tensorcircuit-nightly 1.3.0.dev20250728__py3-none-any.whl → 1.4.0.dev20251103__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tensorcircuit-nightly might be problematic. Click here for more details.
- tensorcircuit/__init__.py +5 -1
- tensorcircuit/abstractcircuit.py +4 -0
- tensorcircuit/analogcircuit.py +413 -0
- tensorcircuit/applications/layers.py +1 -1
- tensorcircuit/applications/van.py +1 -1
- tensorcircuit/backends/abstract_backend.py +312 -5
- tensorcircuit/backends/cupy_backend.py +3 -1
- tensorcircuit/backends/jax_backend.py +92 -3
- tensorcircuit/backends/jax_ops.py +108 -0
- tensorcircuit/backends/numpy_backend.py +49 -3
- tensorcircuit/backends/pytorch_backend.py +92 -3
- tensorcircuit/backends/tensorflow_backend.py +102 -3
- tensorcircuit/basecircuit.py +123 -82
- tensorcircuit/circuit.py +67 -57
- tensorcircuit/cloud/local.py +1 -1
- tensorcircuit/cloud/quafu_provider.py +1 -1
- tensorcircuit/cloud/tencent.py +1 -1
- tensorcircuit/compiler/simple_compiler.py +2 -2
- tensorcircuit/cons.py +1 -0
- tensorcircuit/densitymatrix.py +16 -11
- tensorcircuit/experimental.py +7 -152
- tensorcircuit/fgs.py +5 -6
- tensorcircuit/gates.py +66 -22
- tensorcircuit/keras.py +3 -3
- tensorcircuit/mpscircuit.py +109 -61
- tensorcircuit/quantum.py +697 -133
- tensorcircuit/quditcircuit.py +733 -0
- tensorcircuit/quditgates.py +618 -0
- tensorcircuit/results/counts.py +45 -31
- tensorcircuit/shadows.py +1 -1
- tensorcircuit/simplify.py +3 -1
- tensorcircuit/stabilizercircuit.py +4 -2
- tensorcircuit/templates/blocks.py +2 -2
- tensorcircuit/templates/hamiltonians.py +29 -8
- tensorcircuit/templates/lattice.py +676 -335
- tensorcircuit/timeevol.py +896 -0
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/METADATA +50 -25
- tensorcircuit_nightly-1.4.0.dev20251103.dist-info/RECORD +96 -0
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/top_level.txt +0 -1
- tensorcircuit_nightly-1.3.0.dev20250728.dist-info/RECORD +0 -122
- tests/__init__.py +0 -0
- tests/conftest.py +0 -67
- tests/test_backends.py +0 -1035
- tests/test_calibrating.py +0 -149
- tests/test_channels.py +0 -409
- tests/test_circuit.py +0 -1713
- tests/test_cloud.py +0 -219
- tests/test_compiler.py +0 -147
- tests/test_dmcircuit.py +0 -555
- tests/test_ensemble.py +0 -72
- tests/test_fgs.py +0 -318
- tests/test_gates.py +0 -156
- tests/test_hamiltonians.py +0 -159
- tests/test_interfaces.py +0 -557
- tests/test_keras.py +0 -160
- tests/test_lattice.py +0 -1666
- tests/test_miscs.py +0 -334
- tests/test_mpscircuit.py +0 -341
- tests/test_noisemodel.py +0 -156
- tests/test_qaoa.py +0 -86
- tests/test_qem.py +0 -152
- tests/test_quantum.py +0 -549
- tests/test_quantum_attr.py +0 -42
- tests/test_results.py +0 -379
- tests/test_shadows.py +0 -160
- tests/test_simplify.py +0 -46
- tests/test_stabilizer.py +0 -226
- tests/test_templates.py +0 -218
- tests/test_torchnn.py +0 -99
- tests/test_van.py +0 -102
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/WHEEL +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,17 +1,21 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: tensorcircuit-nightly
|
|
3
|
-
Version: 1.
|
|
4
|
-
Summary:
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
3
|
+
Version: 1.4.0.dev20251103
|
|
4
|
+
Summary: High performance unified quantum computing framework for the NISQ era
|
|
5
|
+
Author-email: TensorCircuit Authors <znfesnpbh@gmail.com>
|
|
6
|
+
License-Expression: Apache-2.0
|
|
7
|
+
Project-URL: Homepage, https://github.com/tensorcircuit/tensorcircuit-ng
|
|
8
|
+
Project-URL: Repository, https://github.com/tensorcircuit/tensorcircuit-ng
|
|
8
9
|
Classifier: Programming Language :: Python :: 3
|
|
9
10
|
Classifier: Operating System :: OS Independent
|
|
11
|
+
Classifier: Intended Audience :: Science/Research
|
|
12
|
+
Classifier: Topic :: Scientific/Engineering :: Physics
|
|
13
|
+
Requires-Python: >=3.9
|
|
10
14
|
Description-Content-Type: text/markdown
|
|
11
15
|
License-File: LICENSE
|
|
12
16
|
Requires-Dist: numpy
|
|
13
17
|
Requires-Dist: scipy
|
|
14
|
-
Requires-Dist: tensornetwork
|
|
18
|
+
Requires-Dist: tensornetwork-ng
|
|
15
19
|
Requires-Dist: networkx
|
|
16
20
|
Provides-Extra: tensorflow
|
|
17
21
|
Requires-Dist: tensorflow; extra == "tensorflow"
|
|
@@ -22,16 +26,12 @@ Provides-Extra: torch
|
|
|
22
26
|
Requires-Dist: torch; extra == "torch"
|
|
23
27
|
Provides-Extra: qiskit
|
|
24
28
|
Requires-Dist: qiskit; extra == "qiskit"
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
Dynamic: home-page
|
|
29
|
+
Requires-Dist: sympy; extra == "qiskit"
|
|
30
|
+
Requires-Dist: symengine; extra == "qiskit"
|
|
31
|
+
Provides-Extra: cloud
|
|
32
|
+
Requires-Dist: qiskit; extra == "cloud"
|
|
33
|
+
Requires-Dist: mthree<2.8; extra == "cloud"
|
|
31
34
|
Dynamic: license-file
|
|
32
|
-
Dynamic: provides-extra
|
|
33
|
-
Dynamic: requires-dist
|
|
34
|
-
Dynamic: summary
|
|
35
35
|
|
|
36
36
|
<p align="center">
|
|
37
37
|
<a href="https://github.com/tensorcircuit/tensorcircuit-ng">
|
|
@@ -62,15 +62,15 @@ Dynamic: summary
|
|
|
62
62
|
|
|
63
63
|
TensorCircuit-NG is the next-generation open-source high-performance quantum software framework, built upon tensornetwork engines, supporting for automatic differentiation, just-in-time compiling, hardware acceleration, vectorized parallelism and distributed training, providing unified infrastructures and interfaces for quantum programming. It can compose quantum circuits, neural networks and tensor networks seamlessly with high simulation efficiency and flexibility.
|
|
64
64
|
|
|
65
|
-
TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy, Clifford, approximate, analog and fermionic cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
|
|
65
|
+
TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal (`Circuit`), noisy (`DMCircuit`), Clifford (`StabilizerCircuit`), qudit (`QuditCircuit`), approximate (`MPSCircuit`), analog (`AnalogCircuit`), and fermionic (`FGSCircuit`) cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
|
|
66
66
|
|
|
67
|
-
TensorCircuit-NG is the actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, multi-
|
|
67
|
+
TensorCircuit-NG is the only actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, qudit circuit, analog circuit, multi-GPU distributed simulation, etc.) and bug fixes (support latest `numpy>2` and `qiskit>1`).
|
|
68
68
|
|
|
69
69
|
## Getting Started
|
|
70
70
|
|
|
71
71
|
Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
|
|
72
72
|
|
|
73
|
-
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to
|
|
73
|
+
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 90+ [example scripts](/examples) and 40+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
|
|
74
74
|
|
|
75
75
|
For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
|
|
76
76
|
|
|
@@ -225,7 +225,7 @@ We also have [Docker support](/docker).
|
|
|
225
225
|
|
|
226
226
|
- Support **Fermion Gaussian state** simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.
|
|
227
227
|
|
|
228
|
-
- Support **qudits simulation
|
|
228
|
+
- Support **qudits simulation** for tensor network and MPS approximation modes.
|
|
229
229
|
|
|
230
230
|
- Support **parallel** quantum circuit evaluation across **multiple GPUs**.
|
|
231
231
|
|
|
@@ -247,6 +247,8 @@ We also have [Docker support](/docker).
|
|
|
247
247
|
|
|
248
248
|
- **Machine learning interface/layer/model** abstraction in both TensorFlow, PyTorch and Jax for both numerical simulation and real QPU experiments.
|
|
249
249
|
|
|
250
|
+
- Support time evolution simulation with **exact, ODE, Krylov, Trotter, Chebyshev solvers**.
|
|
251
|
+
|
|
250
252
|
- Circuit sampling supports both final state sampling and perfect sampling from tensor networks.
|
|
251
253
|
|
|
252
254
|
- Light cone reduction support for local expectation calculation.
|
|
@@ -281,7 +283,7 @@ If this project helps in your research, please cite our software whitepaper to a
|
|
|
281
283
|
|
|
282
284
|
which is also a good introduction to the software.
|
|
283
285
|
|
|
284
|
-
Research works citing TensorCircuit can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
|
|
286
|
+
Research works citing TensorCircuit-NG can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
|
|
285
287
|
|
|
286
288
|
### Guidelines
|
|
287
289
|
|
|
@@ -341,7 +343,10 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
|
|
|
341
343
|
<td align="center" valign="top" width="16.66%"><a href="https://adeshpande.gitlab.io"><img src="https://avatars.githubusercontent.com/u/6169877?v=4?s=100" width="100px;" alt="Abhinav Deshpande"/><br /><sub><b>Abhinav Deshpande</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=abhinavd" title="Code">💻</a></td>
|
|
342
344
|
</tr>
|
|
343
345
|
<tr>
|
|
344
|
-
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a></td>
|
|
346
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a> <a href="#tutorial-Stellogic" title="Tutorials">✅</a></td>
|
|
347
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Charlespkuer"><img src="https://avatars.githubusercontent.com/u/112697147?v=4?s=100" width="100px;" alt="Huang"/><br /><sub><b>Huang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Code">💻</a> <a href="#example-Charlespkuer" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Tests">⚠️</a></td>
|
|
348
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Huang-Xu-Yang"><img src="https://avatars.githubusercontent.com/u/227286661?v=4?s=100" width="100px;" alt="Huang-Xu-Yang"/><br /><sub><b>Huang-Xu-Yang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Tests">⚠️</a></td>
|
|
349
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/WeiguoMa"><img src="https://avatars.githubusercontent.com/u/108172530?v=4?s=100" width="100px;" alt="Weiguo_M"/><br /><sub><b>Weiguo_M</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Tests">⚠️</a> <a href="#example-WeiguoMa" title="Examples">💡</a> <a href="#tutorial-WeiguoMa" title="Tutorials">✅</a></td>
|
|
345
350
|
</tr>
|
|
346
351
|
</tbody>
|
|
347
352
|
</table>
|
|
@@ -360,7 +365,7 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
|
|
|
360
365
|
|
|
361
366
|
## Research and Applications
|
|
362
367
|
|
|
363
|
-
TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works and open-source projects that utilize TensorCircuit-NG.
|
|
368
|
+
TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works (100+ in total) and open-source projects that utilize TensorCircuit-NG.
|
|
364
369
|
|
|
365
370
|
### DQAS
|
|
366
371
|
|
|
@@ -422,6 +427,18 @@ For the simulation code and data for variational optimization of simutaneous exc
|
|
|
422
427
|
|
|
423
428
|
Reference paper: https://arxiv.org/abs/2504.21459.
|
|
424
429
|
|
|
430
|
+
### Quantum Machine Unlearning
|
|
431
|
+
|
|
432
|
+
For the simulation code for the work "superior resilience to poisoning and amenability to unlearning in quantum machine learning", see the [project repo](https://github.com/yutuer21/quantum-machine-unlearning).
|
|
433
|
+
|
|
434
|
+
Reference paper: https://arxiv.org/abs/2508.02422.
|
|
435
|
+
|
|
436
|
+
### Low Weight Pauli Propagation Simulation
|
|
437
|
+
|
|
438
|
+
For the simulation code and data for the work on low weight Pauli propagation in the context of variational quantum algorithms, see the [project repo](https://github.com/ZongliangLi/lwpp_init).
|
|
439
|
+
|
|
440
|
+
Reference paper: https://arxiv.org/abs/2508.06358.
|
|
441
|
+
|
|
425
442
|
### More works
|
|
426
443
|
|
|
427
444
|
<details>
|
|
@@ -467,20 +484,28 @@ Reference paper: https://arxiv.org/abs/2504.21459.
|
|
|
467
484
|
|
|
468
485
|
- Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in QST).
|
|
469
486
|
|
|
470
|
-
- Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076. Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
|
|
487
|
+
- Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076 (published in Quantum). Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
|
|
471
488
|
|
|
472
489
|
- Symmetry restoration and quantum Mpemba effect in symmetric random circuits: https://arxiv.org/abs/2403.08459 (published in PRL).
|
|
473
490
|
|
|
474
491
|
- Quantum Mpemba effects in many-body localization systems: https://arxiv.org/abs/2408.07750.
|
|
475
492
|
|
|
476
|
-
- Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386.
|
|
493
|
+
- Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386 (published in PRB).
|
|
477
494
|
|
|
478
495
|
- Dynamic parameterized quantum circuits: expressive and barren-plateau free: https://arxiv.org/abs/2411.05760.
|
|
479
496
|
|
|
480
|
-
- Holographic deep thermalization: https://arxiv.org/abs/2411.03587.
|
|
497
|
+
- Holographic deep thermalization: https://arxiv.org/abs/2411.03587 (published in Nature Communications).
|
|
481
498
|
|
|
482
499
|
- Quantum deep generative prior with programmable quantum circuits: https://www.nature.com/articles/s42005-024-01765-9 (published in Communications Physics).
|
|
483
500
|
|
|
501
|
+
- Symmetry Breaking Dynamics in Quantum Many-Body Systems: https://arxiv.org/abs/2501.13459.
|
|
502
|
+
|
|
503
|
+
- Entanglement growth and information capacity in a quasiperiodic system with a single-particle mobility edge: https://arxiv.org/abs/2506.18076.
|
|
504
|
+
|
|
505
|
+
- Hilbert subspace imprint: a new mechanism for non-thermalization: https://arxiv.org/abs/2506.11922.
|
|
506
|
+
|
|
507
|
+
- A Neural-Guided Variational Quantum Algorithm for Efficient Sign Structure Learning in Hybrid Architectures: https://arxiv.org/abs/2507.07555.
|
|
508
|
+
|
|
484
509
|
</details>
|
|
485
510
|
|
|
486
511
|
If you want to highlight your research work or projects here, feel free to add by opening PR.
|
|
@@ -0,0 +1,96 @@
|
|
|
1
|
+
tensorcircuit/__init__.py,sha256=zUsxsn_5myCSfvl5cUQPBNIB9PEUcRuG-bjlk11dj1A,2160
|
|
2
|
+
tensorcircuit/about.py,sha256=DazTswU2nAwOmASTaDII3L04PVtaQ7oiWPty5YMI3Wk,5267
|
|
3
|
+
tensorcircuit/abstractcircuit.py,sha256=uDRgaDeH_Ym-6_ZEOZwvxHIDycVLHkGZv4zfaIgaEnc,44235
|
|
4
|
+
tensorcircuit/analogcircuit.py,sha256=4BzIC631MZ2m05CXuk2T6HQ8RTmHBE6NszaOLuxmlEc,15639
|
|
5
|
+
tensorcircuit/asciiart.py,sha256=neY1OWFwtoW5cHPNwkQHgRPktDniQvdlP9QKHkk52fM,8236
|
|
6
|
+
tensorcircuit/basecircuit.py,sha256=9I0Es2P5VdGisx5_t0AKSYtgSb15RB6fXCZg4eEr5es,39138
|
|
7
|
+
tensorcircuit/channels.py,sha256=CFQxWI-JmkIxexslCBdjp_RSxUbHs6eAJv4LvlXXXCY,28637
|
|
8
|
+
tensorcircuit/circuit.py,sha256=lETz1SvUh_60ZMFtvSPMWOF6zWMMyQU4TyB_VwhkVHM,40027
|
|
9
|
+
tensorcircuit/cons.py,sha256=V0wjevtDkESCIWMJaysgPVorQlPAIT0vtRWvIZkEWcE,33065
|
|
10
|
+
tensorcircuit/densitymatrix.py,sha256=C8Q2fHXZ78S9ZaPqCIKl6_v_sILqbBgqBOUYUQ1QmFI,15020
|
|
11
|
+
tensorcircuit/experimental.py,sha256=TGK4FaS6TS_ZhtjcIZgYVuAkGdRW50LN0DdXp-h4bos,29906
|
|
12
|
+
tensorcircuit/fgs.py,sha256=J1TjAiiqZk9KO1xYX_V0xsgKlYZaUQ7Enm4s5zkRM50,49514
|
|
13
|
+
tensorcircuit/gates.py,sha256=9x1VTEpZWz-FoWVM_YznoU1dbFzXnfXIEJQQVec-2Ko,30504
|
|
14
|
+
tensorcircuit/keras.py,sha256=nMSuu9uZy7haWwuen1g_6GFVwYIirtX9IvejDyoH33M,10129
|
|
15
|
+
tensorcircuit/mps_base.py,sha256=UZ-v8vsr_rAsKrfun8prVgbXJ-qsdqKy2DZIHpq3sxo,15400
|
|
16
|
+
tensorcircuit/mpscircuit.py,sha256=CPWlsb-kybZE-lh4iUkVMDn45qhHtFHUnxATP6TsaVk,38802
|
|
17
|
+
tensorcircuit/noisemodel.py,sha256=vzxpoYEZbHVC4a6g7_Jk4dxsHi4wvhpRFwud8b616Qo,11878
|
|
18
|
+
tensorcircuit/quantum.py,sha256=asuA3rCfi2Y4knWz1ObkveCdSv8EeaSsf1xfPVowvT0,110628
|
|
19
|
+
tensorcircuit/quditcircuit.py,sha256=Ll1Nb0tQYKzq7rlPJA64GjcyBqTSydvCBBKlbhEb38A,26122
|
|
20
|
+
tensorcircuit/quditgates.py,sha256=PR5n9NLNhMPyoanFYjuDioW-0U7VGUiJf_OvxR_Twq0,20925
|
|
21
|
+
tensorcircuit/shadows.py,sha256=KQM19KnXnn6d3HgaqdRs33RWC2uCIiY5cEGnH1CVdGw,17012
|
|
22
|
+
tensorcircuit/simplify.py,sha256=EuEyQenFit-hgQhEJecL7t7jJ8m8zQ4KuL_sEvPNu-I,9488
|
|
23
|
+
tensorcircuit/stabilizercircuit.py,sha256=KbrBVSo2pXnf5JHIrxwRPSPTm7bJVMIcyE4d7-dIfCM,15545
|
|
24
|
+
tensorcircuit/timeevol.py,sha256=Er3rMFEX61G1Zvt-iNVMpw1IIJ1lwD5HZURpowvCfR4,31893
|
|
25
|
+
tensorcircuit/torchnn.py,sha256=z_QpM0QC3mydGyWpyp877j-tSFCPyzynCwqrTWaw-IA,4637
|
|
26
|
+
tensorcircuit/translation.py,sha256=VnU7DnYmbk1cWjqa7N68WNLNDn3DwENrMzmbG4_CQco,28611
|
|
27
|
+
tensorcircuit/utils.py,sha256=nEDR1wTh1WF_yV6UyZYlifqOPWdKk_Krr4HjhrWHnGQ,7228
|
|
28
|
+
tensorcircuit/vis.py,sha256=O4hm050KKfOAoVyHsjpMg6NBNVoWhLSlv-xsCx4opsU,12196
|
|
29
|
+
tensorcircuit/applications/__init__.py,sha256=nAX-Am6JoL9k53iJ_CjZJ2NcjIpaz21H87nrW4Op03k,246
|
|
30
|
+
tensorcircuit/applications/dqas.py,sha256=RcIM-mHLcZ99U5oXQSBSVL36wfDoBe45kuaQageI_SQ,34463
|
|
31
|
+
tensorcircuit/applications/graphdata.py,sha256=FR28CFcZw3QenaFU74J2jlY-m3P_NtUvW6yAm-tmon8,15348
|
|
32
|
+
tensorcircuit/applications/layers.py,sha256=i7CsquQvhAxYYihK9xDgdmF_wAYPdrbq_jOcg3BbDXI,18154
|
|
33
|
+
tensorcircuit/applications/optimization.py,sha256=ycPSlKg3iOZU2ZMhH3Es8s8EOn36wakOQsDhT2SXNXs,14396
|
|
34
|
+
tensorcircuit/applications/utils.py,sha256=MQKSYeFf_y9OUw5crAOsqpulNmhGRlX6HwD-8hu1rPA,14119
|
|
35
|
+
tensorcircuit/applications/vags.py,sha256=lg4KRxIaRVjZgtA5gmsgCjDxAQPS-pkaGqA9fkJah1Q,36392
|
|
36
|
+
tensorcircuit/applications/van.py,sha256=c-vEQqWngM-GXJCMpBeonAiFvCftb2WjNK4xvu0NdrI,15177
|
|
37
|
+
tensorcircuit/applications/vqes.py,sha256=OL4_vuF3yzV_iF37JrH-DbGy-0qTeKXd5aBbWjvhDjI,23417
|
|
38
|
+
tensorcircuit/applications/ai/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
39
|
+
tensorcircuit/applications/ai/ensemble.py,sha256=JmnoAq9qwCRAfdnB8fvcox6aagOQHHu68aRwJDWYi9k,5956
|
|
40
|
+
tensorcircuit/applications/finance/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
41
|
+
tensorcircuit/applications/finance/portfolio.py,sha256=IAJmjhWjFjjppPa98KifZ4Yyh2JuDdpWpu0m_bVZLh8,2934
|
|
42
|
+
tensorcircuit/applications/physics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
43
|
+
tensorcircuit/applications/physics/baseline.py,sha256=RWrzMGnC0PtmpYSFkvCE7r1llR88gncXuCakAAhFE-w,1775
|
|
44
|
+
tensorcircuit/applications/physics/fss.py,sha256=ny3U9ZDmT459PXjA1oUGfarBOlSKSy6fs04vD9s1XH4,3633
|
|
45
|
+
tensorcircuit/backends/__init__.py,sha256=WiUmbUFzM29w3hKfhuKxVUk3PpqDFiXf4za9g0ctpZA,80
|
|
46
|
+
tensorcircuit/backends/abstract_backend.py,sha256=ox8gWb1ui21DPA8bnLYEg7HOp0NwWFLAhYBjQZj8p2o,70288
|
|
47
|
+
tensorcircuit/backends/backend_factory.py,sha256=Z0aQ-RnxOnQzp-SRw8sefAH8XyBSlj2NXZwOlHinbfY,1713
|
|
48
|
+
tensorcircuit/backends/cupy_backend.py,sha256=KG5fqP29wnngkPsi-TnOk0pHsr9lyD7hx6_Y56fCQuY,15172
|
|
49
|
+
tensorcircuit/backends/jax_backend.py,sha256=luLhZ7zyj8d6ARYxzGsvhxZnbownbqgeUMpUQw6F5Yw,29080
|
|
50
|
+
tensorcircuit/backends/jax_ops.py,sha256=WyUGavch2R9uEFsI1Ap7eP1UcU4s2TItBgGsrVS3Hzs,9320
|
|
51
|
+
tensorcircuit/backends/numpy_backend.py,sha256=0N7Z6slwDsAkWBislzsy0YhKTxa2Woq_xaCCX_SFuHI,15613
|
|
52
|
+
tensorcircuit/backends/pytorch_backend.py,sha256=V4NW7RAwPgBlhMbenTJHFxSGDVdQsd5PwH8CRqcjEEc,27146
|
|
53
|
+
tensorcircuit/backends/pytorch_ops.py,sha256=lLxpK6OqfpVwifyFlgsqhpnt-oIn4R5paPMVg51WaW0,3826
|
|
54
|
+
tensorcircuit/backends/tensorflow_backend.py,sha256=9SAfcWEoKvyJG4sM0I89ozW16aa3VMxMfcOUeDljShE,39813
|
|
55
|
+
tensorcircuit/backends/tf_ops.py,sha256=FJwDU7LhZrt0VUIx12DJU0gZnWhMv7B7r9sAKG710As,3378
|
|
56
|
+
tensorcircuit/cloud/__init__.py,sha256=n0Lx07GYF6YbdIa6AJCLJk4zlAm5CqaeHszvkxxuoI4,139
|
|
57
|
+
tensorcircuit/cloud/abstraction.py,sha256=6aSxbz0MP21jBVdFbSMrvJPLQH117vGz9sSHbMFoodE,14582
|
|
58
|
+
tensorcircuit/cloud/apis.py,sha256=e4dydZk7fxGicOdQ1HFd59yql_dj0Cd_Qm2bfWs7vxg,17960
|
|
59
|
+
tensorcircuit/cloud/config.py,sha256=mk38XTQUSXCo6hhbXsAVC7EF8BuU1g9ZX5t8_jKVqcc,60
|
|
60
|
+
tensorcircuit/cloud/local.py,sha256=Qz9bC5wA_7Al_LhdVsyfYqHX0srhnpBUMEYMnncCj0w,2266
|
|
61
|
+
tensorcircuit/cloud/quafu_provider.py,sha256=wBgLFKYE2u3nfaBr92lgwHdLDkrR9I6o41UWkAYV1H0,2614
|
|
62
|
+
tensorcircuit/cloud/tencent.py,sha256=AcuOetzexzePvznAh8h_w6vtRBTY73qZQp21Fl_S0MA,14326
|
|
63
|
+
tensorcircuit/cloud/utils.py,sha256=tEB2b93eP2b9KAIhRfSg_5myX6QOoz_aUTJ3Fc1HXI4,3623
|
|
64
|
+
tensorcircuit/cloud/wrapper.py,sha256=R6HbqQulAjuHMfgcV6vE3MYWAJal9L9DIgPqkRuGttQ,11519
|
|
65
|
+
tensorcircuit/compiler/__init__.py,sha256=PR1DENcO2YuT-e_cKrOoL9By7k91RbzLs1MvhLmOeCI,242
|
|
66
|
+
tensorcircuit/compiler/composed_compiler.py,sha256=AsOGYg11rHYlZjr6olDovRkxr0B2LAm5nYiHkki5OzA,3258
|
|
67
|
+
tensorcircuit/compiler/qiskit_compiler.py,sha256=qpz7DRpQATIxsfi4pj_C6-JBtKdUVcu3BQwhoWViSVA,6219
|
|
68
|
+
tensorcircuit/compiler/simple_compiler.py,sha256=Xt1dM1bHIBAkDUftOtdz0Zo9lhCC3xHqN8VTctHc_Lc,9591
|
|
69
|
+
tensorcircuit/interfaces/__init__.py,sha256=cE2bZYRwIpxXaL0SLnIKtQS0jRZPDF3k1ep9rpesLVU,500
|
|
70
|
+
tensorcircuit/interfaces/jax.py,sha256=q_nay20gcrPRyY2itvcOtkCjqtvcC4qotbvrgm2a3cU,6014
|
|
71
|
+
tensorcircuit/interfaces/numpy.py,sha256=T7h64dG9e5xDG0KVOy9O8TXyrt5RWRnTWN9iXf3aGyY,1439
|
|
72
|
+
tensorcircuit/interfaces/scipy.py,sha256=_P2IeqvJiO7cdjTzNCIAFm8Y56Wd3j3jGmWUeeQ1Fw8,3402
|
|
73
|
+
tensorcircuit/interfaces/tensorflow.py,sha256=U4hZjm-yWxOJ5tqmffk8-tNvOkAltYBJ8Z6jYwOtTaM,3355
|
|
74
|
+
tensorcircuit/interfaces/tensortrans.py,sha256=oUxIVpXfANZVRXfPjiGJDzFPiszfBsiY40ydh0BaELE,10364
|
|
75
|
+
tensorcircuit/interfaces/torch.py,sha256=13IFGmWUFoWiSzKAzwp2EkOSxgiwN_oUFxjQb36gimo,5149
|
|
76
|
+
tensorcircuit/results/__init__.py,sha256=3kkIvmjLYQd5ff-emY8l82rpv9mwMZdM2kTLZ9sNfA4,89
|
|
77
|
+
tensorcircuit/results/counts.py,sha256=gJ9x2D09wSZ8bwLB5ZR9lyx-bg6AAoz6JDr9cDAb83w,7267
|
|
78
|
+
tensorcircuit/results/readout_mitigation.py,sha256=dVpNvtFZe7n_fDVczKcqYPEepu3fV2qK3u-SfOpTf68,31746
|
|
79
|
+
tensorcircuit/results/qem/__init__.py,sha256=Pw0hcFYNesuPE8uNDm9P8DVTIFCSBqUcIkr6smQYzuM,419
|
|
80
|
+
tensorcircuit/results/qem/benchmark_circuits.py,sha256=LlFuKCDFKihMOhiY6WUZt9QPyoPeQw0SuaczdcSA3oM,3243
|
|
81
|
+
tensorcircuit/results/qem/qem_methods.py,sha256=v8HyVsRX9vkjgGfLyB1K0Eq5UyUnh-thysqo05kXo6E,12148
|
|
82
|
+
tensorcircuit/templates/__init__.py,sha256=CzkNn6sAk9gkXYa0IemrsISXIqcaIqM2UWvGi2u2C38,237
|
|
83
|
+
tensorcircuit/templates/ansatz.py,sha256=0hmMtdSvHq9qodzpzC0TKJIWV28kTlfZqzUHjBd9aYA,3229
|
|
84
|
+
tensorcircuit/templates/blocks.py,sha256=yrfOk1xkD3z4sbOgggPdu3B0P5FEqXSv8F13pfFCZFM,6185
|
|
85
|
+
tensorcircuit/templates/chems.py,sha256=9ksMYTutfDEF3U04xrj9j0bYWb5gwTwMdMPi-SZKci0,171
|
|
86
|
+
tensorcircuit/templates/conversions.py,sha256=D3chiKDr7G1ekCJngiol91k9iqrMag1DZQGSx0j_uH4,3023
|
|
87
|
+
tensorcircuit/templates/dataset.py,sha256=ldPvCUlwjHU_S98E2ISQp34KqJzJPpPHmDIKJ4K-qYo,1933
|
|
88
|
+
tensorcircuit/templates/graphs.py,sha256=cPYrxjoem0xZ-Is9dZKAvEzWZL_FejfIRiCEOTA4qd4,3935
|
|
89
|
+
tensorcircuit/templates/hamiltonians.py,sha256=Guvqqi-V47w8xeZDmca4_mU4mW9V4c3AplsBOrRtxFo,6308
|
|
90
|
+
tensorcircuit/templates/lattice.py,sha256=IvFyNgsFMfj82g-tpJraI3lMbI-EIZ0Cghq9v7tZ6Wg,72851
|
|
91
|
+
tensorcircuit/templates/measurements.py,sha256=pzc5Aa9S416Ilg4aOY77Z6ZhUlYcXnAkQNQFTuHjFFs,10943
|
|
92
|
+
tensorcircuit_nightly-1.4.0.dev20251103.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
|
93
|
+
tensorcircuit_nightly-1.4.0.dev20251103.dist-info/METADATA,sha256=GcMGdngxq7sA8HLP-Z_c4U_2IF_4XUK-emX8-F9wYeM,38283
|
|
94
|
+
tensorcircuit_nightly-1.4.0.dev20251103.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
95
|
+
tensorcircuit_nightly-1.4.0.dev20251103.dist-info/top_level.txt,sha256=9dcuK5488dWpVauYz8cdvx743z_La1h7zIQCsEEgu7o,14
|
|
96
|
+
tensorcircuit_nightly-1.4.0.dev20251103.dist-info/RECORD,,
|
|
@@ -1,122 +0,0 @@
|
|
|
1
|
-
tensorcircuit/__init__.py,sha256=Az3JXErbPVvXD9b5BomCaVlcVinaj5OO4bCCsiuQJyE,2032
|
|
2
|
-
tensorcircuit/about.py,sha256=DazTswU2nAwOmASTaDII3L04PVtaQ7oiWPty5YMI3Wk,5267
|
|
3
|
-
tensorcircuit/abstractcircuit.py,sha256=0osacPqq7B1EJki-cI1aLYoVRmjFaG9q3XevWMs7SsA,44125
|
|
4
|
-
tensorcircuit/asciiart.py,sha256=neY1OWFwtoW5cHPNwkQHgRPktDniQvdlP9QKHkk52fM,8236
|
|
5
|
-
tensorcircuit/basecircuit.py,sha256=ipCg3J55sgkciUZ2qCZqpVqE00YIWRlACu509nktg3I,37203
|
|
6
|
-
tensorcircuit/channels.py,sha256=CFQxWI-JmkIxexslCBdjp_RSxUbHs6eAJv4LvlXXXCY,28637
|
|
7
|
-
tensorcircuit/circuit.py,sha256=mE4b_9xRu3ydoB8iDffdx35V9GZLhAQD_tkjZDLnLjg,39105
|
|
8
|
-
tensorcircuit/cons.py,sha256=uYKBeYKkDoJEqJTNrOZPRM31tBtkqe5aAg8GtVidJ1Y,33014
|
|
9
|
-
tensorcircuit/densitymatrix.py,sha256=VqMBnWCxO5-OsOp6LOdc5RS2AzmB3U4-w40Vn_lqygo,14865
|
|
10
|
-
tensorcircuit/experimental.py,sha256=RW97ncitCfO1QJLAUbKBvm2Tsc0hzKhqkC65ShA9-Q0,34456
|
|
11
|
-
tensorcircuit/fgs.py,sha256=pzaZuzPIFPpfr5Z-UsBQ_Yp0x7mbSM2sUc4dO2SUmVs,49543
|
|
12
|
-
tensorcircuit/gates.py,sha256=x-wA7adVpP7o0AQLt_xYUScFKj8tU_wUOV2mR1GyrPc,29322
|
|
13
|
-
tensorcircuit/keras.py,sha256=5OF4dfhEeS8sRYglpqYtQsWPeqp7uK0i7-P-6RRJ7zQ,10126
|
|
14
|
-
tensorcircuit/mps_base.py,sha256=UZ-v8vsr_rAsKrfun8prVgbXJ-qsdqKy2DZIHpq3sxo,15400
|
|
15
|
-
tensorcircuit/mpscircuit.py,sha256=COO9xzvA2Whe7Ncp6OqrgtXKmahHgTHxXTELAVHzFSY,36777
|
|
16
|
-
tensorcircuit/noisemodel.py,sha256=vzxpoYEZbHVC4a6g7_Jk4dxsHi4wvhpRFwud8b616Qo,11878
|
|
17
|
-
tensorcircuit/quantum.py,sha256=LNkIv5cJ2KG6puC18zTuXi-5cojW1Tnz-N-WjZ0Qu5Q,90217
|
|
18
|
-
tensorcircuit/shadows.py,sha256=6XmWNubbuaxFNvZVWu-RXd0lN9Jkk-xwong_K8o8_KE,17014
|
|
19
|
-
tensorcircuit/simplify.py,sha256=O11G3UYiVAc30GOfwXXmhLXwGZrQ8OVwLTMQMZp_XBc,9414
|
|
20
|
-
tensorcircuit/stabilizercircuit.py,sha256=yNqcEKtYzRYrgqGil8QEyKN4OEMp9g6uOG2zuRaU8uc,15465
|
|
21
|
-
tensorcircuit/torchnn.py,sha256=z_QpM0QC3mydGyWpyp877j-tSFCPyzynCwqrTWaw-IA,4637
|
|
22
|
-
tensorcircuit/translation.py,sha256=VnU7DnYmbk1cWjqa7N68WNLNDn3DwENrMzmbG4_CQco,28611
|
|
23
|
-
tensorcircuit/utils.py,sha256=nEDR1wTh1WF_yV6UyZYlifqOPWdKk_Krr4HjhrWHnGQ,7228
|
|
24
|
-
tensorcircuit/vis.py,sha256=O4hm050KKfOAoVyHsjpMg6NBNVoWhLSlv-xsCx4opsU,12196
|
|
25
|
-
tensorcircuit/applications/__init__.py,sha256=nAX-Am6JoL9k53iJ_CjZJ2NcjIpaz21H87nrW4Op03k,246
|
|
26
|
-
tensorcircuit/applications/dqas.py,sha256=RcIM-mHLcZ99U5oXQSBSVL36wfDoBe45kuaQageI_SQ,34463
|
|
27
|
-
tensorcircuit/applications/graphdata.py,sha256=FR28CFcZw3QenaFU74J2jlY-m3P_NtUvW6yAm-tmon8,15348
|
|
28
|
-
tensorcircuit/applications/layers.py,sha256=tO5rFH1SFnSnR-MI6-ZbQUSfdlBs5aoDzLQ88OZtuus,18157
|
|
29
|
-
tensorcircuit/applications/optimization.py,sha256=ycPSlKg3iOZU2ZMhH3Es8s8EOn36wakOQsDhT2SXNXs,14396
|
|
30
|
-
tensorcircuit/applications/utils.py,sha256=MQKSYeFf_y9OUw5crAOsqpulNmhGRlX6HwD-8hu1rPA,14119
|
|
31
|
-
tensorcircuit/applications/vags.py,sha256=lg4KRxIaRVjZgtA5gmsgCjDxAQPS-pkaGqA9fkJah1Q,36392
|
|
32
|
-
tensorcircuit/applications/van.py,sha256=dfCoQd9L04yp7iEQnLfXbD6-L07VpC4YNbeumGhDrrE,15176
|
|
33
|
-
tensorcircuit/applications/vqes.py,sha256=OL4_vuF3yzV_iF37JrH-DbGy-0qTeKXd5aBbWjvhDjI,23417
|
|
34
|
-
tensorcircuit/applications/ai/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
35
|
-
tensorcircuit/applications/ai/ensemble.py,sha256=JmnoAq9qwCRAfdnB8fvcox6aagOQHHu68aRwJDWYi9k,5956
|
|
36
|
-
tensorcircuit/applications/finance/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
37
|
-
tensorcircuit/applications/finance/portfolio.py,sha256=IAJmjhWjFjjppPa98KifZ4Yyh2JuDdpWpu0m_bVZLh8,2934
|
|
38
|
-
tensorcircuit/applications/physics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
39
|
-
tensorcircuit/applications/physics/baseline.py,sha256=RWrzMGnC0PtmpYSFkvCE7r1llR88gncXuCakAAhFE-w,1775
|
|
40
|
-
tensorcircuit/applications/physics/fss.py,sha256=ny3U9ZDmT459PXjA1oUGfarBOlSKSy6fs04vD9s1XH4,3633
|
|
41
|
-
tensorcircuit/backends/__init__.py,sha256=WiUmbUFzM29w3hKfhuKxVUk3PpqDFiXf4za9g0ctpZA,80
|
|
42
|
-
tensorcircuit/backends/abstract_backend.py,sha256=Ob8zp-AgovoY3uYFNEUA_WlJz9YtgnaJvugKUXWttAA,59018
|
|
43
|
-
tensorcircuit/backends/backend_factory.py,sha256=Z0aQ-RnxOnQzp-SRw8sefAH8XyBSlj2NXZwOlHinbfY,1713
|
|
44
|
-
tensorcircuit/backends/cupy_backend.py,sha256=4vgO3lnQnsvWL5hukhskjJp37EAHqio6z6TVXTQcdjs,15077
|
|
45
|
-
tensorcircuit/backends/jax_backend.py,sha256=dkDQ380CJHIdlt1fZvlN_g8DIowWPEcTTV_XBcs0YB0,26088
|
|
46
|
-
tensorcircuit/backends/jax_ops.py,sha256=o7tLlQMRnaKWcr5rVnOMqwG6KZVpR8M8ryNQ-ceXVxs,4789
|
|
47
|
-
tensorcircuit/backends/numpy_backend.py,sha256=sd1migp_E2FWjchvOeYRuyM47yexegT2_SW_ukSYSF8,14171
|
|
48
|
-
tensorcircuit/backends/pytorch_backend.py,sha256=yhfZSrm99yNW-dmijk8t6zAkbVgLRd4b_aIWKrpT7bY,24230
|
|
49
|
-
tensorcircuit/backends/pytorch_ops.py,sha256=lLxpK6OqfpVwifyFlgsqhpnt-oIn4R5paPMVg51WaW0,3826
|
|
50
|
-
tensorcircuit/backends/tensorflow_backend.py,sha256=eTGVN6OyQgxvzj4C_CRvFIHv3v8tvZyb7Tt8B-kLbOo,36250
|
|
51
|
-
tensorcircuit/backends/tf_ops.py,sha256=FJwDU7LhZrt0VUIx12DJU0gZnWhMv7B7r9sAKG710As,3378
|
|
52
|
-
tensorcircuit/cloud/__init__.py,sha256=n0Lx07GYF6YbdIa6AJCLJk4zlAm5CqaeHszvkxxuoI4,139
|
|
53
|
-
tensorcircuit/cloud/abstraction.py,sha256=6aSxbz0MP21jBVdFbSMrvJPLQH117vGz9sSHbMFoodE,14582
|
|
54
|
-
tensorcircuit/cloud/apis.py,sha256=e4dydZk7fxGicOdQ1HFd59yql_dj0Cd_Qm2bfWs7vxg,17960
|
|
55
|
-
tensorcircuit/cloud/config.py,sha256=mk38XTQUSXCo6hhbXsAVC7EF8BuU1g9ZX5t8_jKVqcc,60
|
|
56
|
-
tensorcircuit/cloud/local.py,sha256=81vM-Px5VSMwyTbOUVgNTz8JPTMdyWxJj0t-nAzAifs,2265
|
|
57
|
-
tensorcircuit/cloud/quafu_provider.py,sha256=UFHhXflWVcdE9Dkac6RWuwdY0_vjJdqW2N1DQInegqY,2613
|
|
58
|
-
tensorcircuit/cloud/tencent.py,sha256=VLvGWpesdIhxhYWuf73qRgBVeumrQsSbUSoUOIbTisE,14325
|
|
59
|
-
tensorcircuit/cloud/utils.py,sha256=tEB2b93eP2b9KAIhRfSg_5myX6QOoz_aUTJ3Fc1HXI4,3623
|
|
60
|
-
tensorcircuit/cloud/wrapper.py,sha256=R6HbqQulAjuHMfgcV6vE3MYWAJal9L9DIgPqkRuGttQ,11519
|
|
61
|
-
tensorcircuit/compiler/__init__.py,sha256=PR1DENcO2YuT-e_cKrOoL9By7k91RbzLs1MvhLmOeCI,242
|
|
62
|
-
tensorcircuit/compiler/composed_compiler.py,sha256=AsOGYg11rHYlZjr6olDovRkxr0B2LAm5nYiHkki5OzA,3258
|
|
63
|
-
tensorcircuit/compiler/qiskit_compiler.py,sha256=qpz7DRpQATIxsfi4pj_C6-JBtKdUVcu3BQwhoWViSVA,6219
|
|
64
|
-
tensorcircuit/compiler/simple_compiler.py,sha256=4OC1oYH0YqYF-UzV7ZiJ0qLitS6Z3xjvd8l02wicATM,9589
|
|
65
|
-
tensorcircuit/interfaces/__init__.py,sha256=cE2bZYRwIpxXaL0SLnIKtQS0jRZPDF3k1ep9rpesLVU,500
|
|
66
|
-
tensorcircuit/interfaces/jax.py,sha256=q_nay20gcrPRyY2itvcOtkCjqtvcC4qotbvrgm2a3cU,6014
|
|
67
|
-
tensorcircuit/interfaces/numpy.py,sha256=T7h64dG9e5xDG0KVOy9O8TXyrt5RWRnTWN9iXf3aGyY,1439
|
|
68
|
-
tensorcircuit/interfaces/scipy.py,sha256=_P2IeqvJiO7cdjTzNCIAFm8Y56Wd3j3jGmWUeeQ1Fw8,3402
|
|
69
|
-
tensorcircuit/interfaces/tensorflow.py,sha256=U4hZjm-yWxOJ5tqmffk8-tNvOkAltYBJ8Z6jYwOtTaM,3355
|
|
70
|
-
tensorcircuit/interfaces/tensortrans.py,sha256=oUxIVpXfANZVRXfPjiGJDzFPiszfBsiY40ydh0BaELE,10364
|
|
71
|
-
tensorcircuit/interfaces/torch.py,sha256=13IFGmWUFoWiSzKAzwp2EkOSxgiwN_oUFxjQb36gimo,5149
|
|
72
|
-
tensorcircuit/results/__init__.py,sha256=3kkIvmjLYQd5ff-emY8l82rpv9mwMZdM2kTLZ9sNfA4,89
|
|
73
|
-
tensorcircuit/results/counts.py,sha256=6Dw7SVwnahcLnVlhcU4RfES1CqH2ZVdt0bGeUTYaij8,6512
|
|
74
|
-
tensorcircuit/results/readout_mitigation.py,sha256=dVpNvtFZe7n_fDVczKcqYPEepu3fV2qK3u-SfOpTf68,31746
|
|
75
|
-
tensorcircuit/results/qem/__init__.py,sha256=Pw0hcFYNesuPE8uNDm9P8DVTIFCSBqUcIkr6smQYzuM,419
|
|
76
|
-
tensorcircuit/results/qem/benchmark_circuits.py,sha256=LlFuKCDFKihMOhiY6WUZt9QPyoPeQw0SuaczdcSA3oM,3243
|
|
77
|
-
tensorcircuit/results/qem/qem_methods.py,sha256=v8HyVsRX9vkjgGfLyB1K0Eq5UyUnh-thysqo05kXo6E,12148
|
|
78
|
-
tensorcircuit/templates/__init__.py,sha256=CzkNn6sAk9gkXYa0IemrsISXIqcaIqM2UWvGi2u2C38,237
|
|
79
|
-
tensorcircuit/templates/ansatz.py,sha256=0hmMtdSvHq9qodzpzC0TKJIWV28kTlfZqzUHjBd9aYA,3229
|
|
80
|
-
tensorcircuit/templates/blocks.py,sha256=xUzL7TVL8ym_sGV9NJ40_9x2c2pBjh2CevO8aCj9WzA,6183
|
|
81
|
-
tensorcircuit/templates/chems.py,sha256=9ksMYTutfDEF3U04xrj9j0bYWb5gwTwMdMPi-SZKci0,171
|
|
82
|
-
tensorcircuit/templates/conversions.py,sha256=D3chiKDr7G1ekCJngiol91k9iqrMag1DZQGSx0j_uH4,3023
|
|
83
|
-
tensorcircuit/templates/dataset.py,sha256=ldPvCUlwjHU_S98E2ISQp34KqJzJPpPHmDIKJ4K-qYo,1933
|
|
84
|
-
tensorcircuit/templates/graphs.py,sha256=cPYrxjoem0xZ-Is9dZKAvEzWZL_FejfIRiCEOTA4qd4,3935
|
|
85
|
-
tensorcircuit/templates/hamiltonians.py,sha256=Ag8djD6lckTeU7I99gCbXiQAb2VYqzm_p7-hpXo-5u4,5554
|
|
86
|
-
tensorcircuit/templates/lattice.py,sha256=F35ebANk0DSmSHLR0-Q_hUbcznyCmZjb4fKmvCMywmA,58575
|
|
87
|
-
tensorcircuit/templates/measurements.py,sha256=pzc5Aa9S416Ilg4aOY77Z6ZhUlYcXnAkQNQFTuHjFFs,10943
|
|
88
|
-
tensorcircuit_nightly-1.3.0.dev20250728.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
|
89
|
-
tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
90
|
-
tests/conftest.py,sha256=J9nHlLE3Zspz1rMyzadEuBWhaS5I4Q9sq0lnWybcdIA,1457
|
|
91
|
-
tests/test_backends.py,sha256=rClxb2gyAoGeXd_ZYVSAJ0zEvJ7z_2btAeFM_Iy_wwY,33925
|
|
92
|
-
tests/test_calibrating.py,sha256=D1Tlv8mucUhg3ULvB5QlYyaDfw7aEERwq69-aGSb1A4,3805
|
|
93
|
-
tests/test_channels.py,sha256=BL4CirU8ku9-_NrI6PZAS5xZ0wrL1UEC1S3wPI9dYQM,12628
|
|
94
|
-
tests/test_circuit.py,sha256=IsSIFEs7hUCSYexMb-ESt1ZUpztHtLA0qz0CZolGdc4,52240
|
|
95
|
-
tests/test_cloud.py,sha256=241ng6LnG_o_2PKR-BuUFfmrj3V1aeFiI-_bcWuPFyo,5606
|
|
96
|
-
tests/test_compiler.py,sha256=R1t0MDQR01uEbY2wxqzQEf-LkSehrfZWmLvPuguC2JI,3419
|
|
97
|
-
tests/test_dmcircuit.py,sha256=ZtTS-Jcpt-oN3yafYee9ZZCFW8-2I0MaLpyaDPve0PA,17234
|
|
98
|
-
tests/test_ensemble.py,sha256=0RzJkv-5D8LeZxS0Q0MwtEcgnXd2zefMquPHRNYT6RY,2109
|
|
99
|
-
tests/test_fgs.py,sha256=W-wPl1_2GquutfDJvD7yQvol-qkvVQnWe2tbAgGJz3w,10491
|
|
100
|
-
tests/test_gates.py,sha256=rAIV2QFpFsA5bT1QivTSkhdarvwu5t0N3IOz4SEDrzg,4593
|
|
101
|
-
tests/test_hamiltonians.py,sha256=E0E5ABhUeG7XLMLRkb3AIAPi7aJgnIeMWTgqzF1Q6yc,5724
|
|
102
|
-
tests/test_interfaces.py,sha256=iJPmes8S8HkA9_PGjsu4Ike-vCXYyS1EMgnNKKXDNaU,16938
|
|
103
|
-
tests/test_keras.py,sha256=U453jukavmx0RMeTSDEgPzrNdHNEfK1CW0CqO3XCNKo,4841
|
|
104
|
-
tests/test_lattice.py,sha256=_ptDVK3EhS-X5fCQWiP8sHk3azdyGFuwqg6KMkBTkDE,65789
|
|
105
|
-
tests/test_miscs.py,sha256=mm6kv5LqLkwHxWrGzLxajyOp1RaaKoHxq2OT1J3DpIM,9741
|
|
106
|
-
tests/test_mpscircuit.py,sha256=mDXX8oQeFeHr_PdZvwqyDs_tVcVAqLmCERqlTAU7590,10552
|
|
107
|
-
tests/test_noisemodel.py,sha256=UYoMtCjwDaB-CCn5kLosofz-qTMiY4KGAFBjVtqqLPE,5637
|
|
108
|
-
tests/test_qaoa.py,sha256=hEcC_XVmKBGt9XgUGtbTO8eQQK4mjorgTIrfqZCeQls,2616
|
|
109
|
-
tests/test_qem.py,sha256=jUqsfaDNqrZdSB4Jur51R0OUP-3FHyNsXtPsIRCh6L4,4304
|
|
110
|
-
tests/test_quantum.py,sha256=p6ilnHVmi6Gkhynd7eLX-6xbO14fm9hVfPJjF69FUK4,19317
|
|
111
|
-
tests/test_quantum_attr.py,sha256=Zl6WbkbnTWVp6FL2rR21qBGsLoheoIEZXqWZKxfpDRs,1245
|
|
112
|
-
tests/test_results.py,sha256=8cQO0ShkBc4_pB-fi9s35WJbuZl5ex5y1oElSV-GlRo,11882
|
|
113
|
-
tests/test_shadows.py,sha256=1T3kJesVJ5XfZrSncL80xdq-taGCSnTDF3eL15UlavY,5160
|
|
114
|
-
tests/test_simplify.py,sha256=35tbOu1QANsPvY1buLwNhqPnMkBOsnBtHn82qaukmgI,1175
|
|
115
|
-
tests/test_stabilizer.py,sha256=MivuZ5pY7GOcEPTanhtrflXostyLBToHyjfPqCU0tG0,5450
|
|
116
|
-
tests/test_templates.py,sha256=Xm9otFFaaBWG9TZpgJ-nNh9MBfRipTzFWL8fBOnie2k,7192
|
|
117
|
-
tests/test_torchnn.py,sha256=CHLTfWkF7Ses5_XnGFN_uv_JddfgenFEFzaDtSH8XYU,2848
|
|
118
|
-
tests/test_van.py,sha256=kAWz860ivlb5zAJuYpzuBe27qccT-Yf0jatf5uXtTo4,3163
|
|
119
|
-
tensorcircuit_nightly-1.3.0.dev20250728.dist-info/METADATA,sha256=cdMd1YT-UPhCAWiy92CxfNIgQn553hT7bxRBlTME8mM,34895
|
|
120
|
-
tensorcircuit_nightly-1.3.0.dev20250728.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
121
|
-
tensorcircuit_nightly-1.3.0.dev20250728.dist-info/top_level.txt,sha256=O_Iqeh2x02lasEYMI9iyPNNNtMzcpg5qvwMOkZQ7n4A,20
|
|
122
|
-
tensorcircuit_nightly-1.3.0.dev20250728.dist-info/RECORD,,
|
tests/__init__.py
DELETED
|
File without changes
|
tests/conftest.py
DELETED
|
@@ -1,67 +0,0 @@
|
|
|
1
|
-
import sys
|
|
2
|
-
import os
|
|
3
|
-
import pytest
|
|
4
|
-
|
|
5
|
-
thisfile = os.path.abspath(__file__)
|
|
6
|
-
modulepath = os.path.dirname(os.path.dirname(thisfile))
|
|
7
|
-
|
|
8
|
-
sys.path.insert(0, modulepath)
|
|
9
|
-
import tensorcircuit as tc
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
@pytest.fixture(scope="function")
|
|
13
|
-
def npb():
|
|
14
|
-
tc.set_backend("numpy")
|
|
15
|
-
yield
|
|
16
|
-
tc.set_backend("numpy") # default backend
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
@pytest.fixture(scope="function")
|
|
20
|
-
def tfb():
|
|
21
|
-
tc.set_backend("tensorflow")
|
|
22
|
-
yield
|
|
23
|
-
tc.set_backend("numpy") # default backend
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
@pytest.fixture(scope="function")
|
|
27
|
-
def jaxb():
|
|
28
|
-
try:
|
|
29
|
-
tc.set_backend("jax")
|
|
30
|
-
yield
|
|
31
|
-
tc.set_backend("numpy")
|
|
32
|
-
|
|
33
|
-
except ImportError as e:
|
|
34
|
-
print(e)
|
|
35
|
-
tc.set_backend("numpy")
|
|
36
|
-
pytest.skip("****** No jax backend found, skipping test suit *******")
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
@pytest.fixture(scope="function")
|
|
40
|
-
def torchb():
|
|
41
|
-
try:
|
|
42
|
-
tc.set_backend("pytorch")
|
|
43
|
-
yield
|
|
44
|
-
tc.set_backend("numpy")
|
|
45
|
-
except ImportError as e:
|
|
46
|
-
print(e)
|
|
47
|
-
tc.set_backend("numpy")
|
|
48
|
-
pytest.skip("****** No torch backend found, skipping test suit *******")
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
@pytest.fixture(scope="function")
|
|
52
|
-
def cpb():
|
|
53
|
-
try:
|
|
54
|
-
tc.set_backend("cupy")
|
|
55
|
-
yield
|
|
56
|
-
tc.set_backend("numpy")
|
|
57
|
-
except ImportError as e:
|
|
58
|
-
print(e)
|
|
59
|
-
tc.set_backend("numpy")
|
|
60
|
-
pytest.skip("****** No cupy backend found, skipping test suit *******")
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
@pytest.fixture(scope="function")
|
|
64
|
-
def highp():
|
|
65
|
-
tc.set_dtype("complex128")
|
|
66
|
-
yield
|
|
67
|
-
tc.set_dtype("complex64")
|