
|
-
|
|
257
|
-
param = tc.backend.ones([6, 6])
|
|
258
|
-
rm1 = entanglement1(param, 6, 3)
|
|
259
|
-
rm2 = entanglement2(param, 6, 3)
|
|
260
|
-
np.testing.assert_allclose(rm1, rm2, atol=atol)
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
264
|
-
def test_trace_product(backend):
|
|
265
|
-
o = np.ones([2, 2])
|
|
266
|
-
h = np.eye(2)
|
|
267
|
-
np.testing.assert_allclose(qu.trace_product(o, h), 2, atol=atol)
|
|
268
|
-
oq = qu.QuOperator.from_tensor(o)
|
|
269
|
-
hq = qu.QuOperator.from_tensor(h)
|
|
270
|
-
np.testing.assert_allclose(qu.trace_product(oq, hq), 2, atol=atol)
|
|
271
|
-
np.testing.assert_allclose(qu.trace_product(oq, h), 2, atol=atol)
|
|
272
|
-
np.testing.assert_allclose(qu.trace_product(o, hq), 2, atol=atol)
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
276
|
-
def test_free_energy(backend):
|
|
277
|
-
rho = np.array([[1.0, 0], [0, 0]])
|
|
278
|
-
h = np.array([[-1.0, 0], [0, 1]])
|
|
279
|
-
np.testing.assert_allclose(qu.free_energy(rho, h, 0.5), -1, atol=atol)
|
|
280
|
-
np.testing.assert_allclose(qu.renyi_free_energy(rho, h, 0.5), -1, atol=atol)
|
|
281
|
-
hq = qu.QuOperator.from_tensor(h)
|
|
282
|
-
np.testing.assert_allclose(qu.free_energy(rho, hq, 0.5), -1, atol=atol)
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
286
|
-
def test_measurement_counts(backend):
|
|
287
|
-
state = np.ones([4])
|
|
288
|
-
ct, cs = qu.measurement_counts(state, format="count_tuple")
|
|
289
|
-
np.testing.assert_allclose(ct.shape[0], 4, atol=atol)
|
|
290
|
-
np.testing.assert_allclose(tc.backend.sum(cs), 8192, atol=atol)
|
|
291
|
-
state = np.ones([2, 2])
|
|
292
|
-
ct, cs = qu.measurement_counts(state, format="count_tuple")
|
|
293
|
-
np.testing.assert_allclose(ct.shape[0], 2, atol=atol)
|
|
294
|
-
np.testing.assert_allclose(tc.backend.sum(cs), 8192, atol=atol)
|
|
295
|
-
state = np.array([1.0, 1.0, 0, 0])
|
|
296
|
-
print(qu.measurement_counts(state))
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
300
|
-
def test_extract_from_measure(backend):
|
|
301
|
-
np.testing.assert_allclose(
|
|
302
|
-
qu.spin_by_basis(2, 1), np.array([1, -1, 1, -1]), atol=atol
|
|
303
|
-
)
|
|
304
|
-
state = tc.array_to_tensor(np.array([0.6, 0.4, 0, 0]))
|
|
305
|
-
np.testing.assert_allclose(
|
|
306
|
-
qu.correlation_from_counts([0, 1], state), 0.2, atol=atol
|
|
307
|
-
)
|
|
308
|
-
np.testing.assert_allclose(qu.correlation_from_counts([1], state), 0.2, atol=atol)
|
|
309
|
-
|
|
310
|
-
samples_int = tc.array_to_tensor(np.array([0, 0, 3, 3, 3]), dtype="int32")
|
|
311
|
-
r = qu.correlation_from_samples([0, 1], samples_int, n=2)
|
|
312
|
-
np.testing.assert_allclose(r, 1, atol=1e-5)
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
316
|
-
def test_heisenberg_ham(backend):
|
|
317
|
-
g = tc.templates.graphs.Line1D(6)
|
|
318
|
-
h = tc.quantum.heisenberg_hamiltonian(g, sparse=False)
|
|
319
|
-
e, _ = tc.backend.eigh(h)
|
|
320
|
-
np.testing.assert_allclose(e[0], -11.2111, atol=1e-4)
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
324
|
-
def test_reduced_density_from_density(backend):
|
|
325
|
-
n = 6
|
|
326
|
-
w = np.random.normal(size=[2**n]) + 1.0j * np.random.normal(size=[2**n])
|
|
327
|
-
w /= np.linalg.norm(w)
|
|
328
|
-
rho = np.reshape(w, [-1, 1]) @ np.reshape(np.conj(w), [1, -1])
|
|
329
|
-
dm1 = tc.quantum.reduced_density_matrix(w, cut=[0, 2])
|
|
330
|
-
dm2 = tc.quantum.reduced_density_matrix(rho, cut=[0, 2])
|
|
331
|
-
np.testing.assert_allclose(dm1, dm2, atol=1e-5)
|
|
332
|
-
|
|
333
|
-
# with p
|
|
334
|
-
n = 5
|
|
335
|
-
w = np.random.normal(size=[2**n]) + 1.0j * np.random.normal(size=[2**n])
|
|
336
|
-
w /= np.linalg.norm(w)
|
|
337
|
-
p = np.random.normal(size=[2**3])
|
|
338
|
-
p = tc.backend.softmax(p)
|
|
339
|
-
p = tc.backend.cast(p, "complex128")
|
|
340
|
-
rho = np.reshape(w, [-1, 1]) @ np.reshape(np.conj(w), [1, -1])
|
|
341
|
-
dm1 = tc.quantum.reduced_density_matrix(w, cut=[1, 2, 3], p=p)
|
|
342
|
-
dm2 = tc.quantum.reduced_density_matrix(rho, cut=[1, 2, 3], p=p)
|
|
343
|
-
np.testing.assert_allclose(dm1, dm2, atol=1e-5)
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
347
|
-
def test_mutual_information(backend):
|
|
348
|
-
n = 5
|
|
349
|
-
w = np.random.normal(size=[2**n]) + 1.0j * np.random.normal(size=[2**n])
|
|
350
|
-
w /= np.linalg.norm(w)
|
|
351
|
-
rho = np.reshape(w, [-1, 1]) @ np.reshape(np.conj(w), [1, -1])
|
|
352
|
-
dm1 = tc.quantum.mutual_information(w, cut=[1, 2, 3])
|
|
353
|
-
dm2 = tc.quantum.mutual_information(rho, cut=[1, 2, 3])
|
|
354
|
-
np.testing.assert_allclose(dm1, dm2, atol=1e-5)
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
358
|
-
def test_expectation_quantum(backend):
|
|
359
|
-
c = tc.Circuit(3)
|
|
360
|
-
c.ry(0, theta=0.4)
|
|
361
|
-
c.cnot(0, 1)
|
|
362
|
-
exp1 = c.expectation([tc.gates.z(), [0]], [tc.gates.z(), [2]], reuse=False)
|
|
363
|
-
qv = c.quvector()
|
|
364
|
-
exp2 = tc.expectation([tc.gates.z(), [0]], [tc.gates.z(), [2]], ket=qv)
|
|
365
|
-
np.testing.assert_allclose(exp1, exp2, atol=1e-5)
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
369
|
-
def test_ee(backend):
|
|
370
|
-
c = tc.Circuit(3)
|
|
371
|
-
c.h(0)
|
|
372
|
-
c.cx(0, 1)
|
|
373
|
-
c.cx(1, 2)
|
|
374
|
-
s = c.state()
|
|
375
|
-
np.testing.assert_allclose(
|
|
376
|
-
tc.quantum.entanglement_entropy(s, [0, 1]), np.log(2.0), atol=1e-5
|
|
377
|
-
)
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
381
|
-
def test_negativity(backend, highp):
|
|
382
|
-
c = tc.DMCircuit(2)
|
|
383
|
-
c.h(0)
|
|
384
|
-
c.cnot(0, 1)
|
|
385
|
-
c.depolarizing(0, px=0.1, py=0.1, pz=0.1)
|
|
386
|
-
dm = c.state()
|
|
387
|
-
np.testing.assert_allclose(
|
|
388
|
-
tc.quantum.log_negativity(dm, [0], base="2"), 0.485427, atol=1e-5
|
|
389
|
-
)
|
|
390
|
-
np.testing.assert_allclose(
|
|
391
|
-
tc.quantum.partial_transpose(tc.quantum.partial_transpose(dm, [0]), [0]),
|
|
392
|
-
dm,
|
|
393
|
-
atol=1e-6,
|
|
394
|
-
)
|
|
395
|
-
np.testing.assert_allclose(
|
|
396
|
-
tc.quantum.entanglement_negativity(dm, [1]), 0.2, atol=1e-5
|
|
397
|
-
)
|
|
398
|
-
|
|
399
|
-
|
|
400
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
401
|
-
def test_tn2qop(backend):
|
|
402
|
-
nwires = 6
|
|
403
|
-
dtype = np.complex64
|
|
404
|
-
# only obc is supported, even if you supply nwires Jx terms
|
|
405
|
-
Jx = np.array([1.0 for _ in range(nwires - 1)]) # strength of xx interaction (OBC)
|
|
406
|
-
Bz = np.array([-1.0 for _ in range(nwires)]) # strength of transverse field
|
|
407
|
-
tn_mpo = tn.matrixproductstates.mpo.FiniteTFI(Jx, Bz, dtype=dtype)
|
|
408
|
-
qu_mpo = tc.quantum.tn2qop(tn_mpo)
|
|
409
|
-
h1 = qu_mpo.eval_matrix()
|
|
410
|
-
g = tc.templates.graphs.Line1D(nwires, pbc=False)
|
|
411
|
-
h2 = tc.quantum.heisenberg_hamiltonian(
|
|
412
|
-
g, hzz=0, hxx=1, hyy=0, hz=1, hx=0, hy=0, sparse=False, numpy=True
|
|
413
|
-
)
|
|
414
|
-
np.testing.assert_allclose(h1, h2, atol=1e-5)
|
|
415
|
-
|
|
416
|
-
|
|
417
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
418
|
-
def test_qb2qop(backend):
|
|
419
|
-
try:
|
|
420
|
-
import quimb
|
|
421
|
-
except ImportError:
|
|
422
|
-
pytest.skip("quimb is not installed")
|
|
423
|
-
nwires = 6
|
|
424
|
-
qb_mpo = quimb.tensor.tensor_builder.MPO_ham_ising(nwires, 4, 2, cyclic=True)
|
|
425
|
-
qu_mpo = tc.quantum.quimb2qop(qb_mpo)
|
|
426
|
-
h1 = qu_mpo.eval_matrix()
|
|
427
|
-
g = tc.templates.graphs.Line1D(nwires, pbc=True)
|
|
428
|
-
h2 = tc.quantum.heisenberg_hamiltonian(
|
|
429
|
-
g, hzz=1, hxx=0, hyy=0, hz=0, hx=-1, hy=0, sparse=False, numpy=True
|
|
430
|
-
)
|
|
431
|
-
np.testing.assert_allclose(h1, h2, atol=1e-5)
|
|
432
|
-
|
|
433
|
-
# in out edge order test
|
|
434
|
-
builder = quimb.tensor.tensor_builder.SpinHam1D()
|
|
435
|
-
# new version quimb breaking API change: SpinHam1D -> SpinHam
|
|
436
|
-
builder += 1, "Y"
|
|
437
|
-
builder += 1, "X"
|
|
438
|
-
H = builder.build_mpo(3)
|
|
439
|
-
h = tc.quantum.quimb2qop(H)
|
|
440
|
-
m1 = h.eval_matrix()
|
|
441
|
-
g = tc.templates.graphs.Line1D(3, pbc=False)
|
|
442
|
-
m2 = tc.quantum.heisenberg_hamiltonian(
|
|
443
|
-
g, hzz=0, hxx=0, hyy=0, hz=0, hy=0.5, hx=0.5, sparse=False, numpy=True
|
|
444
|
-
)
|
|
445
|
-
np.testing.assert_allclose(m1, m2, atol=1e-5)
|
|
446
|
-
|
|
447
|
-
# test mps case
|
|
448
|
-
|
|
449
|
-
s1 = quimb.tensor.tensor_builder.MPS_rand_state(3, 4)
|
|
450
|
-
s2 = tc.quantum.quimb2qop(s1)
|
|
451
|
-
m1 = s1.to_dense()
|
|
452
|
-
m2 = s2.eval_matrix()
|
|
453
|
-
np.testing.assert_allclose(m1, m2, atol=1e-5)
|
|
454
|
-
|
|
455
|
-
|
|
456
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
457
|
-
def test_counts_2(backend):
|
|
458
|
-
z0 = tc.backend.convert_to_tensor(np.array([0.1, 0, -0.3, 0]))
|
|
459
|
-
x, y = tc.quantum.count_d2s(z0)
|
|
460
|
-
print(x, y)
|
|
461
|
-
np.testing.assert_allclose(x, np.array([0, 2]))
|
|
462
|
-
np.testing.assert_allclose(y, np.array([0.1, -0.3]))
|
|
463
|
-
z = tc.quantum.count_s2d((x, y), 2)
|
|
464
|
-
np.testing.assert_allclose(z, z0)
|
|
465
|
-
|
|
466
|
-
|
|
467
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
468
|
-
def test_measurement_results(backend):
|
|
469
|
-
n = 4
|
|
470
|
-
w = tc.backend.ones([2**n])
|
|
471
|
-
r = tc.quantum.measurement_results(w, counts=9, format="sample_bin", jittable=True)
|
|
472
|
-
assert tc.backend.shape_tuple(r) == (9, n)
|
|
473
|
-
print(r)
|
|
474
|
-
r = tc.quantum.measurement_results(w, counts=9, format="sample_int", jittable=True)
|
|
475
|
-
assert tc.backend.shape_tuple(r) == (9,)
|
|
476
|
-
print(r)
|
|
477
|
-
for c in (9, -9):
|
|
478
|
-
r = tc.quantum.measurement_results(
|
|
479
|
-
w, counts=c, format="count_vector", jittable=True
|
|
480
|
-
)
|
|
481
|
-
assert tc.backend.shape_tuple(r) == (2**n,)
|
|
482
|
-
print(r)
|
|
483
|
-
r = tc.quantum.measurement_results(w, counts=c, format="count_tuple")
|
|
484
|
-
print(r)
|
|
485
|
-
r = tc.quantum.measurement_results(
|
|
486
|
-
w, counts=c, format="count_dict_bin", jittable=True
|
|
487
|
-
)
|
|
488
|
-
print(r)
|
|
489
|
-
r = tc.quantum.measurement_results(
|
|
490
|
-
w, counts=c, format="count_dict_int", jittable=True
|
|
491
|
-
)
|
|
492
|
-
print(r)
|
|
493
|
-
|
|
494
|
-
|
|
495
|
-
def test_ps2xyz():
|
|
496
|
-
xyz = {"x": [1], "z": [2]}
|
|
497
|
-
assert tc.quantum.xyz2ps(xyz) == [0, 1, 3]
|
|
498
|
-
assert tc.quantum.xyz2ps(xyz, 6) == [0, 1, 3, 0, 0, 0]
|
|
499
|
-
xyz.update({"y": []})
|
|
500
|
-
assert tc.quantum.ps2xyz([0, 1, 3]) == xyz
|
|
501
|
-
assert tc.quantum.ps2xyz([0, 1, 3, 0]) == xyz
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
505
|
-
def test_reduced_wavefunction(backend):
|
|
506
|
-
c = tc.Circuit(3)
|
|
507
|
-
c.h(0)
|
|
508
|
-
c.cnot(0, 1)
|
|
509
|
-
r = c.cond_measure(0)
|
|
510
|
-
s = c.state()
|
|
511
|
-
s1 = tc.quantum.reduced_wavefunction(s, [0, 2], [r, 0])
|
|
512
|
-
if tc.backend.cast(r, tc.rdtypestr) < 0.5:
|
|
513
|
-
np.testing.assert_allclose(s1, np.array([1, 0]), atol=1e-5)
|
|
514
|
-
else:
|
|
515
|
-
np.testing.assert_allclose(s1, np.array([0, 1]), atol=1e-5)
|
|
516
|
-
|
|
517
|
-
c = tc.Circuit(3)
|
|
518
|
-
c.h(0)
|
|
519
|
-
c.cnot(0, 1)
|
|
520
|
-
s = c.state()
|
|
521
|
-
s1 = tc.quantum.reduced_wavefunction(s, [2], [0])
|
|
522
|
-
|
|
523
|
-
c1 = tc.Circuit(2)
|
|
524
|
-
c1.h(0)
|
|
525
|
-
c1.cnot(0, 1)
|
|
526
|
-
np.testing.assert_allclose(s1, c1.state(), atol=1e-5)
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
530
|
-
def test_u1_mask(backend):
|
|
531
|
-
g = tc.templates.graphs.Line1D(8)
|
|
532
|
-
sumz = tc.quantum.heisenberg_hamiltonian(g, hzz=0, hxx=0, hyy=0, hz=1)
|
|
533
|
-
for i in range(9):
|
|
534
|
-
s = tc.quantum.u1_mask(8, i)
|
|
535
|
-
s /= tc.backend.norm(s)
|
|
536
|
-
c = tc.Circuit(8, inputs=s)
|
|
537
|
-
zexp = tc.templates.measurements.operator_expectation(c, sumz)
|
|
538
|
-
np.testing.assert_allclose(zexp, 8 - 2 * i, atol=1e-6)
|
|
539
|
-
|
|
540
|
-
|
|
541
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
542
|
-
def test_u1_project(backend):
|
|
543
|
-
c = tc.Circuit(8)
|
|
544
|
-
c.x([0, 2, 4])
|
|
545
|
-
c.exp1(0, 1, unitary=tc.gates._swap_matrix, theta=0.6)
|
|
546
|
-
s = c.state()
|
|
547
|
-
s1 = tc.quantum.u1_project(s, 8, 3)
|
|
548
|
-
assert s1.shape[-1] == 56
|
|
549
|
-
np.testing.assert_allclose(tc.quantum.u1_enlarge(s1, 8, 3), s)
|
tests/test_quantum_attr.py
DELETED
|
@@ -1,42 +0,0 @@
|
|
|
1
|
-
import sys
|
|
2
|
-
import os
|
|
3
|
-
|
|
4
|
-
import numpy as np
|
|
5
|
-
import tensorflow as tf
|
|
6
|
-
|
|
7
|
-
thisfile = os.path.abspath(__file__)
|
|
8
|
-
modulepath = os.path.dirname(os.path.dirname(thisfile))
|
|
9
|
-
|
|
10
|
-
sys.path.insert(0, modulepath)
|
|
11
|
-
from tensorcircuit.applications.vags import double_state, reduced_density_matrix
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
def test_double_state():
|
|
15
|
-
s = double_state(tf.constant([[1.0, 0], [0, -1.0]]), beta=2.0)
|
|
16
|
-
np.testing.assert_allclose(np.linalg.norm(s.numpy()), 1.0)
|
|
17
|
-
np.testing.assert_allclose(
|
|
18
|
-
s.numpy(),
|
|
19
|
-
np.array(
|
|
20
|
-
[
|
|
21
|
-
np.exp(-1) / np.sqrt(np.exp(2) + np.exp(-2)),
|
|
22
|
-
0,
|
|
23
|
-
0,
|
|
24
|
-
np.exp(1) / np.sqrt(np.exp(2) + np.exp(-2)),
|
|
25
|
-
]
|
|
26
|
-
),
|
|
27
|
-
atol=1e-5,
|
|
28
|
-
)
|
|
29
|
-
s2 = double_state(tf.constant([[0.0, 1.0], [1.0, 0.0]]), beta=1.0)
|
|
30
|
-
np.testing.assert_allclose(np.linalg.norm(s2.numpy()), 1.0)
|
|
31
|
-
em = np.exp(-0.5)
|
|
32
|
-
ep = np.exp(0.5)
|
|
33
|
-
ans = np.array([em + ep, em - ep, em - ep, em + ep])
|
|
34
|
-
ans /= np.linalg.norm(ans)
|
|
35
|
-
np.testing.assert_allclose(s2.numpy(), ans, atol=1e-5)
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
def test_reduced_dm():
|
|
39
|
-
rho = reduced_density_matrix(
|
|
40
|
-
tf.random.normal(shape=[128]), freedom=7, cut=[1, 3, 5]
|
|
41
|
-
)
|
|
42
|
-
np.testing.assert_allclose(np.trace(rho.numpy()), 1, atol=1e-5)
|