tensorcircuit-nightly 1.3.0.dev20250728__py3-none-any.whl → 1.4.0.dev20251103__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tensorcircuit-nightly might be problematic. Click here for more details.
- tensorcircuit/__init__.py +5 -1
- tensorcircuit/abstractcircuit.py +4 -0
- tensorcircuit/analogcircuit.py +413 -0
- tensorcircuit/applications/layers.py +1 -1
- tensorcircuit/applications/van.py +1 -1
- tensorcircuit/backends/abstract_backend.py +312 -5
- tensorcircuit/backends/cupy_backend.py +3 -1
- tensorcircuit/backends/jax_backend.py +92 -3
- tensorcircuit/backends/jax_ops.py +108 -0
- tensorcircuit/backends/numpy_backend.py +49 -3
- tensorcircuit/backends/pytorch_backend.py +92 -3
- tensorcircuit/backends/tensorflow_backend.py +102 -3
- tensorcircuit/basecircuit.py +123 -82
- tensorcircuit/circuit.py +67 -57
- tensorcircuit/cloud/local.py +1 -1
- tensorcircuit/cloud/quafu_provider.py +1 -1
- tensorcircuit/cloud/tencent.py +1 -1
- tensorcircuit/compiler/simple_compiler.py +2 -2
- tensorcircuit/cons.py +1 -0
- tensorcircuit/densitymatrix.py +16 -11
- tensorcircuit/experimental.py +7 -152
- tensorcircuit/fgs.py +5 -6
- tensorcircuit/gates.py +66 -22
- tensorcircuit/keras.py +3 -3
- tensorcircuit/mpscircuit.py +109 -61
- tensorcircuit/quantum.py +697 -133
- tensorcircuit/quditcircuit.py +733 -0
- tensorcircuit/quditgates.py +618 -0
- tensorcircuit/results/counts.py +45 -31
- tensorcircuit/shadows.py +1 -1
- tensorcircuit/simplify.py +3 -1
- tensorcircuit/stabilizercircuit.py +4 -2
- tensorcircuit/templates/blocks.py +2 -2
- tensorcircuit/templates/hamiltonians.py +29 -8
- tensorcircuit/templates/lattice.py +676 -335
- tensorcircuit/timeevol.py +896 -0
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/METADATA +50 -25
- tensorcircuit_nightly-1.4.0.dev20251103.dist-info/RECORD +96 -0
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/top_level.txt +0 -1
- tensorcircuit_nightly-1.3.0.dev20250728.dist-info/RECORD +0 -122
- tests/__init__.py +0 -0
- tests/conftest.py +0 -67
- tests/test_backends.py +0 -1035
- tests/test_calibrating.py +0 -149
- tests/test_channels.py +0 -409
- tests/test_circuit.py +0 -1713
- tests/test_cloud.py +0 -219
- tests/test_compiler.py +0 -147
- tests/test_dmcircuit.py +0 -555
- tests/test_ensemble.py +0 -72
- tests/test_fgs.py +0 -318
- tests/test_gates.py +0 -156
- tests/test_hamiltonians.py +0 -159
- tests/test_interfaces.py +0 -557
- tests/test_keras.py +0 -160
- tests/test_lattice.py +0 -1666
- tests/test_miscs.py +0 -334
- tests/test_mpscircuit.py +0 -341
- tests/test_noisemodel.py +0 -156
- tests/test_qaoa.py +0 -86
- tests/test_qem.py +0 -152
- tests/test_quantum.py +0 -549
- tests/test_quantum_attr.py +0 -42
- tests/test_results.py +0 -379
- tests/test_shadows.py +0 -160
- tests/test_simplify.py +0 -46
- tests/test_stabilizer.py +0 -226
- tests/test_templates.py +0 -218
- tests/test_torchnn.py +0 -99
- tests/test_van.py +0 -102
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/WHEEL +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/licenses/LICENSE +0 -0
tests/test_circuit.py
DELETED
|
@@ -1,1713 +0,0 @@
|
|
|
1
|
-
# pylint: disable=invalid-name
|
|
2
|
-
|
|
3
|
-
import os
|
|
4
|
-
import sys
|
|
5
|
-
from functools import partial
|
|
6
|
-
|
|
7
|
-
import numpy as np
|
|
8
|
-
import opt_einsum as oem
|
|
9
|
-
import pytest
|
|
10
|
-
from pytest_lazyfixture import lazy_fixture as lf
|
|
11
|
-
|
|
12
|
-
# see https://stackoverflow.com/questions/56307329/how-can-i-parametrize-tests-to-run-with-different-fixtures-in-pytest
|
|
13
|
-
|
|
14
|
-
thisfile = os.path.abspath(__file__)
|
|
15
|
-
modulepath = os.path.dirname(os.path.dirname(thisfile))
|
|
16
|
-
|
|
17
|
-
sys.path.insert(0, modulepath)
|
|
18
|
-
import tensorcircuit as tc
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("cpb")])
|
|
22
|
-
def test_wavefunction(backend):
|
|
23
|
-
qc = tc.Circuit(2)
|
|
24
|
-
qc.unitary(
|
|
25
|
-
0,
|
|
26
|
-
1,
|
|
27
|
-
unitary=tc.gates.Gate(np.arange(16).reshape(2, 2, 2, 2).astype(np.complex64)),
|
|
28
|
-
)
|
|
29
|
-
assert np.real(qc.wavefunction()[2]) == 8
|
|
30
|
-
qc = tc.Circuit(2)
|
|
31
|
-
qc.unitary(
|
|
32
|
-
1,
|
|
33
|
-
0,
|
|
34
|
-
unitary=tc.gates.Gate(np.arange(16).reshape(2, 2, 2, 2).astype(np.complex64)),
|
|
35
|
-
)
|
|
36
|
-
qc.wavefunction()
|
|
37
|
-
assert np.real(qc.wavefunction()[2]) == 4
|
|
38
|
-
qc = tc.Circuit(2)
|
|
39
|
-
qc.unitary(
|
|
40
|
-
0, unitary=tc.gates.Gate(np.arange(4).reshape(2, 2).astype(np.complex64))
|
|
41
|
-
)
|
|
42
|
-
qc.wavefunction()
|
|
43
|
-
assert np.real(qc.wavefunction()[2]) == 2
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("cpb")])
|
|
47
|
-
def test_basics(backend):
|
|
48
|
-
c = tc.Circuit(2)
|
|
49
|
-
c.x(0)
|
|
50
|
-
np.testing.assert_allclose(tc.backend.numpy(c.amplitude("10")), np.array(1.0))
|
|
51
|
-
c.CNOT(0, 1)
|
|
52
|
-
np.testing.assert_allclose(tc.backend.numpy(c.amplitude("11")), np.array(1.0))
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("cpb")])
|
|
56
|
-
def test_measure(backend):
|
|
57
|
-
c = tc.Circuit(3)
|
|
58
|
-
c.H(0)
|
|
59
|
-
c.h(1)
|
|
60
|
-
c.toffoli(0, 1, 2)
|
|
61
|
-
assert c.measure(2)[0] in [0, 1]
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
def test_gates_in_circuit():
|
|
65
|
-
c = tc.Circuit(2, inputs=np.eye(2**2))
|
|
66
|
-
c.iswap(0, 1)
|
|
67
|
-
ans = tc.gates.iswap_gate().tensor.reshape([4, 4])
|
|
68
|
-
np.testing.assert_allclose(c.state().reshape([4, 4]), ans, atol=1e-5)
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
def test_control_vgate():
|
|
72
|
-
c = tc.Circuit(2)
|
|
73
|
-
c.x(1)
|
|
74
|
-
c.crx(1, 0, theta=0.3)
|
|
75
|
-
np.testing.assert_allclose(
|
|
76
|
-
c.expectation([tc.gates._z_matrix, 0]), 0.95533645, atol=1e-5
|
|
77
|
-
)
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
def test_adjoint_gate_circuit():
|
|
81
|
-
c = tc.Circuit(1)
|
|
82
|
-
c.X(0)
|
|
83
|
-
c.SD(0)
|
|
84
|
-
np.testing.assert_allclose(c.state(), np.array([0.0, -1.0j]))
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
88
|
-
def test_jittable_measure(backend):
|
|
89
|
-
@partial(tc.backend.jit, static_argnums=(2, 3))
|
|
90
|
-
def f(param, key, n=6, nlayers=3):
|
|
91
|
-
if key is not None:
|
|
92
|
-
tc.backend.set_random_state(key)
|
|
93
|
-
c = tc.Circuit(n)
|
|
94
|
-
for i in range(n):
|
|
95
|
-
c.H(i)
|
|
96
|
-
for j in range(nlayers):
|
|
97
|
-
for i in range(n - 1):
|
|
98
|
-
c.exp1(i, i + 1, theta=param[2 * j, i], hamiltonian=tc.gates._zz_matrix)
|
|
99
|
-
for i in range(n):
|
|
100
|
-
c.rx(i, theta=param[2 * j + 1, i])
|
|
101
|
-
return c.measure_jit(0, 1, 2, with_prob=True)
|
|
102
|
-
|
|
103
|
-
if tc.backend.name == "tensorflow":
|
|
104
|
-
import tensorflow as tf
|
|
105
|
-
|
|
106
|
-
print(f(tc.backend.ones([6, 6]), None))
|
|
107
|
-
print(f(tc.backend.ones([6, 6]), None))
|
|
108
|
-
print(f(tc.backend.ones([6, 6]), tf.random.Generator.from_seed(23)))
|
|
109
|
-
print(f(tc.backend.ones([6, 6]), tf.random.Generator.from_seed(24)))
|
|
110
|
-
elif tc.backend.name == "jax":
|
|
111
|
-
import jax
|
|
112
|
-
|
|
113
|
-
print(f(tc.backend.ones([6, 6]), jax.random.PRNGKey(23)))
|
|
114
|
-
print(f(tc.backend.ones([6, 6]), jax.random.PRNGKey(24)))
|
|
115
|
-
|
|
116
|
-
# As seen here, though I have tried the best, the random API is still not that consistent under jit
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
120
|
-
def test_jittable_depolarizing(backend):
|
|
121
|
-
@tc.backend.jit
|
|
122
|
-
def f1(key):
|
|
123
|
-
n = 5
|
|
124
|
-
if key is not None:
|
|
125
|
-
tc.backend.set_random_state(key)
|
|
126
|
-
c = tc.Circuit(n)
|
|
127
|
-
for i in range(n):
|
|
128
|
-
c.H(i)
|
|
129
|
-
for i in range(n):
|
|
130
|
-
c.cnot(i, (i + 1) % n)
|
|
131
|
-
for i in range(n):
|
|
132
|
-
c.unitary_kraus(
|
|
133
|
-
[
|
|
134
|
-
tc.gates._x_matrix,
|
|
135
|
-
tc.gates._y_matrix,
|
|
136
|
-
tc.gates._z_matrix,
|
|
137
|
-
tc.gates._i_matrix,
|
|
138
|
-
],
|
|
139
|
-
i,
|
|
140
|
-
prob=[0.2, 0.2, 0.2, 0.4],
|
|
141
|
-
)
|
|
142
|
-
for i in range(n):
|
|
143
|
-
c.cz(i, (i + 1) % n)
|
|
144
|
-
return c.wavefunction()
|
|
145
|
-
|
|
146
|
-
@tc.backend.jit
|
|
147
|
-
def f2(key):
|
|
148
|
-
n = 5
|
|
149
|
-
if key is not None:
|
|
150
|
-
tc.backend.set_random_state(key)
|
|
151
|
-
c = tc.Circuit(n)
|
|
152
|
-
for i in range(n):
|
|
153
|
-
c.H(i)
|
|
154
|
-
for i in range(n):
|
|
155
|
-
c.cnot(i, (i + 1) % n)
|
|
156
|
-
for i in range(n):
|
|
157
|
-
c.unitary_kraus(
|
|
158
|
-
tc.channels.depolarizingchannel(0.2, 0.2, 0.2),
|
|
159
|
-
i,
|
|
160
|
-
)
|
|
161
|
-
for i in range(n):
|
|
162
|
-
c.X(i)
|
|
163
|
-
return c.wavefunction()
|
|
164
|
-
|
|
165
|
-
@tc.backend.jit
|
|
166
|
-
def f3(key):
|
|
167
|
-
n = 5
|
|
168
|
-
if key is not None:
|
|
169
|
-
tc.backend.set_random_state(key)
|
|
170
|
-
c = tc.Circuit(n)
|
|
171
|
-
for i in range(n):
|
|
172
|
-
c.H(i)
|
|
173
|
-
for i in range(n):
|
|
174
|
-
c.cnot(i, (i + 1) % n)
|
|
175
|
-
for i in range(n):
|
|
176
|
-
c.depolarizing(i, px=0.2, py=0.2, pz=0.2)
|
|
177
|
-
for i in range(n):
|
|
178
|
-
c.X(i)
|
|
179
|
-
return c.wavefunction()
|
|
180
|
-
|
|
181
|
-
@tc.backend.jit
|
|
182
|
-
def f4(key):
|
|
183
|
-
n = 5
|
|
184
|
-
if key is not None:
|
|
185
|
-
tc.backend.set_random_state(key)
|
|
186
|
-
c = tc.Circuit(n)
|
|
187
|
-
for i in range(n):
|
|
188
|
-
c.H(i)
|
|
189
|
-
for i in range(n):
|
|
190
|
-
c.cnot(i, (i + 1) % n)
|
|
191
|
-
for i in range(n):
|
|
192
|
-
c.depolarizing2(i, px=0.2, py=0.2, pz=0.2)
|
|
193
|
-
for i in range(n):
|
|
194
|
-
c.X(i)
|
|
195
|
-
return c.wavefunction()
|
|
196
|
-
|
|
197
|
-
@tc.backend.jit
|
|
198
|
-
def f5(key):
|
|
199
|
-
n = 5
|
|
200
|
-
if key is not None:
|
|
201
|
-
tc.backend.set_random_state(key)
|
|
202
|
-
c = tc.Circuit(n)
|
|
203
|
-
for i in range(n):
|
|
204
|
-
c.H(i)
|
|
205
|
-
for i in range(n):
|
|
206
|
-
c.cnot(i, (i + 1) % n)
|
|
207
|
-
for i in range(n):
|
|
208
|
-
c.unitary_kraus2(
|
|
209
|
-
tc.channels.depolarizingchannel(0.2, 0.2, 0.2),
|
|
210
|
-
i,
|
|
211
|
-
)
|
|
212
|
-
for i in range(n):
|
|
213
|
-
c.X(i)
|
|
214
|
-
return c.wavefunction()
|
|
215
|
-
|
|
216
|
-
for f in [f1, f2, f3, f4, f5]:
|
|
217
|
-
if tc.backend.name == "tensorflow":
|
|
218
|
-
import tensorflow as tf
|
|
219
|
-
|
|
220
|
-
np.testing.assert_allclose(tc.backend.norm(f(None)), 1.0, atol=1e-4)
|
|
221
|
-
np.testing.assert_allclose(
|
|
222
|
-
tc.backend.norm(f(tf.random.Generator.from_seed(23))), 1.0, atol=1e-4
|
|
223
|
-
)
|
|
224
|
-
np.testing.assert_allclose(
|
|
225
|
-
tc.backend.norm(f(tf.random.Generator.from_seed(24))), 1.0, atol=1e-4
|
|
226
|
-
)
|
|
227
|
-
|
|
228
|
-
elif tc.backend.name == "jax":
|
|
229
|
-
import jax
|
|
230
|
-
|
|
231
|
-
np.testing.assert_allclose(
|
|
232
|
-
tc.backend.norm(f(jax.random.PRNGKey(23))), 1.0, atol=1e-4
|
|
233
|
-
)
|
|
234
|
-
np.testing.assert_allclose(
|
|
235
|
-
tc.backend.norm(f(jax.random.PRNGKey(24))), 1.0, atol=1e-4
|
|
236
|
-
)
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
@pytest.mark.parametrize("backend", [lf("jaxb")]) # too slow for np
|
|
240
|
-
def test_large_scale_sample(backend):
|
|
241
|
-
L = 30
|
|
242
|
-
c = tc.Circuit(L)
|
|
243
|
-
c.h(0)
|
|
244
|
-
c.cnot([i for i in range(L - 1)], [i + 1 for i in range(L - 1)])
|
|
245
|
-
results = c.sample(
|
|
246
|
-
allow_state=False, batch=1024, format="count_dict_bin", jittable=False
|
|
247
|
-
)
|
|
248
|
-
assert (
|
|
249
|
-
results["0" * L] / results["1" * L] < 1.2
|
|
250
|
-
and results["0" * L] / results["1" * L] > 0.8
|
|
251
|
-
)
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("cpb")])
|
|
255
|
-
def test_expectation(backend):
|
|
256
|
-
c = tc.Circuit(2)
|
|
257
|
-
c.H(0)
|
|
258
|
-
np.testing.assert_allclose(
|
|
259
|
-
tc.backend.numpy(c.expectation((tc.gates.z(), [0]))), 0, atol=1e-7
|
|
260
|
-
)
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb"), lf("cpb")])
|
|
264
|
-
def test_exp1(backend):
|
|
265
|
-
@partial(tc.backend.jit, jit_compile=True)
|
|
266
|
-
def sf():
|
|
267
|
-
c = tc.Circuit(2)
|
|
268
|
-
xx = np.array(
|
|
269
|
-
[[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]], dtype=np.complex64
|
|
270
|
-
)
|
|
271
|
-
c.exp1(0, 1, unitary=xx, theta=tc.num_to_tensor(0.2))
|
|
272
|
-
s = c.state()
|
|
273
|
-
return s
|
|
274
|
-
|
|
275
|
-
@tc.backend.jit
|
|
276
|
-
def s1f():
|
|
277
|
-
c = tc.Circuit(2)
|
|
278
|
-
xx = np.array(
|
|
279
|
-
[[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]], dtype=np.complex64
|
|
280
|
-
)
|
|
281
|
-
c.exp(0, 1, unitary=xx, theta=tc.num_to_tensor(0.2))
|
|
282
|
-
s1 = c.state()
|
|
283
|
-
return s1
|
|
284
|
-
|
|
285
|
-
s = tc.backend.numpy(sf())
|
|
286
|
-
s1 = tc.backend.numpy(s1f())
|
|
287
|
-
np.testing.assert_allclose(s, s1, atol=1e-4)
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
def test_complex128(highp, tfb):
|
|
291
|
-
c = tc.Circuit(2)
|
|
292
|
-
c.H(1)
|
|
293
|
-
c.rx(0, theta=tc.gates.num_to_tensor(1j))
|
|
294
|
-
c.wavefunction()
|
|
295
|
-
np.testing.assert_allclose(c.expectation((tc.gates.z(), [1])), 0)
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
# def test_qcode():
|
|
299
|
-
# qcode = """
|
|
300
|
-
# 4
|
|
301
|
-
# x 0
|
|
302
|
-
# cnot 0 1
|
|
303
|
-
# r 2 theta 1.0 alpha 1.57
|
|
304
|
-
# """
|
|
305
|
-
# c = tc.Circuit.from_qcode(qcode)
|
|
306
|
-
# assert c.measure(1)[0] == "1"
|
|
307
|
-
# assert c.to_qcode() == qcode[1:]
|
|
308
|
-
|
|
309
|
-
|
|
310
|
-
def universal_ad():
|
|
311
|
-
@tc.backend.jit
|
|
312
|
-
def forward(theta):
|
|
313
|
-
c = tc.Circuit(2)
|
|
314
|
-
c.R(0, theta=theta, alpha=0.5, phi=0.8)
|
|
315
|
-
return tc.backend.real(c.expectation((tc.gates.z(), [0])))
|
|
316
|
-
|
|
317
|
-
gg = tc.backend.grad(forward)
|
|
318
|
-
vg = tc.backend.value_and_grad(forward)
|
|
319
|
-
gg = tc.backend.jit(gg)
|
|
320
|
-
vg = tc.backend.jit(vg)
|
|
321
|
-
theta = tc.gates.num_to_tensor(1.0)
|
|
322
|
-
grad1 = gg(theta)
|
|
323
|
-
v2, grad2 = vg(theta)
|
|
324
|
-
assert grad1 == grad2
|
|
325
|
-
return v2, grad2
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
329
|
-
def test_ad(backend):
|
|
330
|
-
# this amazingly shows how to code once and run in very different AD-ML engines
|
|
331
|
-
print(universal_ad())
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
def test_single_qubit():
|
|
335
|
-
c = tc.Circuit(1)
|
|
336
|
-
c.H(0)
|
|
337
|
-
w = c.state()[0]
|
|
338
|
-
np.testing.assert_allclose(w, np.array([1, 1]) / np.sqrt(2), atol=1e-4)
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("cpb")])
|
|
342
|
-
def test_expectation_between_two_states(backend):
|
|
343
|
-
zp = np.array([1.0, 0.0])
|
|
344
|
-
zd = np.array([0.0, 1.0])
|
|
345
|
-
assert tc.expectation((tc.gates.y(), [0]), ket=zp, bra=zd) == 1j
|
|
346
|
-
|
|
347
|
-
c = tc.Circuit(3)
|
|
348
|
-
c.H(0)
|
|
349
|
-
c.ry(1, theta=tc.num_to_tensor(0.8))
|
|
350
|
-
c.cnot(1, 2)
|
|
351
|
-
|
|
352
|
-
state = c.wavefunction()
|
|
353
|
-
x1z2 = [(tc.gates.x(), [0]), (tc.gates.z(), [1])]
|
|
354
|
-
e1 = c.expectation(*x1z2)
|
|
355
|
-
e2 = tc.expectation(*x1z2, ket=state, bra=state, normalization=True)
|
|
356
|
-
np.testing.assert_allclose(tc.backend.numpy(e2), tc.backend.numpy(e1))
|
|
357
|
-
|
|
358
|
-
c = tc.Circuit(3)
|
|
359
|
-
c.H(0)
|
|
360
|
-
c.ry(1, theta=tc.num_to_tensor(0.8 + 0.7j))
|
|
361
|
-
c.cnot(1, 2)
|
|
362
|
-
|
|
363
|
-
state = c.wavefunction()
|
|
364
|
-
x1z2 = [(tc.gates.x(), [0]), (tc.gates.z(), [1])]
|
|
365
|
-
e1 = c.expectation(*x1z2) / tc.backend.norm(state) ** 2
|
|
366
|
-
e2 = tc.expectation(*x1z2, ket=state, normalization=True)
|
|
367
|
-
np.testing.assert_allclose(tc.backend.numpy(e2), tc.backend.numpy(e1))
|
|
368
|
-
|
|
369
|
-
c = tc.Circuit(2)
|
|
370
|
-
c.X(1)
|
|
371
|
-
s1 = c.state()
|
|
372
|
-
c2 = tc.Circuit(2)
|
|
373
|
-
c2.X(0)
|
|
374
|
-
s2 = c2.state()
|
|
375
|
-
c3 = tc.Circuit(2)
|
|
376
|
-
c3.H(1)
|
|
377
|
-
s3 = c3.state()
|
|
378
|
-
x1x2 = [(tc.gates.x(), [0]), (tc.gates.x(), [1])]
|
|
379
|
-
e = tc.expectation(*x1x2, ket=s1, bra=s2)
|
|
380
|
-
np.testing.assert_allclose(tc.backend.numpy(e), 1.0)
|
|
381
|
-
e2 = tc.expectation(*x1x2, ket=s3, bra=s2)
|
|
382
|
-
np.testing.assert_allclose(tc.backend.numpy(e2), 1.0 / np.sqrt(2))
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb"), lf("cpb")])
|
|
386
|
-
def test_any_inputs_state(backend):
|
|
387
|
-
c = tc.Circuit(2, inputs=tc.array_to_tensor(np.array([0.0, 0.0, 0.0, 1.0])))
|
|
388
|
-
c.X(0)
|
|
389
|
-
z0 = c.expectation((tc.gates.z(), [0]))
|
|
390
|
-
assert z0 == 1.0
|
|
391
|
-
c = tc.Circuit(2, inputs=tc.array_to_tensor(np.array([0.0, 0.0, 1.0, 0.0])))
|
|
392
|
-
c.X(0)
|
|
393
|
-
z0 = c.expectation((tc.gates.z(), [0]))
|
|
394
|
-
assert z0 == 1.0
|
|
395
|
-
c = tc.Circuit(2, inputs=tc.array_to_tensor(np.array([1.0, 0.0, 0.0, 0.0])))
|
|
396
|
-
c.X(0)
|
|
397
|
-
z0 = c.expectation((tc.gates.z(), [0]))
|
|
398
|
-
assert z0 == -1.0
|
|
399
|
-
c = tc.Circuit(
|
|
400
|
-
2,
|
|
401
|
-
inputs=tc.array_to_tensor(np.array([1 / np.sqrt(2), 0.0, 1 / np.sqrt(2), 0.0])),
|
|
402
|
-
)
|
|
403
|
-
c.X(0)
|
|
404
|
-
z0 = c.expectation((tc.gates.z(), [0]))
|
|
405
|
-
np.testing.assert_allclose(tc.backend.numpy(z0), 0.0, rtol=1e-4, atol=1e-4)
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("cpb")])
|
|
409
|
-
def test_postselection(backend):
|
|
410
|
-
c = tc.Circuit(3)
|
|
411
|
-
c.H(1)
|
|
412
|
-
c.H(2)
|
|
413
|
-
c.mid_measurement(1, 1)
|
|
414
|
-
c.mid_measurement(2, 1)
|
|
415
|
-
s = c.wavefunction()
|
|
416
|
-
np.testing.assert_allclose(tc.backend.numpy(s[3]).real, 0.5)
|
|
417
|
-
|
|
418
|
-
|
|
419
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("cpb")])
|
|
420
|
-
def test_unitary(backend):
|
|
421
|
-
c = tc.Circuit(2, inputs=np.eye(4))
|
|
422
|
-
c.X(0)
|
|
423
|
-
c.Y(1)
|
|
424
|
-
answer = tc.backend.numpy(np.kron(tc.gates.x().tensor, tc.gates.y().tensor))
|
|
425
|
-
np.testing.assert_allclose(
|
|
426
|
-
tc.backend.numpy(c.wavefunction().reshape([4, 4])), answer, atol=1e-4
|
|
427
|
-
)
|
|
428
|
-
|
|
429
|
-
|
|
430
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("cpb")])
|
|
431
|
-
def test_expectation_ps(backend):
|
|
432
|
-
c = tc.Circuit(2)
|
|
433
|
-
c.X(0)
|
|
434
|
-
r = c.expectation_ps(z=[0, 1])
|
|
435
|
-
np.testing.assert_allclose(tc.backend.numpy(r), -1, atol=1e-5)
|
|
436
|
-
|
|
437
|
-
c = tc.Circuit(2)
|
|
438
|
-
c.H(0)
|
|
439
|
-
r = c.expectation_ps(z=[1], x=[0])
|
|
440
|
-
np.testing.assert_allclose(tc.backend.numpy(r), 1, atol=1e-5)
|
|
441
|
-
r1 = c.expectation_ps(ps=[1, 3])
|
|
442
|
-
np.testing.assert_allclose(tc.backend.numpy(r1), 1, atol=1e-5)
|
|
443
|
-
r1 = c.expectation_ps(z=[1, 2], ps=[1, 3])
|
|
444
|
-
np.testing.assert_allclose(tc.backend.numpy(r1), 1, atol=1e-5)
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
def test_probability():
|
|
448
|
-
for c_cls in [tc.Circuit, tc.DMCircuit]:
|
|
449
|
-
c = c_cls(2)
|
|
450
|
-
c.h(0)
|
|
451
|
-
c.h(1)
|
|
452
|
-
np.testing.assert_allclose(
|
|
453
|
-
c.probability(), np.array([1, 1, 1, 1]) / 4, atol=1e-5
|
|
454
|
-
)
|
|
455
|
-
|
|
456
|
-
|
|
457
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
458
|
-
def test_dqas_type_circuit(backend):
|
|
459
|
-
eye = tc.gates.i().tensor
|
|
460
|
-
x = tc.gates.x().tensor
|
|
461
|
-
y = tc.gates.y().tensor
|
|
462
|
-
z = tc.gates.z().tensor
|
|
463
|
-
|
|
464
|
-
def f(params, structures):
|
|
465
|
-
paramsc = tc.backend.cast(params, dtype="complex64")
|
|
466
|
-
structuresc = tc.backend.softmax(structures, axis=-1)
|
|
467
|
-
structuresc = tc.backend.cast(structuresc, dtype="complex64")
|
|
468
|
-
c = tc.Circuit(5)
|
|
469
|
-
for i in range(5):
|
|
470
|
-
c.H(i)
|
|
471
|
-
for j in range(2):
|
|
472
|
-
for i in range(4):
|
|
473
|
-
c.cz(i, i + 1)
|
|
474
|
-
for i in range(5):
|
|
475
|
-
c.any(
|
|
476
|
-
i,
|
|
477
|
-
unitary=structuresc[i, j, 0]
|
|
478
|
-
* (
|
|
479
|
-
tc.backend.cos(paramsc[i, j, 0]) * eye
|
|
480
|
-
+ tc.backend.sin(paramsc[i, j, 0]) * x
|
|
481
|
-
)
|
|
482
|
-
+ structuresc[i, j, 1]
|
|
483
|
-
* (
|
|
484
|
-
tc.backend.cos(paramsc[i, j, 1]) * eye
|
|
485
|
-
+ tc.backend.sin(paramsc[i, j, 1]) * y
|
|
486
|
-
)
|
|
487
|
-
+ structuresc[i, j, 2]
|
|
488
|
-
* (
|
|
489
|
-
tc.backend.cos(paramsc[i, j, 2]) * eye
|
|
490
|
-
+ tc.backend.sin(paramsc[i, j, 2]) * z
|
|
491
|
-
),
|
|
492
|
-
)
|
|
493
|
-
return tc.backend.real(c.expectation([tc.gates.z(), (2,)]))
|
|
494
|
-
|
|
495
|
-
structures = tc.array_to_tensor(
|
|
496
|
-
np.random.normal(size=[16, 5, 2, 3]), dtype="float32"
|
|
497
|
-
)
|
|
498
|
-
params = tc.array_to_tensor(np.random.normal(size=[5, 2, 3]), dtype="float32")
|
|
499
|
-
|
|
500
|
-
vf = tc.backend.vmap(f, vectorized_argnums=(1,))
|
|
501
|
-
|
|
502
|
-
np.testing.assert_allclose(vf(params, structures).shape, [16])
|
|
503
|
-
|
|
504
|
-
vvag = tc.backend.vvag(f, argnums=0, vectorized_argnums=1)
|
|
505
|
-
|
|
506
|
-
vvag = tc.backend.jit(vvag)
|
|
507
|
-
|
|
508
|
-
value, grad = vvag(params, structures)
|
|
509
|
-
|
|
510
|
-
np.testing.assert_allclose(value.shape, [16])
|
|
511
|
-
np.testing.assert_allclose(grad.shape, [5, 2, 3])
|
|
512
|
-
|
|
513
|
-
|
|
514
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
515
|
-
def test_mixed_measurement_circuit(backend):
|
|
516
|
-
n = 4
|
|
517
|
-
|
|
518
|
-
def f(params, structures):
|
|
519
|
-
structuresc = tc.backend.cast(structures, dtype="complex64")
|
|
520
|
-
c = tc.Circuit(n)
|
|
521
|
-
for i in range(n):
|
|
522
|
-
c.H(i)
|
|
523
|
-
for j in range(2):
|
|
524
|
-
for i in range(n):
|
|
525
|
-
c.cnot(i, (i + 1) % n)
|
|
526
|
-
for i in range(n):
|
|
527
|
-
c.rz(i, theta=params[j, i])
|
|
528
|
-
obs = []
|
|
529
|
-
for i in range(n):
|
|
530
|
-
obs.append(
|
|
531
|
-
[
|
|
532
|
-
tc.gates.Gate(
|
|
533
|
-
sum(
|
|
534
|
-
[
|
|
535
|
-
structuresc[i, k] * g.tensor
|
|
536
|
-
for k, g in enumerate(tc.gates.pauli_gates)
|
|
537
|
-
]
|
|
538
|
-
)
|
|
539
|
-
),
|
|
540
|
-
(i,),
|
|
541
|
-
]
|
|
542
|
-
)
|
|
543
|
-
loss = c.expectation(*obs, reuse=False)
|
|
544
|
-
return tc.backend.real(loss)
|
|
545
|
-
|
|
546
|
-
# measure X0 to X3
|
|
547
|
-
|
|
548
|
-
structures = tc.backend.cast(tc.backend.eye(n), "int32")
|
|
549
|
-
structures = tc.backend.onehot(structures, num=4)
|
|
550
|
-
|
|
551
|
-
f_vvag = tc.backend.jit(tc.backend.vvag(f, vectorized_argnums=1, argnums=0))
|
|
552
|
-
v, g = f_vvag(tc.backend.ones([2, n], dtype="float32"), structures)
|
|
553
|
-
np.testing.assert_allclose(
|
|
554
|
-
v,
|
|
555
|
-
np.array(
|
|
556
|
-
[
|
|
557
|
-
0.157729,
|
|
558
|
-
0.157729,
|
|
559
|
-
0.157728,
|
|
560
|
-
0.085221,
|
|
561
|
-
]
|
|
562
|
-
),
|
|
563
|
-
atol=1e-5,
|
|
564
|
-
)
|
|
565
|
-
np.testing.assert_allclose(
|
|
566
|
-
g[0],
|
|
567
|
-
np.array([-0.378372, -0.624019, -0.491295, -0.378372]),
|
|
568
|
-
atol=1e-5,
|
|
569
|
-
)
|
|
570
|
-
|
|
571
|
-
|
|
572
|
-
def test_circuit_add_demo():
|
|
573
|
-
# to be refactored for better API
|
|
574
|
-
c = tc.Circuit(2)
|
|
575
|
-
c.x(0)
|
|
576
|
-
c2 = tc.Circuit(2, mps_inputs=c.quvector())
|
|
577
|
-
c2.X(0)
|
|
578
|
-
answer = np.array([1.0, 0, 0, 0])
|
|
579
|
-
np.testing.assert_allclose(c2.wavefunction(), answer, atol=1e-4)
|
|
580
|
-
c3 = tc.Circuit(2)
|
|
581
|
-
c3.X(0)
|
|
582
|
-
c3.replace_mps_inputs(c.quvector())
|
|
583
|
-
np.testing.assert_allclose(c3.wavefunction(), answer, atol=1e-4)
|
|
584
|
-
|
|
585
|
-
|
|
586
|
-
def test_circuit_replace_inputs():
|
|
587
|
-
n = 3
|
|
588
|
-
c = tc.Circuit(n, inputs=np.zeros([2**n]))
|
|
589
|
-
for i in range(n):
|
|
590
|
-
c.H(i)
|
|
591
|
-
evenstate = np.ones([2**n])
|
|
592
|
-
evenstate /= np.linalg.norm(evenstate)
|
|
593
|
-
c.replace_inputs(evenstate)
|
|
594
|
-
for i in range(n):
|
|
595
|
-
np.testing.assert_allclose(c.expectation_ps(z=[i]), 1.0, atol=1e-5)
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
599
|
-
def test_circuit_matrix(backend):
|
|
600
|
-
c = tc.Circuit(2)
|
|
601
|
-
c.x(1)
|
|
602
|
-
c.cnot(0, 1)
|
|
603
|
-
np.testing.assert_allclose(c.matrix()[3], np.array([0.0, 0.0, 0.0, 1.0]), atol=1e-5)
|
|
604
|
-
np.testing.assert_allclose(c.state(), np.array([0, 1.0, 0, 0]), atol=1e-5)
|
|
605
|
-
|
|
606
|
-
|
|
607
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
608
|
-
def test_circuit_split(backend):
|
|
609
|
-
n = 4
|
|
610
|
-
|
|
611
|
-
def f(param, max_singular_values=None, max_truncation_err=None, fixed_choice=None):
|
|
612
|
-
if (max_singular_values is None) and (max_truncation_err is None):
|
|
613
|
-
split = None
|
|
614
|
-
else:
|
|
615
|
-
split = {
|
|
616
|
-
"max_singular_values": max_singular_values,
|
|
617
|
-
"max_truncation_err": max_truncation_err,
|
|
618
|
-
"fixed_choice": fixed_choice,
|
|
619
|
-
}
|
|
620
|
-
c = tc.Circuit(
|
|
621
|
-
n,
|
|
622
|
-
split=split,
|
|
623
|
-
)
|
|
624
|
-
for i in range(n):
|
|
625
|
-
c.H(i)
|
|
626
|
-
for j in range(2):
|
|
627
|
-
for i in range(n - 1):
|
|
628
|
-
c.exp1(i, i + 1, theta=param[2 * j, i], hermitian=tc.gates._zz_matrix)
|
|
629
|
-
for i in range(n):
|
|
630
|
-
c.rx(i, theta=param[2 * j + 1, i])
|
|
631
|
-
loss = c.expectation(
|
|
632
|
-
(
|
|
633
|
-
tc.gates.z(),
|
|
634
|
-
[1],
|
|
635
|
-
),
|
|
636
|
-
(
|
|
637
|
-
tc.gates.z(),
|
|
638
|
-
[2],
|
|
639
|
-
),
|
|
640
|
-
)
|
|
641
|
-
return tc.backend.real(loss)
|
|
642
|
-
|
|
643
|
-
s1 = f(tc.backend.ones([4, n]))
|
|
644
|
-
s2 = f(tc.backend.ones([4, n]), max_truncation_err=1e-5)
|
|
645
|
-
s3 = f(tc.backend.ones([4, n]), max_singular_values=2, fixed_choice=1)
|
|
646
|
-
|
|
647
|
-
np.testing.assert_allclose(s1, s2, atol=1e-5)
|
|
648
|
-
np.testing.assert_allclose(s1, s3, atol=1e-5)
|
|
649
|
-
|
|
650
|
-
f_jit = tc.backend.jit(f, static_argnums=(1, 2, 3))
|
|
651
|
-
|
|
652
|
-
s1 = f_jit(tc.backend.ones([4, n]))
|
|
653
|
-
# s2 = f_jit(tc.backend.ones([4, n]), max_truncation_err=1e-5) # doesn't work now
|
|
654
|
-
# this cannot be done anyway, since variable size tensor network will fail opt einsum
|
|
655
|
-
s3 = f_jit(tc.backend.ones([4, n]), max_singular_values=2, fixed_choice=1)
|
|
656
|
-
|
|
657
|
-
# np.testing.assert_allclose(s1, s2, atol=1e-5)
|
|
658
|
-
np.testing.assert_allclose(s1, s3, atol=1e-5)
|
|
659
|
-
|
|
660
|
-
f_vg = tc.backend.jit(
|
|
661
|
-
tc.backend.value_and_grad(f, argnums=0), static_argnums=(1, 2, 3)
|
|
662
|
-
)
|
|
663
|
-
|
|
664
|
-
s1, g1 = f_vg(tc.backend.ones([4, n]))
|
|
665
|
-
s3, g3 = f_vg(tc.backend.ones([4, n]), max_singular_values=2, fixed_choice=1)
|
|
666
|
-
|
|
667
|
-
np.testing.assert_allclose(s1, s3, atol=1e-5)
|
|
668
|
-
# DONE(@refraction-ray): nan on jax backend?
|
|
669
|
-
# i see, complex value SVD is not supported on jax for now :)
|
|
670
|
-
# I shall further customize complex SVD, finally it has applications
|
|
671
|
-
|
|
672
|
-
# tf 2.6.2 also doesn't support complex valued SVD AD, weird...
|
|
673
|
-
# if tc.backend.name == "tensorflow":
|
|
674
|
-
np.testing.assert_allclose(g1, g3, atol=1e-5)
|
|
675
|
-
|
|
676
|
-
|
|
677
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
678
|
-
def test_gate_split(backend):
|
|
679
|
-
n = 4
|
|
680
|
-
|
|
681
|
-
def f(param, max_singular_values=None, max_truncation_err=None, fixed_choice=None):
|
|
682
|
-
if (max_singular_values is None) and (max_truncation_err is None):
|
|
683
|
-
split = None
|
|
684
|
-
else:
|
|
685
|
-
split = {
|
|
686
|
-
"max_singular_values": max_singular_values,
|
|
687
|
-
"max_truncation_err": max_truncation_err,
|
|
688
|
-
"fixed_choice": fixed_choice,
|
|
689
|
-
}
|
|
690
|
-
c = tc.Circuit(
|
|
691
|
-
n,
|
|
692
|
-
)
|
|
693
|
-
for i in range(n):
|
|
694
|
-
c.H(i)
|
|
695
|
-
for j in range(2):
|
|
696
|
-
for i in range(n - 1):
|
|
697
|
-
c.exp1(
|
|
698
|
-
i,
|
|
699
|
-
i + 1,
|
|
700
|
-
theta=param[2 * j, i],
|
|
701
|
-
unitary=tc.gates._zz_matrix,
|
|
702
|
-
split=split,
|
|
703
|
-
)
|
|
704
|
-
for i in range(n):
|
|
705
|
-
c.rx(i, theta=param[2 * j + 1, i])
|
|
706
|
-
loss = c.expectation(
|
|
707
|
-
(
|
|
708
|
-
tc.gates.x(),
|
|
709
|
-
[1],
|
|
710
|
-
),
|
|
711
|
-
)
|
|
712
|
-
return tc.backend.real(loss)
|
|
713
|
-
|
|
714
|
-
s1 = f(tc.backend.ones([4, n]))
|
|
715
|
-
s2 = f(tc.backend.ones([4, n]), max_truncation_err=1e-5)
|
|
716
|
-
s3 = f(tc.backend.ones([4, n]), max_singular_values=2, fixed_choice=1)
|
|
717
|
-
|
|
718
|
-
np.testing.assert_allclose(s1, s2, atol=1e-5)
|
|
719
|
-
np.testing.assert_allclose(s1, s3, atol=1e-5)
|
|
720
|
-
|
|
721
|
-
|
|
722
|
-
def test_toqir():
|
|
723
|
-
split = {
|
|
724
|
-
"max_singular_values": 2,
|
|
725
|
-
"fixed_choice": 1,
|
|
726
|
-
}
|
|
727
|
-
c = tc.Circuit(3)
|
|
728
|
-
c.H(0)
|
|
729
|
-
c.rx(1, theta=tc.array_to_tensor(0.7))
|
|
730
|
-
c.exp1(
|
|
731
|
-
0, 1, unitary=tc.gates._zz_matrix, theta=tc.array_to_tensor(-0.2), split=split
|
|
732
|
-
)
|
|
733
|
-
z1 = c.expectation((tc.gates.z(), [1]))
|
|
734
|
-
qirs = c.to_qir()
|
|
735
|
-
c = tc.Circuit.from_qir(qirs, circuit_params={"nqubits": 3})
|
|
736
|
-
assert len(c._nodes) == 7
|
|
737
|
-
z2 = c.expectation((tc.gates.z(), [1]))
|
|
738
|
-
np.testing.assert_allclose(z1, z2, atol=1e-5)
|
|
739
|
-
c.append_from_qir(qirs)
|
|
740
|
-
z3 = c.expectation((tc.gates.z(), [1]))
|
|
741
|
-
assert len(c._nodes) == 11
|
|
742
|
-
np.testing.assert_allclose(z3, 0.202728, atol=1e-5)
|
|
743
|
-
|
|
744
|
-
|
|
745
|
-
def test_vis_tex():
|
|
746
|
-
c = tc.Circuit(3)
|
|
747
|
-
for i in range(3):
|
|
748
|
-
c.H(i)
|
|
749
|
-
for i in range(3):
|
|
750
|
-
c.any(i, (i + 1) % 3, unitary=tc.backend.ones([4, 4]), name="hihi")
|
|
751
|
-
c.any(2, unitary=tc.backend.ones([2, 2]), name="invisible")
|
|
752
|
-
c.cz(1, 2)
|
|
753
|
-
c.any(1, 0, 2, unitary=tc.backend.ones([8, 8]), name="ccha")
|
|
754
|
-
c.z(2)
|
|
755
|
-
c.cnot(0, 1)
|
|
756
|
-
c.cz(2, 1)
|
|
757
|
-
|
|
758
|
-
print(c.vis_tex(init=["0", "1", ""], measure=["x", "y", "z"]))
|
|
759
|
-
|
|
760
|
-
|
|
761
|
-
def test_debug_contract():
|
|
762
|
-
n = 10
|
|
763
|
-
d = 4
|
|
764
|
-
try:
|
|
765
|
-
import cotengra # pylint: disable=unused-import
|
|
766
|
-
|
|
767
|
-
except ImportError:
|
|
768
|
-
pytest.skip("cotengra is not installed")
|
|
769
|
-
|
|
770
|
-
@tc.set_function_contractor(
|
|
771
|
-
"custom_stateful",
|
|
772
|
-
optimizer=oem.RandomGreedy,
|
|
773
|
-
max_time=10,
|
|
774
|
-
max_repeats=64,
|
|
775
|
-
minimize="size",
|
|
776
|
-
debug_level=2,
|
|
777
|
-
contraction_info=True,
|
|
778
|
-
)
|
|
779
|
-
def small_tn():
|
|
780
|
-
param = tc.backend.ones([2 * d, n])
|
|
781
|
-
c = tc.Circuit(n)
|
|
782
|
-
c = tc.templates.blocks.example_block(c, param, nlayers=d)
|
|
783
|
-
return c.state()
|
|
784
|
-
|
|
785
|
-
np.testing.assert_allclose(small_tn(), np.zeros([2**n]), atol=1e-5)
|
|
786
|
-
|
|
787
|
-
|
|
788
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
789
|
-
def test_teleportation(backend):
|
|
790
|
-
key = tc.backend.get_random_state(42)
|
|
791
|
-
|
|
792
|
-
@tc.backend.jit
|
|
793
|
-
def f(key):
|
|
794
|
-
tc.backend.set_random_state(key)
|
|
795
|
-
c = tc.Circuit(2)
|
|
796
|
-
c.H(0)
|
|
797
|
-
r = c.cond_measurement(0)
|
|
798
|
-
c.conditional_gate(r, [tc.gates.i(), tc.gates.x()], 1)
|
|
799
|
-
return r, c.expectation([tc.gates.z(), [1]])
|
|
800
|
-
|
|
801
|
-
keys = []
|
|
802
|
-
for _ in range(6):
|
|
803
|
-
key, subkey = tc.backend.random_split(key)
|
|
804
|
-
keys.append(subkey)
|
|
805
|
-
rs = [f(k) for k in keys]
|
|
806
|
-
for r, e in rs:
|
|
807
|
-
if tc.backend.numpy(r) > 0.5:
|
|
808
|
-
np.testing.assert_allclose(e, -1, atol=1e-5)
|
|
809
|
-
else:
|
|
810
|
-
np.testing.assert_allclose(e, 1, atol=1e-5)
|
|
811
|
-
|
|
812
|
-
|
|
813
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
814
|
-
def test_append_circuit(backend):
|
|
815
|
-
c = tc.Circuit(2)
|
|
816
|
-
c.cnot(0, 1)
|
|
817
|
-
c1 = tc.Circuit(2)
|
|
818
|
-
c1.x(0)
|
|
819
|
-
c.append(c1)
|
|
820
|
-
np.testing.assert_allclose(c.expectation_ps(z=[1]), 1.0)
|
|
821
|
-
|
|
822
|
-
c = tc.Circuit(2)
|
|
823
|
-
c.cnot(0, 1)
|
|
824
|
-
c1 = tc.Circuit(2)
|
|
825
|
-
c1.x(0)
|
|
826
|
-
c.prepend(c1)
|
|
827
|
-
np.testing.assert_allclose(c.expectation_ps(z=[1]), -1.0)
|
|
828
|
-
|
|
829
|
-
c = tc.Circuit(2)
|
|
830
|
-
c1 = tc.Circuit(1)
|
|
831
|
-
c1.x(0)
|
|
832
|
-
c.append(c1, [1])
|
|
833
|
-
np.testing.assert_allclose(c.state(), [0, 1, 0, 0])
|
|
834
|
-
|
|
835
|
-
|
|
836
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
837
|
-
def test_apply_mpo_gate(backend):
|
|
838
|
-
gate = tc.gates.multicontrol_gate(tc.gates._x_matrix, ctrl=[1, 0])
|
|
839
|
-
ans = np.array(
|
|
840
|
-
[
|
|
841
|
-
[1.0, 0, 0, 0, 0, 0, 0, 0],
|
|
842
|
-
[0, 1.0, 0, 0, 0, 0, 0, 0],
|
|
843
|
-
[0, 0, 1.0, 0, 0, 0, 0, 0],
|
|
844
|
-
[0, 0, 0, 1.0, 0, 0, 0, 0],
|
|
845
|
-
[0, 0, 0, 0, 0, 1.0, 0, 0],
|
|
846
|
-
[0, 0, 0, 0, 1.0, 0, 0, 0],
|
|
847
|
-
[0, 0, 0, 0, 0, 0, 1.0, 0],
|
|
848
|
-
[0, 0, 0, 0, 0, 0, 0, 1.0],
|
|
849
|
-
]
|
|
850
|
-
)
|
|
851
|
-
c = tc.Circuit(3)
|
|
852
|
-
c.X(0)
|
|
853
|
-
c.mpo(0, 1, 2, mpo=gate.copy())
|
|
854
|
-
np.testing.assert_allclose(c.expectation([tc.gates.z(), [2]]), -1, atol=1e-5)
|
|
855
|
-
c = tc.Circuit(3)
|
|
856
|
-
c.X(1)
|
|
857
|
-
c.mpo(0, 1, 2, mpo=gate.copy())
|
|
858
|
-
np.testing.assert_allclose(c.expectation([tc.gates.z(), [2]]), 1, atol=1e-5)
|
|
859
|
-
np.testing.assert_allclose(gate.eval_matrix(), ans, atol=1e-5)
|
|
860
|
-
|
|
861
|
-
|
|
862
|
-
def test_apply_multicontrol_gate():
|
|
863
|
-
c = tc.Circuit(3)
|
|
864
|
-
c.X(2)
|
|
865
|
-
c.multicontrol(0, 2, 1, ctrl=[0, 1], unitary=tc.gates._x_matrix)
|
|
866
|
-
np.testing.assert_allclose(c.expectation([tc.gates.z(), [1]]), -1, atol=1e-5)
|
|
867
|
-
c = tc.Circuit(3)
|
|
868
|
-
c.X(0)
|
|
869
|
-
c.multicontrol(0, 2, 1, ctrl=[0, 1], unitary=tc.gates._x_matrix)
|
|
870
|
-
np.testing.assert_allclose(c.expectation([tc.gates.z(), [1]]), 1, atol=1e-5)
|
|
871
|
-
c = tc.Circuit(4)
|
|
872
|
-
c.X(0)
|
|
873
|
-
c.X(2)
|
|
874
|
-
c.multicontrol(0, 1, 2, 3, ctrl=[1, 0], unitary=tc.gates.swap())
|
|
875
|
-
np.testing.assert_allclose(c.expectation([tc.gates.z(), [3]]), -1, atol=1e-5)
|
|
876
|
-
|
|
877
|
-
|
|
878
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
879
|
-
def test_circuit_quoperator(backend):
|
|
880
|
-
c = tc.Circuit(3)
|
|
881
|
-
c.x(0)
|
|
882
|
-
c.cnot(0, 1)
|
|
883
|
-
c.cz(1, 2)
|
|
884
|
-
c.y(2)
|
|
885
|
-
c.exp1(0, 2, theta=1.0, unitary=tc.gates._xx_matrix)
|
|
886
|
-
c.H(1)
|
|
887
|
-
c.multicontrol(0, 2, 1, ctrl=[1, 0], unitary=tc.gates.z())
|
|
888
|
-
qo = c.quoperator()
|
|
889
|
-
np.testing.assert_allclose(qo.eval_matrix(), c.matrix(), atol=1e-5)
|
|
890
|
-
|
|
891
|
-
|
|
892
|
-
def test_perm_matrix():
|
|
893
|
-
from tensorcircuit.translation import perm_matrix
|
|
894
|
-
|
|
895
|
-
p2 = perm_matrix(2)
|
|
896
|
-
np.testing.assert_allclose(
|
|
897
|
-
p2, np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
|
|
898
|
-
)
|
|
899
|
-
p3 = perm_matrix(3)
|
|
900
|
-
v = np.arange(8)
|
|
901
|
-
vt = np.array([0, 4, 2, 6, 1, 5, 3, 7])
|
|
902
|
-
np.testing.assert_allclose(p3 @ v, vt)
|
|
903
|
-
|
|
904
|
-
|
|
905
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
906
|
-
def test_qir2cirq(backend):
|
|
907
|
-
try:
|
|
908
|
-
import cirq
|
|
909
|
-
except ImportError:
|
|
910
|
-
pytest.skip("cirq is not installed")
|
|
911
|
-
n = 6
|
|
912
|
-
c = tc.Circuit(n)
|
|
913
|
-
for i in range(n):
|
|
914
|
-
c.H(i)
|
|
915
|
-
zz = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
|
|
916
|
-
for i in range(n):
|
|
917
|
-
c.exp(
|
|
918
|
-
i,
|
|
919
|
-
(i + 1) % n,
|
|
920
|
-
theta=tc.array_to_tensor(np.random.uniform()),
|
|
921
|
-
unitary=tc.array_to_tensor(zz),
|
|
922
|
-
name="zz",
|
|
923
|
-
)
|
|
924
|
-
c.exp1(
|
|
925
|
-
1, 3, theta=tc.array_to_tensor(0.0j), unitary=tc.array_to_tensor(zz), name="zz"
|
|
926
|
-
)
|
|
927
|
-
c.fredkin(0, 1, 2)
|
|
928
|
-
c.cswap(1, 2, 3)
|
|
929
|
-
c.ccnot(1, 2, 3)
|
|
930
|
-
c.cx(2, 3)
|
|
931
|
-
c.swap(0, 1)
|
|
932
|
-
c.iswap(0, 1)
|
|
933
|
-
c.iswap(1, 3, theta=-1.9)
|
|
934
|
-
c.toffoli(0, 1, 2)
|
|
935
|
-
c.s(1)
|
|
936
|
-
c.t(1)
|
|
937
|
-
c.sd(1)
|
|
938
|
-
c.td(1)
|
|
939
|
-
c.x(2)
|
|
940
|
-
c.y(2)
|
|
941
|
-
c.z(2)
|
|
942
|
-
c.wroot(3)
|
|
943
|
-
c.cnot(0, 1)
|
|
944
|
-
c.cy(0, 1)
|
|
945
|
-
c.cz(0, 1)
|
|
946
|
-
c.oy(4, 3)
|
|
947
|
-
c.oz(4, 3)
|
|
948
|
-
c.ox(4, 3)
|
|
949
|
-
c.oy(4, 3)
|
|
950
|
-
c.oz(4, 3)
|
|
951
|
-
c.ox(3, 4)
|
|
952
|
-
c.phase(2, theta=0.3)
|
|
953
|
-
c.cphase(1, 0, theta=-1.2)
|
|
954
|
-
c.rxx(0, 2, theta=0.9)
|
|
955
|
-
c.ryy(1, 4, theta=-2.0)
|
|
956
|
-
c.rzz(1, 3, theta=0.5)
|
|
957
|
-
c.u(2, theta=0, lbd=4.6, phi=-0.3)
|
|
958
|
-
c.cu(4, 1, theta=1.2)
|
|
959
|
-
c.rx(1, theta=tc.array_to_tensor(np.random.uniform()))
|
|
960
|
-
c.r(5, theta=tc.array_to_tensor(np.random.uniform()))
|
|
961
|
-
c.cr(
|
|
962
|
-
1,
|
|
963
|
-
2,
|
|
964
|
-
theta=tc.array_to_tensor(np.random.uniform()),
|
|
965
|
-
alpha=tc.array_to_tensor(np.random.uniform()),
|
|
966
|
-
phi=tc.array_to_tensor(np.random.uniform()),
|
|
967
|
-
)
|
|
968
|
-
c.ry(1, theta=tc.array_to_tensor(np.random.uniform()))
|
|
969
|
-
c.rz(1, theta=tc.array_to_tensor(np.random.uniform()))
|
|
970
|
-
c.crz(2, 3, theta=tc.array_to_tensor(np.random.uniform()))
|
|
971
|
-
c.crx(5, 3, theta=tc.array_to_tensor(np.random.uniform()))
|
|
972
|
-
c.cry(1, 3, theta=tc.array_to_tensor(np.random.uniform()))
|
|
973
|
-
c.orx(5, 3, theta=tc.array_to_tensor(np.random.uniform()))
|
|
974
|
-
c.ory(5, 3, theta=tc.array_to_tensor(np.random.uniform()))
|
|
975
|
-
c.orz(5, 3, theta=tc.array_to_tensor(np.random.uniform()))
|
|
976
|
-
|
|
977
|
-
c.any(1, 3, unitary=tc.array_to_tensor(np.reshape(zz, [2, 2, 2, 2])))
|
|
978
|
-
|
|
979
|
-
gate = tc.gates.multicontrol_gate(
|
|
980
|
-
tc.array_to_tensor(tc.gates._x_matrix), ctrl=[1, 0]
|
|
981
|
-
)
|
|
982
|
-
c.mpo(0, 1, 2, mpo=gate.copy())
|
|
983
|
-
c.multicontrol(
|
|
984
|
-
0,
|
|
985
|
-
2,
|
|
986
|
-
4,
|
|
987
|
-
1,
|
|
988
|
-
5,
|
|
989
|
-
ctrl=[0, 1, 0],
|
|
990
|
-
unitary=tc.array_to_tensor(tc.gates._zz_matrix),
|
|
991
|
-
name="zz",
|
|
992
|
-
)
|
|
993
|
-
tc_unitary = c.matrix()
|
|
994
|
-
tc_unitary = np.reshape(tc_unitary, [2**n, 2**n])
|
|
995
|
-
|
|
996
|
-
cirq = c.to_cirq()
|
|
997
|
-
cirq_unitary = cirq.unitary()
|
|
998
|
-
cirq_unitary = np.reshape(cirq_unitary, [2**n, 2**n])
|
|
999
|
-
|
|
1000
|
-
np.testing.assert_allclose(tc_unitary, cirq_unitary, atol=1e-5)
|
|
1001
|
-
|
|
1002
|
-
|
|
1003
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
1004
|
-
def test_qir2qiskit(backend):
|
|
1005
|
-
try:
|
|
1006
|
-
import qiskit.quantum_info as qi
|
|
1007
|
-
|
|
1008
|
-
from tensorcircuit.translation import perm_matrix
|
|
1009
|
-
except ImportError:
|
|
1010
|
-
pytest.skip("qiskit is not installed")
|
|
1011
|
-
|
|
1012
|
-
n = 6
|
|
1013
|
-
c = tc.Circuit(n, inputs=tc.array_to_tensor(np.eye(2**n)))
|
|
1014
|
-
|
|
1015
|
-
for i in range(n):
|
|
1016
|
-
c.H(i)
|
|
1017
|
-
zz = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
|
|
1018
|
-
for i in range(n):
|
|
1019
|
-
c.exp(
|
|
1020
|
-
i,
|
|
1021
|
-
(i + 1) % n,
|
|
1022
|
-
theta=tc.array_to_tensor(np.random.uniform()),
|
|
1023
|
-
unitary=tc.array_to_tensor(zz),
|
|
1024
|
-
name="zz",
|
|
1025
|
-
)
|
|
1026
|
-
c.exp1(
|
|
1027
|
-
1, 3, theta=tc.array_to_tensor(0.0j), unitary=tc.array_to_tensor(zz), name="zz"
|
|
1028
|
-
)
|
|
1029
|
-
c.fredkin(1, 2, 3)
|
|
1030
|
-
c.cswap(1, 2, 3)
|
|
1031
|
-
c.ccnot(1, 2, 3)
|
|
1032
|
-
c.cx(2, 3)
|
|
1033
|
-
c.swap(0, 1)
|
|
1034
|
-
c.iswap(0, 1)
|
|
1035
|
-
c.iswap(1, 3, theta=-1.9)
|
|
1036
|
-
c.toffoli(0, 1, 2)
|
|
1037
|
-
c.s(1)
|
|
1038
|
-
c.t(1)
|
|
1039
|
-
c.sd(1)
|
|
1040
|
-
c.td(1)
|
|
1041
|
-
c.x(2)
|
|
1042
|
-
c.y(2)
|
|
1043
|
-
c.z(2)
|
|
1044
|
-
c.wroot(3)
|
|
1045
|
-
c.cnot(0, 1)
|
|
1046
|
-
c.cy(0, 1)
|
|
1047
|
-
c.cz(0, 1)
|
|
1048
|
-
c.oy(4, 3)
|
|
1049
|
-
c.oz(4, 3)
|
|
1050
|
-
c.ox(4, 3)
|
|
1051
|
-
c.oy(4, 3)
|
|
1052
|
-
c.oz(4, 3)
|
|
1053
|
-
c.ox(3, 4)
|
|
1054
|
-
c.phase(2, theta=0.3)
|
|
1055
|
-
c.cphase(1, 0, theta=-1.2)
|
|
1056
|
-
c.rxx(0, 2, theta=0.9)
|
|
1057
|
-
c.ryy(1, 4, theta=-2.0)
|
|
1058
|
-
c.rzz(1, 3, theta=0.5)
|
|
1059
|
-
c.u(2, theta=0, lbd=4.6, phi=-0.3)
|
|
1060
|
-
c.cu(4, 1, theta=1.2)
|
|
1061
|
-
c.rx(1, theta=tc.array_to_tensor(np.random.uniform()))
|
|
1062
|
-
c.r(5, theta=tc.array_to_tensor(np.random.uniform()))
|
|
1063
|
-
c.cr(
|
|
1064
|
-
1,
|
|
1065
|
-
2,
|
|
1066
|
-
theta=tc.array_to_tensor(np.random.uniform()),
|
|
1067
|
-
alpha=tc.array_to_tensor(np.random.uniform()),
|
|
1068
|
-
phi=tc.array_to_tensor(np.random.uniform()),
|
|
1069
|
-
)
|
|
1070
|
-
c.ry(1, theta=tc.array_to_tensor(np.random.uniform()))
|
|
1071
|
-
c.rz(1, theta=tc.array_to_tensor(np.random.uniform()))
|
|
1072
|
-
c.crz(2, 3, theta=tc.array_to_tensor(np.random.uniform()))
|
|
1073
|
-
c.crx(5, 3, theta=tc.array_to_tensor(np.random.uniform()))
|
|
1074
|
-
c.cry(1, 3, theta=tc.array_to_tensor(np.random.uniform()))
|
|
1075
|
-
c.orx(5, 3, theta=tc.array_to_tensor(np.random.uniform()))
|
|
1076
|
-
c.ory(5, 3, theta=tc.array_to_tensor(np.random.uniform()))
|
|
1077
|
-
c.orz(5, 3, theta=tc.array_to_tensor(np.random.uniform()))
|
|
1078
|
-
|
|
1079
|
-
c.any(1, 3, unitary=tc.array_to_tensor(np.reshape(zz, [2, 2, 2, 2])))
|
|
1080
|
-
gate = tc.gates.multicontrol_gate(
|
|
1081
|
-
tc.array_to_tensor(tc.gates._x_matrix), ctrl=[1, 0]
|
|
1082
|
-
)
|
|
1083
|
-
c.mpo(0, 1, 2, mpo=gate.copy())
|
|
1084
|
-
c.multicontrol(
|
|
1085
|
-
0,
|
|
1086
|
-
2,
|
|
1087
|
-
4,
|
|
1088
|
-
1,
|
|
1089
|
-
5,
|
|
1090
|
-
ctrl=[0, 1, 0],
|
|
1091
|
-
unitary=tc.array_to_tensor(tc.gates._zz_matrix),
|
|
1092
|
-
name="zz",
|
|
1093
|
-
)
|
|
1094
|
-
tc_unitary = c.wavefunction()
|
|
1095
|
-
tc_unitary = np.reshape(tc_unitary, [2**n, 2**n])
|
|
1096
|
-
|
|
1097
|
-
qisc = c.to_qiskit()
|
|
1098
|
-
qis_unitary = qi.Operator(qisc)
|
|
1099
|
-
qis_unitary = np.reshape(qis_unitary, [2**n, 2**n])
|
|
1100
|
-
|
|
1101
|
-
p_mat = perm_matrix(n)
|
|
1102
|
-
np.testing.assert_allclose(p_mat @ tc_unitary @ p_mat, qis_unitary, atol=1e-5)
|
|
1103
|
-
|
|
1104
|
-
|
|
1105
|
-
def test_qiskit2tc():
|
|
1106
|
-
try:
|
|
1107
|
-
import qiskit.quantum_info as qi
|
|
1108
|
-
from qiskit import QuantumCircuit
|
|
1109
|
-
from qiskit.circuit.library import HamiltonianGate
|
|
1110
|
-
from qiskit.circuit.library.standard_gates import MCXGate, SwapGate, CXGate
|
|
1111
|
-
|
|
1112
|
-
from tensorcircuit.translation import perm_matrix
|
|
1113
|
-
except ImportError:
|
|
1114
|
-
pytest.skip("qiskit is not installed")
|
|
1115
|
-
n = 6
|
|
1116
|
-
qisc = QuantumCircuit(n)
|
|
1117
|
-
for i in range(n):
|
|
1118
|
-
qisc.h(i)
|
|
1119
|
-
zz = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
|
|
1120
|
-
exp_op = qi.Operator(zz)
|
|
1121
|
-
for i in range(n):
|
|
1122
|
-
gate = HamiltonianGate(exp_op, time=np.random.uniform())
|
|
1123
|
-
qisc.append(gate, [i, (i + 1) % n])
|
|
1124
|
-
qisc.fredkin(1, 2, 3)
|
|
1125
|
-
qisc.cswap(1, 2, 3)
|
|
1126
|
-
qisc.swap(0, 1)
|
|
1127
|
-
qisc.iswap(0, 1)
|
|
1128
|
-
qisc.toffoli(0, 1, 2)
|
|
1129
|
-
# test Instructions
|
|
1130
|
-
qisc2 = QuantumCircuit(1)
|
|
1131
|
-
qisc2.h(0)
|
|
1132
|
-
qisc.compose(qisc2, qubits=[1], inplace=True, wrap=True)
|
|
1133
|
-
qisc.barrier(0, 1, 2)
|
|
1134
|
-
qisc.s(1)
|
|
1135
|
-
qisc.t(1)
|
|
1136
|
-
qisc.sdg(2)
|
|
1137
|
-
qisc.tdg(2)
|
|
1138
|
-
qisc.x(3)
|
|
1139
|
-
qisc.y(3)
|
|
1140
|
-
qisc.z(3)
|
|
1141
|
-
qisc.cu(
|
|
1142
|
-
5.868768495722669, 2.24809352294186, 3.59102783505607, 2.0223650288392, 1, 3
|
|
1143
|
-
)
|
|
1144
|
-
qisc.cnot(0, 1)
|
|
1145
|
-
qisc.cy(0, 1)
|
|
1146
|
-
qisc.cz(0, 1, ctrl_state=0)
|
|
1147
|
-
qisc.cy(0, 1, ctrl_state=0)
|
|
1148
|
-
qisc.cx(0, 1, ctrl_state=0)
|
|
1149
|
-
qisc.rxx(0.3, 1, 2)
|
|
1150
|
-
qisc.rzz(-0.8, 2, 0)
|
|
1151
|
-
qisc.u(0.3, 0.9, -1.2, 2)
|
|
1152
|
-
qisc.rx(np.random.uniform(), 1)
|
|
1153
|
-
qisc.ry(np.random.uniform(), 2)
|
|
1154
|
-
qisc.rz(np.random.uniform(), 3)
|
|
1155
|
-
qisc.crz(np.random.uniform(), 2, 3)
|
|
1156
|
-
qisc.crz(np.random.uniform(), 2, 3)
|
|
1157
|
-
qisc.crz(np.random.uniform(), 2, 3)
|
|
1158
|
-
qisc.crz(np.random.uniform(), 2, 3, ctrl_state=0)
|
|
1159
|
-
qisc.crz(np.random.uniform(), 2, 3, ctrl_state=0)
|
|
1160
|
-
qisc.crz(np.random.uniform(), 2, 3, ctrl_state=0)
|
|
1161
|
-
qisc.r(np.random.uniform(), np.random.uniform(), 1)
|
|
1162
|
-
qisc.unitary(exp_op, [1, 3])
|
|
1163
|
-
mcx_g = MCXGate(3, ctrl_state="010")
|
|
1164
|
-
qisc.append(mcx_g, [0, 1, 2, 3])
|
|
1165
|
-
qisc.ccx(0, 1, 2, ctrl_state="01")
|
|
1166
|
-
CCswap = SwapGate().control(2, ctrl_state="01")
|
|
1167
|
-
qisc.append(CCswap, [0, 1, 2, 3])
|
|
1168
|
-
CCCX = CXGate().control(2, ctrl_state="01")
|
|
1169
|
-
qisc.append(CCCX, [1, 2, 3, 4])
|
|
1170
|
-
|
|
1171
|
-
c = tc.Circuit.from_qiskit(qisc, n)
|
|
1172
|
-
tc_unitary = c.matrix()
|
|
1173
|
-
qis_unitary = qi.Operator(qisc)
|
|
1174
|
-
qis_unitary = np.reshape(qis_unitary, [2**n, 2**n])
|
|
1175
|
-
p_mat = perm_matrix(n)
|
|
1176
|
-
np.testing.assert_allclose(p_mat @ tc_unitary @ p_mat, qis_unitary, atol=1e-5)
|
|
1177
|
-
qisc_from_tc = c.to_qiskit(enable_instruction=True)
|
|
1178
|
-
qis_unitary2 = qi.Operator(qisc_from_tc)
|
|
1179
|
-
qis_unitary2 = np.reshape(qis_unitary2, [2**n, 2**n])
|
|
1180
|
-
np.testing.assert_allclose(qis_unitary2, qis_unitary, atol=1e-5)
|
|
1181
|
-
|
|
1182
|
-
|
|
1183
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
1184
|
-
def test_qiskit2tc_parameterized(backend):
|
|
1185
|
-
try:
|
|
1186
|
-
from qiskit.circuit import Parameter, ParameterVector, QuantumCircuit
|
|
1187
|
-
from qiskit.circuit.library import TwoLocal
|
|
1188
|
-
from qiskit.quantum_info import Operator
|
|
1189
|
-
from qiskit_nature.second_q.circuit.library import UCCSD
|
|
1190
|
-
from qiskit_nature.second_q.mappers import ParityMapper
|
|
1191
|
-
except ImportError:
|
|
1192
|
-
pytest.skip("qiskit or qiskit-nature is not installed")
|
|
1193
|
-
from tensorcircuit.translation import perm_matrix
|
|
1194
|
-
|
|
1195
|
-
mapper = ParityMapper()
|
|
1196
|
-
ansatz1 = UCCSD(2, [1, 1], mapper)
|
|
1197
|
-
ansatz2 = TwoLocal(2, rotation_blocks="ry", entanglement_blocks="cz")
|
|
1198
|
-
ansatz3 = QuantumCircuit(1)
|
|
1199
|
-
ansatz3_param = Parameter("θ")
|
|
1200
|
-
ansatz3.rx(ansatz3_param, 0)
|
|
1201
|
-
ansatz4 = QuantumCircuit(1)
|
|
1202
|
-
ansatz4_param = ParameterVector("φ", 3)
|
|
1203
|
-
ansatz4.rx(2.0 * ansatz4_param[0] + 5.0, 0)
|
|
1204
|
-
ansatz4.ry(ansatz4_param[0] * ansatz4_param[1] + ansatz4_param[2], 0)
|
|
1205
|
-
ansatz4.rz(
|
|
1206
|
-
np.exp(np.sin(ansatz4_param[0]))
|
|
1207
|
-
+ np.abs(ansatz4_param[1]) / np.arctan(ansatz4_param[2]),
|
|
1208
|
-
0,
|
|
1209
|
-
)
|
|
1210
|
-
ansatz_list = [ansatz1, ansatz2, ansatz3, ansatz4]
|
|
1211
|
-
for ansatz in ansatz_list:
|
|
1212
|
-
n = ansatz.num_qubits
|
|
1213
|
-
if ansatz in [ansatz1, ansatz2, ansatz4]:
|
|
1214
|
-
params = np.random.rand(ansatz.num_parameters)
|
|
1215
|
-
else:
|
|
1216
|
-
params = {ansatz3_param: 0.618}
|
|
1217
|
-
qisc = ansatz.assign_parameters(params)
|
|
1218
|
-
qiskit_unitary = Operator(qisc)
|
|
1219
|
-
qiskit_unitary = np.reshape(qiskit_unitary, [2**n, 2**n])
|
|
1220
|
-
|
|
1221
|
-
# test jit
|
|
1222
|
-
@tc.backend.jit
|
|
1223
|
-
def get_unitary(params):
|
|
1224
|
-
return tc.Circuit.from_qiskit(
|
|
1225
|
-
ansatz, inputs=np.eye(2**n), binding_params=params
|
|
1226
|
-
).state()
|
|
1227
|
-
|
|
1228
|
-
tc_unitary = get_unitary(params)
|
|
1229
|
-
tc_unitary = np.reshape(tc_unitary, [2**n, 2**n])
|
|
1230
|
-
p_mat = tc.array_to_tensor(perm_matrix(n))
|
|
1231
|
-
np.testing.assert_allclose(
|
|
1232
|
-
p_mat @ tc_unitary @ p_mat, qiskit_unitary, atol=1e-5
|
|
1233
|
-
)
|
|
1234
|
-
|
|
1235
|
-
# test grad
|
|
1236
|
-
def cost_fn(params):
|
|
1237
|
-
return tc.backend.real(tc.backend.sum(get_unitary(params)))
|
|
1238
|
-
|
|
1239
|
-
if ansatz in [ansatz1, ansatz2, ansatz4]:
|
|
1240
|
-
grad = tc.backend.grad(cost_fn)(tc.backend.convert_to_tensor(params))
|
|
1241
|
-
assert tc.backend.sum(tc.num_to_tensor(np.isnan(grad))) == 0
|
|
1242
|
-
else:
|
|
1243
|
-
# tf only supports tf tensor as input
|
|
1244
|
-
grad = tc.backend.grad(cost_fn)(
|
|
1245
|
-
{ansatz3_param: tc.backend.convert_to_tensor(0.618)}
|
|
1246
|
-
)
|
|
1247
|
-
assert not np.isnan(grad[ansatz3_param])
|
|
1248
|
-
|
|
1249
|
-
|
|
1250
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
1251
|
-
def test_qiskit_vs_tc_intialization(backend):
|
|
1252
|
-
try:
|
|
1253
|
-
import qiskit.quantum_info as qi
|
|
1254
|
-
from qiskit import QuantumCircuit
|
|
1255
|
-
except ImportError:
|
|
1256
|
-
pytest.skip("qiskit is not installed")
|
|
1257
|
-
|
|
1258
|
-
n = 3
|
|
1259
|
-
|
|
1260
|
-
qis_c = QuantumCircuit(n)
|
|
1261
|
-
qis_c.h(0)
|
|
1262
|
-
qis_c.cnot(0, 1)
|
|
1263
|
-
qis_c.y(2)
|
|
1264
|
-
state = qi.Statevector(qis_c)
|
|
1265
|
-
qis_c = QuantumCircuit(n)
|
|
1266
|
-
qis_c.initialize(state)
|
|
1267
|
-
qis_c.cnot(1, 2)
|
|
1268
|
-
c = tc.Circuit.from_qiskit(qis_c)
|
|
1269
|
-
c2 = tc.Circuit(n)
|
|
1270
|
-
c2.h(0)
|
|
1271
|
-
c2.cnot(0, 1)
|
|
1272
|
-
c2.y(2)
|
|
1273
|
-
c2.cnot(1, 2)
|
|
1274
|
-
np.testing.assert_allclose(c.state(), c2.state(), atol=1e-8)
|
|
1275
|
-
np.testing.assert_allclose(
|
|
1276
|
-
qi.Statevector(c.to_qiskit(enable_inputs=True)),
|
|
1277
|
-
qi.Statevector(qis_c),
|
|
1278
|
-
atol=1e-8,
|
|
1279
|
-
)
|
|
1280
|
-
|
|
1281
|
-
|
|
1282
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
1283
|
-
def test_batch_sample(backend):
|
|
1284
|
-
c = tc.Circuit(3)
|
|
1285
|
-
c.H(0)
|
|
1286
|
-
c.cnot(0, 1)
|
|
1287
|
-
print(c.sample())
|
|
1288
|
-
print(c.sample(batch=8))
|
|
1289
|
-
print(c.sample(random_generator=tc.backend.get_random_state(42)))
|
|
1290
|
-
print(c.sample(allow_state=True))
|
|
1291
|
-
print(c.sample(batch=8, allow_state=True))
|
|
1292
|
-
print(
|
|
1293
|
-
c.sample(
|
|
1294
|
-
batch=8, allow_state=True, random_generator=tc.backend.get_random_state(42)
|
|
1295
|
-
)
|
|
1296
|
-
)
|
|
1297
|
-
print(
|
|
1298
|
-
c.sample(
|
|
1299
|
-
batch=8,
|
|
1300
|
-
allow_state=True,
|
|
1301
|
-
status=np.random.uniform(size=[8]),
|
|
1302
|
-
format="sample_bin",
|
|
1303
|
-
)
|
|
1304
|
-
)
|
|
1305
|
-
|
|
1306
|
-
|
|
1307
|
-
def test_expectation_y_bug():
|
|
1308
|
-
c = tc.Circuit(1, inputs=1 / np.sqrt(2) * np.array([-1, 1.0j]))
|
|
1309
|
-
m = c.expectation_ps(y=[0])
|
|
1310
|
-
np.testing.assert_allclose(m, -1, atol=1e-5)
|
|
1311
|
-
|
|
1312
|
-
|
|
1313
|
-
def test_lightcone_expectation():
|
|
1314
|
-
def construct_c(pbc=True):
|
|
1315
|
-
n = 4
|
|
1316
|
-
ns = n
|
|
1317
|
-
if pbc is False:
|
|
1318
|
-
ns -= 1
|
|
1319
|
-
c = tc.Circuit(n)
|
|
1320
|
-
for j in range(2):
|
|
1321
|
-
for i in range(n):
|
|
1322
|
-
c.rx(i, theta=0.2, name="rx" + str(j) + "-" + str(i))
|
|
1323
|
-
for i in range(ns):
|
|
1324
|
-
c.cnot(i, (i + 1) % n, name="cnot" + str(j) + "-" + str(i))
|
|
1325
|
-
return c
|
|
1326
|
-
|
|
1327
|
-
for b in [True, False]:
|
|
1328
|
-
c = construct_c(b)
|
|
1329
|
-
m1 = c.expectation_ps(z=[0], enable_lightcone=True)
|
|
1330
|
-
m2 = c.expectation_ps(z=[0])
|
|
1331
|
-
np.testing.assert_allclose(m1, m2, atol=1e-5)
|
|
1332
|
-
nodes = c.expectation_before([tc.gates.z(), 0], reuse=False)
|
|
1333
|
-
l1 = len(nodes)
|
|
1334
|
-
nodes = tc.simplify._full_light_cone_cancel(nodes)
|
|
1335
|
-
l2 = len(nodes)
|
|
1336
|
-
if b is False:
|
|
1337
|
-
assert l1 == 37 and l2 == 25
|
|
1338
|
-
else:
|
|
1339
|
-
assert l1 == 41 and l2 == 41
|
|
1340
|
-
|
|
1341
|
-
|
|
1342
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
1343
|
-
def test_circuit_inverse(backend):
|
|
1344
|
-
inputs = np.random.uniform(size=[8])
|
|
1345
|
-
inputs /= np.linalg.norm(inputs)
|
|
1346
|
-
c = tc.Circuit(3, inputs=inputs)
|
|
1347
|
-
c.H(1)
|
|
1348
|
-
c.rx(0, theta=0.5)
|
|
1349
|
-
c.cnot(1, 2)
|
|
1350
|
-
c.rzz(0, 2, theta=-0.8)
|
|
1351
|
-
c1 = c.inverse()
|
|
1352
|
-
c.append(c1)
|
|
1353
|
-
np.testing.assert_allclose(c.state(), inputs, atol=1e-5)
|
|
1354
|
-
|
|
1355
|
-
|
|
1356
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
1357
|
-
def test_circuit_inverse_2(backend):
|
|
1358
|
-
inputs = np.random.uniform(size=[8])
|
|
1359
|
-
inputs /= np.linalg.norm(inputs)
|
|
1360
|
-
c = tc.Circuit(3, inputs=inputs)
|
|
1361
|
-
c.iswap(0, 1)
|
|
1362
|
-
c.iswap(1, 0, theta=0.6)
|
|
1363
|
-
c.rxx(1, 2, theta=-0.2)
|
|
1364
|
-
c.cu(0, 1, lbd=2.0, theta=-0.7)
|
|
1365
|
-
c.r(2, alpha=0.3)
|
|
1366
|
-
c.sd(2)
|
|
1367
|
-
c.cx(1, 2)
|
|
1368
|
-
c.unitary(0, unitary=tc.gates._x_matrix)
|
|
1369
|
-
c1 = c.inverse()
|
|
1370
|
-
c.append(c1)
|
|
1371
|
-
print(c.draw())
|
|
1372
|
-
np.testing.assert_allclose(c.state(), inputs, atol=1e-5)
|
|
1373
|
-
|
|
1374
|
-
|
|
1375
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
1376
|
-
def test_jittable_amplitude(backend):
|
|
1377
|
-
# @tc.backend.jit
|
|
1378
|
-
def amp(s):
|
|
1379
|
-
c = tc.Circuit(3)
|
|
1380
|
-
c.H(0)
|
|
1381
|
-
c.cnot(0, 1)
|
|
1382
|
-
c.swap(1, 2)
|
|
1383
|
-
return c.amplitude(s)
|
|
1384
|
-
|
|
1385
|
-
np.testing.assert_allclose(
|
|
1386
|
-
amp(tc.array_to_tensor([0, 1, 1], dtype="float32")), 0, atol=1e-5
|
|
1387
|
-
)
|
|
1388
|
-
np.testing.assert_allclose(
|
|
1389
|
-
amp(tc.array_to_tensor([0, 0, 0], dtype="float32")), 1 / np.sqrt(2), atol=1e-5
|
|
1390
|
-
)
|
|
1391
|
-
|
|
1392
|
-
|
|
1393
|
-
def test_draw_cond_measure():
|
|
1394
|
-
c = tc.Circuit(2)
|
|
1395
|
-
c.H(0)
|
|
1396
|
-
c.cond_measure(0)
|
|
1397
|
-
c.cnot(0, 1)
|
|
1398
|
-
print("")
|
|
1399
|
-
print(c.draw())
|
|
1400
|
-
|
|
1401
|
-
|
|
1402
|
-
def test_minus_index():
|
|
1403
|
-
c = tc.Circuit(3)
|
|
1404
|
-
c.H(-2)
|
|
1405
|
-
c.H(0)
|
|
1406
|
-
np.testing.assert_allclose(tc.backend.real(c.expectation_ps(x=[0])), 1, atol=1e-5)
|
|
1407
|
-
np.testing.assert_allclose(tc.backend.real(c.expectation_ps(x=[1])), 1, atol=1e-5)
|
|
1408
|
-
np.testing.assert_allclose(tc.backend.real(c.expectation_ps(x=[-1])), 0, atol=1e-5)
|
|
1409
|
-
np.testing.assert_allclose(tc.backend.real(c.expectation_ps(z=[-2])), 0, atol=1e-5)
|
|
1410
|
-
|
|
1411
|
-
|
|
1412
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
1413
|
-
def test_sexpps(backend):
|
|
1414
|
-
c = tc.Circuit(1, inputs=1 / np.sqrt(2) * np.array([1.0, 1.0j]))
|
|
1415
|
-
y = c.sample_expectation_ps(y=[0])
|
|
1416
|
-
ye = c.expectation_ps(y=[0])
|
|
1417
|
-
np.testing.assert_allclose(y, 1.0, atol=1e-5)
|
|
1418
|
-
np.testing.assert_allclose(ye, 1.0, atol=1e-5)
|
|
1419
|
-
|
|
1420
|
-
c = tc.Circuit(4)
|
|
1421
|
-
c.H(0)
|
|
1422
|
-
c.cnot(0, 1)
|
|
1423
|
-
c.rx(1, theta=0.3)
|
|
1424
|
-
c.rz(2, theta=-1.2)
|
|
1425
|
-
c.ccnot(2, 3, 1)
|
|
1426
|
-
c.rzz(0, 3, theta=0.5)
|
|
1427
|
-
c.ry(3, theta=2.2)
|
|
1428
|
-
c.s(1)
|
|
1429
|
-
c.td(2)
|
|
1430
|
-
y = c.sample_expectation_ps(x=[1], y=[0], z=[2, 3])
|
|
1431
|
-
ye = c.expectation_ps(x=[1], y=[0], z=[2, 3])
|
|
1432
|
-
np.testing.assert_allclose(ye, y, atol=1e-5)
|
|
1433
|
-
y2 = c.sample_expectation_ps(x=[1], y=[0], z=[2, 3], shots=81920)
|
|
1434
|
-
assert np.abs(y2 - y) < 0.01
|
|
1435
|
-
|
|
1436
|
-
|
|
1437
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
1438
|
-
def test_sample_format(backend):
|
|
1439
|
-
c = tc.Circuit(2)
|
|
1440
|
-
c.H(0)
|
|
1441
|
-
c.cnot(0, 1)
|
|
1442
|
-
key = tc.backend.get_random_state(42)
|
|
1443
|
-
for allow_state in [False, True]:
|
|
1444
|
-
print("allow_state: ", allow_state)
|
|
1445
|
-
for batch in [None, 1, 3]:
|
|
1446
|
-
print(" batch: ", batch)
|
|
1447
|
-
for format_ in [
|
|
1448
|
-
None,
|
|
1449
|
-
"sample_int",
|
|
1450
|
-
"sample_bin",
|
|
1451
|
-
"count_vector",
|
|
1452
|
-
"count_tuple",
|
|
1453
|
-
"count_dict_bin",
|
|
1454
|
-
"count_dict_int",
|
|
1455
|
-
]:
|
|
1456
|
-
print(" format: ", format_)
|
|
1457
|
-
print(
|
|
1458
|
-
" ",
|
|
1459
|
-
c.sample(
|
|
1460
|
-
batch=batch,
|
|
1461
|
-
allow_state=allow_state,
|
|
1462
|
-
format_=format_,
|
|
1463
|
-
random_generator=key,
|
|
1464
|
-
),
|
|
1465
|
-
)
|
|
1466
|
-
|
|
1467
|
-
|
|
1468
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
1469
|
-
def test_channel_auto_register(backend, highp):
|
|
1470
|
-
c = tc.Circuit(2)
|
|
1471
|
-
c.H(0)
|
|
1472
|
-
c.reset(0, status=0.8)
|
|
1473
|
-
s = c.state()
|
|
1474
|
-
np.testing.assert_allclose(s[0], 1.0, atol=1e-9)
|
|
1475
|
-
|
|
1476
|
-
|
|
1477
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
1478
|
-
def test_circuit_to_json(backend):
|
|
1479
|
-
c = tc.Circuit(3)
|
|
1480
|
-
c.h(0)
|
|
1481
|
-
c.CNOT(1, 2)
|
|
1482
|
-
c.rxx(0, 2, theta=0.3)
|
|
1483
|
-
c.crx(0, 1, theta=-0.8)
|
|
1484
|
-
c.r(1, theta=tc.backend.ones([]), alpha=0.2)
|
|
1485
|
-
c.toffoli(0, 2, 1)
|
|
1486
|
-
c.ccnot(0, 1, 2)
|
|
1487
|
-
c.multicontrol(1, 2, 0, ctrl=[0, 1], unitary=tc.gates._x_matrix)
|
|
1488
|
-
s = c.to_json()
|
|
1489
|
-
c2 = tc.Circuit.from_json(s)
|
|
1490
|
-
print(c2.draw())
|
|
1491
|
-
np.testing.assert_allclose(c.state(), c2.state(), atol=1e-5)
|
|
1492
|
-
|
|
1493
|
-
|
|
1494
|
-
def test_gate_count():
|
|
1495
|
-
c = tc.Circuit(3)
|
|
1496
|
-
c.x(0)
|
|
1497
|
-
c.h(0)
|
|
1498
|
-
c.rx(1, theta=-0.2)
|
|
1499
|
-
c.h(2)
|
|
1500
|
-
c.multicontrol(0, 1, 2, ctrl=[0, 1], unitary=tc.gates._x_matrix)
|
|
1501
|
-
c.toffoli(0, 2, 1)
|
|
1502
|
-
c.ccnot(1, 2, 0)
|
|
1503
|
-
c.ccx(1, 2, 0)
|
|
1504
|
-
assert c.gate_count() == 8
|
|
1505
|
-
assert c.gate_count("h") == 2
|
|
1506
|
-
assert c.gate_count(["ccnot"]) == 3
|
|
1507
|
-
assert c.gate_count(["rx", "multicontrol"]) == 2
|
|
1508
|
-
assert c.gate_count_by_condition(lambda qir: qir["index"] == (0,)) == 2
|
|
1509
|
-
assert c.gate_count_by_condition(lambda qir: qir["mpo"]) == 1
|
|
1510
|
-
print(c.gate_summary())
|
|
1511
|
-
# {'x': 1, 'h': 2, 'rx': 1, 'multicontrol': 1, 'toffoli': 3}
|
|
1512
|
-
|
|
1513
|
-
|
|
1514
|
-
def test_to_openqasm(tmp_path):
|
|
1515
|
-
c = tc.Circuit(3)
|
|
1516
|
-
c.H(0)
|
|
1517
|
-
c.rz(2, theta=0.2)
|
|
1518
|
-
c.cnot(2, 1)
|
|
1519
|
-
c.rzz(0, 1, theta=-1.0)
|
|
1520
|
-
c.ccx(1, 2, 0)
|
|
1521
|
-
c.u(2, theta=0.5, lbd=1.3)
|
|
1522
|
-
c.measure_instruction(1)
|
|
1523
|
-
print(c.to_openqasm(formatted=True))
|
|
1524
|
-
s = c.to_openqasm()
|
|
1525
|
-
c1 = tc.Circuit.from_openqasm(s)
|
|
1526
|
-
print(c1.draw())
|
|
1527
|
-
np.testing.assert_allclose(c.state(), c1.state())
|
|
1528
|
-
c.to_openqasm_file(os.path.join(tmp_path, "test.qasm"))
|
|
1529
|
-
c2 = tc.Circuit.from_openqasm_file(os.path.join(tmp_path, "test.qasm"))
|
|
1530
|
-
np.testing.assert_allclose(c.state(), c2.state())
|
|
1531
|
-
|
|
1532
|
-
|
|
1533
|
-
def test_from_qasm_keep_measure_order():
|
|
1534
|
-
qasm_str = """OPENQASM 2.0;
|
|
1535
|
-
include "qelib1.inc";
|
|
1536
|
-
qreg q[2];
|
|
1537
|
-
creg c[2];
|
|
1538
|
-
h q[0];
|
|
1539
|
-
measure q[1] -> c[1];
|
|
1540
|
-
measure q[0] -> c[0];"""
|
|
1541
|
-
c = tc.Circuit.from_openqasm(qasm_str)
|
|
1542
|
-
c.to_openqasm().split("\n")[-2][-3] == "1"
|
|
1543
|
-
c = tc.Circuit.from_openqasm(qasm_str, keep_measure_order=True)
|
|
1544
|
-
c.to_openqasm().split("\n")[-2][-3] == "0"
|
|
1545
|
-
|
|
1546
|
-
|
|
1547
|
-
def test_initial_mapping():
|
|
1548
|
-
c = tc.Circuit(3)
|
|
1549
|
-
c.cnot(0, 1)
|
|
1550
|
-
c.h(1)
|
|
1551
|
-
c.rx(1, theta=0.5)
|
|
1552
|
-
c.cz(2, 1)
|
|
1553
|
-
c.measure_instruction(2)
|
|
1554
|
-
|
|
1555
|
-
c1 = c.initial_mapping({0: 1, 1: 2, 2: 0})
|
|
1556
|
-
print(c1.draw())
|
|
1557
|
-
|
|
1558
|
-
np.testing.assert_allclose(
|
|
1559
|
-
c.expectation_ps(z=[1]), c1.expectation_ps(z=[2]), atol=1e-5
|
|
1560
|
-
)
|
|
1561
|
-
assert c1._extra_qir[0]["index"][0] == 0
|
|
1562
|
-
|
|
1563
|
-
c2 = c1.initial_mapping({1: 0, 2: 1, 0: 2})
|
|
1564
|
-
np.testing.assert_allclose(
|
|
1565
|
-
c.expectation_ps(z=[1]), c2.expectation_ps(z=[1]), atol=1e-5
|
|
1566
|
-
)
|
|
1567
|
-
|
|
1568
|
-
c3 = c.initial_mapping({0: 2, 1: 7, 2: 0}, n=9)
|
|
1569
|
-
np.testing.assert_allclose(
|
|
1570
|
-
c.expectation_ps(z=[1]), c3.expectation_ps(z=[7]), atol=1e-5
|
|
1571
|
-
)
|
|
1572
|
-
print(c3.draw())
|
|
1573
|
-
|
|
1574
|
-
|
|
1575
|
-
def test_get_positional_logical_mapping():
|
|
1576
|
-
c = tc.Circuit(3)
|
|
1577
|
-
c.cx(0, 1)
|
|
1578
|
-
c.cz(1, 2)
|
|
1579
|
-
c.h(1)
|
|
1580
|
-
assert c.get_positional_logical_mapping() == {0: 0, 1: 1, 2: 2}
|
|
1581
|
-
c = tc.Circuit(3)
|
|
1582
|
-
c.cx(0, 1)
|
|
1583
|
-
c.h(1)
|
|
1584
|
-
c.measure_instruction(2)
|
|
1585
|
-
c.measure_instruction(0)
|
|
1586
|
-
assert c.get_positional_logical_mapping() == {0: 2, 1: 0}
|
|
1587
|
-
|
|
1588
|
-
|
|
1589
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
1590
|
-
def test_inverse_jit(backend):
|
|
1591
|
-
K = tc.backend
|
|
1592
|
-
|
|
1593
|
-
def simple_ansatz(param):
|
|
1594
|
-
c = tc.Circuit(3)
|
|
1595
|
-
for i in range(3):
|
|
1596
|
-
c.cx(i, (i + 1) % 3)
|
|
1597
|
-
c.rzz(i, (i + 1) % 3, theta=param[i])
|
|
1598
|
-
c1 = c.inverse()
|
|
1599
|
-
c2 = tc.Circuit(3)
|
|
1600
|
-
c2.x(1)
|
|
1601
|
-
c1.append(c2)
|
|
1602
|
-
return tc.backend.real(c1.expectation_ps(z=[1]))
|
|
1603
|
-
|
|
1604
|
-
v_ansatz = K.jit(K.vvag(simple_ansatz))
|
|
1605
|
-
vs, gs = v_ansatz(K.ones([2, 3], dtype="float32"))
|
|
1606
|
-
assert K.shape_tuple(gs) == (2, 3)
|
|
1607
|
-
np.testing.assert_allclose(K.numpy(vs), -1.0 * K.ones([2]), atol=1e-5)
|
|
1608
|
-
|
|
1609
|
-
|
|
1610
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("npb")])
|
|
1611
|
-
def test_fancy_circuit_indexing(backend):
|
|
1612
|
-
c = tc.Circuit(4)
|
|
1613
|
-
c.cx([0, 1], [-1, -2])
|
|
1614
|
-
c.h(range(c._nqubits))
|
|
1615
|
-
c.rz([0], theta=0.2)
|
|
1616
|
-
c.rx([1, 2], theta=[0.3, 0.5])
|
|
1617
|
-
c.rzz([2, 3], [0, 1], theta=tc.backend.ones([2]))
|
|
1618
|
-
c.rxx([2, 0, 1], [0, 1, 2], theta=tc.backend.ones([1]))
|
|
1619
|
-
assert c.gate_count("h") == 4
|
|
1620
|
-
assert c.gate_count("rzz") == 2
|
|
1621
|
-
assert c.gate_count("rxx") == 3
|
|
1622
|
-
|
|
1623
|
-
|
|
1624
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("npb")])
|
|
1625
|
-
def test_general_kraus(backend):
|
|
1626
|
-
c = tc.Circuit(2)
|
|
1627
|
-
c.h([0, 1])
|
|
1628
|
-
p = 0.5
|
|
1629
|
-
status = [0.3, 0.8]
|
|
1630
|
-
rs = []
|
|
1631
|
-
for i in range(2):
|
|
1632
|
-
rs.append(
|
|
1633
|
-
c.general_kraus(
|
|
1634
|
-
[
|
|
1635
|
-
np.sqrt(p) * np.array([[1.0, 0], [0, 0]]),
|
|
1636
|
-
np.sqrt(p) * np.array([[0, 0], [0, 1.0]]),
|
|
1637
|
-
np.sqrt(1 - p) * np.eye(2),
|
|
1638
|
-
],
|
|
1639
|
-
i,
|
|
1640
|
-
status=status[i],
|
|
1641
|
-
)
|
|
1642
|
-
)
|
|
1643
|
-
np.testing.assert_allclose(rs[0], 1)
|
|
1644
|
-
np.testing.assert_allclose(rs[1], 2)
|
|
1645
|
-
np.testing.assert_allclose(c.expectation_ps(z=[0]), -1, atol=1e-5)
|
|
1646
|
-
np.testing.assert_allclose(c.expectation_ps(z=[1]), 0, atol=1e-5)
|
|
1647
|
-
|
|
1648
|
-
|
|
1649
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("npb")])
|
|
1650
|
-
def test_general_kraus_with_prob(backend):
|
|
1651
|
-
c = tc.Circuit(2)
|
|
1652
|
-
c.h([0, 1])
|
|
1653
|
-
p = 0.5
|
|
1654
|
-
status = [0.3, 0.8]
|
|
1655
|
-
rs = []
|
|
1656
|
-
for i in range(2):
|
|
1657
|
-
rs.append(
|
|
1658
|
-
c.general_kraus(
|
|
1659
|
-
[
|
|
1660
|
-
np.sqrt(p) * np.array([[1.0, 0], [0, 0]]),
|
|
1661
|
-
np.sqrt(p) * np.array([[0, 0], [0, 1.0]]),
|
|
1662
|
-
np.sqrt(1 - p) * np.eye(2),
|
|
1663
|
-
],
|
|
1664
|
-
i,
|
|
1665
|
-
status=status[i],
|
|
1666
|
-
with_prob=True,
|
|
1667
|
-
)
|
|
1668
|
-
)
|
|
1669
|
-
np.testing.assert_allclose(rs[0][0], 1)
|
|
1670
|
-
np.testing.assert_allclose(rs[1][0], 2)
|
|
1671
|
-
np.testing.assert_allclose(c.expectation_ps(z=[0]), -1, atol=1e-5)
|
|
1672
|
-
np.testing.assert_allclose(c.expectation_ps(z=[1]), 0, atol=1e-5)
|
|
1673
|
-
np.testing.assert_allclose(rs[0][1], [0.25, 0.25, 0.5], atol=1e-5)
|
|
1674
|
-
np.testing.assert_allclose(rs[1][1], [0.25, 0.25, 0.5], atol=1e-5)
|
|
1675
|
-
np.testing.assert_allclose(tc.backend.norm(c.state()), 1, atol=1e-5)
|
|
1676
|
-
|
|
1677
|
-
|
|
1678
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("npb")])
|
|
1679
|
-
def test_circuit_copy(backend):
|
|
1680
|
-
c = tc.Circuit(2)
|
|
1681
|
-
c.h(0)
|
|
1682
|
-
c1 = c.copy()
|
|
1683
|
-
c.rz(0, theta=0.1)
|
|
1684
|
-
assert c1.gate_count() == 1
|
|
1685
|
-
|
|
1686
|
-
|
|
1687
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("npb")])
|
|
1688
|
-
def test_projected_subsystem(backend):
|
|
1689
|
-
c = tc.Circuit(3)
|
|
1690
|
-
c.h(0)
|
|
1691
|
-
c.cnot(0, 1)
|
|
1692
|
-
c.rx(1, theta=0.9)
|
|
1693
|
-
c.cy(1, 2)
|
|
1694
|
-
s = c.projected_subsystem(tc.backend.convert_to_tensor(np.array([1, 1, 1.0])), (0,))
|
|
1695
|
-
np.testing.assert_allclose(s, np.array([0.43496, 0.900447j]), atol=1e-5)
|
|
1696
|
-
s = c.projected_subsystem(
|
|
1697
|
-
tc.backend.convert_to_tensor(np.array([0, 0, 0.0])), (0, 2)
|
|
1698
|
-
)
|
|
1699
|
-
np.testing.assert_allclose(s[0], 0.900447, atol=1e-5)
|
|
1700
|
-
|
|
1701
|
-
c = tc.DMCircuit(3)
|
|
1702
|
-
c.h(0)
|
|
1703
|
-
c.cnot(0, 1)
|
|
1704
|
-
c.rx(1, theta=0.9)
|
|
1705
|
-
c.cy(1, 2)
|
|
1706
|
-
s = c.projected_subsystem(tc.backend.convert_to_tensor(np.array([1, 1, 1.0])), (0,))
|
|
1707
|
-
assert tc.backend.shape_tuple(s) == (2, 2)
|
|
1708
|
-
np.testing.assert_allclose(s[1, 1], 0.8108051, atol=1e-5)
|
|
1709
|
-
s = c.projected_subsystem(
|
|
1710
|
-
tc.backend.convert_to_tensor(np.array([1, 1, 1.0])), (1, 2)
|
|
1711
|
-
)
|
|
1712
|
-
assert tc.backend.shape_tuple(s) == (4, 4)
|
|
1713
|
-
np.testing.assert_allclose(s[3, 3], 0.8108051, atol=1e-5)
|