snappy 3.2__cp39-cp39-macosx_10_12_x86_64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-39-darwin.so +0 -0
- snappy/SnapPy.cpython-39-darwin.so +0 -0
- snappy/SnapPy.ico +0 -0
- snappy/SnapPy.png +0 -0
- snappy/SnapPyHP.cpython-39-darwin.so +0 -0
- snappy/__init__.py +760 -0
- snappy/app.py +605 -0
- snappy/app_menus.py +372 -0
- snappy/browser.py +998 -0
- snappy/cache.py +25 -0
- snappy/canonical.py +249 -0
- snappy/cusps/__init__.py +38 -0
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/cusps/cusp_areas_from_matrix.py +173 -0
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +454 -0
- snappy/db_utilities.py +79 -0
- snappy/decorated_isosig.py +710 -0
- snappy/dev/__init__.py +0 -0
- snappy/dev/extended_ptolemy/__init__.py +8 -0
- snappy/dev/extended_ptolemy/closed.py +106 -0
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +149 -0
- snappy/dev/extended_ptolemy/direct.py +42 -0
- snappy/dev/extended_ptolemy/extended.py +406 -0
- snappy/dev/extended_ptolemy/giac_helper.py +43 -0
- snappy/dev/extended_ptolemy/giac_rur.py +129 -0
- snappy/dev/extended_ptolemy/gluing.py +46 -0
- snappy/dev/extended_ptolemy/phc_wrapper.py +220 -0
- snappy/dev/extended_ptolemy/printMatrices.py +70 -0
- snappy/dev/vericlosed/__init__.py +1 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureNew.py +159 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +90 -0
- snappy/dev/vericlosed/computeVerifiedHyperbolicStructure.py +111 -0
- snappy/dev/vericlosed/gimbalLoopFinder.py +130 -0
- snappy/dev/vericlosed/hyperbolicStructure.py +313 -0
- snappy/dev/vericlosed/krawczykCertifiedEdgeLengthsEngine.py +165 -0
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +122 -0
- snappy/dev/vericlosed/orb/__init__.py +1 -0
- snappy/dev/vericlosed/orb/orb_solution_for_snappea_finite_triangulation_mac +0 -0
- snappy/dev/vericlosed/parseVertexGramMatrixFile.py +47 -0
- snappy/dev/vericlosed/polishApproxHyperbolicStructure.py +61 -0
- snappy/dev/vericlosed/test.py +54 -0
- snappy/dev/vericlosed/truncatedComplex.py +176 -0
- snappy/dev/vericlosed/verificationError.py +58 -0
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +177 -0
- snappy/doc/_images/SnapPy-196.png +0 -0
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/mac.png +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_images/plink-action.png +0 -0
- snappy/doc/_images/ubuntu.png +0 -0
- snappy/doc/_images/win7.png +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -0
- snappy/doc/_sources/bugs.rst.txt +14 -0
- snappy/doc/_sources/censuses.rst.txt +51 -0
- snappy/doc/_sources/credits.rst.txt +75 -0
- snappy/doc/_sources/development.rst.txt +259 -0
- snappy/doc/_sources/index.rst.txt +182 -0
- snappy/doc/_sources/installing.rst.txt +247 -0
- snappy/doc/_sources/manifold.rst.txt +6 -0
- snappy/doc/_sources/manifoldhp.rst.txt +46 -0
- snappy/doc/_sources/news.rst.txt +355 -0
- snappy/doc/_sources/other.rst.txt +25 -0
- snappy/doc/_sources/platonic_census.rst.txt +20 -0
- snappy/doc/_sources/plink.rst.txt +102 -0
- snappy/doc/_sources/ptolemy.rst.txt +66 -0
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -0
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -0
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -0
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -0
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -0
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -0
- snappy/doc/_sources/screenshots.rst.txt +21 -0
- snappy/doc/_sources/snap.rst.txt +87 -0
- snappy/doc/_sources/snappy.rst.txt +28 -0
- snappy/doc/_sources/spherogram.rst.txt +103 -0
- snappy/doc/_sources/todo.rst.txt +47 -0
- snappy/doc/_sources/triangulation.rst.txt +11 -0
- snappy/doc/_sources/tutorial.rst.txt +49 -0
- snappy/doc/_sources/verify.rst.txt +210 -0
- snappy/doc/_sources/verify_internals.rst.txt +79 -0
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +925 -0
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +156 -0
- snappy/doc/_static/documentation_options.js +13 -0
- snappy/doc/_static/file.png +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -0
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +199 -0
- snappy/doc/_static/minus.png +0 -0
- snappy/doc/_static/plus.png +0 -0
- snappy/doc/_static/pygments.css +75 -0
- snappy/doc/_static/searchtools.js +620 -0
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +1500 -0
- snappy/doc/bugs.html +132 -0
- snappy/doc/censuses.html +427 -0
- snappy/doc/credits.html +181 -0
- snappy/doc/development.html +384 -0
- snappy/doc/genindex.html +1331 -0
- snappy/doc/index.html +262 -0
- snappy/doc/installing.html +346 -0
- snappy/doc/manifold.html +3452 -0
- snappy/doc/manifoldhp.html +180 -0
- snappy/doc/news.html +388 -0
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +161 -0
- snappy/doc/platonic_census.html +375 -0
- snappy/doc/plink.html +210 -0
- snappy/doc/ptolemy.html +254 -0
- snappy/doc/ptolemy_classes.html +1144 -0
- snappy/doc/ptolemy_examples1.html +409 -0
- snappy/doc/ptolemy_examples2.html +471 -0
- snappy/doc/ptolemy_examples3.html +414 -0
- snappy/doc/ptolemy_examples4.html +195 -0
- snappy/doc/ptolemy_prelim.html +248 -0
- snappy/doc/py-modindex.html +165 -0
- snappy/doc/screenshots.html +141 -0
- snappy/doc/search.html +135 -0
- snappy/doc/searchindex.js +1 -0
- snappy/doc/snap.html +202 -0
- snappy/doc/snappy.html +181 -0
- snappy/doc/spherogram.html +1211 -0
- snappy/doc/todo.html +166 -0
- snappy/doc/triangulation.html +1584 -0
- snappy/doc/tutorial.html +159 -0
- snappy/doc/verify.html +330 -0
- snappy/doc/verify_internals.html +1235 -0
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +26 -0
- snappy/export_stl.py +120 -0
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/filedialog.py +28 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +121 -0
- snappy/horoviewer.py +443 -0
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/info_icon.gif +0 -0
- snappy/infowindow.py +65 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/HTWKnots/alternating.gz +0 -0
- snappy/manifolds/HTWKnots/nonalternating.gz +0 -0
- snappy/manifolds/__init__.py +3 -0
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +657 -0
- snappy/numeric_output_checker.py +345 -0
- snappy/pari.py +41 -0
- snappy/phone_home.py +57 -0
- snappy/polyviewer.py +259 -0
- snappy/ptolemy/__init__.py +17 -0
- snappy/ptolemy/component.py +103 -0
- snappy/ptolemy/coordinates.py +2290 -0
- snappy/ptolemy/fieldExtensions.py +153 -0
- snappy/ptolemy/findLoops.py +473 -0
- snappy/ptolemy/geometricRep.py +59 -0
- snappy/ptolemy/homology.py +165 -0
- snappy/ptolemy/magma/default.magma_template +229 -0
- snappy/ptolemy/magma/radicalsOfPrimaryDecomposition.magma_template +79 -0
- snappy/ptolemy/manifoldMethods.py +395 -0
- snappy/ptolemy/matrix.py +350 -0
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +113 -0
- snappy/ptolemy/polynomial.py +857 -0
- snappy/ptolemy/processComponents.py +173 -0
- snappy/ptolemy/processFileBase.py +247 -0
- snappy/ptolemy/processFileDispatch.py +46 -0
- snappy/ptolemy/processMagmaFile.py +392 -0
- snappy/ptolemy/processRurFile.py +150 -0
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +102 -0
- snappy/ptolemy/ptolemyObstructionClass.py +64 -0
- snappy/ptolemy/ptolemyVariety.py +1029 -0
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +140 -0
- snappy/ptolemy/reginaWrapper.py +698 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/rur.py +545 -0
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +277 -0
- snappy/ptolemy/test.py +1126 -0
- snappy/ptolemy/testing_files/3_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/3_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c0.magma_out +95 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c1.magma_out +95 -0
- snappy/ptolemy/testing_files/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_rur/m052__sl3_c0.rur.bz2 +0 -0
- snappy/ptolemy/utilities.py +236 -0
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +197 -0
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +237 -0
- snappy/raytracing/finite_viewer.py +590 -0
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +293 -0
- snappy/raytracing/hyperboloid_navigation.py +556 -0
- snappy/raytracing/hyperboloid_utilities.py +234 -0
- snappy/raytracing/ideal_raytracing_data.py +592 -0
- snappy/raytracing/inside_viewer.py +974 -0
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +126 -0
- snappy/raytracing/raytracing_view.py +454 -0
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +101 -0
- snappy/raytracing/shaders/fragment.glsl +1744 -0
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +263 -0
- snappy/raytracing/zoom_slider/inward.png +0 -0
- snappy/raytracing/zoom_slider/inward18.png +0 -0
- snappy/raytracing/zoom_slider/outward.png +0 -0
- snappy/raytracing/zoom_slider/outward18.png +0 -0
- snappy/raytracing/zoom_slider/test.py +20 -0
- snappy/sage_helper.py +117 -0
- snappy/settings.py +409 -0
- snappy/shell.py +53 -0
- snappy/snap/__init__.py +114 -0
- snappy/snap/character_varieties.py +375 -0
- snappy/snap/find_field.py +372 -0
- snappy/snap/fundamental_polyhedron.py +569 -0
- snappy/snap/generators.py +39 -0
- snappy/snap/interval_reps.py +81 -0
- snappy/snap/kernel_structures.py +128 -0
- snappy/snap/mcomplex_base.py +18 -0
- snappy/snap/nsagetools.py +702 -0
- snappy/snap/peripheral/__init__.py +1 -0
- snappy/snap/peripheral/dual_cellulation.py +219 -0
- snappy/snap/peripheral/link.py +127 -0
- snappy/snap/peripheral/peripheral.py +159 -0
- snappy/snap/peripheral/surface.py +522 -0
- snappy/snap/peripheral/test.py +35 -0
- snappy/snap/polished_reps.py +335 -0
- snappy/snap/shapes.py +152 -0
- snappy/snap/slice_obs_HKL.py +668 -0
- snappy/snap/t3mlite/__init__.py +2 -0
- snappy/snap/t3mlite/arrow.py +243 -0
- snappy/snap/t3mlite/corner.py +22 -0
- snappy/snap/t3mlite/edge.py +172 -0
- snappy/snap/t3mlite/face.py +37 -0
- snappy/snap/t3mlite/files.py +211 -0
- snappy/snap/t3mlite/homology.py +53 -0
- snappy/snap/t3mlite/linalg.py +419 -0
- snappy/snap/t3mlite/mcomplex.py +1499 -0
- snappy/snap/t3mlite/perm4.py +320 -0
- snappy/snap/t3mlite/setup.py +12 -0
- snappy/snap/t3mlite/simplex.py +199 -0
- snappy/snap/t3mlite/spun.py +297 -0
- snappy/snap/t3mlite/surface.py +519 -0
- snappy/snap/t3mlite/test.py +20 -0
- snappy/snap/t3mlite/test_vs_regina.py +86 -0
- snappy/snap/t3mlite/tetrahedron.py +109 -0
- snappy/snap/t3mlite/vertex.py +42 -0
- snappy/snap/test.py +134 -0
- snappy/snap/utilities.py +288 -0
- snappy/test.py +209 -0
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +920 -0
- snappy/twister/__init__.py +20 -0
- snappy/twister/main.py +646 -0
- snappy/twister/surfaces/S_0_1 +3 -0
- snappy/twister/surfaces/S_0_2 +3 -0
- snappy/twister/surfaces/S_0_4 +7 -0
- snappy/twister/surfaces/S_0_4_Lantern +8 -0
- snappy/twister/surfaces/S_1 +3 -0
- snappy/twister/surfaces/S_1_1 +4 -0
- snappy/twister/surfaces/S_1_2 +5 -0
- snappy/twister/surfaces/S_1_2_5 +6 -0
- snappy/twister/surfaces/S_2 +6 -0
- snappy/twister/surfaces/S_2_1 +8 -0
- snappy/twister/surfaces/S_2_heeg +10 -0
- snappy/twister/surfaces/S_3 +8 -0
- snappy/twister/surfaces/S_3_1 +10 -0
- snappy/twister/surfaces/S_4_1 +12 -0
- snappy/twister/surfaces/S_5_1 +14 -0
- snappy/twister/surfaces/heeg_fig8 +9 -0
- snappy/twister/twister_core.cpython-39-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +13 -0
- snappy/verify/canonical.py +542 -0
- snappy/verify/complex_volume/__init__.py +18 -0
- snappy/verify/complex_volume/adjust_torsion.py +86 -0
- snappy/verify/complex_volume/closed.py +168 -0
- snappy/verify/complex_volume/compute_ptolemys.py +90 -0
- snappy/verify/complex_volume/cusped.py +56 -0
- snappy/verify/complex_volume/extended_bloch.py +201 -0
- snappy/verify/cusp_translations.py +85 -0
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +254 -0
- snappy/verify/hyperbolicity.py +224 -0
- snappy/verify/interval_newton_shapes_engine.py +523 -0
- snappy/verify/interval_tree.py +400 -0
- snappy/verify/krawczyk_shapes_engine.py +518 -0
- snappy/verify/maximal_cusp_area_matrix/__init__.py +46 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +419 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +153 -0
- snappy/verify/real_algebra.py +286 -0
- snappy/verify/shapes.py +25 -0
- snappy/verify/short_slopes.py +200 -0
- snappy/verify/square_extensions.py +1005 -0
- snappy/verify/test.py +78 -0
- snappy/verify/upper_halfspace/__init__.py +9 -0
- snappy/verify/upper_halfspace/extended_matrix.py +100 -0
- snappy/verify/upper_halfspace/finite_point.py +283 -0
- snappy/verify/upper_halfspace/ideal_point.py +426 -0
- snappy/verify/volume.py +128 -0
- snappy/version.py +2 -0
- snappy-3.2.dist-info/METADATA +58 -0
- snappy-3.2.dist-info/RECORD +503 -0
- snappy-3.2.dist-info/WHEEL +5 -0
- snappy-3.2.dist-info/entry_points.txt +2 -0
- snappy-3.2.dist-info/top_level.txt +28 -0
@@ -0,0 +1,523 @@
|
|
1
|
+
from ..matrix import make_matrix, make_vector, mat_solve
|
2
|
+
from .. import snap
|
3
|
+
from ..sage_helper import _within_sage, sage_method
|
4
|
+
|
5
|
+
if _within_sage:
|
6
|
+
from sage.rings.complex_interval_field import ComplexIntervalField
|
7
|
+
from sage.rings.real_mpfi import RealIntervalField
|
8
|
+
from ..pari import prec_dec_to_bits
|
9
|
+
|
10
|
+
__all__ = ['IntervalNewtonShapesEngine']
|
11
|
+
|
12
|
+
|
13
|
+
class IntervalNewtonShapesEngine:
|
14
|
+
|
15
|
+
"""
|
16
|
+
An engine that is initialized with an approximated candidate solution to
|
17
|
+
the rectangular gluing equations and produces intervals certified to
|
18
|
+
contain a true solution. After the engine is successfully run, the
|
19
|
+
resulting intervals are stored in certified_shapes which is a vector of
|
20
|
+
elements in a Sage's ComplexIntervalField.
|
21
|
+
|
22
|
+
A simple example to obtain certified shape intervals that uses
|
23
|
+
KrawczykShapesEngine or IntervalNewtonShapesEngine under the hood::
|
24
|
+
|
25
|
+
sage: from snappy import Manifold
|
26
|
+
sage: M = Manifold("m015")
|
27
|
+
sage: M.tetrahedra_shapes('rect', bits_prec = 80, intervals = True) # doctest: +NUMERIC15 +NORMALIZE_WHITESPACE
|
28
|
+
[0.6623589786223730129805? + 0.5622795120623012438992?*I,
|
29
|
+
0.6623589786223730129805? + 0.5622795120623012438992?*I,
|
30
|
+
0.6623589786223730129805? + 0.5622795120623012438992?*I]
|
31
|
+
|
32
|
+
Its objective is thus the same as HIKMOT and it is certainly HIKMOT
|
33
|
+
inspired. However, it conceptually differs in that:
|
34
|
+
|
35
|
+
1. It uses the Newton interval method instead of the Krawczyk
|
36
|
+
test (we implement Gaussian elimination in interval arithmetic to
|
37
|
+
compute the inverse of an interval matrix having interval arithmetic
|
38
|
+
semantics, see mat_solve).
|
39
|
+
|
40
|
+
2. It uses complex numbers in it's Newton interval method.
|
41
|
+
We simply use Sage's complex interval type avoiding the need of
|
42
|
+
converting n x n complex matrices into 2n x 2n real matrices as
|
43
|
+
described Section 3.4 of the HIKMOT paper.
|
44
|
+
|
45
|
+
3. We avoid automatic differentiation. We pick an independent set of
|
46
|
+
equations of the following form and try to solve them:
|
47
|
+
|
48
|
+
log(LHS) = 0
|
49
|
+
|
50
|
+
where
|
51
|
+
|
52
|
+
LHS = c * z0^a0 * (1-z0)^b0 * z1^a1 * (1-z1)^b1 * ...
|
53
|
+
|
54
|
+
with a, b and c's as returned by Manifold.gluing_equations('rect').
|
55
|
+
|
56
|
+
The derivative of log (LHS) with respect to zj is simply given by
|
57
|
+
|
58
|
+
aj/zj - bj/(1-zj)
|
59
|
+
|
60
|
+
and thus no need for automatic differentiation.
|
61
|
+
|
62
|
+
In contrast to HIKMOT, we use and return Sage's native implementation of
|
63
|
+
(complex) interval arithmetic here, which allows for increased interoperability.
|
64
|
+
Another advantage is that Sage supports arbitrary precision. Unfortunately,
|
65
|
+
performance suffers and this implementation is 5-10 times slower than HIKMOT.
|
66
|
+
|
67
|
+
Here is an example how to explicitly invoke the IntervalNewtonShapesEngine::
|
68
|
+
|
69
|
+
sage: shapes = M.tetrahedra_shapes('rect', bits_prec = 80)
|
70
|
+
sage: C = IntervalNewtonShapesEngine(M, shapes, bits_prec = 80)
|
71
|
+
sage: C.expand_until_certified()
|
72
|
+
True
|
73
|
+
sage: C.certified_shapes # doctest: +ELLIPSIS
|
74
|
+
(0.662358978622373012981? + 0.562279512062301243...?*I, 0.66235897862237301298...? + 0.562279512062301243...?*I, 0.66235897862237301298...? + 0.562279512062301243...?*I)
|
75
|
+
|
76
|
+
"""
|
77
|
+
|
78
|
+
@staticmethod
|
79
|
+
def log_gluing_LHSs(equations, shapes):
|
80
|
+
"""
|
81
|
+
Given the result of M.gluing_equations('rect') or a
|
82
|
+
subset of rows of it and shapes, return a vector of
|
83
|
+
log(LHS) where
|
84
|
+
|
85
|
+
LHS = c * z0 ** a0 * (1-z0) ** b0 * z1 ** a1 * ...
|
86
|
+
|
87
|
+
Let f: C^n -> C^n denote the function which takes
|
88
|
+
shapes and returns the vector of log(LHS).
|
89
|
+
|
90
|
+
The reason we take the logarithm of the rectangular
|
91
|
+
gluing equations is because the logarithmic derivative
|
92
|
+
is of a particular nice form::
|
93
|
+
|
94
|
+
sage: from snappy import Manifold
|
95
|
+
sage: M = Manifold("m019")
|
96
|
+
sage: equations = M.gluing_equations('rect')
|
97
|
+
sage: RIF = RealIntervalField(80)
|
98
|
+
sage: CIF = ComplexIntervalField(80)
|
99
|
+
sage: zero = CIF(0).center()
|
100
|
+
sage: shape1 = CIF(RIF(0.78055,0.78056), RIF(0.9144, 0.9145))
|
101
|
+
sage: shape2 = CIF(RIF(0.46002,0.46003), RIF(0.6326, 0.6327))
|
102
|
+
|
103
|
+
An interval solution containing the true solution. The log of each
|
104
|
+
rectangular equation should be 0 for the true solution, hence the interval
|
105
|
+
should contain zero::
|
106
|
+
|
107
|
+
sage: shapes = [shape1, shape1, shape2]
|
108
|
+
sage: LHSs = IntervalNewtonShapesEngine.log_gluing_LHSs(equations, shapes)
|
109
|
+
sage: LHSs # doctest: +ELLIPSIS
|
110
|
+
(0.000? + 0.000?*I, 0.000? + 0.000?*I, 0.000? + 0.000?*I, 0.000...? + 0.000...?*I, 0.000? + 0.000?*I)
|
111
|
+
sage: zero in LHSs[0]
|
112
|
+
True
|
113
|
+
|
114
|
+
An interval not containing the true solution::
|
115
|
+
|
116
|
+
sage: shapes = [shape1, shape1, shape1]
|
117
|
+
sage: LHSs = IntervalNewtonShapesEngine.log_gluing_LHSs(equations, shapes)
|
118
|
+
sage: LHSs # doctest: +ELLIPSIS
|
119
|
+
(0.430? - 0.078?*I, -0.2...? + 0.942?*I, -0.1...? - 0.8...?*I, 0.000...? + 0.000...?*I, 0.430? - 0.078?*I)
|
120
|
+
sage: zero in LHSs[0]
|
121
|
+
False
|
122
|
+
|
123
|
+
"""
|
124
|
+
|
125
|
+
# Determine the field (should be ComplexField
|
126
|
+
# or ComplexIntervalField with some precision)
|
127
|
+
# of the shapes
|
128
|
+
BaseField = shapes[0].parent()
|
129
|
+
|
130
|
+
one = BaseField(1)
|
131
|
+
# The resulting vector as python list
|
132
|
+
gluing_LHSs = []
|
133
|
+
# Iterate through the rows of the result similar to
|
134
|
+
# M.gluing_equations('rect')
|
135
|
+
for A, B, c in equations:
|
136
|
+
# A and B are rows, c is an entry
|
137
|
+
# prod keeps the above product
|
138
|
+
prod = BaseField(c)
|
139
|
+
for a, b, shape in zip(A, B, shapes):
|
140
|
+
prod *= (shape ** a) * (one - shape) ** b
|
141
|
+
|
142
|
+
# Take log of the entire product
|
143
|
+
gluing_LHSs.append(prod.log())
|
144
|
+
|
145
|
+
return make_vector(gluing_LHSs, ring=BaseField)
|
146
|
+
|
147
|
+
@staticmethod
|
148
|
+
def log_gluing_LHS_derivatives(equations, shapes):
|
149
|
+
"""
|
150
|
+
Compute the Jacobian of the vector-valued function f
|
151
|
+
described in the above log_gluing_LHSs::
|
152
|
+
|
153
|
+
sage: from snappy import Manifold
|
154
|
+
sage: M = Manifold("m019")
|
155
|
+
sage: equations = M.gluing_equations('rect')
|
156
|
+
sage: RIF = RealIntervalField(80)
|
157
|
+
sage: CIF = ComplexIntervalField(80)
|
158
|
+
sage: shape1 = CIF(RIF(0.78055,0.78056), RIF(0.9144, 0.9145))
|
159
|
+
sage: shape2 = CIF(RIF(0.46002,0.46003), RIF(0.6326, 0.6327))
|
160
|
+
sage: shapes = [shape1, shape1, shape2]
|
161
|
+
sage: IntervalNewtonShapesEngine.log_gluing_LHS_derivatives(equations, shapes) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
|
162
|
+
[ 0.292? - 1.66...?*I 0.292? - 1.66...?*I 0.752? - 1.034...?*I]
|
163
|
+
[-0.5400? + 0.63...?*I -0.5400? + 0.63...?*I 1.561? + 1.829...?*I]
|
164
|
+
[ 0.2482? + 1.034...?*I 0.2482? + 1.034...?*I -2.313? - 0.795...?*I]
|
165
|
+
[ 0.5400? - 0.63...?*I -0.5400? + 0.63...?*I 0]
|
166
|
+
[...-0.4963? - 2.068?*I 1.0800? - 1.26...?*I 0.752? - 1.034...?*I]
|
167
|
+
|
168
|
+
"""
|
169
|
+
|
170
|
+
# Similar to log_gluing_LHS
|
171
|
+
BaseField = shapes[0].parent()
|
172
|
+
zero = BaseField(0)
|
173
|
+
one = BaseField(1)
|
174
|
+
|
175
|
+
# 1 / z for each shape z
|
176
|
+
shape_inverses = [ one / shape for shape in shapes ]
|
177
|
+
|
178
|
+
# 1 / (1-z) for each shape z
|
179
|
+
one_minus_shape_inverses = [ one / (one - shape) for shape in shapes ]
|
180
|
+
|
181
|
+
gluing_LHS_derivatives = []
|
182
|
+
for A, B, c in equations:
|
183
|
+
row = []
|
184
|
+
for a, b, shape_inverse, one_minus_shape_inverse in zip(
|
185
|
+
A, B, shape_inverses, one_minus_shape_inverses):
|
186
|
+
# Equation for the derivative
|
187
|
+
# derivative = ( a / z - b / (1-z) )
|
188
|
+
derivative = zero
|
189
|
+
if not a == 0:
|
190
|
+
derivative = BaseField(int(a)) * shape_inverse
|
191
|
+
if not b == 0:
|
192
|
+
derivative -= BaseField(int(b)) * one_minus_shape_inverse
|
193
|
+
|
194
|
+
row.append( derivative )
|
195
|
+
|
196
|
+
gluing_LHS_derivatives.append(row)
|
197
|
+
|
198
|
+
return make_matrix(gluing_LHS_derivatives, ring=BaseField)
|
199
|
+
|
200
|
+
@staticmethod
|
201
|
+
def interval_vector_mid_points(vec):
|
202
|
+
"""
|
203
|
+
Given a vector of complex intervals, return the midpoints (as 0-length
|
204
|
+
complex intervals) of them.
|
205
|
+
"""
|
206
|
+
# Should be ComplexIntervalField with the desired precision
|
207
|
+
BaseField = vec[0].parent()
|
208
|
+
|
209
|
+
return vec.apply_map(lambda shape: BaseField(shape.center()))
|
210
|
+
|
211
|
+
@staticmethod
|
212
|
+
def newton_iteration(equations, shape_intervals,
|
213
|
+
point_in_intervals=None,
|
214
|
+
interval_value_at_point=None):
|
215
|
+
"""
|
216
|
+
Perform a Newton interval method of iteration for
|
217
|
+
the function f described in log_gluing_LHSs.
|
218
|
+
|
219
|
+
Let z denote the shape intervals.
|
220
|
+
Let z_center be a point close to the center point of the shape
|
221
|
+
intervals (in the implementation, z_center is an interval of
|
222
|
+
again, of length zero).
|
223
|
+
|
224
|
+
The result returned will be
|
225
|
+
|
226
|
+
N(z) = z_center - ((Df)(z))^-1 f(z_center)
|
227
|
+
|
228
|
+
The user can overwrite the z_center to be used by providing
|
229
|
+
point_in_intervals (which have to be 0-length complex intervals).
|
230
|
+
The user can also give the interval value of f(z_center) by providing
|
231
|
+
interval_value_at_point to avoid re-evaluation of f(z_center).
|
232
|
+
|
233
|
+
A very approximate solution::
|
234
|
+
|
235
|
+
sage: from snappy import Manifold
|
236
|
+
sage: M = Manifold("m019")
|
237
|
+
sage: shapes = [ 0.7+1j, 0.7+1j, 0.5+0.5j ]
|
238
|
+
|
239
|
+
Get the equations and initialize zero-length intervals from it::
|
240
|
+
|
241
|
+
sage: C = IntervalNewtonShapesEngine(M, shapes, bits_prec = 80)
|
242
|
+
sage: C.initial_shapes
|
243
|
+
(0.69999999999999995559107902? + 1*I, 0.69999999999999995559107902? + 1*I, 0.50000000000000000000000000? + 0.50000000000000000000000000?*I)
|
244
|
+
|
245
|
+
Do several Newton interval operations to get a better solution::
|
246
|
+
|
247
|
+
sage: shape_intervals = C.initial_shapes
|
248
|
+
sage: for i in range(4): # doctest: +ELLIPSIS
|
249
|
+
... shape_intervals = IntervalNewtonShapesEngine.newton_iteration(C.equations, shape_intervals)
|
250
|
+
... print(shape_intervals)
|
251
|
+
(0.78674683118381457770...? + 0.9208680745160821379529?*I, 0.786746831183814577703...? + 0.9208680745160821379529?*I, 0.459868058287098030934...? + 0.61940871855835167317...?*I)
|
252
|
+
(0.78056102517632648594...? + 0.9144962118446750482...?*I, 0.78056102517632648594...? + 0.9144962118446750482...?*I, 0.4599773577869384936554? + 0.63251940718694538695...?*I)
|
253
|
+
(0.78055253104531610049...? + 0.9144736621585220345231?*I, 0.780552531045316100497...? + 0.9144736621585220345231?*I, 0.460021167103732494700...? + 0.6326241909236695020810...?*I)
|
254
|
+
(0.78055252785072483256...? + 0.91447366296772644033...?*I, 0.7805525278507248325678? + 0.914473662967726440333...?*I, 0.4600211755737178641204...? + 0.6326241936052562241142...?*I)
|
255
|
+
|
256
|
+
For comparison::
|
257
|
+
|
258
|
+
sage: M.tetrahedra_shapes('rect')
|
259
|
+
[0.780552527850725 + 0.914473662967726*I, 0.780552527850725 + 0.914473662967726*I, 0.460021175573718 + 0.632624193605256*I]
|
260
|
+
|
261
|
+
Start with a rather big interval, note that the Newton interval method is
|
262
|
+
stable in the sense that the interval size decreases::
|
263
|
+
|
264
|
+
sage: box = C.CIF(C.RIF(-0.0001,0.0001),C.RIF(-0.0001,0.0001))
|
265
|
+
sage: shape_intervals = C.initial_shapes.apply_map(lambda shape: shape + box)
|
266
|
+
sage: shape_intervals
|
267
|
+
(0.700? + 1.000?*I, 0.700? + 1.000?*I, 0.500? + 0.500?*I)
|
268
|
+
sage: for i in range(7):
|
269
|
+
... shape_intervals = IntervalNewtonShapesEngine.newton_iteration(C.equations, shape_intervals)
|
270
|
+
sage: print(shape_intervals) # doctest: +ELLIPSIS
|
271
|
+
(0.78055252785072483798...? + 0.91447366296772645593...?*I, 0.7805525278507248379869? + 0.914473662967726455938...?*I, 0.460021175573717872891...? + 0.632624193605256171637...?*I)
|
272
|
+
|
273
|
+
|
274
|
+
"""
|
275
|
+
|
276
|
+
if point_in_intervals is None:
|
277
|
+
point_in_intervals = (
|
278
|
+
IntervalNewtonShapesEngine.interval_vector_mid_points(
|
279
|
+
shape_intervals))
|
280
|
+
if interval_value_at_point is None:
|
281
|
+
interval_value_at_point = IntervalNewtonShapesEngine.log_gluing_LHSs(
|
282
|
+
equations, point_in_intervals)
|
283
|
+
|
284
|
+
# Compute (DF)(z)
|
285
|
+
derivatives = IntervalNewtonShapesEngine.log_gluing_LHS_derivatives(
|
286
|
+
equations, shape_intervals)
|
287
|
+
|
288
|
+
return ( point_in_intervals
|
289
|
+
- mat_solve(derivatives, interval_value_at_point))
|
290
|
+
|
291
|
+
@staticmethod
|
292
|
+
def interval_vector_is_contained_in(vecA, vecB):
|
293
|
+
"""
|
294
|
+
Given two vectors of intervals, return whether the first one
|
295
|
+
is contained in the second one. Examples::
|
296
|
+
|
297
|
+
sage: RIF = RealIntervalField(80)
|
298
|
+
sage: CIF = ComplexIntervalField(80)
|
299
|
+
sage: box = CIF(RIF(-1,1),RIF(-1,1))
|
300
|
+
sage: a = [ CIF(0.1), CIF(1) + box ]
|
301
|
+
sage: b = [ CIF(0) + box, CIF(1) + 2 * box ]
|
302
|
+
sage: c = [ CIF(0), CIF(1) + 3 * box ]
|
303
|
+
|
304
|
+
sage: IntervalNewtonShapesEngine.interval_vector_is_contained_in(a, b)
|
305
|
+
True
|
306
|
+
sage: IntervalNewtonShapesEngine.interval_vector_is_contained_in(a, c)
|
307
|
+
False
|
308
|
+
sage: IntervalNewtonShapesEngine.interval_vector_is_contained_in(b, a)
|
309
|
+
False
|
310
|
+
sage: IntervalNewtonShapesEngine.interval_vector_is_contained_in(b, c)
|
311
|
+
False
|
312
|
+
sage: IntervalNewtonShapesEngine.interval_vector_is_contained_in(c, a)
|
313
|
+
False
|
314
|
+
sage: IntervalNewtonShapesEngine.interval_vector_is_contained_in(c, b)
|
315
|
+
False
|
316
|
+
"""
|
317
|
+
return all((a in b) for a, b in zip(vecA, vecB))
|
318
|
+
|
319
|
+
@staticmethod
|
320
|
+
def interval_vector_union(vecA, vecB):
|
321
|
+
"""
|
322
|
+
Given two vectors of intervals, return the vector of their unions,
|
323
|
+
i.e., the smallest interval containing both intervals.
|
324
|
+
"""
|
325
|
+
return make_vector([a.union(b) for a, b in zip(vecA, vecB)])
|
326
|
+
|
327
|
+
@staticmethod
|
328
|
+
def certified_newton_iteration(equations, shape_intervals,
|
329
|
+
point_in_intervals=None,
|
330
|
+
interval_value_at_point=None):
|
331
|
+
"""
|
332
|
+
Given shape intervals z, performs a Newton interval iteration N(z)
|
333
|
+
as described in newton_iteration. Returns a pair (boolean, N(z)) where
|
334
|
+
the boolean is True if N(z) is contained in z.
|
335
|
+
|
336
|
+
If the boolean is True, it is certified that N(z) contains a true
|
337
|
+
solution, e.g., a point for which f is truly zero.
|
338
|
+
|
339
|
+
See newton_iteration for the other parameters.
|
340
|
+
|
341
|
+
This follows from Theorem 1 of `Zgliczynski's notes
|
342
|
+
<http://ww2.ii.uj.edu.pl/~zgliczyn/cap07/krawczyk.pdf>`_.
|
343
|
+
|
344
|
+
Some examples::
|
345
|
+
|
346
|
+
sage: from snappy import Manifold
|
347
|
+
sage: M = Manifold("m019")
|
348
|
+
sage: C = IntervalNewtonShapesEngine(M, M.tetrahedra_shapes('rect'),
|
349
|
+
... bits_prec = 80)
|
350
|
+
|
351
|
+
Intervals containing the true solution::
|
352
|
+
|
353
|
+
sage: from sage.all import vector
|
354
|
+
sage: good_shapes = vector([
|
355
|
+
... C.CIF(C.RIF(0.78055, 0.78056), C.RIF(0.91447, 0.91448)),
|
356
|
+
... C.CIF(C.RIF(0.78055, 0.78056), C.RIF(0.91447, 0.91448)),
|
357
|
+
... C.CIF(C.RIF(0.46002, 0.46003), C.RIF(0.63262, 0.63263))])
|
358
|
+
sage: is_certified, shapes = IntervalNewtonShapesEngine.certified_newton_iteration(C.equations, good_shapes)
|
359
|
+
|
360
|
+
sage: is_certified
|
361
|
+
True
|
362
|
+
sage: shapes # doctest: +ELLIPSIS
|
363
|
+
(0.78055253? + 0.91447366...?*I, 0.7805525...? + 0.9144736...?*I, 0.4600211...? + 0.632624...?*I)
|
364
|
+
|
365
|
+
This means that a true solution to the rectangular gluing equations is
|
366
|
+
contained in both the given intervals (good_shapes) and the returned
|
367
|
+
intervals (shapes) which are a refinement of the given intervals.
|
368
|
+
|
369
|
+
Intervals not containing a true solution::
|
370
|
+
|
371
|
+
sage: from sage.all import vector
|
372
|
+
sage: bad_shapes = vector([
|
373
|
+
... C.CIF(C.RIF(0.78054, 0.78055), C.RIF(0.91447, 0.91448)),
|
374
|
+
... C.CIF(C.RIF(0.78055, 0.78056), C.RIF(0.91447, 0.91448)),
|
375
|
+
... C.CIF(C.RIF(0.46002, 0.46003), C.RIF(0.63262, 0.63263))])
|
376
|
+
sage: is_certified, shapes = IntervalNewtonShapesEngine.certified_newton_iteration(C.equations, bad_shapes)
|
377
|
+
sage: is_certified
|
378
|
+
False
|
379
|
+
|
380
|
+
"""
|
381
|
+
|
382
|
+
new_shapes = IntervalNewtonShapesEngine.newton_iteration(
|
383
|
+
equations, shape_intervals,
|
384
|
+
point_in_intervals=point_in_intervals,
|
385
|
+
interval_value_at_point=interval_value_at_point)
|
386
|
+
return (
|
387
|
+
IntervalNewtonShapesEngine.interval_vector_is_contained_in(
|
388
|
+
new_shapes, shape_intervals),
|
389
|
+
new_shapes)
|
390
|
+
|
391
|
+
@sage_method
|
392
|
+
def __init__(self, M, initial_shapes, bits_prec=None, dec_prec=None):
|
393
|
+
"""
|
394
|
+
Initializes the IntervalNewtonShapesEngine given an orientable SnapPy
|
395
|
+
Manifold M, approximated solutions initial_shapes to the
|
396
|
+
gluing equations (e.g., as returned by M.tetrahedra_shapes('rect'))
|
397
|
+
and the precision to be used for the desired computations in either
|
398
|
+
bits bits_prec or decimal digits dec_prec.
|
399
|
+
|
400
|
+
This requires Sage since it uses Sage's ComplexIntervalField for its
|
401
|
+
computations.
|
402
|
+
|
403
|
+
Note that this will choose an independent set of edge equations and
|
404
|
+
one equation per cusp. It is known that a solution to such a subset of
|
405
|
+
rectangular gluing equations is also a solution to the full set of
|
406
|
+
rectangular gluing equations::
|
407
|
+
|
408
|
+
sage: from snappy import Manifold
|
409
|
+
sage: M = Manifold("m019")
|
410
|
+
|
411
|
+
sage: C = IntervalNewtonShapesEngine(M, M.tetrahedra_shapes('rect'), bits_prec = 53)
|
412
|
+
sage: C.expand_until_certified()
|
413
|
+
True
|
414
|
+
sage: C.certified_shapes # doctest: +ELLIPSIS
|
415
|
+
(0.780552527850...? + 0.914473662967...?*I, 0.780552527850...? + 0.91447366296773?*I, 0.4600211755737...? + 0.6326241936052...?*I)
|
416
|
+
|
417
|
+
Does not work with non-orientable manifolds::
|
418
|
+
|
419
|
+
sage: M = Manifold("m000")
|
420
|
+
sage: IntervalNewtonShapesEngine(M, M.tetrahedra_shapes('rect'), bits_prec = 53)
|
421
|
+
Traceback (most recent call last):
|
422
|
+
...
|
423
|
+
ValueError: Manifold needs to be orientable
|
424
|
+
|
425
|
+
|
426
|
+
Or some non-hyperbolic manifolds::
|
427
|
+
|
428
|
+
sage: Manifold("t02333(1,0)").tetrahedra_shapes(intervals = True)
|
429
|
+
Traceback (most recent call last):
|
430
|
+
...
|
431
|
+
RuntimeError: Could not certify shape intervals, either there are degenerate shapes or the precision must be increased.
|
432
|
+
|
433
|
+
"""
|
434
|
+
|
435
|
+
# Convert to precision in bits if necessary
|
436
|
+
if dec_prec:
|
437
|
+
self.prec = prec_dec_to_bits(dec_prec)
|
438
|
+
elif bits_prec:
|
439
|
+
self.prec = bits_prec
|
440
|
+
else:
|
441
|
+
raise ValueError("Need dec_prec or bits_prec")
|
442
|
+
|
443
|
+
# Setup interval types of desired precision
|
444
|
+
self.CIF = ComplexIntervalField(self.prec)
|
445
|
+
self.RIF = RealIntervalField(self.prec)
|
446
|
+
|
447
|
+
# Verify that manifold is orientable
|
448
|
+
if not M.is_orientable():
|
449
|
+
raise ValueError("Manifold needs to be orientable")
|
450
|
+
|
451
|
+
# Initialize the shape intervals, they have zero length
|
452
|
+
self.initial_shapes = make_vector(
|
453
|
+
[self.CIF(shape) for shape in initial_shapes])
|
454
|
+
|
455
|
+
# Get an independent set of gluing equations from snap
|
456
|
+
self.equations = snap.shapes.enough_gluing_equations(M)
|
457
|
+
|
458
|
+
# Shapes have not been certified yet
|
459
|
+
self.certified_shapes = None
|
460
|
+
|
461
|
+
def expand_until_certified(self, verbose=False):
|
462
|
+
"""
|
463
|
+
Try Newton interval iterations, expanding the shape intervals
|
464
|
+
until we can certify they contain a true solution.
|
465
|
+
If succeeded, return True and write certified shapes to
|
466
|
+
certified_shapes.
|
467
|
+
Set verbose = True for printing additional information.
|
468
|
+
"""
|
469
|
+
|
470
|
+
# In the equation for the Newton interval iteration
|
471
|
+
# N(z) = z_center - ((Df)(z))^-1 f(z_center)
|
472
|
+
#
|
473
|
+
# We always let z_center be the initial_shapes (which is a 0-length
|
474
|
+
# interval) and expand the interval for z.
|
475
|
+
# We evaluate the interval value of f(z_center) only once, here:
|
476
|
+
interval_value_at_initial_shapes = (
|
477
|
+
IntervalNewtonShapesEngine.log_gluing_LHSs(
|
478
|
+
self.equations, self.initial_shapes))
|
479
|
+
|
480
|
+
# Initialize the interval shapes to be the initial shapes
|
481
|
+
shapes = self.initial_shapes
|
482
|
+
|
483
|
+
# Number of iterations we do before giving up.
|
484
|
+
# For double precision, give up quickly because failure to
|
485
|
+
# converge here most likely indicates we need to use higher
|
486
|
+
# precision.
|
487
|
+
num_iterations = (25 if self.prec > 53 else 11)
|
488
|
+
|
489
|
+
# Do several Newton interval iteration
|
490
|
+
for i in range(num_iterations + 1):
|
491
|
+
# Remember the old shapes
|
492
|
+
old_shapes = shapes
|
493
|
+
|
494
|
+
# Do the Newton step
|
495
|
+
try:
|
496
|
+
is_certified, shapes = (
|
497
|
+
IntervalNewtonShapesEngine.certified_newton_iteration(
|
498
|
+
self.equations, shapes,
|
499
|
+
point_in_intervals=self.initial_shapes,
|
500
|
+
interval_value_at_point=interval_value_at_initial_shapes))
|
501
|
+
except ZeroDivisionError:
|
502
|
+
if verbose:
|
503
|
+
print("Division by zero in interval Gaussian elimination")
|
504
|
+
return False
|
505
|
+
|
506
|
+
# If the shapes are certified, set them, we are done
|
507
|
+
if is_certified:
|
508
|
+
if verbose:
|
509
|
+
print("Certified shapes after %d iterations" % (i + 1))
|
510
|
+
|
511
|
+
self.certified_shapes = shapes
|
512
|
+
return True
|
513
|
+
|
514
|
+
# Expand the shape intervals by taking the union of the
|
515
|
+
# old and new shapes
|
516
|
+
shapes = IntervalNewtonShapesEngine.interval_vector_union(
|
517
|
+
shapes, old_shapes)
|
518
|
+
|
519
|
+
# After several iterations, still no certified shapes, give up.
|
520
|
+
if verbose:
|
521
|
+
print("Could not certify shapes")
|
522
|
+
|
523
|
+
return False
|