tensorcircuit-nightly 1.3.0.dev20250728__py3-none-any.whl → 1.4.0.dev20251103__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tensorcircuit-nightly might be problematic. Click here for more details.
- tensorcircuit/__init__.py +5 -1
- tensorcircuit/abstractcircuit.py +4 -0
- tensorcircuit/analogcircuit.py +413 -0
- tensorcircuit/applications/layers.py +1 -1
- tensorcircuit/applications/van.py +1 -1
- tensorcircuit/backends/abstract_backend.py +312 -5
- tensorcircuit/backends/cupy_backend.py +3 -1
- tensorcircuit/backends/jax_backend.py +92 -3
- tensorcircuit/backends/jax_ops.py +108 -0
- tensorcircuit/backends/numpy_backend.py +49 -3
- tensorcircuit/backends/pytorch_backend.py +92 -3
- tensorcircuit/backends/tensorflow_backend.py +102 -3
- tensorcircuit/basecircuit.py +123 -82
- tensorcircuit/circuit.py +67 -57
- tensorcircuit/cloud/local.py +1 -1
- tensorcircuit/cloud/quafu_provider.py +1 -1
- tensorcircuit/cloud/tencent.py +1 -1
- tensorcircuit/compiler/simple_compiler.py +2 -2
- tensorcircuit/cons.py +1 -0
- tensorcircuit/densitymatrix.py +16 -11
- tensorcircuit/experimental.py +7 -152
- tensorcircuit/fgs.py +5 -6
- tensorcircuit/gates.py +66 -22
- tensorcircuit/keras.py +3 -3
- tensorcircuit/mpscircuit.py +109 -61
- tensorcircuit/quantum.py +697 -133
- tensorcircuit/quditcircuit.py +733 -0
- tensorcircuit/quditgates.py +618 -0
- tensorcircuit/results/counts.py +45 -31
- tensorcircuit/shadows.py +1 -1
- tensorcircuit/simplify.py +3 -1
- tensorcircuit/stabilizercircuit.py +4 -2
- tensorcircuit/templates/blocks.py +2 -2
- tensorcircuit/templates/hamiltonians.py +29 -8
- tensorcircuit/templates/lattice.py +676 -335
- tensorcircuit/timeevol.py +896 -0
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/METADATA +50 -25
- tensorcircuit_nightly-1.4.0.dev20251103.dist-info/RECORD +96 -0
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/top_level.txt +0 -1
- tensorcircuit_nightly-1.3.0.dev20250728.dist-info/RECORD +0 -122
- tests/__init__.py +0 -0
- tests/conftest.py +0 -67
- tests/test_backends.py +0 -1035
- tests/test_calibrating.py +0 -149
- tests/test_channels.py +0 -409
- tests/test_circuit.py +0 -1713
- tests/test_cloud.py +0 -219
- tests/test_compiler.py +0 -147
- tests/test_dmcircuit.py +0 -555
- tests/test_ensemble.py +0 -72
- tests/test_fgs.py +0 -318
- tests/test_gates.py +0 -156
- tests/test_hamiltonians.py +0 -159
- tests/test_interfaces.py +0 -557
- tests/test_keras.py +0 -160
- tests/test_lattice.py +0 -1666
- tests/test_miscs.py +0 -334
- tests/test_mpscircuit.py +0 -341
- tests/test_noisemodel.py +0 -156
- tests/test_qaoa.py +0 -86
- tests/test_qem.py +0 -152
- tests/test_quantum.py +0 -549
- tests/test_quantum_attr.py +0 -42
- tests/test_results.py +0 -379
- tests/test_shadows.py +0 -160
- tests/test_simplify.py +0 -46
- tests/test_stabilizer.py +0 -226
- tests/test_templates.py +0 -218
- tests/test_torchnn.py +0 -99
- tests/test_van.py +0 -102
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/WHEEL +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/licenses/LICENSE +0 -0
tests/test_dmcircuit.py
DELETED
|
@@ -1,555 +0,0 @@
|
|
|
1
|
-
import sys
|
|
2
|
-
import os
|
|
3
|
-
import numpy as np
|
|
4
|
-
import pytest
|
|
5
|
-
from pytest_lazyfixture import lazy_fixture as lf
|
|
6
|
-
import tensorflow as tf
|
|
7
|
-
|
|
8
|
-
thisfile = os.path.abspath(__file__)
|
|
9
|
-
modulepath = os.path.dirname(os.path.dirname(thisfile))
|
|
10
|
-
|
|
11
|
-
sys.path.insert(0, modulepath)
|
|
12
|
-
import tensorcircuit as tc
|
|
13
|
-
from tensorcircuit.channels import (
|
|
14
|
-
depolarizingchannel,
|
|
15
|
-
single_qubit_kraus_identity_check,
|
|
16
|
-
)
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
def test_gate_dm():
|
|
20
|
-
c = tc.DMCircuit(3)
|
|
21
|
-
c.H(0)
|
|
22
|
-
c.rx(1, theta=tc.num_to_tensor(np.pi))
|
|
23
|
-
np.testing.assert_allclose(c.expectation((tc.gates.z(), [0])), 0.0, atol=1e-4)
|
|
24
|
-
np.testing.assert_allclose(c.expectation((tc.gates.z(), [1])), -1.0, atol=1e-4)
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
def test_state_inputs():
|
|
28
|
-
w = np.zeros([8])
|
|
29
|
-
w[1] = 1.0
|
|
30
|
-
c = tc.DMCircuit(3, inputs=w)
|
|
31
|
-
c.cnot(2, 1)
|
|
32
|
-
np.testing.assert_allclose(c.expectation((tc.gates.z(), [1])), -1.0)
|
|
33
|
-
np.testing.assert_allclose(c.expectation((tc.gates.z(), [2])), -1.0)
|
|
34
|
-
np.testing.assert_allclose(c.expectation((tc.gates.z(), [0])), 1.0)
|
|
35
|
-
|
|
36
|
-
s2 = np.sqrt(2.0)
|
|
37
|
-
w = np.array([1 / s2, 0, 0, 1.0j / s2])
|
|
38
|
-
c = tc.DMCircuit(2, inputs=w)
|
|
39
|
-
c.Y(0)
|
|
40
|
-
answer = np.array(
|
|
41
|
-
[[0, 0, 0, 0], [0, 0.5, -0.5j, 0], [0, 0.5j, 0.5, 0], [0, 0, 0, 0]]
|
|
42
|
-
)
|
|
43
|
-
print(c.densitymatrix())
|
|
44
|
-
np.testing.assert_allclose(c.densitymatrix(), answer)
|
|
45
|
-
|
|
46
|
-
c = tc.DMCircuit(2, inputs=w)
|
|
47
|
-
c.Y(0)
|
|
48
|
-
print(c.densitymatrix())
|
|
49
|
-
np.testing.assert_allclose(c.densitymatrix(), answer)
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("jaxb"), lf("tfb")])
|
|
53
|
-
def test_dm_inputs(backend):
|
|
54
|
-
rho0 = np.array([[0, 0, 0, 0], [0, 0.5, 0, -0.5j], [0, 0, 0, 0], [0, 0.5j, 0, 0.5]])
|
|
55
|
-
b1 = np.array([[0, 1.0j], [0, 0]])
|
|
56
|
-
b2 = np.array([[0, 0], [1.0j, 0]])
|
|
57
|
-
ib1 = np.kron(np.eye(2), b1)
|
|
58
|
-
ib2 = np.kron(np.eye(2), b2)
|
|
59
|
-
rho1 = ib1 @ rho0 @ np.transpose(np.conj(ib1)) + ib2 @ rho0 @ np.transpose(
|
|
60
|
-
np.conj(ib2)
|
|
61
|
-
)
|
|
62
|
-
iy = np.kron(np.eye(2), np.array([[0, -1.0j], [1.0j, 0]]))
|
|
63
|
-
rho2 = iy @ rho1 @ np.transpose(np.conj(iy))
|
|
64
|
-
rho0 = rho0.astype(np.complex64)
|
|
65
|
-
b1 = b1.astype(np.complex64)
|
|
66
|
-
b2 = b2.astype(np.complex64)
|
|
67
|
-
c = tc.DMCircuit(nqubits=2, dminputs=rho0)
|
|
68
|
-
c.apply_general_kraus([tc.gates.Gate(b1), tc.gates.Gate(b2)], [(1,)])
|
|
69
|
-
np.testing.assert_allclose(c.densitymatrix(), rho1, atol=1e-4)
|
|
70
|
-
c.y(1)
|
|
71
|
-
np.testing.assert_allclose(c.densitymatrix(), rho2, atol=1e-4)
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
def test_inputs_and_kraus():
|
|
75
|
-
rho0 = np.array([[0, 0, 0, 0], [0, 0.5, 0, -0.5j], [0, 0, 0, 0], [0, 0.5j, 0, 0.5]])
|
|
76
|
-
b1 = np.array([[0, 1.0j], [0, 0]])
|
|
77
|
-
b2 = np.array([[0, 0], [1.0j, 0]])
|
|
78
|
-
single_qubit_kraus_identity_check([tc.gates.Gate(b1), tc.gates.Gate(b2)])
|
|
79
|
-
ib1 = np.kron(np.eye(2), b1)
|
|
80
|
-
ib2 = np.kron(np.eye(2), b2)
|
|
81
|
-
rho1 = ib1 @ rho0 @ np.transpose(np.conj(ib1)) + ib2 @ rho0 @ np.transpose(
|
|
82
|
-
np.conj(ib2)
|
|
83
|
-
)
|
|
84
|
-
iy = np.kron(np.eye(2), np.array([[0, -1.0j], [1.0j, 0]]))
|
|
85
|
-
rho2 = iy @ rho1 @ np.transpose(np.conj(iy))
|
|
86
|
-
s2 = np.sqrt(2.0)
|
|
87
|
-
w = np.array([1 / s2, 0, 0, 1.0j / s2])
|
|
88
|
-
|
|
89
|
-
c = tc.DMCircuit(2, inputs=w)
|
|
90
|
-
c.y(0)
|
|
91
|
-
c.cnot(0, 1)
|
|
92
|
-
np.testing.assert_allclose(c.densitymatrix(), rho0, atol=1e-4)
|
|
93
|
-
c.apply_general_kraus([tc.gates.Gate(b1), tc.gates.Gate(b2)], 1)
|
|
94
|
-
np.testing.assert_allclose(c.densitymatrix(), rho1, atol=1e-4)
|
|
95
|
-
c.y(1)
|
|
96
|
-
np.testing.assert_allclose(c.densitymatrix(), rho2, atol=1e-4)
|
|
97
|
-
|
|
98
|
-
c = tc.DMCircuit(2, inputs=w)
|
|
99
|
-
c.y(0)
|
|
100
|
-
c.cnot(0, 1)
|
|
101
|
-
np.testing.assert_allclose(c.densitymatrix(), rho0, atol=1e-4)
|
|
102
|
-
c.apply_general_kraus([tc.gates.Gate(b1), tc.gates.Gate(b2)], [(1,)])
|
|
103
|
-
np.testing.assert_allclose(c.densitymatrix(), rho1, atol=1e-4)
|
|
104
|
-
c.y(1)
|
|
105
|
-
np.testing.assert_allclose(c.densitymatrix(), rho2, atol=1e-4)
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
def test_gate_depolarizing():
|
|
109
|
-
ans = np.array(
|
|
110
|
-
[[0.4, 0, 0.4, 0], [0, 0.1, 0, 0.1], [0.4, 0, 0.4, 0], [0, 0.1, 0, 0.1]]
|
|
111
|
-
)
|
|
112
|
-
|
|
113
|
-
def check_template(c, api="v1"):
|
|
114
|
-
c.H(0)
|
|
115
|
-
if api == "v1":
|
|
116
|
-
kraus = depolarizingchannel(0.1, 0.1, 0.1)
|
|
117
|
-
c.apply_general_kraus(kraus, [(1,)])
|
|
118
|
-
else:
|
|
119
|
-
c.depolarizing(1, px=0.1, py=0.1, pz=0.1)
|
|
120
|
-
np.testing.assert_allclose(
|
|
121
|
-
c.densitymatrix(check=True),
|
|
122
|
-
ans,
|
|
123
|
-
atol=1e-5,
|
|
124
|
-
)
|
|
125
|
-
|
|
126
|
-
for c, v in zip([tc.DMCircuit(2), tc.DMCircuit_reference(2)], ["v1", "v2"]):
|
|
127
|
-
check_template(c, v)
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
@pytest.mark.parametrize("backend", [lf("jaxb"), lf("tfb")])
|
|
131
|
-
def test_mult_qubit_kraus(backend):
|
|
132
|
-
xx = np.array(
|
|
133
|
-
[[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]], dtype=np.complex64
|
|
134
|
-
) / np.sqrt(2)
|
|
135
|
-
yz = np.array(
|
|
136
|
-
[[0, 0, -1.0j, 0], [0, 0, 0, 1.0j], [1.0j, 0, 0, 0], [0, -1.0j, 0, 0]],
|
|
137
|
-
dtype=np.complex64,
|
|
138
|
-
) / np.sqrt(2)
|
|
139
|
-
|
|
140
|
-
def forward(theta):
|
|
141
|
-
c = tc.DMCircuit_reference(3)
|
|
142
|
-
c.H(0)
|
|
143
|
-
c.rx(1, theta=theta)
|
|
144
|
-
c.apply_general_kraus(
|
|
145
|
-
[
|
|
146
|
-
tc.gates.Gate(xx.reshape([2, 2, 2, 2])),
|
|
147
|
-
tc.gates.Gate(yz.reshape([2, 2, 2, 2])),
|
|
148
|
-
],
|
|
149
|
-
[(0, 1), (0, 1)],
|
|
150
|
-
)
|
|
151
|
-
c.H(1)
|
|
152
|
-
return tc.backend.real(tc.backend.sum(c.densitymatrix()))
|
|
153
|
-
|
|
154
|
-
theta = tc.num_to_tensor(0.2)
|
|
155
|
-
vg = tc.backend.value_and_grad(forward)
|
|
156
|
-
_, g1 = vg(theta)
|
|
157
|
-
np.testing.assert_allclose(tc.backend.numpy(g1), 0.199, atol=1e-2)
|
|
158
|
-
|
|
159
|
-
def forward2(theta):
|
|
160
|
-
c = tc.DMCircuit(3)
|
|
161
|
-
c.H(0)
|
|
162
|
-
c.rx(1, theta=theta)
|
|
163
|
-
c.apply_general_kraus(
|
|
164
|
-
[tc.gates.Gate(xx), tc.gates.Gate(yz)],
|
|
165
|
-
0,
|
|
166
|
-
1,
|
|
167
|
-
)
|
|
168
|
-
c.H(1)
|
|
169
|
-
return tc.backend.real(tc.backend.sum(c.densitymatrix()))
|
|
170
|
-
|
|
171
|
-
theta = tc.num_to_tensor(0.2)
|
|
172
|
-
vg2 = tc.backend.value_and_grad(forward2)
|
|
173
|
-
_, g2 = vg2(theta)
|
|
174
|
-
np.testing.assert_allclose(tc.backend.numpy(g2), 0.199, atol=1e-2)
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
@pytest.mark.parametrize("backend", [lf("jaxb"), lf("tfb")])
|
|
178
|
-
def test_noise_param_ad(backend):
|
|
179
|
-
def forward(p):
|
|
180
|
-
c = tc.DMCircuit(2)
|
|
181
|
-
c.X(1)
|
|
182
|
-
c.depolarizing(1, px=p, py=p, pz=p)
|
|
183
|
-
return tc.backend.real(
|
|
184
|
-
c.expectation(
|
|
185
|
-
(
|
|
186
|
-
tc.gates.z(),
|
|
187
|
-
[
|
|
188
|
-
1,
|
|
189
|
-
],
|
|
190
|
-
)
|
|
191
|
-
)
|
|
192
|
-
)
|
|
193
|
-
|
|
194
|
-
theta = tc.num_to_tensor(0.1)
|
|
195
|
-
vg = tc.backend.value_and_grad(forward)
|
|
196
|
-
v, g = vg(theta)
|
|
197
|
-
np.testing.assert_allclose(v, -0.6, atol=1e-2)
|
|
198
|
-
np.testing.assert_allclose(g, 4, atol=1e-2)
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
def test_ad_channel(tfb):
|
|
202
|
-
p = tf.Variable(initial_value=0.1, dtype=tf.float32)
|
|
203
|
-
theta = tf.Variable(initial_value=0.1, dtype=tf.complex64)
|
|
204
|
-
with tf.GradientTape() as tape:
|
|
205
|
-
tape.watch(p)
|
|
206
|
-
c = tc.DMCircuit(3)
|
|
207
|
-
c.rx(1, theta=theta)
|
|
208
|
-
c.apply_general_kraus(depolarizingchannel(p, 0.2 * p, p), [(1,)])
|
|
209
|
-
c.H(0)
|
|
210
|
-
loss = c.expectation((tc.gates.z(), [1]))
|
|
211
|
-
g = tape.gradient(loss, p)
|
|
212
|
-
np.testing.assert_allclose(loss.numpy(), 0.7562, atol=1e-4)
|
|
213
|
-
np.testing.assert_allclose(g.numpy(), -2.388, atol=1e-4)
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
217
|
-
def test_inputs_pipeline(backend):
|
|
218
|
-
dm = 0.25 * np.eye(4)
|
|
219
|
-
c = tc.DMCircuit(2, dminputs=dm)
|
|
220
|
-
c.H(0)
|
|
221
|
-
c.general_kraus(
|
|
222
|
-
[np.sqrt(0.5) * tc.gates._i_matrix, np.sqrt(0.5) * tc.gates._x_matrix], 1
|
|
223
|
-
)
|
|
224
|
-
r = c.expectation_ps(z=[0])
|
|
225
|
-
np.testing.assert_allclose(r, 0.0, atol=1e-5)
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
229
|
-
def test_measure(backend):
|
|
230
|
-
key = tc.backend.get_random_state(42)
|
|
231
|
-
|
|
232
|
-
@tc.backend.jit
|
|
233
|
-
def r(key):
|
|
234
|
-
tc.backend.set_random_state(key)
|
|
235
|
-
c = tc.DMCircuit(2)
|
|
236
|
-
c.depolarizing(0, px=0.2, py=0.2, pz=0.2)
|
|
237
|
-
rs = c.measure(0, with_prob=True)
|
|
238
|
-
return rs
|
|
239
|
-
|
|
240
|
-
key1, key2 = tc.backend.random_split(key)
|
|
241
|
-
rs1, rs2 = r(key1), r(key2)
|
|
242
|
-
# assert rs1[0] != rs2[0]
|
|
243
|
-
print(rs1[1], rs2[1])
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
247
|
-
def test_mpo_dm(backend, highp):
|
|
248
|
-
c = tc.DMCircuit(3)
|
|
249
|
-
c.H(1)
|
|
250
|
-
c.depolarizing(0, px=0.05, py=0.02, pz=0.02)
|
|
251
|
-
c.multicontrol(1, 0, 2, ctrl=[1, 1], unitary=tc.gates.x())
|
|
252
|
-
r = tc.backend.real(c.expectation_ps(z=[2]))
|
|
253
|
-
np.testing.assert_allclose(r, 0.93, atol=1e-8)
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
257
|
-
def test_to_circuit(backend):
|
|
258
|
-
c = tc.DMCircuit(2)
|
|
259
|
-
c.X(0)
|
|
260
|
-
c.depolarizing(0, px=0.1, py=0.1, pz=0.1)
|
|
261
|
-
c.cnot(0, 1)
|
|
262
|
-
np.testing.assert_allclose(
|
|
263
|
-
tc.backend.real(c.expectation_ps(z=[1])), -0.6, atol=1e-5
|
|
264
|
-
)
|
|
265
|
-
c2 = c.to_circuit()
|
|
266
|
-
np.testing.assert_allclose(
|
|
267
|
-
tc.backend.real(c2.expectation_ps(z=[1])), -1.0, atol=1e-5
|
|
268
|
-
)
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
def test_dmcircuit_inverse():
|
|
272
|
-
c = tc.DMCircuit2(3)
|
|
273
|
-
c.h(0)
|
|
274
|
-
c.rx(1, theta=0.5)
|
|
275
|
-
c.amplitudedamping(1, gamma=0.1, p=0.9)
|
|
276
|
-
c.amplitudedamping(2, gamma=0.1, p=0.9)
|
|
277
|
-
c.rzz(0, 2, theta=-1.0)
|
|
278
|
-
ci = c.inverse()
|
|
279
|
-
r = tc.backend.real(ci.expectation_ps(z=[2]))
|
|
280
|
-
c2 = tc.DMCircuit2(3)
|
|
281
|
-
c2.rzz(0, 2, theta=1.0)
|
|
282
|
-
c2.rx(1, theta=-0.5)
|
|
283
|
-
c2.h(0)
|
|
284
|
-
r2 = tc.backend.real(c2.expectation_ps(z=[2]))
|
|
285
|
-
np.testing.assert_allclose(r, r2, atol=1e-5)
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
289
|
-
def test_perfect_sampling_with_status(backend):
|
|
290
|
-
n = 3
|
|
291
|
-
|
|
292
|
-
@tc.backend.jit
|
|
293
|
-
def m(s):
|
|
294
|
-
c = tc.DMCircuit(n)
|
|
295
|
-
for i in range(n):
|
|
296
|
-
c.H(i)
|
|
297
|
-
for i in range(n):
|
|
298
|
-
c.amplitudedamping(i, p=1.0, gamma=0.1)
|
|
299
|
-
return c.perfect_sampling(s)
|
|
300
|
-
|
|
301
|
-
s, p = m(tc.backend.convert_to_tensor(np.array([0.9, 0.5, 0.7])))
|
|
302
|
-
np.testing.assert_allclose(s, np.array([1, 0, 1]))
|
|
303
|
-
np.testing.assert_allclose(p, 0.111375, atol=1e-5)
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
def test_dm_circuit_draw():
|
|
307
|
-
c = tc.DMCircuit(3)
|
|
308
|
-
c.H(0)
|
|
309
|
-
c.cnot(0, 2)
|
|
310
|
-
c.depolarizing(1, px=0.1, py=0.1, pz=0.1)
|
|
311
|
-
c.rxx(1, 2, theta=0.5)
|
|
312
|
-
print("\n")
|
|
313
|
-
print(c.draw())
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
def test_dm_qiskit():
|
|
317
|
-
try:
|
|
318
|
-
import qiskit
|
|
319
|
-
|
|
320
|
-
print(qiskit.__version__)
|
|
321
|
-
except ImportError:
|
|
322
|
-
pytest.skip("qiskit is not installed")
|
|
323
|
-
n = 4
|
|
324
|
-
c = tc.DMCircuit(n)
|
|
325
|
-
c.ryy(0, 1, theta=1.3)
|
|
326
|
-
c.td(1)
|
|
327
|
-
c.h(2)
|
|
328
|
-
c.cnot(3, 0)
|
|
329
|
-
c.cry(0, 1, theta=0.3)
|
|
330
|
-
c.multicontrol(1, 2, 0, 3, ctrl=[0, 1], unitary=tc.gates._zz_matrix)
|
|
331
|
-
c.cswap(1, 2, 3)
|
|
332
|
-
qc = c.to_qiskit()
|
|
333
|
-
c1 = tc.DMCircuit.from_qiskit(qc)
|
|
334
|
-
r0 = sum(
|
|
335
|
-
[c.expectation_ps(z=[i]) for i in range(n)]
|
|
336
|
-
+ [c.expectation_ps(y=[i]) for i in range(n)]
|
|
337
|
-
)
|
|
338
|
-
r1 = sum(
|
|
339
|
-
[c1.expectation_ps(z=[i]) for i in range(n)]
|
|
340
|
-
+ [c1.expectation_ps(y=[i]) for i in range(n)]
|
|
341
|
-
)
|
|
342
|
-
np.testing.assert_allclose(r0, r1, atol=1e-5)
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
346
|
-
def test_dmcircuit_split(backend):
|
|
347
|
-
n = 4
|
|
348
|
-
|
|
349
|
-
def f(param, max_singular_values=None, max_truncation_err=None, fixed_choice=None):
|
|
350
|
-
if (max_singular_values is None) and (max_truncation_err is None):
|
|
351
|
-
split = None
|
|
352
|
-
else:
|
|
353
|
-
split = {
|
|
354
|
-
"max_singular_values": max_singular_values,
|
|
355
|
-
"max_truncation_err": max_truncation_err,
|
|
356
|
-
"fixed_choice": fixed_choice,
|
|
357
|
-
}
|
|
358
|
-
c = tc.DMCircuit(
|
|
359
|
-
n,
|
|
360
|
-
split=split,
|
|
361
|
-
)
|
|
362
|
-
for i in range(n):
|
|
363
|
-
c.H(i)
|
|
364
|
-
for j in range(2):
|
|
365
|
-
for i in range(n - 1):
|
|
366
|
-
c.exp1(i, i + 1, theta=param[2 * j, i], unitary=tc.gates._zz_matrix)
|
|
367
|
-
for i in range(n):
|
|
368
|
-
c.rx(i, theta=param[2 * j + 1, i])
|
|
369
|
-
loss = c.expectation_ps(z=[1, 2])
|
|
370
|
-
return tc.backend.real(loss)
|
|
371
|
-
|
|
372
|
-
s1 = f(tc.backend.ones([4, n]))
|
|
373
|
-
s2 = f(tc.backend.ones([4, n]), max_truncation_err=1e-5)
|
|
374
|
-
s3 = f(tc.backend.ones([4, n]), max_singular_values=2, fixed_choice=1)
|
|
375
|
-
np.testing.assert_allclose(s1, s2, atol=1e-5)
|
|
376
|
-
np.testing.assert_allclose(s1, s3, atol=1e-5)
|
|
377
|
-
|
|
378
|
-
# np.testing.assert_allclose(s1, s2, atol=1e-5)
|
|
379
|
-
np.testing.assert_allclose(s1, s3, atol=1e-5)
|
|
380
|
-
|
|
381
|
-
f_vg = tc.backend.jit(
|
|
382
|
-
tc.backend.value_and_grad(f, argnums=0), static_argnums=(1, 2, 3)
|
|
383
|
-
)
|
|
384
|
-
|
|
385
|
-
s1, g1 = f_vg(tc.backend.ones([4, n]))
|
|
386
|
-
s3, g3 = f_vg(tc.backend.ones([4, n]), max_singular_values=2, fixed_choice=1)
|
|
387
|
-
|
|
388
|
-
np.testing.assert_allclose(s1, s3, atol=1e-5)
|
|
389
|
-
np.testing.assert_allclose(g1, g3, atol=1e-5)
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
def test_dm_amplitude():
|
|
393
|
-
c = tc.DMCircuit(2)
|
|
394
|
-
c.H(0)
|
|
395
|
-
c.cnot(0, 1)
|
|
396
|
-
np.testing.assert_allclose(c.amplitude("11"), 0.5, atol=1e-5)
|
|
397
|
-
c.depolarizing(1, px=0.2, py=0, pz=0)
|
|
398
|
-
np.testing.assert_allclose(c.amplitude("11"), 0.4, atol=1e-5)
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
402
|
-
def test_dm_amplitude_jit(backend):
|
|
403
|
-
@tc.backend.jit
|
|
404
|
-
def m(s):
|
|
405
|
-
c = tc.DMCircuit(2)
|
|
406
|
-
c.H(0)
|
|
407
|
-
c.cnot(0, 1)
|
|
408
|
-
c.depolarizing(1, px=0.2, py=0.0, pz=0.0)
|
|
409
|
-
return c.amplitude(s)
|
|
410
|
-
|
|
411
|
-
np.testing.assert_allclose(m(tc.array_to_tensor([1, 1])), 0.4, atol=1e-5)
|
|
412
|
-
np.testing.assert_allclose(m(tc.array_to_tensor([1, 0])), 0.1, atol=1e-5)
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
def test_sample():
|
|
416
|
-
c = tc.DMCircuit(2)
|
|
417
|
-
c.H(0)
|
|
418
|
-
c.cnot(0, 1)
|
|
419
|
-
c.depolarizing(1, px=0.2, py=0.0, pz=0.0)
|
|
420
|
-
print(c.sample(batch=10))
|
|
421
|
-
print(c.sample(batch=20, allow_state=True))
|
|
422
|
-
|
|
423
|
-
|
|
424
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
425
|
-
def test_dm_mps_inputs(backend):
|
|
426
|
-
ns = [tc.gates.Gate(np.array([0.0, 1.0])) for _ in range(3)]
|
|
427
|
-
mps = tc.quantum.QuVector([n[0] for n in ns])
|
|
428
|
-
c = tc.DMCircuit(3, mps_inputs=mps)
|
|
429
|
-
c.cnot(0, 1)
|
|
430
|
-
c.depolarizing(1, px=0.2, py=0, pz=0)
|
|
431
|
-
np.testing.assert_allclose(c.expectation_ps(z=[1]), 0.6, atol=1e-5)
|
|
432
|
-
np.testing.assert_allclose(c.expectation_ps(z=[2]), -1.0, atol=1e-5)
|
|
433
|
-
|
|
434
|
-
|
|
435
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
436
|
-
def test_dm_mpo_inputs(backend):
|
|
437
|
-
n = 4
|
|
438
|
-
nodes = [tc.Gate(np.eye(2) / 2.0) for _ in range(n)]
|
|
439
|
-
mpo = tc.quantum.QuOperator([n[0] for n in nodes], [n[1] for n in nodes])
|
|
440
|
-
print(len(mpo.nodes))
|
|
441
|
-
np.testing.assert_allclose(tc.backend.trace(mpo.eval_matrix()), 1.0, atol=1e-5)
|
|
442
|
-
c = tc.DMCircuit(4, mpo_dminputs=mpo)
|
|
443
|
-
for i in range(n):
|
|
444
|
-
c.x(i)
|
|
445
|
-
c.depolarizing(i, px=0.1, py=0.1, pz=0.1)
|
|
446
|
-
np.testing.assert_allclose(c.state(), np.eye(2**n) / 2**n, atol=1e-5)
|
|
447
|
-
print(len(c._nodes), len(c._front))
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
def test_dm_cond_measure():
|
|
451
|
-
c = tc.DMCircuit(2)
|
|
452
|
-
c.H(0)
|
|
453
|
-
np.testing.assert_allclose(c.expectation_ps(x=[0]), 1.0, atol=1e-5)
|
|
454
|
-
c.cond_measure(0)
|
|
455
|
-
np.testing.assert_allclose(c.expectation_ps(x=[0]), 0.0, atol=1e-5)
|
|
456
|
-
|
|
457
|
-
|
|
458
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
459
|
-
def test_prepend_dmcircuit(backend):
|
|
460
|
-
c = tc.DMCircuit(2)
|
|
461
|
-
c.H(0)
|
|
462
|
-
c1 = tc.DMCircuit(2)
|
|
463
|
-
c1.cnot(0, 1)
|
|
464
|
-
c2 = c1.append(c)
|
|
465
|
-
c3 = c2.prepend(c)
|
|
466
|
-
qir = c3.to_qir()
|
|
467
|
-
for n, n0 in zip(qir, ["h", "cnot", "h"]):
|
|
468
|
-
assert n["name"] == n0
|
|
469
|
-
s = c3.wavefunction()
|
|
470
|
-
np.testing.assert_allclose(s[0], s[1], atol=1e-5)
|
|
471
|
-
|
|
472
|
-
|
|
473
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
474
|
-
def test_dm_sexpps(backend):
|
|
475
|
-
c = tc.DMCircuit(1, inputs=1 / np.sqrt(2) * np.array([1.0, 1.0j]))
|
|
476
|
-
y = c.sample_expectation_ps(y=[0])
|
|
477
|
-
ye = c.expectation_ps(y=[0])
|
|
478
|
-
np.testing.assert_allclose(y, 1.0, atol=1e-5)
|
|
479
|
-
np.testing.assert_allclose(ye, 1.0, atol=1e-5)
|
|
480
|
-
|
|
481
|
-
c = tc.DMCircuit(4)
|
|
482
|
-
c.H(0)
|
|
483
|
-
c.H(1)
|
|
484
|
-
c.X(2)
|
|
485
|
-
c.Y(3)
|
|
486
|
-
c.cnot(0, 1)
|
|
487
|
-
c.depolarizing(1, px=0.05, py=0.05, pz=0.1)
|
|
488
|
-
c.rx(1, theta=0.3)
|
|
489
|
-
c.ccnot(2, 3, 1)
|
|
490
|
-
c.depolarizing(0, px=0.05, py=0.0, pz=0.1)
|
|
491
|
-
c.rzz(0, 3, theta=0.5)
|
|
492
|
-
c.ry(3, theta=2.2)
|
|
493
|
-
c.amplitudedamping(2, gamma=0.1, p=0.95)
|
|
494
|
-
c.s(1)
|
|
495
|
-
c.td(2)
|
|
496
|
-
c.cswap(3, 0, 1)
|
|
497
|
-
y = c.sample_expectation_ps(x=[1], y=[0], z=[2, 3])
|
|
498
|
-
ye = c.expectation_ps(x=[1], y=[0], z=[2, 3])
|
|
499
|
-
np.testing.assert_allclose(ye, y, atol=1e-5)
|
|
500
|
-
y2 = c.sample_expectation_ps(x=[1], y=[0], z=[2, 3], shots=81920)
|
|
501
|
-
print(y, y2)
|
|
502
|
-
assert np.abs(y2 - y) < 0.015
|
|
503
|
-
|
|
504
|
-
|
|
505
|
-
def test_dm_sexpps_jittable_vamppable(jaxb):
|
|
506
|
-
n = 4
|
|
507
|
-
m = 2
|
|
508
|
-
|
|
509
|
-
def f(param, key):
|
|
510
|
-
c = tc.DMCircuit(n)
|
|
511
|
-
for j in range(m):
|
|
512
|
-
for i in range(n - 1):
|
|
513
|
-
c.cnot(i, i + 1)
|
|
514
|
-
for i in range(n):
|
|
515
|
-
c.rx(i, theta=param[i, j])
|
|
516
|
-
return tc.backend.real(
|
|
517
|
-
c.sample_expectation_ps(y=[n // 2], shots=8192, random_generator=key)
|
|
518
|
-
)
|
|
519
|
-
|
|
520
|
-
vf = tc.backend.jit(tc.backend.vmap(f, vectorized_argnums=(0, 1)))
|
|
521
|
-
r = vf(
|
|
522
|
-
tc.backend.ones([2, n, m], dtype="float32"),
|
|
523
|
-
tc.backend.stack(
|
|
524
|
-
[
|
|
525
|
-
tc.backend.get_random_state(42),
|
|
526
|
-
tc.backend.get_random_state(43),
|
|
527
|
-
]
|
|
528
|
-
),
|
|
529
|
-
)
|
|
530
|
-
assert np.abs(r[0] - r[1]) > 1e-4
|
|
531
|
-
|
|
532
|
-
print(r)
|
|
533
|
-
|
|
534
|
-
|
|
535
|
-
def test_dm_sexpps_jittable_vamppable_tf(tfb):
|
|
536
|
-
# finally giving up backend agnosticity
|
|
537
|
-
# and not sure the effciency and the safety of vmap random in tf
|
|
538
|
-
n = 4
|
|
539
|
-
m = 2
|
|
540
|
-
|
|
541
|
-
def f(param):
|
|
542
|
-
c = tc.DMCircuit(n)
|
|
543
|
-
for j in range(m):
|
|
544
|
-
for i in range(n - 1):
|
|
545
|
-
c.cnot(i, i + 1)
|
|
546
|
-
for i in range(n):
|
|
547
|
-
c.rx(i, theta=param[i, j])
|
|
548
|
-
return tc.backend.real(c.sample_expectation_ps(y=[n // 2], shots=8192))
|
|
549
|
-
|
|
550
|
-
vf = tc.backend.jit(tc.backend.vmap(f, vectorized_argnums=0))
|
|
551
|
-
r = vf(tc.backend.ones([2, n, m]))
|
|
552
|
-
r1 = vf(tc.backend.ones([2, n, m]))
|
|
553
|
-
assert np.abs(r[0] - r[1]) > 1e-5
|
|
554
|
-
assert np.abs(r[0] - r1[0]) > 1e-5
|
|
555
|
-
print(r, r1)
|
tests/test_ensemble.py
DELETED
|
@@ -1,72 +0,0 @@
|
|
|
1
|
-
import os
|
|
2
|
-
import sys
|
|
3
|
-
import tensorflow as tf
|
|
4
|
-
import numpy as np
|
|
5
|
-
import pytest
|
|
6
|
-
|
|
7
|
-
thisfile = os.path.abspath(__file__)
|
|
8
|
-
modulepath = os.path.dirname(os.path.dirname(thisfile))
|
|
9
|
-
|
|
10
|
-
sys.path.insert(0, modulepath)
|
|
11
|
-
|
|
12
|
-
from tensorcircuit.applications.ai.ensemble import bagging
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
@pytest.mark.xfail(
|
|
16
|
-
int(tf.__version__.split(".")[1]) >= 16, reason="legacy optimizer fails tf>=2.16"
|
|
17
|
-
)
|
|
18
|
-
def test_ensemble_bagging():
|
|
19
|
-
data_amount = 100 # Amount of data to be used
|
|
20
|
-
linear_dimension = 4 # linear demension of the data
|
|
21
|
-
epochs = 10
|
|
22
|
-
batch_size = 32
|
|
23
|
-
lr = 1e-3
|
|
24
|
-
|
|
25
|
-
x_train, y_train = (
|
|
26
|
-
np.ones([data_amount, linear_dimension]),
|
|
27
|
-
np.ones([data_amount, 1]),
|
|
28
|
-
)
|
|
29
|
-
|
|
30
|
-
obj_bagging = bagging()
|
|
31
|
-
|
|
32
|
-
def model():
|
|
33
|
-
DROP = 0.1
|
|
34
|
-
|
|
35
|
-
activation = "selu"
|
|
36
|
-
inputs = tf.keras.Input(shape=(linear_dimension,), name="digits")
|
|
37
|
-
x0 = tf.keras.layers.Dense(
|
|
38
|
-
1,
|
|
39
|
-
kernel_regularizer=tf.keras.regularizers.l2(9.613e-06),
|
|
40
|
-
activation=activation,
|
|
41
|
-
)(inputs)
|
|
42
|
-
x0 = tf.keras.layers.Dropout(DROP)(x0)
|
|
43
|
-
|
|
44
|
-
x = tf.keras.layers.Dense(
|
|
45
|
-
1,
|
|
46
|
-
kernel_regularizer=tf.keras.regularizers.l2(1e-07),
|
|
47
|
-
activation="sigmoid",
|
|
48
|
-
)(x0)
|
|
49
|
-
|
|
50
|
-
model = tf.keras.Model(inputs, x)
|
|
51
|
-
|
|
52
|
-
return model
|
|
53
|
-
|
|
54
|
-
obj_bagging.append(model(), False)
|
|
55
|
-
obj_bagging.append(model(), False)
|
|
56
|
-
obj_bagging.append(model(), False)
|
|
57
|
-
obj_bagging.compile(
|
|
58
|
-
loss=tf.keras.losses.BinaryCrossentropy(),
|
|
59
|
-
optimizer=tf.keras.optimizers.legacy.Adam(lr),
|
|
60
|
-
metrics=[tf.keras.metrics.AUC(), "acc"],
|
|
61
|
-
)
|
|
62
|
-
obj_bagging.train(
|
|
63
|
-
x=x_train, y=y_train, epochs=epochs, batch_size=batch_size, verbose=0
|
|
64
|
-
)
|
|
65
|
-
|
|
66
|
-
v_weight = obj_bagging.predict(x_train, "weight")
|
|
67
|
-
v_average = obj_bagging.predict(x_train, "average")
|
|
68
|
-
v_most = obj_bagging.predict(x_train, "most")
|
|
69
|
-
validation_data = []
|
|
70
|
-
validation_data.append(obj_bagging.eval([y_train, v_weight], "acc"))
|
|
71
|
-
validation_data.append(obj_bagging.eval([y_train, v_average], "auc"))
|
|
72
|
-
validation_data.append(obj_bagging.eval([y_train, v_most], "acc"))
|