snappy 3.2__cp39-cp39-macosx_10_12_x86_64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-39-darwin.so +0 -0
- snappy/SnapPy.cpython-39-darwin.so +0 -0
- snappy/SnapPy.ico +0 -0
- snappy/SnapPy.png +0 -0
- snappy/SnapPyHP.cpython-39-darwin.so +0 -0
- snappy/__init__.py +760 -0
- snappy/app.py +605 -0
- snappy/app_menus.py +372 -0
- snappy/browser.py +998 -0
- snappy/cache.py +25 -0
- snappy/canonical.py +249 -0
- snappy/cusps/__init__.py +38 -0
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/cusps/cusp_areas_from_matrix.py +173 -0
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +454 -0
- snappy/db_utilities.py +79 -0
- snappy/decorated_isosig.py +710 -0
- snappy/dev/__init__.py +0 -0
- snappy/dev/extended_ptolemy/__init__.py +8 -0
- snappy/dev/extended_ptolemy/closed.py +106 -0
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +149 -0
- snappy/dev/extended_ptolemy/direct.py +42 -0
- snappy/dev/extended_ptolemy/extended.py +406 -0
- snappy/dev/extended_ptolemy/giac_helper.py +43 -0
- snappy/dev/extended_ptolemy/giac_rur.py +129 -0
- snappy/dev/extended_ptolemy/gluing.py +46 -0
- snappy/dev/extended_ptolemy/phc_wrapper.py +220 -0
- snappy/dev/extended_ptolemy/printMatrices.py +70 -0
- snappy/dev/vericlosed/__init__.py +1 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureNew.py +159 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +90 -0
- snappy/dev/vericlosed/computeVerifiedHyperbolicStructure.py +111 -0
- snappy/dev/vericlosed/gimbalLoopFinder.py +130 -0
- snappy/dev/vericlosed/hyperbolicStructure.py +313 -0
- snappy/dev/vericlosed/krawczykCertifiedEdgeLengthsEngine.py +165 -0
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +122 -0
- snappy/dev/vericlosed/orb/__init__.py +1 -0
- snappy/dev/vericlosed/orb/orb_solution_for_snappea_finite_triangulation_mac +0 -0
- snappy/dev/vericlosed/parseVertexGramMatrixFile.py +47 -0
- snappy/dev/vericlosed/polishApproxHyperbolicStructure.py +61 -0
- snappy/dev/vericlosed/test.py +54 -0
- snappy/dev/vericlosed/truncatedComplex.py +176 -0
- snappy/dev/vericlosed/verificationError.py +58 -0
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +177 -0
- snappy/doc/_images/SnapPy-196.png +0 -0
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/mac.png +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_images/plink-action.png +0 -0
- snappy/doc/_images/ubuntu.png +0 -0
- snappy/doc/_images/win7.png +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -0
- snappy/doc/_sources/bugs.rst.txt +14 -0
- snappy/doc/_sources/censuses.rst.txt +51 -0
- snappy/doc/_sources/credits.rst.txt +75 -0
- snappy/doc/_sources/development.rst.txt +259 -0
- snappy/doc/_sources/index.rst.txt +182 -0
- snappy/doc/_sources/installing.rst.txt +247 -0
- snappy/doc/_sources/manifold.rst.txt +6 -0
- snappy/doc/_sources/manifoldhp.rst.txt +46 -0
- snappy/doc/_sources/news.rst.txt +355 -0
- snappy/doc/_sources/other.rst.txt +25 -0
- snappy/doc/_sources/platonic_census.rst.txt +20 -0
- snappy/doc/_sources/plink.rst.txt +102 -0
- snappy/doc/_sources/ptolemy.rst.txt +66 -0
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -0
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -0
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -0
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -0
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -0
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -0
- snappy/doc/_sources/screenshots.rst.txt +21 -0
- snappy/doc/_sources/snap.rst.txt +87 -0
- snappy/doc/_sources/snappy.rst.txt +28 -0
- snappy/doc/_sources/spherogram.rst.txt +103 -0
- snappy/doc/_sources/todo.rst.txt +47 -0
- snappy/doc/_sources/triangulation.rst.txt +11 -0
- snappy/doc/_sources/tutorial.rst.txt +49 -0
- snappy/doc/_sources/verify.rst.txt +210 -0
- snappy/doc/_sources/verify_internals.rst.txt +79 -0
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +925 -0
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +156 -0
- snappy/doc/_static/documentation_options.js +13 -0
- snappy/doc/_static/file.png +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -0
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +199 -0
- snappy/doc/_static/minus.png +0 -0
- snappy/doc/_static/plus.png +0 -0
- snappy/doc/_static/pygments.css +75 -0
- snappy/doc/_static/searchtools.js +620 -0
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +1500 -0
- snappy/doc/bugs.html +132 -0
- snappy/doc/censuses.html +427 -0
- snappy/doc/credits.html +181 -0
- snappy/doc/development.html +384 -0
- snappy/doc/genindex.html +1331 -0
- snappy/doc/index.html +262 -0
- snappy/doc/installing.html +346 -0
- snappy/doc/manifold.html +3452 -0
- snappy/doc/manifoldhp.html +180 -0
- snappy/doc/news.html +388 -0
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +161 -0
- snappy/doc/platonic_census.html +375 -0
- snappy/doc/plink.html +210 -0
- snappy/doc/ptolemy.html +254 -0
- snappy/doc/ptolemy_classes.html +1144 -0
- snappy/doc/ptolemy_examples1.html +409 -0
- snappy/doc/ptolemy_examples2.html +471 -0
- snappy/doc/ptolemy_examples3.html +414 -0
- snappy/doc/ptolemy_examples4.html +195 -0
- snappy/doc/ptolemy_prelim.html +248 -0
- snappy/doc/py-modindex.html +165 -0
- snappy/doc/screenshots.html +141 -0
- snappy/doc/search.html +135 -0
- snappy/doc/searchindex.js +1 -0
- snappy/doc/snap.html +202 -0
- snappy/doc/snappy.html +181 -0
- snappy/doc/spherogram.html +1211 -0
- snappy/doc/todo.html +166 -0
- snappy/doc/triangulation.html +1584 -0
- snappy/doc/tutorial.html +159 -0
- snappy/doc/verify.html +330 -0
- snappy/doc/verify_internals.html +1235 -0
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +26 -0
- snappy/export_stl.py +120 -0
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/filedialog.py +28 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +121 -0
- snappy/horoviewer.py +443 -0
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/info_icon.gif +0 -0
- snappy/infowindow.py +65 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/HTWKnots/alternating.gz +0 -0
- snappy/manifolds/HTWKnots/nonalternating.gz +0 -0
- snappy/manifolds/__init__.py +3 -0
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +657 -0
- snappy/numeric_output_checker.py +345 -0
- snappy/pari.py +41 -0
- snappy/phone_home.py +57 -0
- snappy/polyviewer.py +259 -0
- snappy/ptolemy/__init__.py +17 -0
- snappy/ptolemy/component.py +103 -0
- snappy/ptolemy/coordinates.py +2290 -0
- snappy/ptolemy/fieldExtensions.py +153 -0
- snappy/ptolemy/findLoops.py +473 -0
- snappy/ptolemy/geometricRep.py +59 -0
- snappy/ptolemy/homology.py +165 -0
- snappy/ptolemy/magma/default.magma_template +229 -0
- snappy/ptolemy/magma/radicalsOfPrimaryDecomposition.magma_template +79 -0
- snappy/ptolemy/manifoldMethods.py +395 -0
- snappy/ptolemy/matrix.py +350 -0
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +113 -0
- snappy/ptolemy/polynomial.py +857 -0
- snappy/ptolemy/processComponents.py +173 -0
- snappy/ptolemy/processFileBase.py +247 -0
- snappy/ptolemy/processFileDispatch.py +46 -0
- snappy/ptolemy/processMagmaFile.py +392 -0
- snappy/ptolemy/processRurFile.py +150 -0
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +102 -0
- snappy/ptolemy/ptolemyObstructionClass.py +64 -0
- snappy/ptolemy/ptolemyVariety.py +1029 -0
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +140 -0
- snappy/ptolemy/reginaWrapper.py +698 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/rur.py +545 -0
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +277 -0
- snappy/ptolemy/test.py +1126 -0
- snappy/ptolemy/testing_files/3_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/3_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c0.magma_out +95 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c1.magma_out +95 -0
- snappy/ptolemy/testing_files/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_rur/m052__sl3_c0.rur.bz2 +0 -0
- snappy/ptolemy/utilities.py +236 -0
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +197 -0
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +237 -0
- snappy/raytracing/finite_viewer.py +590 -0
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +293 -0
- snappy/raytracing/hyperboloid_navigation.py +556 -0
- snappy/raytracing/hyperboloid_utilities.py +234 -0
- snappy/raytracing/ideal_raytracing_data.py +592 -0
- snappy/raytracing/inside_viewer.py +974 -0
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +126 -0
- snappy/raytracing/raytracing_view.py +454 -0
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +101 -0
- snappy/raytracing/shaders/fragment.glsl +1744 -0
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +263 -0
- snappy/raytracing/zoom_slider/inward.png +0 -0
- snappy/raytracing/zoom_slider/inward18.png +0 -0
- snappy/raytracing/zoom_slider/outward.png +0 -0
- snappy/raytracing/zoom_slider/outward18.png +0 -0
- snappy/raytracing/zoom_slider/test.py +20 -0
- snappy/sage_helper.py +117 -0
- snappy/settings.py +409 -0
- snappy/shell.py +53 -0
- snappy/snap/__init__.py +114 -0
- snappy/snap/character_varieties.py +375 -0
- snappy/snap/find_field.py +372 -0
- snappy/snap/fundamental_polyhedron.py +569 -0
- snappy/snap/generators.py +39 -0
- snappy/snap/interval_reps.py +81 -0
- snappy/snap/kernel_structures.py +128 -0
- snappy/snap/mcomplex_base.py +18 -0
- snappy/snap/nsagetools.py +702 -0
- snappy/snap/peripheral/__init__.py +1 -0
- snappy/snap/peripheral/dual_cellulation.py +219 -0
- snappy/snap/peripheral/link.py +127 -0
- snappy/snap/peripheral/peripheral.py +159 -0
- snappy/snap/peripheral/surface.py +522 -0
- snappy/snap/peripheral/test.py +35 -0
- snappy/snap/polished_reps.py +335 -0
- snappy/snap/shapes.py +152 -0
- snappy/snap/slice_obs_HKL.py +668 -0
- snappy/snap/t3mlite/__init__.py +2 -0
- snappy/snap/t3mlite/arrow.py +243 -0
- snappy/snap/t3mlite/corner.py +22 -0
- snappy/snap/t3mlite/edge.py +172 -0
- snappy/snap/t3mlite/face.py +37 -0
- snappy/snap/t3mlite/files.py +211 -0
- snappy/snap/t3mlite/homology.py +53 -0
- snappy/snap/t3mlite/linalg.py +419 -0
- snappy/snap/t3mlite/mcomplex.py +1499 -0
- snappy/snap/t3mlite/perm4.py +320 -0
- snappy/snap/t3mlite/setup.py +12 -0
- snappy/snap/t3mlite/simplex.py +199 -0
- snappy/snap/t3mlite/spun.py +297 -0
- snappy/snap/t3mlite/surface.py +519 -0
- snappy/snap/t3mlite/test.py +20 -0
- snappy/snap/t3mlite/test_vs_regina.py +86 -0
- snappy/snap/t3mlite/tetrahedron.py +109 -0
- snappy/snap/t3mlite/vertex.py +42 -0
- snappy/snap/test.py +134 -0
- snappy/snap/utilities.py +288 -0
- snappy/test.py +209 -0
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +920 -0
- snappy/twister/__init__.py +20 -0
- snappy/twister/main.py +646 -0
- snappy/twister/surfaces/S_0_1 +3 -0
- snappy/twister/surfaces/S_0_2 +3 -0
- snappy/twister/surfaces/S_0_4 +7 -0
- snappy/twister/surfaces/S_0_4_Lantern +8 -0
- snappy/twister/surfaces/S_1 +3 -0
- snappy/twister/surfaces/S_1_1 +4 -0
- snappy/twister/surfaces/S_1_2 +5 -0
- snappy/twister/surfaces/S_1_2_5 +6 -0
- snappy/twister/surfaces/S_2 +6 -0
- snappy/twister/surfaces/S_2_1 +8 -0
- snappy/twister/surfaces/S_2_heeg +10 -0
- snappy/twister/surfaces/S_3 +8 -0
- snappy/twister/surfaces/S_3_1 +10 -0
- snappy/twister/surfaces/S_4_1 +12 -0
- snappy/twister/surfaces/S_5_1 +14 -0
- snappy/twister/surfaces/heeg_fig8 +9 -0
- snappy/twister/twister_core.cpython-39-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +13 -0
- snappy/verify/canonical.py +542 -0
- snappy/verify/complex_volume/__init__.py +18 -0
- snappy/verify/complex_volume/adjust_torsion.py +86 -0
- snappy/verify/complex_volume/closed.py +168 -0
- snappy/verify/complex_volume/compute_ptolemys.py +90 -0
- snappy/verify/complex_volume/cusped.py +56 -0
- snappy/verify/complex_volume/extended_bloch.py +201 -0
- snappy/verify/cusp_translations.py +85 -0
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +254 -0
- snappy/verify/hyperbolicity.py +224 -0
- snappy/verify/interval_newton_shapes_engine.py +523 -0
- snappy/verify/interval_tree.py +400 -0
- snappy/verify/krawczyk_shapes_engine.py +518 -0
- snappy/verify/maximal_cusp_area_matrix/__init__.py +46 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +419 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +153 -0
- snappy/verify/real_algebra.py +286 -0
- snappy/verify/shapes.py +25 -0
- snappy/verify/short_slopes.py +200 -0
- snappy/verify/square_extensions.py +1005 -0
- snappy/verify/test.py +78 -0
- snappy/verify/upper_halfspace/__init__.py +9 -0
- snappy/verify/upper_halfspace/extended_matrix.py +100 -0
- snappy/verify/upper_halfspace/finite_point.py +283 -0
- snappy/verify/upper_halfspace/ideal_point.py +426 -0
- snappy/verify/volume.py +128 -0
- snappy/version.py +2 -0
- snappy-3.2.dist-info/METADATA +58 -0
- snappy-3.2.dist-info/RECORD +503 -0
- snappy-3.2.dist-info/WHEEL +5 -0
- snappy-3.2.dist-info/entry_points.txt +2 -0
- snappy-3.2.dist-info/top_level.txt +28 -0
@@ -0,0 +1,668 @@
|
|
1
|
+
"""
|
2
|
+
Using metabelian representations to obstruct slicing
|
3
|
+
====================================================
|
4
|
+
|
5
|
+
Based on::
|
6
|
+
|
7
|
+
Herald, Kirk, Livingston, Math Zeit., 2010
|
8
|
+
https://dx.doi.org/10.1007/s00209-009-0548-1
|
9
|
+
https://arxiv.org/abs/0804.1355
|
10
|
+
|
11
|
+
In general, the implementation follows their paper closely, with a few
|
12
|
+
minor changes:
|
13
|
+
|
14
|
+
1. We use the default simplified presentation for pi_1(knot exterior)
|
15
|
+
that SnapPy provides, rather than a Wirtinger presentation, as the
|
16
|
+
former has many fewer generators (but of course much longer
|
17
|
+
relators).
|
18
|
+
|
19
|
+
2. The construction of the metabelian representations in Section 7 of
|
20
|
+
[HKL] is done the language of twisted cohomology and specifically
|
21
|
+
twisted cocycles, whereas this viewpoint is not quite explicit
|
22
|
+
(though clearly implied) in [HKL].
|
23
|
+
|
24
|
+
3. To match the conventions of the other twisted Alexander polynomials
|
25
|
+
computed by SnapPy, we insist on all actions are on the left,
|
26
|
+
rather than the mix of left and right actions used in [HKL].
|
27
|
+
|
28
|
+
4. For the final check of whether the twisted polynomial is a norm, we
|
29
|
+
simply use that Sage can factor univariate polynomials over
|
30
|
+
cyclotomic fields into irreducibles, rather than the various
|
31
|
+
generalizations of Gauss's Lemma in [HKL].
|
32
|
+
|
33
|
+
|
34
|
+
Validation
|
35
|
+
==========
|
36
|
+
|
37
|
+
This code was developed by Nathan Dunfield and Sherry Gong as part of
|
38
|
+
an exporation of the slice versus ribbon question. It was applied to
|
39
|
+
a sample of 65,000 knots with square determinant and at most 16
|
40
|
+
crossings, and it reported that almost 40,000 were not slice. As those
|
41
|
+
40,000 knots were disjoint from the more than 24,000 ribbon knots in
|
42
|
+
this sample, this provides decent evidence that this implementation is
|
43
|
+
correct.
|
44
|
+
"""
|
45
|
+
|
46
|
+
from ..sage_helper import _within_sage, sage_method
|
47
|
+
if _within_sage:
|
48
|
+
from ..sage_helper import ZZ, PolynomialRing, vector, matrix, identity_matrix, MatrixSpace, block_matrix, prime_range, is_prime
|
49
|
+
from ..sage_helper import LaurentPolynomialRing, GF, CyclotomicField, ChainComplex
|
50
|
+
|
51
|
+
from .nsagetools import (MapToFreeAbelianization, compute_torsion,
|
52
|
+
fox_derivative_with_involution,
|
53
|
+
fox_derivative,
|
54
|
+
fast_determinant_of_laurent_poly_matrix,
|
55
|
+
last_square_submatrix,
|
56
|
+
first_square_submatrix)
|
57
|
+
|
58
|
+
from .. import SnapPy
|
59
|
+
|
60
|
+
|
61
|
+
class MatrixRepresentation():
|
62
|
+
"""
|
63
|
+
A representation from a finitely-presented group to GL(n, R),
|
64
|
+
where R is a ring::
|
65
|
+
|
66
|
+
sage: MatSp = MatrixSpace(ZZ, 2)
|
67
|
+
sage: S = MatSp([[0, -1], [1, 0]])
|
68
|
+
sage: T = MatSp([[1, 1], [0, 1]])
|
69
|
+
sage: rho = MatrixRepresentation(['s', 't'], [6*'st'], MatSp, [S, T])
|
70
|
+
sage: rho
|
71
|
+
<MatRep from G(st) to GL(2, Integer Ring)>
|
72
|
+
sage: rho(2*'s') == rho(3*'st') == -identity_matrix(2)
|
73
|
+
True
|
74
|
+
sage: rho('ttsTTTsTTsTTstss')
|
75
|
+
[17 29]
|
76
|
+
[ 7 12]
|
77
|
+
"""
|
78
|
+
def __init__(self, generators, relators, image_ring, matrices):
|
79
|
+
if isinstance(matrices, dict):
|
80
|
+
images = matrices
|
81
|
+
all_gens = list(generators) + [g.swapcase() for g in generators]
|
82
|
+
assert set(matrices) == set(all_gens)
|
83
|
+
else:
|
84
|
+
assert len(generators) == len(matrices)
|
85
|
+
images = {}
|
86
|
+
for g, m in zip(generators, matrices):
|
87
|
+
images[g] = m
|
88
|
+
images[g.swapcase()] = image_ring(m.inverse())
|
89
|
+
|
90
|
+
self.images = images
|
91
|
+
self.image_ring = image_ring
|
92
|
+
self.base_ring = self.image_ring.base_ring()
|
93
|
+
self.dim = self.image_ring.ncols()
|
94
|
+
self.generators = generators
|
95
|
+
self.relators = relators
|
96
|
+
assert all(m.parent() == self.image_ring for m in images.values())
|
97
|
+
self._check_rep()
|
98
|
+
|
99
|
+
def _check_rep(self):
|
100
|
+
assert all(self(g + g.swapcase()) == 1 for g in self.generators)
|
101
|
+
assert all(self(rel) == 1 for rel in self.relators)
|
102
|
+
|
103
|
+
def range(self):
|
104
|
+
return self.image_ring
|
105
|
+
|
106
|
+
def __call__(self, word):
|
107
|
+
ans = self.image_ring(1)
|
108
|
+
for w in word:
|
109
|
+
ans = ans * self.images[w]
|
110
|
+
return ans
|
111
|
+
|
112
|
+
def __repr__(self):
|
113
|
+
gens = ''.join(self.generators)
|
114
|
+
return '<MatRep from G(' + gens + ') to GL(%s, %s)>' % (self.dim, self.base_ring)
|
115
|
+
|
116
|
+
def twisted_chain_complex(self):
|
117
|
+
"""
|
118
|
+
Returns chain complex of the presentation CW complex of the
|
119
|
+
given group with coefficients twisted by self.
|
120
|
+
"""
|
121
|
+
gens, rels, rho = self.generators, self.relators, self
|
122
|
+
d2 = [ [fox_derivative_with_involution(R, rho, g) for R in rels] for g in gens]
|
123
|
+
d2 = block_matrix(d2, nrows=len(gens), ncols=len(rels))
|
124
|
+
d1 = [rho(g.swapcase()) - 1 for g in gens]
|
125
|
+
d1 = block_matrix(d1, nrows=1, ncols=len(gens))
|
126
|
+
C = ChainComplex({1:d1, 2:d2}, degree_of_differential=-1, check=True)
|
127
|
+
return C
|
128
|
+
|
129
|
+
def twisted_cochain_complex(self):
|
130
|
+
"""
|
131
|
+
Returns chain complex of the presentation CW complex of the
|
132
|
+
given group with coefficients twisted by self.
|
133
|
+
"""
|
134
|
+
gens, rels, rho = self.generators, self.relators, self
|
135
|
+
d1 = [[fox_derivative(R, rho, g) for g in gens] for R in rels]
|
136
|
+
d1 = block_matrix(d1, nrows=len(rels), ncols=len(gens))
|
137
|
+
d0 = [rho(g) - 1 for g in gens]
|
138
|
+
d0 = block_matrix(d0, nrow=len(gens), ncols=1)
|
139
|
+
C = ChainComplex({0:d0, 1:d1}, check=True)
|
140
|
+
return C
|
141
|
+
|
142
|
+
def semidirect_rep_from_twisted_cocycle(self, cocycle):
|
143
|
+
"""
|
144
|
+
Given a representation rho to GL(R, n) and a rho-twisted
|
145
|
+
1-cocycle, construct the representation to GL(R, n + 1)
|
146
|
+
corresponding to the semidirect product.
|
147
|
+
|
148
|
+
Note: Since we prefer to stick to left-actions only, unlike [HLK]
|
149
|
+
this is the semidirect produce associated to the left action of
|
150
|
+
GL(R, n) on V = R^n. That is, pairs (v, A) with v in V and A in
|
151
|
+
GL(R, n) where (v, A) * (w, B) = (v + A*w, A*B)::
|
152
|
+
|
153
|
+
sage: G = Manifold('K12a169').fundamental_group()
|
154
|
+
sage: A = matrix(GF(5), [[0, 4], [1, 4]])
|
155
|
+
sage: rho = cyclic_rep(G, A)
|
156
|
+
sage: cocycle = vector(GF(5), (0, 0, 1, 0))
|
157
|
+
sage: rho_til = rho.semidirect_rep_from_twisted_cocycle(cocycle)
|
158
|
+
sage: rho_til('abAB')
|
159
|
+
[1 0 4]
|
160
|
+
[0 1 1]
|
161
|
+
[0 0 1]
|
162
|
+
"""
|
163
|
+
gens, rels, rho = self.generators, self.relators, self
|
164
|
+
n = rho.dim
|
165
|
+
assert len(cocycle) == len(gens)*n
|
166
|
+
new_mats = []
|
167
|
+
for i, g in enumerate(gens):
|
168
|
+
v = matrix([cocycle[i*n:(i+1)*n]]).transpose()
|
169
|
+
zeros = matrix(n*[0])
|
170
|
+
one = matrix([[1]])
|
171
|
+
A = block_matrix([[rho(g), v], [zeros, one]])
|
172
|
+
new_mats.append(A)
|
173
|
+
|
174
|
+
target = MatrixSpace(rho.base_ring, n + 1)
|
175
|
+
return MatrixRepresentation(gens, rels, target, new_mats)
|
176
|
+
|
177
|
+
# ----- end class MatrixRepresentation --------------------------------
|
178
|
+
|
179
|
+
|
180
|
+
def poly_to_rep(f):
|
181
|
+
"""
|
182
|
+
For a polynomial f in F[x], return the matrix corresponding to the
|
183
|
+
left action of x on F[x]/(f).
|
184
|
+
"""
|
185
|
+
assert f.is_monic()
|
186
|
+
d = f.degree()
|
187
|
+
last_column = [-f[e] for e in range(d)]
|
188
|
+
I = identity_matrix(d)
|
189
|
+
M = matrix(I.rows()[1:] + [last_column])
|
190
|
+
assert M.charpoly() == f
|
191
|
+
return M.transpose()
|
192
|
+
|
193
|
+
|
194
|
+
def irreps(p, q):
|
195
|
+
"""
|
196
|
+
Returns the irreducible representations of the cyclic group C_p
|
197
|
+
over the field F_q, where p and q are distinct primes.
|
198
|
+
|
199
|
+
Each representation is given by a matrix over F_q giving the
|
200
|
+
action of the preferred generator of C_p.
|
201
|
+
|
202
|
+
sage: [M.nrows() for M in irreps(3, 7)]
|
203
|
+
[1, 1, 1]
|
204
|
+
sage: [M.nrows() for M in irreps(7, 11)]
|
205
|
+
[1, 3, 3]
|
206
|
+
sage: sum(M.nrows() for M in irreps(157, 13))
|
207
|
+
157
|
208
|
+
"""
|
209
|
+
p, q = ZZ(p), ZZ(q)
|
210
|
+
assert p.is_prime() and q.is_prime() and p != q
|
211
|
+
R = PolynomialRing(GF(q), 'x')
|
212
|
+
x = R.gen()
|
213
|
+
polys = [f for f, e in (x**p - 1).factor()]
|
214
|
+
polys.sort(key=lambda f:(f.degree(), -f.constant_coefficient()))
|
215
|
+
reps = [poly_to_rep(f) for f in polys]
|
216
|
+
assert all(A**p == 1 for A in reps)
|
217
|
+
assert reps[0] == 1
|
218
|
+
return reps
|
219
|
+
|
220
|
+
|
221
|
+
def homology_of_cyclic_branched_cover(knot_exterior, p):
|
222
|
+
C = knot_exterior.covers(p, cover_type='cyclic')[0]
|
223
|
+
return [d for d in C.homology().elementary_divisors() if d != 0]
|
224
|
+
|
225
|
+
|
226
|
+
def primes_appearing(knot_exterior, p):
|
227
|
+
"""
|
228
|
+
sage: M = Manifold('K12n731')
|
229
|
+
sage: primes_appearing(M, 3)
|
230
|
+
[2, 13]
|
231
|
+
"""
|
232
|
+
C = knot_exterior.covers(p, cover_type='cyclic')[0]
|
233
|
+
divisors = C.homology().elementary_divisors()
|
234
|
+
primes = set()
|
235
|
+
for d in divisors:
|
236
|
+
if d != 0:
|
237
|
+
primes.update([p for p, e in ZZ(d).factor()])
|
238
|
+
return sorted(primes)
|
239
|
+
|
240
|
+
|
241
|
+
def nonzero_divisor_product(knot_exterior, p):
|
242
|
+
"""
|
243
|
+
sage: M = Manifold('K12n731')
|
244
|
+
sage: nonzero_divisor_product(M, 3)
|
245
|
+
2704
|
246
|
+
"""
|
247
|
+
C = knot_exterior.covers(p, cover_type='cyclic')[0]
|
248
|
+
divisors = C.homology().elementary_divisors()
|
249
|
+
ans = 1
|
250
|
+
for d in divisors:
|
251
|
+
if d != 0:
|
252
|
+
ans *= d
|
253
|
+
return ans
|
254
|
+
|
255
|
+
|
256
|
+
def cyclic_rep(group, matrix_of_rep):
|
257
|
+
"""
|
258
|
+
For a group G whose free abelianization is Z, returns the
|
259
|
+
representation of G factoring through Z where 1 in Z in turn goes
|
260
|
+
to the given matrix_of_rep.
|
261
|
+
"""
|
262
|
+
A = matrix_of_rep
|
263
|
+
epsilon = MapToFreeAbelianization(group)
|
264
|
+
assert epsilon.range().rank() == 1
|
265
|
+
gens = group.generators()
|
266
|
+
rels = group.relators()
|
267
|
+
mats = [A**(epsilon(g)[0]) for g in gens]
|
268
|
+
rho = MatrixRepresentation(gens, rels, A.parent(), mats)
|
269
|
+
rho.epsilon = epsilon
|
270
|
+
rho.A = A
|
271
|
+
return rho
|
272
|
+
|
273
|
+
|
274
|
+
def dim_twisted_homology(group, matrix_of_C_p_rep):
|
275
|
+
"""
|
276
|
+
sage: M = Manifold('K12n813')
|
277
|
+
sage: G = M.fundamental_group()
|
278
|
+
sage: reps = irreps(3, 7)
|
279
|
+
sage: [dim_twisted_homology(G, A) for A in reps]
|
280
|
+
[1, 1, 1]
|
281
|
+
sage: reps = irreps(3, 5)
|
282
|
+
sage: [dim_twisted_homology(G, A) for A in reps]
|
283
|
+
[1, 0]
|
284
|
+
"""
|
285
|
+
rho = cyclic_rep(group, matrix_of_C_p_rep)
|
286
|
+
C = rho.twisted_chain_complex()
|
287
|
+
H = C.homology()
|
288
|
+
if matrix_of_C_p_rep != 1:
|
289
|
+
assert H[0].rank() == 0
|
290
|
+
else:
|
291
|
+
assert H[0].rank() == 1
|
292
|
+
return H[1].rank()
|
293
|
+
|
294
|
+
|
295
|
+
def reps_appearing(knot_exterior, p, q):
|
296
|
+
"""
|
297
|
+
All irreducible C_p reps appearing in the F_q homology of the
|
298
|
+
cyclic branched cover B_p, together with their multiplicities.
|
299
|
+
|
300
|
+
sage: M = Manifold('K12a169')
|
301
|
+
sage: [(A.trace(), e) for A, e in reps_appearing(M, 3, 5)]
|
302
|
+
[(4, 1)]
|
303
|
+
"""
|
304
|
+
M = knot_exterior
|
305
|
+
G = M.fundamental_group()
|
306
|
+
for A in irreps(p, q)[1:]:
|
307
|
+
d = dim_twisted_homology(G, A)
|
308
|
+
if d > 0:
|
309
|
+
n = A.nrows()
|
310
|
+
assert d % n == 0
|
311
|
+
yield (A, d//n)
|
312
|
+
|
313
|
+
|
314
|
+
def induced_rep_from_twisted_cocycle(p, rho, chi, cocycle):
|
315
|
+
"""
|
316
|
+
The main metabelian representation from Section 7 of [HKL] for the
|
317
|
+
group of a knot complement, where p is the degree of the branched
|
318
|
+
cover, rho is an irreducible cyclic representation acting on the
|
319
|
+
F_q vector space V, chi is a homomorpism V -> F_q, and cocycle
|
320
|
+
describes the semidirect product extension.
|
321
|
+
|
322
|
+
We differ from [HKL] in that all actions are on the left, meaning
|
323
|
+
that this representation is defined in terms of the convention for the
|
324
|
+
semidirect product discussed in::
|
325
|
+
|
326
|
+
MatrixRepresentation.semidirect_rep_from_twisted_cocycle
|
327
|
+
|
328
|
+
Here is an example::
|
329
|
+
|
330
|
+
sage: G = Manifold('K12n132').fundamental_group()
|
331
|
+
sage: A = matrix(GF(5), [[0, 4], [1, 4]])
|
332
|
+
sage: rho = cyclic_rep(G, A)
|
333
|
+
sage: cocycle = (0, 0, 0, 1, 1, 2)
|
334
|
+
sage: chi = lambda v: v[0] + 4*v[1]
|
335
|
+
sage: rho_ind = induced_rep_from_twisted_cocycle(3, rho, chi, cocycle)
|
336
|
+
sage: rho_ind('c').list()
|
337
|
+
[0, 0, (-z^3 - z^2 - z - 1), z^2*t^-1, 0, 0, 0, (-z^3 - z^2 - z - 1)*t^-1, 0]
|
338
|
+
"""
|
339
|
+
q = rho.base_ring.order()
|
340
|
+
n = rho.dim
|
341
|
+
K = CyclotomicField(q, 'z')
|
342
|
+
z = K.gen()
|
343
|
+
A = rho.A
|
344
|
+
R = LaurentPolynomialRing(K, 't')
|
345
|
+
t = R.gen()
|
346
|
+
MatSp = MatrixSpace(R, p)
|
347
|
+
gens = rho.generators
|
348
|
+
images = {}
|
349
|
+
for s, g in enumerate(gens):
|
350
|
+
v = vector(cocycle[s*n:(s+1)*n])
|
351
|
+
e = rho.epsilon(g)[0]
|
352
|
+
U = MatSp(0)
|
353
|
+
for j in range(0, p):
|
354
|
+
k, l = (e + j).quo_rem(p)
|
355
|
+
U[l, j] = t**k * z**chi(A**(-l) * v)
|
356
|
+
images[g] = U
|
357
|
+
|
358
|
+
e, v = -e, -A**(-e)*v
|
359
|
+
V = MatSp(0)
|
360
|
+
for j in range(0, p):
|
361
|
+
k, l = (e + j).quo_rem(p)
|
362
|
+
V[l, j] = t**k * z**chi(A**(-l) * v)
|
363
|
+
images[g.swapcase()] = V
|
364
|
+
|
365
|
+
alpha = MatrixRepresentation(gens, rho.relators, MatSp, images)
|
366
|
+
alpha.epsilon = rho.epsilon
|
367
|
+
return alpha
|
368
|
+
|
369
|
+
|
370
|
+
def normalize_polynomial(f):
|
371
|
+
"""
|
372
|
+
Multiply by t^-n so that the constant term is nonzero.
|
373
|
+
|
374
|
+
sage: t = PolynomialRing(ZZ, 't').gen()
|
375
|
+
sage: normalize_polynomial(t**3 + 2*t**2)
|
376
|
+
t + 2
|
377
|
+
"""
|
378
|
+
e = min(f.exponents())
|
379
|
+
t = f.parent().gen()
|
380
|
+
return f // t**e
|
381
|
+
|
382
|
+
|
383
|
+
def twisted_alexander_polynomial(alpha, reduced=False):
|
384
|
+
"""
|
385
|
+
In HKL, alpha is epsilon x rho; in nsagetools, it would be called
|
386
|
+
phialpha with phi being epsilon. If reduced is True, the answer is
|
387
|
+
divided by (t - 1).
|
388
|
+
|
389
|
+
Here, we duplicate the calculation of Section 10.2 of [HKL].
|
390
|
+
|
391
|
+
sage: M = Manifold('K12a169')
|
392
|
+
sage: G = M.fundamental_group()
|
393
|
+
sage: A = matrix(GF(5), [[0, 4], [1, 4]])
|
394
|
+
sage: rho = cyclic_rep(G, A)
|
395
|
+
sage: chi = lambda v:3*v[0]
|
396
|
+
sage: alpha = induced_rep_from_twisted_cocycle(3, rho, chi, (0, 0, 1, 0))
|
397
|
+
sage: -twisted_alexander_polynomial(alpha, reduced=True)
|
398
|
+
4*t^2 + (z^3 + z^2 + 5)*t + 4
|
399
|
+
"""
|
400
|
+
F = alpha('a').base_ring().base_ring()
|
401
|
+
epsilon = alpha.epsilon
|
402
|
+
gens, rels = alpha.generators, alpha.relators
|
403
|
+
k = len(gens)
|
404
|
+
|
405
|
+
# Make sure this special algorithm applies.
|
406
|
+
assert len(rels) == len(gens) - 1 and epsilon.range().rank() == 1
|
407
|
+
|
408
|
+
# Want the first variable to be homologically nontrivial
|
409
|
+
i0 = next(i for i, g in enumerate(gens) if epsilon(g) != 0)
|
410
|
+
gens = gens[i0:] + gens[:i0]
|
411
|
+
|
412
|
+
# Boundary maps for chain complex
|
413
|
+
|
414
|
+
d2 = [ [fox_derivative_with_involution(R, alpha, g) for R in rels] for g in gens]
|
415
|
+
d2 = block_matrix(d2, nrows=k, ncols=k-1)
|
416
|
+
d1 = [alpha(g.swapcase()) - 1 for g in gens]
|
417
|
+
d1 = block_matrix(d1, nrows=1, ncols=k)
|
418
|
+
assert d1 * d2 == 0
|
419
|
+
|
420
|
+
T = last_square_submatrix(d2)
|
421
|
+
B = first_square_submatrix(d1)
|
422
|
+
|
423
|
+
T = normalize_polynomial(fast_determinant_of_laurent_poly_matrix(T))
|
424
|
+
B = normalize_polynomial(fast_determinant_of_laurent_poly_matrix(B))
|
425
|
+
|
426
|
+
q, r = T.quo_rem(B)
|
427
|
+
assert r == 0
|
428
|
+
ans = normalize_polynomial(q)
|
429
|
+
if reduced:
|
430
|
+
t = ans.parent().gen()
|
431
|
+
ans, r = ans.quo_rem(t - 1)
|
432
|
+
assert r == 0
|
433
|
+
return ans
|
434
|
+
|
435
|
+
|
436
|
+
def alex_poly_of_induced_rep(p, knot_exterior, A, chi):
|
437
|
+
"""
|
438
|
+
When A is the matrix generating an irreducible representation V
|
439
|
+
that appears with multiplicity 1 in H_1(B_p, F_q) and chi: V -> F_q
|
440
|
+
is a homomorphism, computes the (reduced) twisted alexander
|
441
|
+
polynomial of Herald-Kirk-Livingston.
|
442
|
+
|
443
|
+
Here is the example from Section 10.3 of [HKL]. When comparing
|
444
|
+
with the original, note the polynomnial coeffs in Q(zeta_5) are
|
445
|
+
not in the usual Q-basis for this field 1, z, z^2, z^3 where z =
|
446
|
+
zeta_5::
|
447
|
+
|
448
|
+
sage: M = Manifold('K12n132')
|
449
|
+
sage: A = matrix(GF(5), [[0, 4], [1, 4]])
|
450
|
+
sage: chi = lambda v:v[0] + 3*v[1]
|
451
|
+
sage: alex = alex_poly_of_induced_rep(3, M, A, chi)
|
452
|
+
sage: t = alex.parent().gen()
|
453
|
+
sage: quo, rem = alex.quo_rem(t - 1)
|
454
|
+
sage: 5*quo/quo.leading_coefficient()
|
455
|
+
5*t^3 + (10*z^3 + 14*z^2 + 14*z + 12)*t^2 + (-4*z^2 - 14*z - 2)*t + 5
|
456
|
+
|
457
|
+
Here is their example 10.6::
|
458
|
+
|
459
|
+
sage: M = Manifold('K12n224')
|
460
|
+
sage: A3, A5 = matrix(GF(7), [[4]]), matrix(GF(7), [[2]])
|
461
|
+
sage: A3.charpoly(), A5.charpoly()
|
462
|
+
(x + 3, x + 5)
|
463
|
+
sage: -alex_poly_of_induced_rep(3, M, A3, lambda v:3*v[0])
|
464
|
+
t^4 + (-4*z^4 - 4*z^2 - 4*z - 5)*t^3 + 6*t^2 + (4*z^4 + 4*z^2 + 4*z - 1)*t + 1
|
465
|
+
sage: -alex_poly_of_induced_rep(3, M, A5, lambda v:v[0])
|
466
|
+
t^4 + (4*z^4 + 4*z^2 + 4*z - 1)*t^3 + 6*t^2 + (-4*z^4 - 4*z^2 - 4*z - 5)*t + 1
|
467
|
+
"""
|
468
|
+
|
469
|
+
G = knot_exterior.fundamental_group()
|
470
|
+
rho = cyclic_rep(G, A)
|
471
|
+
n = rho.dim
|
472
|
+
|
473
|
+
C = rho.twisted_cochain_complex()
|
474
|
+
if C.homology(1).dimension() != n:
|
475
|
+
raise ValueError('Multiplicity of V is not 1')
|
476
|
+
d0, d1 = C.differential(0), C.differential(1)
|
477
|
+
B1 = d0.column_space()
|
478
|
+
Z1 = d1.right_kernel()
|
479
|
+
cocycle = next(z for z in Z1.basis() if z not in B1)
|
480
|
+
alpha = induced_rep_from_twisted_cocycle(p, rho, chi, cocycle)
|
481
|
+
ans = twisted_alexander_polynomial(alpha, reduced=True)
|
482
|
+
assert poly_involution(ans) == ans
|
483
|
+
return ans
|
484
|
+
|
485
|
+
|
486
|
+
def poly_involution(f):
|
487
|
+
"""
|
488
|
+
sage: K = CyclotomicField(3, 'z')
|
489
|
+
sage: R = PolynomialRing(K, 't')
|
490
|
+
sage: z, t = K.gen(), R.gen()
|
491
|
+
sage: poly_involution(z*t**2 + (1/z)*t + 1)
|
492
|
+
t^2 + z*t - z - 1
|
493
|
+
"""
|
494
|
+
R = f.parent()
|
495
|
+
K = R.base_ring()
|
496
|
+
z, t = K.gen(), R.gen()
|
497
|
+
bar = K.hom([1/z])
|
498
|
+
ans = R(0)
|
499
|
+
d = f.degree()
|
500
|
+
for e in f.exponents():
|
501
|
+
ans += bar(f[e])*t**(d - e)
|
502
|
+
return ans
|
503
|
+
|
504
|
+
|
505
|
+
def poly_is_a_norm(g):
|
506
|
+
"""
|
507
|
+
Return whether the polynomial g(t) over a CyclotomicField is equal to
|
508
|
+
(const) f(t) fbar(t) where fbar is poly_involution(f)::
|
509
|
+
|
510
|
+
sage: K = CyclotomicField(5, 'z')
|
511
|
+
sage: R = PolynomialRing(K, 't')
|
512
|
+
sage: z, t = K.gen(), R.gen()
|
513
|
+
sage: f = z*t**2 + (1/z)*t + 1
|
514
|
+
sage: fbar = poly_involution(f)
|
515
|
+
sage: poly_is_a_norm(z**2 * f * fbar * (t - 1)**2)
|
516
|
+
True
|
517
|
+
sage: poly_is_a_norm(f**2 * fbar)
|
518
|
+
False
|
519
|
+
sage: poly_is_a_norm(f * fbar * (t - 1))
|
520
|
+
False
|
521
|
+
sage: poly_is_a_norm(4*t**2 + (z**3 + z**2 + 5)*t + 4)
|
522
|
+
False
|
523
|
+
"""
|
524
|
+
factors = dict(g.factor())
|
525
|
+
for h in factors:
|
526
|
+
assert h.is_monic()
|
527
|
+
hbar = poly_involution(h)
|
528
|
+
hbar = hbar/hbar.leading_coefficient()
|
529
|
+
if hbar == h and factors[h] % 2 != 0:
|
530
|
+
return False
|
531
|
+
elif factors[h] != factors[hbar]:
|
532
|
+
return False
|
533
|
+
|
534
|
+
return True
|
535
|
+
|
536
|
+
|
537
|
+
def slicing_is_obstructed(knot_exterior, p, q):
|
538
|
+
"""
|
539
|
+
Applies the test of Section 8 of [HKL] to the F_q homology of the
|
540
|
+
branched cover B_p::
|
541
|
+
|
542
|
+
sage: M = Manifold('K12n813')
|
543
|
+
sage: slicing_is_obstructed(M, 2, 3)
|
544
|
+
False
|
545
|
+
sage: slicing_is_obstructed(M, 3, 7)
|
546
|
+
True
|
547
|
+
"""
|
548
|
+
p, q = ZZ(p), ZZ(q)
|
549
|
+
assert is_prime(p) and is_prime(q) and q > 2
|
550
|
+
reps = list(reps_appearing(knot_exterior, p, q))
|
551
|
+
if len(reps) == 0:
|
552
|
+
return False
|
553
|
+
for A, e in reps:
|
554
|
+
# Can only handle case when all reps appear with mult one.
|
555
|
+
if e > 1:
|
556
|
+
return False
|
557
|
+
# We always use the default chi, could try others as well.
|
558
|
+
chi = lambda v:v[0]
|
559
|
+
f = alex_poly_of_induced_rep(p, knot_exterior, A, chi)
|
560
|
+
if poly_is_a_norm(f):
|
561
|
+
return False
|
562
|
+
|
563
|
+
return True
|
564
|
+
|
565
|
+
|
566
|
+
def expand_prime_spec(spec, min_prime=2):
|
567
|
+
if spec in ZZ:
|
568
|
+
a, b = 0, spec
|
569
|
+
else:
|
570
|
+
if len(spec) != 2:
|
571
|
+
raise ValueError(f'Spec {spec} does not specify a range')
|
572
|
+
a, b = spec
|
573
|
+
a = max(a, min_prime)
|
574
|
+
return prime_range(a, b + 1)
|
575
|
+
|
576
|
+
|
577
|
+
@sage_method
|
578
|
+
def slice_obstruction_HKL(self, primes_spec,
|
579
|
+
verbose=False, check_in_S3=True):
|
580
|
+
"""
|
581
|
+
For the exterior of a knot in S^3, searches for a topological
|
582
|
+
slicing obstruction from:
|
583
|
+
|
584
|
+
Herald, Kirk, Livingston, Math Zeit., 2010
|
585
|
+
https://dx.doi.org/10.1007/s00209-009-0548-1
|
586
|
+
https://arxiv.org/abs/0804.1355
|
587
|
+
|
588
|
+
The test looks at the cyclic branched covers of the knot of prime
|
589
|
+
order p and the F_q homology thereof where q is an odd prime. The
|
590
|
+
range of such (p, q) pairs searched is given by primes_spec as a
|
591
|
+
list of (p_max, [q_min, q_max]). It returns the pair (p, q) of
|
592
|
+
the first nonzero obstruction found (in which case K is not
|
593
|
+
slice), and otherwise returns None::
|
594
|
+
|
595
|
+
sage: M = Manifold('K12n813')
|
596
|
+
sage: spec = [(10, [0, 20]), (20, [0, 10])]
|
597
|
+
sage: M.slice_obstruction_HKL(spec, verbose=True)
|
598
|
+
Looking at (2, 3) ...
|
599
|
+
Looking at (3, 7) ...
|
600
|
+
(3, 7)
|
601
|
+
|
602
|
+
You can also specify the p to examine by a range [p_min, p_max] or
|
603
|
+
the q by just q_max::
|
604
|
+
|
605
|
+
sage: spec = [([3, 10], 10)]
|
606
|
+
sage: M.slice_obstruction_HKL(spec, verbose=True)
|
607
|
+
Looking at (3, 7) ...
|
608
|
+
(3, 7)
|
609
|
+
|
610
|
+
If primes_spec is just a pair (p, q) then only that obstruction is
|
611
|
+
checked::
|
612
|
+
|
613
|
+
sage: M.slice_obstruction_HKL((2, 3))
|
614
|
+
sage: M.slice_obstruction_HKL((3, 7))
|
615
|
+
(3, 7)
|
616
|
+
|
617
|
+
Technical note: As implemented, can only get an obstruction when
|
618
|
+
the decomposition of H_1(cover; F_q) into irreducible Z/pZ-modules
|
619
|
+
has no repeat factors. The method of [HKL] can be used more
|
620
|
+
broadly, but other cases requires computing many more twisted
|
621
|
+
Alexander polynomials.
|
622
|
+
"""
|
623
|
+
|
624
|
+
M = self
|
625
|
+
|
626
|
+
if M.cusp_info('is_complete') != [True]:
|
627
|
+
raise ValueError('Need exactly one cusp which should be unfilled')
|
628
|
+
if M.homology().elementary_divisors() != [0]:
|
629
|
+
raise ValueError('Not the exterior of knot in S^3 as H_1 != Z')
|
630
|
+
if check_in_S3:
|
631
|
+
T = SnapPy.Triangulation(M)
|
632
|
+
T.dehn_fill((1, 0))
|
633
|
+
if T.fundamental_group().num_generators() != 0:
|
634
|
+
raise ValueError('The (1, 0) filling is not obviously S^3')
|
635
|
+
|
636
|
+
# Special case of only one (p, q) to check
|
637
|
+
if len(primes_spec) == 2:
|
638
|
+
p, q = primes_spec
|
639
|
+
if p in ZZ and q in ZZ:
|
640
|
+
if q == 2:
|
641
|
+
raise ValueError('Must have q > 2 when looking at H_1(cover; F_q)')
|
642
|
+
if not (is_prime(p) and is_prime(q)):
|
643
|
+
raise ValueError('Both p and q must be prime')
|
644
|
+
if slicing_is_obstructed(M, p, q):
|
645
|
+
return (p, q)
|
646
|
+
else:
|
647
|
+
return None
|
648
|
+
|
649
|
+
# Main case
|
650
|
+
primes_spec = [(expand_prime_spec(a), expand_prime_spec(b, min_prime=3))
|
651
|
+
for a, b in primes_spec]
|
652
|
+
for ps, qs in primes_spec:
|
653
|
+
for p in ps:
|
654
|
+
d = nonzero_divisor_product(M, p)
|
655
|
+
for q in qs:
|
656
|
+
if d % q == 0:
|
657
|
+
if verbose:
|
658
|
+
print(' Looking at', (p, q), '...')
|
659
|
+
if slicing_is_obstructed(M, p, q):
|
660
|
+
return (p, q)
|
661
|
+
|
662
|
+
|
663
|
+
if __name__ == '__main__':
|
664
|
+
import doctest
|
665
|
+
import sys
|
666
|
+
results = doctest.testmod()
|
667
|
+
print(results)
|
668
|
+
sys.exit(results[0])
|