snappy 3.2__cp39-cp39-macosx_10_12_x86_64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-39-darwin.so +0 -0
- snappy/SnapPy.cpython-39-darwin.so +0 -0
- snappy/SnapPy.ico +0 -0
- snappy/SnapPy.png +0 -0
- snappy/SnapPyHP.cpython-39-darwin.so +0 -0
- snappy/__init__.py +760 -0
- snappy/app.py +605 -0
- snappy/app_menus.py +372 -0
- snappy/browser.py +998 -0
- snappy/cache.py +25 -0
- snappy/canonical.py +249 -0
- snappy/cusps/__init__.py +38 -0
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/cusps/cusp_areas_from_matrix.py +173 -0
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +454 -0
- snappy/db_utilities.py +79 -0
- snappy/decorated_isosig.py +710 -0
- snappy/dev/__init__.py +0 -0
- snappy/dev/extended_ptolemy/__init__.py +8 -0
- snappy/dev/extended_ptolemy/closed.py +106 -0
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +149 -0
- snappy/dev/extended_ptolemy/direct.py +42 -0
- snappy/dev/extended_ptolemy/extended.py +406 -0
- snappy/dev/extended_ptolemy/giac_helper.py +43 -0
- snappy/dev/extended_ptolemy/giac_rur.py +129 -0
- snappy/dev/extended_ptolemy/gluing.py +46 -0
- snappy/dev/extended_ptolemy/phc_wrapper.py +220 -0
- snappy/dev/extended_ptolemy/printMatrices.py +70 -0
- snappy/dev/vericlosed/__init__.py +1 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureNew.py +159 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +90 -0
- snappy/dev/vericlosed/computeVerifiedHyperbolicStructure.py +111 -0
- snappy/dev/vericlosed/gimbalLoopFinder.py +130 -0
- snappy/dev/vericlosed/hyperbolicStructure.py +313 -0
- snappy/dev/vericlosed/krawczykCertifiedEdgeLengthsEngine.py +165 -0
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +122 -0
- snappy/dev/vericlosed/orb/__init__.py +1 -0
- snappy/dev/vericlosed/orb/orb_solution_for_snappea_finite_triangulation_mac +0 -0
- snappy/dev/vericlosed/parseVertexGramMatrixFile.py +47 -0
- snappy/dev/vericlosed/polishApproxHyperbolicStructure.py +61 -0
- snappy/dev/vericlosed/test.py +54 -0
- snappy/dev/vericlosed/truncatedComplex.py +176 -0
- snappy/dev/vericlosed/verificationError.py +58 -0
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +177 -0
- snappy/doc/_images/SnapPy-196.png +0 -0
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/mac.png +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_images/plink-action.png +0 -0
- snappy/doc/_images/ubuntu.png +0 -0
- snappy/doc/_images/win7.png +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -0
- snappy/doc/_sources/bugs.rst.txt +14 -0
- snappy/doc/_sources/censuses.rst.txt +51 -0
- snappy/doc/_sources/credits.rst.txt +75 -0
- snappy/doc/_sources/development.rst.txt +259 -0
- snappy/doc/_sources/index.rst.txt +182 -0
- snappy/doc/_sources/installing.rst.txt +247 -0
- snappy/doc/_sources/manifold.rst.txt +6 -0
- snappy/doc/_sources/manifoldhp.rst.txt +46 -0
- snappy/doc/_sources/news.rst.txt +355 -0
- snappy/doc/_sources/other.rst.txt +25 -0
- snappy/doc/_sources/platonic_census.rst.txt +20 -0
- snappy/doc/_sources/plink.rst.txt +102 -0
- snappy/doc/_sources/ptolemy.rst.txt +66 -0
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -0
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -0
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -0
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -0
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -0
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -0
- snappy/doc/_sources/screenshots.rst.txt +21 -0
- snappy/doc/_sources/snap.rst.txt +87 -0
- snappy/doc/_sources/snappy.rst.txt +28 -0
- snappy/doc/_sources/spherogram.rst.txt +103 -0
- snappy/doc/_sources/todo.rst.txt +47 -0
- snappy/doc/_sources/triangulation.rst.txt +11 -0
- snappy/doc/_sources/tutorial.rst.txt +49 -0
- snappy/doc/_sources/verify.rst.txt +210 -0
- snappy/doc/_sources/verify_internals.rst.txt +79 -0
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +925 -0
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +156 -0
- snappy/doc/_static/documentation_options.js +13 -0
- snappy/doc/_static/file.png +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -0
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +199 -0
- snappy/doc/_static/minus.png +0 -0
- snappy/doc/_static/plus.png +0 -0
- snappy/doc/_static/pygments.css +75 -0
- snappy/doc/_static/searchtools.js +620 -0
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +1500 -0
- snappy/doc/bugs.html +132 -0
- snappy/doc/censuses.html +427 -0
- snappy/doc/credits.html +181 -0
- snappy/doc/development.html +384 -0
- snappy/doc/genindex.html +1331 -0
- snappy/doc/index.html +262 -0
- snappy/doc/installing.html +346 -0
- snappy/doc/manifold.html +3452 -0
- snappy/doc/manifoldhp.html +180 -0
- snappy/doc/news.html +388 -0
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +161 -0
- snappy/doc/platonic_census.html +375 -0
- snappy/doc/plink.html +210 -0
- snappy/doc/ptolemy.html +254 -0
- snappy/doc/ptolemy_classes.html +1144 -0
- snappy/doc/ptolemy_examples1.html +409 -0
- snappy/doc/ptolemy_examples2.html +471 -0
- snappy/doc/ptolemy_examples3.html +414 -0
- snappy/doc/ptolemy_examples4.html +195 -0
- snappy/doc/ptolemy_prelim.html +248 -0
- snappy/doc/py-modindex.html +165 -0
- snappy/doc/screenshots.html +141 -0
- snappy/doc/search.html +135 -0
- snappy/doc/searchindex.js +1 -0
- snappy/doc/snap.html +202 -0
- snappy/doc/snappy.html +181 -0
- snappy/doc/spherogram.html +1211 -0
- snappy/doc/todo.html +166 -0
- snappy/doc/triangulation.html +1584 -0
- snappy/doc/tutorial.html +159 -0
- snappy/doc/verify.html +330 -0
- snappy/doc/verify_internals.html +1235 -0
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +26 -0
- snappy/export_stl.py +120 -0
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/filedialog.py +28 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +121 -0
- snappy/horoviewer.py +443 -0
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/info_icon.gif +0 -0
- snappy/infowindow.py +65 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/HTWKnots/alternating.gz +0 -0
- snappy/manifolds/HTWKnots/nonalternating.gz +0 -0
- snappy/manifolds/__init__.py +3 -0
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +657 -0
- snappy/numeric_output_checker.py +345 -0
- snappy/pari.py +41 -0
- snappy/phone_home.py +57 -0
- snappy/polyviewer.py +259 -0
- snappy/ptolemy/__init__.py +17 -0
- snappy/ptolemy/component.py +103 -0
- snappy/ptolemy/coordinates.py +2290 -0
- snappy/ptolemy/fieldExtensions.py +153 -0
- snappy/ptolemy/findLoops.py +473 -0
- snappy/ptolemy/geometricRep.py +59 -0
- snappy/ptolemy/homology.py +165 -0
- snappy/ptolemy/magma/default.magma_template +229 -0
- snappy/ptolemy/magma/radicalsOfPrimaryDecomposition.magma_template +79 -0
- snappy/ptolemy/manifoldMethods.py +395 -0
- snappy/ptolemy/matrix.py +350 -0
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +113 -0
- snappy/ptolemy/polynomial.py +857 -0
- snappy/ptolemy/processComponents.py +173 -0
- snappy/ptolemy/processFileBase.py +247 -0
- snappy/ptolemy/processFileDispatch.py +46 -0
- snappy/ptolemy/processMagmaFile.py +392 -0
- snappy/ptolemy/processRurFile.py +150 -0
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +102 -0
- snappy/ptolemy/ptolemyObstructionClass.py +64 -0
- snappy/ptolemy/ptolemyVariety.py +1029 -0
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +140 -0
- snappy/ptolemy/reginaWrapper.py +698 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/rur.py +545 -0
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +277 -0
- snappy/ptolemy/test.py +1126 -0
- snappy/ptolemy/testing_files/3_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/3_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c0.magma_out +95 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c1.magma_out +95 -0
- snappy/ptolemy/testing_files/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_rur/m052__sl3_c0.rur.bz2 +0 -0
- snappy/ptolemy/utilities.py +236 -0
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +197 -0
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +237 -0
- snappy/raytracing/finite_viewer.py +590 -0
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +293 -0
- snappy/raytracing/hyperboloid_navigation.py +556 -0
- snappy/raytracing/hyperboloid_utilities.py +234 -0
- snappy/raytracing/ideal_raytracing_data.py +592 -0
- snappy/raytracing/inside_viewer.py +974 -0
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +126 -0
- snappy/raytracing/raytracing_view.py +454 -0
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +101 -0
- snappy/raytracing/shaders/fragment.glsl +1744 -0
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +263 -0
- snappy/raytracing/zoom_slider/inward.png +0 -0
- snappy/raytracing/zoom_slider/inward18.png +0 -0
- snappy/raytracing/zoom_slider/outward.png +0 -0
- snappy/raytracing/zoom_slider/outward18.png +0 -0
- snappy/raytracing/zoom_slider/test.py +20 -0
- snappy/sage_helper.py +117 -0
- snappy/settings.py +409 -0
- snappy/shell.py +53 -0
- snappy/snap/__init__.py +114 -0
- snappy/snap/character_varieties.py +375 -0
- snappy/snap/find_field.py +372 -0
- snappy/snap/fundamental_polyhedron.py +569 -0
- snappy/snap/generators.py +39 -0
- snappy/snap/interval_reps.py +81 -0
- snappy/snap/kernel_structures.py +128 -0
- snappy/snap/mcomplex_base.py +18 -0
- snappy/snap/nsagetools.py +702 -0
- snappy/snap/peripheral/__init__.py +1 -0
- snappy/snap/peripheral/dual_cellulation.py +219 -0
- snappy/snap/peripheral/link.py +127 -0
- snappy/snap/peripheral/peripheral.py +159 -0
- snappy/snap/peripheral/surface.py +522 -0
- snappy/snap/peripheral/test.py +35 -0
- snappy/snap/polished_reps.py +335 -0
- snappy/snap/shapes.py +152 -0
- snappy/snap/slice_obs_HKL.py +668 -0
- snappy/snap/t3mlite/__init__.py +2 -0
- snappy/snap/t3mlite/arrow.py +243 -0
- snappy/snap/t3mlite/corner.py +22 -0
- snappy/snap/t3mlite/edge.py +172 -0
- snappy/snap/t3mlite/face.py +37 -0
- snappy/snap/t3mlite/files.py +211 -0
- snappy/snap/t3mlite/homology.py +53 -0
- snappy/snap/t3mlite/linalg.py +419 -0
- snappy/snap/t3mlite/mcomplex.py +1499 -0
- snappy/snap/t3mlite/perm4.py +320 -0
- snappy/snap/t3mlite/setup.py +12 -0
- snappy/snap/t3mlite/simplex.py +199 -0
- snappy/snap/t3mlite/spun.py +297 -0
- snappy/snap/t3mlite/surface.py +519 -0
- snappy/snap/t3mlite/test.py +20 -0
- snappy/snap/t3mlite/test_vs_regina.py +86 -0
- snappy/snap/t3mlite/tetrahedron.py +109 -0
- snappy/snap/t3mlite/vertex.py +42 -0
- snappy/snap/test.py +134 -0
- snappy/snap/utilities.py +288 -0
- snappy/test.py +209 -0
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +920 -0
- snappy/twister/__init__.py +20 -0
- snappy/twister/main.py +646 -0
- snappy/twister/surfaces/S_0_1 +3 -0
- snappy/twister/surfaces/S_0_2 +3 -0
- snappy/twister/surfaces/S_0_4 +7 -0
- snappy/twister/surfaces/S_0_4_Lantern +8 -0
- snappy/twister/surfaces/S_1 +3 -0
- snappy/twister/surfaces/S_1_1 +4 -0
- snappy/twister/surfaces/S_1_2 +5 -0
- snappy/twister/surfaces/S_1_2_5 +6 -0
- snappy/twister/surfaces/S_2 +6 -0
- snappy/twister/surfaces/S_2_1 +8 -0
- snappy/twister/surfaces/S_2_heeg +10 -0
- snappy/twister/surfaces/S_3 +8 -0
- snappy/twister/surfaces/S_3_1 +10 -0
- snappy/twister/surfaces/S_4_1 +12 -0
- snappy/twister/surfaces/S_5_1 +14 -0
- snappy/twister/surfaces/heeg_fig8 +9 -0
- snappy/twister/twister_core.cpython-39-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +13 -0
- snappy/verify/canonical.py +542 -0
- snappy/verify/complex_volume/__init__.py +18 -0
- snappy/verify/complex_volume/adjust_torsion.py +86 -0
- snappy/verify/complex_volume/closed.py +168 -0
- snappy/verify/complex_volume/compute_ptolemys.py +90 -0
- snappy/verify/complex_volume/cusped.py +56 -0
- snappy/verify/complex_volume/extended_bloch.py +201 -0
- snappy/verify/cusp_translations.py +85 -0
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +254 -0
- snappy/verify/hyperbolicity.py +224 -0
- snappy/verify/interval_newton_shapes_engine.py +523 -0
- snappy/verify/interval_tree.py +400 -0
- snappy/verify/krawczyk_shapes_engine.py +518 -0
- snappy/verify/maximal_cusp_area_matrix/__init__.py +46 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +419 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +153 -0
- snappy/verify/real_algebra.py +286 -0
- snappy/verify/shapes.py +25 -0
- snappy/verify/short_slopes.py +200 -0
- snappy/verify/square_extensions.py +1005 -0
- snappy/verify/test.py +78 -0
- snappy/verify/upper_halfspace/__init__.py +9 -0
- snappy/verify/upper_halfspace/extended_matrix.py +100 -0
- snappy/verify/upper_halfspace/finite_point.py +283 -0
- snappy/verify/upper_halfspace/ideal_point.py +426 -0
- snappy/verify/volume.py +128 -0
- snappy/version.py +2 -0
- snappy-3.2.dist-info/METADATA +58 -0
- snappy-3.2.dist-info/RECORD +503 -0
- snappy-3.2.dist-info/WHEEL +5 -0
- snappy-3.2.dist-info/entry_points.txt +2 -0
- snappy-3.2.dist-info/top_level.txt +28 -0
@@ -0,0 +1,298 @@
|
|
1
|
+
from .cusp_cross_section_base import CuspCrossSectionBase, HoroTriangleBase
|
2
|
+
from .exceptions import IncompleteCuspError, ConsistencyWithSnapPeaNumericalVerifyError
|
3
|
+
|
4
|
+
from ...snap.kernel_structures import TransferKernelStructuresEngine
|
5
|
+
from ...snap import t3mlite as t3m
|
6
|
+
from ...snap.t3mlite import simplex
|
7
|
+
|
8
|
+
class RealHoroTriangle:
|
9
|
+
"""
|
10
|
+
A horosphere cross section in the corner of an ideal tetrahedron.
|
11
|
+
The sides of the triangle correspond to faces of the tetrahedron.
|
12
|
+
The lengths stored for the triangle are real.
|
13
|
+
"""
|
14
|
+
def __init__(self, tet, vertex, known_side, length_of_side=None):
|
15
|
+
left_side, center_side, right_side, z_left, z_right = (
|
16
|
+
HoroTriangleBase._sides_and_cross_ratios(tet, vertex, known_side))
|
17
|
+
|
18
|
+
if length_of_side is None:
|
19
|
+
RF = z_left.real().parent()
|
20
|
+
L = RF(1)
|
21
|
+
else:
|
22
|
+
L = length_of_side
|
23
|
+
|
24
|
+
self.lengths = { center_side : L,
|
25
|
+
left_side : abs(z_left) * L,
|
26
|
+
right_side : L / abs(z_right) }
|
27
|
+
a, b, c = self.lengths.values()
|
28
|
+
self.area = L * L * z_left.imag() / 2
|
29
|
+
|
30
|
+
# Below is the usual formula for circumradius
|
31
|
+
self.circumradius = a * b * c / (4 * self.area)
|
32
|
+
|
33
|
+
def rescale(self, t):
|
34
|
+
"Rescales the triangle by a Euclidean dilation"
|
35
|
+
for face in self.lengths:
|
36
|
+
self.lengths[face] *= t
|
37
|
+
self.circumradius *= t
|
38
|
+
self.area *= t * t
|
39
|
+
|
40
|
+
def get_real_lengths(self):
|
41
|
+
return self.lengths
|
42
|
+
|
43
|
+
@staticmethod
|
44
|
+
def direction_sign():
|
45
|
+
return +1
|
46
|
+
|
47
|
+
class RealCuspCrossSection(CuspCrossSectionBase):
|
48
|
+
"""
|
49
|
+
A t3m triangulation with real edge lengths of cusp cross sections built
|
50
|
+
from a cusped (possibly non-orientable) SnapPy manifold M with a hyperbolic
|
51
|
+
structure specified by shapes. It can scale the cusps to areas that can be
|
52
|
+
specified or scale them such that they are disjoint.
|
53
|
+
It can also compute the "tilts" used in the Tilt Theorem, see
|
54
|
+
``canonize_part_1.c``.
|
55
|
+
|
56
|
+
The computations are agnostic about the type of numbers provided as shapes
|
57
|
+
as long as they provide ``+``, ``-``, ``*``, ``/``, ``conjugate()``,
|
58
|
+
``im()``, ``abs()``, ``sqrt()``.
|
59
|
+
Shapes can be a numerical type such as ComplexIntervalField or an exact
|
60
|
+
type (supporting sqrt) such as QQbar.
|
61
|
+
|
62
|
+
The resulting edge lengths and tilts will be of the type returned by
|
63
|
+
applying the above operations to the shapes. For example, if the shapes
|
64
|
+
are in ComplexIntervalField, the edge lengths and tilts are elements in
|
65
|
+
RealIntervalField.
|
66
|
+
|
67
|
+
**Remark:** The real edge lengths could also be obtained from the complex
|
68
|
+
edge lengths computed by ``ComplexCuspCrossSection``, but this has two
|
69
|
+
drawbacks. The times at which we apply ``abs`` or ``sqrt`` during the
|
70
|
+
development and rescaling of the cusps would be different. Though this
|
71
|
+
gives the same values, the resulting representation of these values by an
|
72
|
+
exact number type (such as the ones in ``squareExtension.py``) might be
|
73
|
+
prohibitively more complicated. Furthermore, ``ComplexCuspCrossSection``
|
74
|
+
does not work for non-orientable manifolds (it does not implement working
|
75
|
+
in a cusp's double-cover like the SnapPea kernel does).
|
76
|
+
|
77
|
+
Original source:
|
78
|
+
Asymmetric hyperbolic L-spaces, Heegaard genus, and Dehn filling
|
79
|
+
Nathan M. Dunfield, Neil R. Hoffman, Joan E. Licata
|
80
|
+
http://arxiv.org/abs/1407.7827
|
81
|
+
"""
|
82
|
+
|
83
|
+
HoroTriangle = RealHoroTriangle
|
84
|
+
|
85
|
+
@staticmethod
|
86
|
+
def fromManifoldAndShapes(manifold, shapes):
|
87
|
+
"""
|
88
|
+
**Examples:**
|
89
|
+
|
90
|
+
Initialize from shapes provided from the floats returned by
|
91
|
+
tetrahedra_shapes. The tilts appear to be negative but are not
|
92
|
+
verified by interval arithmetics::
|
93
|
+
|
94
|
+
>>> from snappy import Manifold
|
95
|
+
>>> M = Manifold("m004")
|
96
|
+
>>> M.canonize()
|
97
|
+
>>> shapes = M.tetrahedra_shapes('rect')
|
98
|
+
>>> e = RealCuspCrossSection.fromManifoldAndShapes(M, shapes)
|
99
|
+
>>> e.normalize_cusps()
|
100
|
+
>>> e.compute_tilts()
|
101
|
+
>>> tilts = e.read_tilts()
|
102
|
+
>>> for tilt in tilts:
|
103
|
+
... print('%.8f' % tilt)
|
104
|
+
-0.31020162
|
105
|
+
-0.31020162
|
106
|
+
-0.31020162
|
107
|
+
-0.31020162
|
108
|
+
-0.31020162
|
109
|
+
-0.31020162
|
110
|
+
-0.31020162
|
111
|
+
-0.31020162
|
112
|
+
|
113
|
+
Use verified intervals:
|
114
|
+
|
115
|
+
sage: from snappy.verify import *
|
116
|
+
sage: M = Manifold("m004")
|
117
|
+
sage: M.canonize()
|
118
|
+
sage: shapes = M.tetrahedra_shapes('rect', intervals=True)
|
119
|
+
|
120
|
+
Verify that the tetrahedra shapes form a complete manifold:
|
121
|
+
|
122
|
+
sage: check_logarithmic_gluing_equations_and_positively_oriented_tets(M,shapes)
|
123
|
+
sage: e = RealCuspCrossSection.fromManifoldAndShapes(M, shapes)
|
124
|
+
sage: e.normalize_cusps()
|
125
|
+
sage: e.compute_tilts()
|
126
|
+
|
127
|
+
|
128
|
+
Tilts are verified to be negative:
|
129
|
+
|
130
|
+
sage: [tilt < 0 for tilt in e.read_tilts()]
|
131
|
+
[True, True, True, True, True, True, True, True]
|
132
|
+
|
133
|
+
Setup necessary things in Sage:
|
134
|
+
|
135
|
+
sage: from sage.rings.qqbar import QQbar
|
136
|
+
sage: from sage.rings.rational_field import RationalField
|
137
|
+
sage: from sage.rings.polynomial.polynomial_ring import polygen
|
138
|
+
sage: from sage.rings.real_mpfi import RealIntervalField
|
139
|
+
sage: from sage.rings.complex_interval_field import ComplexIntervalField
|
140
|
+
sage: x = polygen(RationalField())
|
141
|
+
sage: RIF = RealIntervalField()
|
142
|
+
sage: CIF = ComplexIntervalField()
|
143
|
+
|
144
|
+
sage: M = Manifold("m412")
|
145
|
+
sage: M.canonize()
|
146
|
+
|
147
|
+
Make our own exact shapes using Sage. They are the root of the given
|
148
|
+
polynomial isolated by the given interval.
|
149
|
+
|
150
|
+
sage: r=QQbar.polynomial_root(x**2-x+1,CIF(RIF(0.49,0.51),RIF(0.86,0.87)))
|
151
|
+
sage: shapes = 5 * [r]
|
152
|
+
sage: e=RealCuspCrossSection.fromManifoldAndShapes(M, shapes)
|
153
|
+
sage: e.normalize_cusps()
|
154
|
+
|
155
|
+
The following three lines verify that we have shapes giving a complete
|
156
|
+
hyperbolic structure. The last one uses complex interval arithmetics.
|
157
|
+
|
158
|
+
sage: from snappy.verify import edge_equations
|
159
|
+
sage: edge_equations.check_polynomial_edge_equations_exactly(e.mcomplex)
|
160
|
+
sage: e.check_cusp_development_exactly()
|
161
|
+
sage: edge_equations.check_logarithmic_edge_equations_and_positivity(e.mcomplex, CIF)
|
162
|
+
|
163
|
+
Because we use exact types, we can verify that each tilt is either
|
164
|
+
negative or exactly zero.
|
165
|
+
|
166
|
+
sage: e.compute_tilts()
|
167
|
+
sage: [(tilt < 0, tilt == 0) for tilt in e.read_tilts()]
|
168
|
+
[(True, False), (True, False), (False, True), (True, False), (True, False), (True, False), (True, False), (False, True), (True, False), (True, False), (True, False), (False, True), (False, True), (False, True), (False, True), (False, True), (True, False), (True, False), (False, True), (True, False)]
|
169
|
+
|
170
|
+
Some are exactly zero, so the canonical cell decomposition has
|
171
|
+
non-tetrahedral cells. In fact, the one cell is a cube. We can obtain
|
172
|
+
the retriangulation of the canonical cell decomposition as follows:
|
173
|
+
|
174
|
+
sage: e.compute_tilts()
|
175
|
+
sage: opacities = [tilt < 0 for tilt in e.read_tilts()]
|
176
|
+
sage: N = M._canonical_retriangulation()
|
177
|
+
sage: N.num_tetrahedra()
|
178
|
+
12
|
179
|
+
|
180
|
+
The manifold m412 has 8 isometries, the above code certified that using
|
181
|
+
exact arithmetic:
|
182
|
+
sage: len(N.isomorphisms_to(N))
|
183
|
+
8
|
184
|
+
"""
|
185
|
+
for cusp_info in manifold.cusp_info():
|
186
|
+
if not cusp_info['complete?']:
|
187
|
+
raise IncompleteCuspError(manifold)
|
188
|
+
|
189
|
+
m = t3m.Mcomplex(manifold)
|
190
|
+
|
191
|
+
t = TransferKernelStructuresEngine(m, manifold)
|
192
|
+
t.reindex_cusps_and_transfer_peripheral_curves()
|
193
|
+
t.add_shapes(shapes)
|
194
|
+
|
195
|
+
c = RealCuspCrossSection(m)
|
196
|
+
c.add_structures()
|
197
|
+
|
198
|
+
# For testing against SnapPea kernel data
|
199
|
+
c.manifold = manifold
|
200
|
+
|
201
|
+
return c
|
202
|
+
|
203
|
+
@staticmethod
|
204
|
+
def _tet_tilt(tet : t3m.Tetrahedron, face : int):
|
205
|
+
"The tilt of the face of the tetrahedron."
|
206
|
+
|
207
|
+
v = simplex.comp(face)
|
208
|
+
|
209
|
+
ans = 0
|
210
|
+
for w in simplex.ZeroSubsimplices:
|
211
|
+
if v == w:
|
212
|
+
c_w = 1
|
213
|
+
else:
|
214
|
+
z = tet.ShapeParameters[v | w]
|
215
|
+
c_w = -z.real() / abs(z)
|
216
|
+
R_w = tet.horotriangles[w].circumradius
|
217
|
+
ans += c_w * R_w
|
218
|
+
return ans
|
219
|
+
|
220
|
+
@staticmethod
|
221
|
+
def _face_tilt(face : t3m.Face):
|
222
|
+
"""
|
223
|
+
Tilt of a face in the triangulation: this is the sum of
|
224
|
+
the two tilts of the two faces of the two tetrahedra that are
|
225
|
+
glued. The argument is a simplex.Face.
|
226
|
+
"""
|
227
|
+
|
228
|
+
return sum([ RealCuspCrossSection._tet_tilt(corner.Tetrahedron,
|
229
|
+
corner.Subsimplex)
|
230
|
+
for corner in face.Corners ])
|
231
|
+
|
232
|
+
def compute_tilts(self):
|
233
|
+
"""
|
234
|
+
Computes all tilts. They are written to the instances of
|
235
|
+
simplex.Face and can be accessed as
|
236
|
+
[ face.Tilt for face in crossSection.Faces].
|
237
|
+
"""
|
238
|
+
|
239
|
+
for face in self.mcomplex.Faces:
|
240
|
+
face.Tilt = RealCuspCrossSection._face_tilt(face)
|
241
|
+
|
242
|
+
def read_tilts(self):
|
243
|
+
"""
|
244
|
+
After compute_tilts() has been called, put the tilt values into an
|
245
|
+
array containing the tilt of face 0, 1, 2, 3 of the first tetrahedron,
|
246
|
+
... of the second tetrahedron, ....
|
247
|
+
"""
|
248
|
+
|
249
|
+
def index_of_face_corner(corner):
|
250
|
+
face_index = simplex.comp(corner.Subsimplex).bit_length() - 1
|
251
|
+
return 4 * corner.Tetrahedron.Index + face_index
|
252
|
+
|
253
|
+
tilts = (4 * len(self.mcomplex.Tetrahedra)) * [ None ]
|
254
|
+
|
255
|
+
# For each face of the triangulation
|
256
|
+
for face in self.mcomplex.Faces:
|
257
|
+
for corner in face.Corners:
|
258
|
+
tilts[index_of_face_corner(corner)] = face.Tilt
|
259
|
+
|
260
|
+
return tilts
|
261
|
+
|
262
|
+
def _testing_check_against_snappea(self, epsilon):
|
263
|
+
"""
|
264
|
+
Compare the computed edge lengths and tilts against the one computed by
|
265
|
+
the SnapPea kernel.
|
266
|
+
|
267
|
+
>>> from snappy import Manifold
|
268
|
+
|
269
|
+
Convention of the kernel is to use (3/8) sqrt(3) as area (ensuring that
|
270
|
+
cusp neighborhoods are disjoint).
|
271
|
+
|
272
|
+
>>> cusp_area = 0.649519052838329
|
273
|
+
|
274
|
+
>>> for name in ['m009', 'm015', 't02333']:
|
275
|
+
... M = Manifold(name)
|
276
|
+
... e = RealCuspCrossSection.fromManifoldAndShapes(M, M.tetrahedra_shapes('rect'))
|
277
|
+
... e.normalize_cusps(cusp_area)
|
278
|
+
... e._testing_check_against_snappea(1e-10)
|
279
|
+
|
280
|
+
"""
|
281
|
+
|
282
|
+
CuspCrossSectionBase._testing_check_against_snappea(self, epsilon)
|
283
|
+
|
284
|
+
# Short-hand
|
285
|
+
TwoSubs = simplex.TwoSubsimplices
|
286
|
+
|
287
|
+
# SnapPea kernel results
|
288
|
+
snappea_tilts, snappea_edges = self.manifold._cusp_cross_section_info()
|
289
|
+
|
290
|
+
# Check tilts
|
291
|
+
# Iterate through tet
|
292
|
+
for tet, snappea_tet_tilts in zip(self.mcomplex.Tetrahedra, snappea_tilts):
|
293
|
+
# Iterate through vertices of tet
|
294
|
+
for f, snappea_tet_tilt in zip(TwoSubs, snappea_tet_tilts):
|
295
|
+
tilt = RealCuspCrossSection._tet_tilt(tet, f)
|
296
|
+
if not abs(snappea_tet_tilt - tilt) < epsilon:
|
297
|
+
raise ConsistencyWithSnapPeaNumericalVerifyError(
|
298
|
+
snappea_tet_tilt, tilt)
|
@@ -0,0 +1,159 @@
|
|
1
|
+
from .exceptions import IncompleteCuspError
|
2
|
+
from .real_cusp_cross_section import RealCuspCrossSection
|
3
|
+
from .vertices import scale_vertices_from_horotriangles
|
4
|
+
from .. import add_r13_geometry
|
5
|
+
|
6
|
+
from ...hyperboloid.horoball import R13Horoball
|
7
|
+
from ...tiling.tile import Tile, compute_tiles
|
8
|
+
from ...tiling.triangle import add_triangles_to_tetrahedra
|
9
|
+
from ...tiling.lifted_tetrahedron import LiftedTetrahedron
|
10
|
+
from ...tiling.lifted_tetrahedron_set import (LiftedTetrahedronSet,
|
11
|
+
get_lifted_tetrahedron_set)
|
12
|
+
from ...tiling.iter_utils import IteratorCache
|
13
|
+
from ...snap.t3mlite import Mcomplex, Vertex, Corner
|
14
|
+
from ...matrix import make_identity_matrix
|
15
|
+
from ...math_basics import correct_min
|
16
|
+
|
17
|
+
|
18
|
+
from typing import Sequence
|
19
|
+
|
20
|
+
def mcomplex_for_tiling_cusp_neighborhoods(
|
21
|
+
manifold, bits_prec : int, verified : bool) -> Mcomplex:
|
22
|
+
"""
|
23
|
+
Computes mcomplex such that each vertex has a function
|
24
|
+
tiles() returning a stream of tiles to cover the space
|
25
|
+
H^3 / peripheral group of corresponding cusp.
|
26
|
+
"""
|
27
|
+
|
28
|
+
|
29
|
+
for cusp_info in manifold.cusp_info():
|
30
|
+
if not cusp_info['complete?']:
|
31
|
+
raise IncompleteCuspError(manifold)
|
32
|
+
|
33
|
+
# Convert SnapPea kernel triangulation to python triangulation
|
34
|
+
# snappy.snap.t3mlite.Mcomplex
|
35
|
+
mcomplex = Mcomplex(manifold)
|
36
|
+
|
37
|
+
# Add vertices in hyperboloid model and other geometric information
|
38
|
+
add_r13_geometry(mcomplex,
|
39
|
+
manifold,
|
40
|
+
verified=verified, bits_prec=bits_prec)
|
41
|
+
|
42
|
+
add_triangles_to_tetrahedra(mcomplex)
|
43
|
+
|
44
|
+
add_cusp_cross_section(mcomplex)
|
45
|
+
scale_vertices_from_horotriangles(mcomplex)
|
46
|
+
|
47
|
+
for v in mcomplex.Vertices:
|
48
|
+
v._tiles = None
|
49
|
+
def tiles(v=v, verified=verified):
|
50
|
+
if v._tiles is None:
|
51
|
+
v._tiles = IteratorCache(
|
52
|
+
compute_tiles_for_cusp_neighborhood(
|
53
|
+
v, verified))
|
54
|
+
return v._tiles
|
55
|
+
v.tiles = tiles
|
56
|
+
|
57
|
+
return mcomplex
|
58
|
+
|
59
|
+
def compute_tiles_for_cusp_neighborhood(
|
60
|
+
v : Vertex, verified : bool) -> Sequence[Tile]:
|
61
|
+
"""
|
62
|
+
If suitable structures have been added to an Mcomplex
|
63
|
+
(add_r13_geometry, add_triangles_to_tetrahedra), returns
|
64
|
+
a stream of tiles to cover the space
|
65
|
+
H^3 / peripheral group of cusp corresponding to given
|
66
|
+
vertex.
|
67
|
+
"""
|
68
|
+
|
69
|
+
corner = v.Corners[0]
|
70
|
+
|
71
|
+
horoball_defining_vec = corner.Tetrahedron.R13_vertices[corner.Subsimplex]
|
72
|
+
RF = horoball_defining_vec[0].parent()
|
73
|
+
|
74
|
+
# Lowest non-zero value expected is
|
75
|
+
# 2 * (v.lower_bound_embedding_scale ** 2)
|
76
|
+
#
|
77
|
+
# Divide by half so that we have some margin.
|
78
|
+
|
79
|
+
min_neg_prod_distinct = (v.lower_bound_embedding_scale ** 2)
|
80
|
+
|
81
|
+
if verified:
|
82
|
+
max_neg_prod_equal = min_neg_prod_distinct
|
83
|
+
else:
|
84
|
+
max_neg_prod_equal = _compute_prod_epsilon(RF)
|
85
|
+
|
86
|
+
initial_lifted_tetrahedron = LiftedTetrahedron(
|
87
|
+
corner.Tetrahedron, make_identity_matrix(ring=RF, n=4))
|
88
|
+
|
89
|
+
lifted_tetrahedron_set : LiftedTetrahedronSet = (
|
90
|
+
get_lifted_tetrahedron_set(
|
91
|
+
base_point=horoball_defining_vec,
|
92
|
+
act_on_base_point_by_inverse=True,
|
93
|
+
max_neg_prod_equal=max_neg_prod_equal,
|
94
|
+
min_neg_prod_distinct=min_neg_prod_distinct,
|
95
|
+
canonical_keys_function=None,
|
96
|
+
verified=verified))
|
97
|
+
|
98
|
+
return compute_tiles(
|
99
|
+
geometric_object=R13Horoball(horoball_defining_vec),
|
100
|
+
visited_lifted_tetrahedra=lifted_tetrahedron_set,
|
101
|
+
initial_lifted_tetrahedra=[ initial_lifted_tetrahedron ],
|
102
|
+
verified=verified)
|
103
|
+
|
104
|
+
def add_cusp_cross_section(mcomplex : Mcomplex):
|
105
|
+
"""
|
106
|
+
Adds cross section to all cusps. Recall that a cusp cross
|
107
|
+
section corresponds to a choice of horoballs about the vertices
|
108
|
+
corresponding to the cusp. Scales the defining light-like vectors
|
109
|
+
of the vertices of the tetrahedra such that they correspond to
|
110
|
+
these horoballs.
|
111
|
+
"""
|
112
|
+
|
113
|
+
c = RealCuspCrossSection(mcomplex)
|
114
|
+
c.add_structures(None)
|
115
|
+
|
116
|
+
# Save cusp cross section for later
|
117
|
+
mcomplex.real_cusp_cross_section = c
|
118
|
+
|
119
|
+
for i, (v, area) in enumerate(
|
120
|
+
zip(mcomplex.Vertices, c.cusp_areas())):
|
121
|
+
# Area of cusp
|
122
|
+
v.cusp_area = area
|
123
|
+
# A cusp intersects the triangulation in standard form
|
124
|
+
# if for each tetrahedron, the corresponding horoball
|
125
|
+
# intersects the tetrahedron in three but not four faces.
|
126
|
+
#
|
127
|
+
# We store here how much the cusp can be scaled before it
|
128
|
+
# is no longer in standard form.
|
129
|
+
v.scale_for_std_form = (
|
130
|
+
c.compute_scale_for_std_form(v))
|
131
|
+
v.exp_self_distance_along_edges = (
|
132
|
+
c.exp_distance_neighborhoods_measured_along_edges(i, i))
|
133
|
+
# v.lower_bound_embedding_scale: lower bound on how much
|
134
|
+
# we can scale the cusp to stay embedded.
|
135
|
+
if v.exp_self_distance_along_edges is None:
|
136
|
+
v.lower_bound_embedding_scale = v.scale_for_std_form
|
137
|
+
else:
|
138
|
+
v.lower_bound_embedding_scale = correct_min(
|
139
|
+
[ v.scale_for_std_form,
|
140
|
+
v.exp_self_distance_along_edges.sqrt() ])
|
141
|
+
|
142
|
+
def _compute_prod_epsilon(RF):
|
143
|
+
p = RF.precision()
|
144
|
+
|
145
|
+
# We try to be a factor of at least several magnitudes smaller than
|
146
|
+
# 1/_compute_epsilon_inverse(RF) in hyperboloid_dict.py.
|
147
|
+
#
|
148
|
+
# This factor will even grow larger as the precision increases.
|
149
|
+
#
|
150
|
+
# That way, we will hopefully fail in _equality_predicate
|
151
|
+
# in hyperboloid_dict rather than failing by not hashing together
|
152
|
+
# lifted tetrahedra that should be the same but are not recognised
|
153
|
+
# as such because of numerical error.
|
154
|
+
|
155
|
+
result = RF(1e-8)
|
156
|
+
if p > 53:
|
157
|
+
result *= RF(0.5) ** ((p - 53) / 2)
|
158
|
+
|
159
|
+
return result
|
@@ -0,0 +1,32 @@
|
|
1
|
+
from ...hyperboloid import r13_dot
|
2
|
+
from ...snap.t3mlite import simplex
|
3
|
+
|
4
|
+
def scale_vertices_from_horotriangles(mcomplex):
|
5
|
+
"""
|
6
|
+
Scales the R13 vertices of each tetrahedron so that
|
7
|
+
each defines a horosphere that intersects the tetrahedron
|
8
|
+
in a triangle congruent to the horo triangles coming
|
9
|
+
from a cusp cross section.
|
10
|
+
"""
|
11
|
+
|
12
|
+
for tet in mcomplex.Tetrahedra:
|
13
|
+
_scale_vertices_tet(tet)
|
14
|
+
|
15
|
+
def _scale_vertices_tet(tet):
|
16
|
+
R13_vertex_products = {
|
17
|
+
v0 | v1 : r13_dot(pt0, pt1)
|
18
|
+
for v0, pt0 in tet.R13_vertices.items()
|
19
|
+
for v1, pt1 in tet.R13_vertices.items()
|
20
|
+
if v0 > v1 }
|
21
|
+
|
22
|
+
for v0 in simplex.ZeroSubsimplices:
|
23
|
+
v1, v2, _ = simplex.VerticesOfFaceCounterclockwise[simplex.comp(v0)]
|
24
|
+
|
25
|
+
length_on_cusp = tet.horotriangles[v0].get_real_lengths()[v0 | v1 | v2]
|
26
|
+
length_on_horosphere = (
|
27
|
+
-2 * R13_vertex_products[v1 | v2] / (
|
28
|
+
R13_vertex_products[v0 | v1] *
|
29
|
+
R13_vertex_products[v0 | v2])).sqrt()
|
30
|
+
s = length_on_horosphere / length_on_cusp
|
31
|
+
|
32
|
+
tet.R13_vertices[v0] = s * tet.R13_vertices[v0]
|
File without changes
|
@@ -0,0 +1,152 @@
|
|
1
|
+
from .fixed_points import r13_fixed_line_of_psl2c_matrix
|
2
|
+
from .line import R13LineWithMatrix
|
3
|
+
from .. import word_list_to_psl2c_matrix
|
4
|
+
from .. import Filling
|
5
|
+
from ...upper_halfspace import sl2c_inverse # type: ignore
|
6
|
+
from ...snap.t3mlite import Mcomplex, Vertex, Tetrahedron, simplex
|
7
|
+
|
8
|
+
from collections import deque
|
9
|
+
|
10
|
+
from typing import Tuple, Sequence, Optional
|
11
|
+
|
12
|
+
def add_r13_core_curves(
|
13
|
+
mcomplex : Mcomplex,
|
14
|
+
manifold):
|
15
|
+
|
16
|
+
for tet in mcomplex.Tetrahedra:
|
17
|
+
# Dict, keys are a subset of simplex.ZeroSubsimplices
|
18
|
+
#
|
19
|
+
# If a vertex of a tet corresponds to a filled cusp, this dictionary
|
20
|
+
# will contain the appropriate lift of the core curve in the
|
21
|
+
# hyperboloid model.
|
22
|
+
tet.core_curves = { }
|
23
|
+
|
24
|
+
# For each cusp, a pair of words for the meridian and longitude as
|
25
|
+
# sequence of non-zero integers.
|
26
|
+
#
|
27
|
+
# Only computed when needed.
|
28
|
+
all_peripheral_words : Optional[Sequence[Sequence[Sequence[int]]]] = None
|
29
|
+
for v, info in zip(mcomplex.Vertices, manifold.cusp_info()):
|
30
|
+
if v.filling_matrix[0] != (0,0):
|
31
|
+
if all_peripheral_words is None:
|
32
|
+
# Make the SnapPea kernel compute peripheral curves the first
|
33
|
+
# time when we need them.
|
34
|
+
G = manifold.fundamental_group(False)
|
35
|
+
all_peripheral_words = G.peripheral_curves(as_int_list=True)
|
36
|
+
# Note that a cusp only determines the words for the meridian
|
37
|
+
# and longitude only up to conjugacy, we need to pick a lift of the
|
38
|
+
# cusp and a path from the basepoint to the lift.
|
39
|
+
#
|
40
|
+
# Similarly, the lift of the core curve of a filled cusp to the
|
41
|
+
# hyperboloid model depends on a lift of a cusp a path from the
|
42
|
+
# basepoint to the lift.
|
43
|
+
#
|
44
|
+
# We compute the lift for each vertex of each tetrahedron in the
|
45
|
+
# fundamental domain corresponding to the cusp (with the path
|
46
|
+
# connecting the basepoint to the vertex being the one contained
|
47
|
+
# in the fundamental domain).
|
48
|
+
#
|
49
|
+
# Starting with the one choice the SnapPea kernel did and computing
|
50
|
+
# the resulting lift of the core curve, we need to transfer it
|
51
|
+
# to the other choices of vertices of tetrahedra corresponding to
|
52
|
+
# the cusp by "developing" the cusp.
|
53
|
+
#
|
54
|
+
_develop_core_curve_cusp(
|
55
|
+
mcomplex,
|
56
|
+
v,
|
57
|
+
_compute_core_curve(
|
58
|
+
mcomplex,
|
59
|
+
all_peripheral_words[v.Index],
|
60
|
+
v.filling_matrix[1]))
|
61
|
+
|
62
|
+
|
63
|
+
###############################################################################
|
64
|
+
# Helpers
|
65
|
+
|
66
|
+
def _compute_core_curve(
|
67
|
+
mcomplex : Mcomplex,
|
68
|
+
peripheral_words : Sequence[Sequence[int]],
|
69
|
+
core_curve_coefficients : Filling) -> R13LineWithMatrix:
|
70
|
+
"""
|
71
|
+
Compute core curve given words for meridian and longitude and
|
72
|
+
the integers determining a curve (as sum of a multiple of meridian
|
73
|
+
and longitude) that is parallel to the core curve.
|
74
|
+
"""
|
75
|
+
|
76
|
+
result = mcomplex.GeneratorMatrices[0]
|
77
|
+
|
78
|
+
for word, f in zip(peripheral_words, core_curve_coefficients):
|
79
|
+
if f != 0:
|
80
|
+
m = word_list_to_psl2c_matrix(mcomplex, word)
|
81
|
+
if f < 0:
|
82
|
+
m = sl2c_inverse(m)
|
83
|
+
for i in range(abs(f)):
|
84
|
+
result = result * m
|
85
|
+
|
86
|
+
return r13_fixed_line_of_psl2c_matrix(result)
|
87
|
+
|
88
|
+
def _find_standard_basepoint(mcomplex : Mcomplex,
|
89
|
+
vertex : Vertex) -> Tuple[Tetrahedron, int]:
|
90
|
+
"""
|
91
|
+
Reimplements find_standard_basepoint in fundamental_group.c.
|
92
|
+
|
93
|
+
That is, it finds the same tetrahedron and vertex of that tetrahedron
|
94
|
+
in the fundamental domain that the SnapPea kernel used to compute the
|
95
|
+
words for the meridian and longitude of the given cusp.
|
96
|
+
|
97
|
+
The SnapPea kernel picks the first vertex it finds where the meridian
|
98
|
+
and longitude intersect.
|
99
|
+
"""
|
100
|
+
|
101
|
+
# Traverse tets and their vertices in the same order the SnapPea kernel
|
102
|
+
# does
|
103
|
+
for tet in mcomplex.Tetrahedra:
|
104
|
+
for v in simplex.ZeroSubsimplices:
|
105
|
+
# Only consider vertices corresponding to the given cusp
|
106
|
+
if tet.Class[v] is vertex:
|
107
|
+
for f in simplex.TwoSubsimplices:
|
108
|
+
# Check that the meridian and longitude both
|
109
|
+
# go through the same leg of the spine of the cusp
|
110
|
+
# triangle.
|
111
|
+
#
|
112
|
+
# Note that we only support orientable manifolds,
|
113
|
+
# so we only consider the 0-sheet of the orientation
|
114
|
+
# double-cover of the cusp triangulation.
|
115
|
+
if (tet.PeripheralCurves[0][0][v][f] != 0 and
|
116
|
+
tet.PeripheralCurves[1][0][v][f] != 0):
|
117
|
+
return tet, v
|
118
|
+
|
119
|
+
raise Exception("Could not find basepoint for cusp. This is a bug.")
|
120
|
+
|
121
|
+
|
122
|
+
def _develop_core_curve_cusp(
|
123
|
+
mcomplex : Mcomplex,
|
124
|
+
v : Vertex,
|
125
|
+
core_curve : R13LineWithMatrix) -> None:
|
126
|
+
"""
|
127
|
+
Given the core curve computed from the SnapPea kernel's given
|
128
|
+
words for the meridian and longitude for the given cusp,
|
129
|
+
compute the lift of the core curve for all vertices of the
|
130
|
+
tetrahedra corresponding to the given cusp.
|
131
|
+
"""
|
132
|
+
|
133
|
+
# Start with the tet and vertex that the SnapPea kernel used
|
134
|
+
# to compute the words.
|
135
|
+
tet, vertex = _find_standard_basepoint(mcomplex, v)
|
136
|
+
|
137
|
+
tet.core_curves[vertex] = core_curve
|
138
|
+
pending_tet_verts = deque([ (tet, vertex, core_curve) ])
|
139
|
+
|
140
|
+
# Breadth-first traversal of cusp triangles to compute appropriate
|
141
|
+
# transform of core curve.
|
142
|
+
while pending_tet_verts:
|
143
|
+
tet, vertex, core_curve = pending_tet_verts.popleft()
|
144
|
+
for f in simplex.FacesAroundVertexCounterclockwise[vertex]:
|
145
|
+
new_tet = tet.Neighbor[f]
|
146
|
+
new_vertex = tet.Gluing[f].image(vertex)
|
147
|
+
if new_vertex in new_tet.core_curves:
|
148
|
+
continue
|
149
|
+
new_core_curve = core_curve.transformed(tet.O13_matrices[f])
|
150
|
+
new_tet.core_curves[new_vertex] = new_core_curve
|
151
|
+
pending_tet_verts.append(
|
152
|
+
(new_tet, new_vertex, new_core_curve))
|