snappy 3.2__cp39-cp39-macosx_10_12_x86_64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-39-darwin.so +0 -0
- snappy/SnapPy.cpython-39-darwin.so +0 -0
- snappy/SnapPy.ico +0 -0
- snappy/SnapPy.png +0 -0
- snappy/SnapPyHP.cpython-39-darwin.so +0 -0
- snappy/__init__.py +760 -0
- snappy/app.py +605 -0
- snappy/app_menus.py +372 -0
- snappy/browser.py +998 -0
- snappy/cache.py +25 -0
- snappy/canonical.py +249 -0
- snappy/cusps/__init__.py +38 -0
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/cusps/cusp_areas_from_matrix.py +173 -0
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +454 -0
- snappy/db_utilities.py +79 -0
- snappy/decorated_isosig.py +710 -0
- snappy/dev/__init__.py +0 -0
- snappy/dev/extended_ptolemy/__init__.py +8 -0
- snappy/dev/extended_ptolemy/closed.py +106 -0
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +149 -0
- snappy/dev/extended_ptolemy/direct.py +42 -0
- snappy/dev/extended_ptolemy/extended.py +406 -0
- snappy/dev/extended_ptolemy/giac_helper.py +43 -0
- snappy/dev/extended_ptolemy/giac_rur.py +129 -0
- snappy/dev/extended_ptolemy/gluing.py +46 -0
- snappy/dev/extended_ptolemy/phc_wrapper.py +220 -0
- snappy/dev/extended_ptolemy/printMatrices.py +70 -0
- snappy/dev/vericlosed/__init__.py +1 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureNew.py +159 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +90 -0
- snappy/dev/vericlosed/computeVerifiedHyperbolicStructure.py +111 -0
- snappy/dev/vericlosed/gimbalLoopFinder.py +130 -0
- snappy/dev/vericlosed/hyperbolicStructure.py +313 -0
- snappy/dev/vericlosed/krawczykCertifiedEdgeLengthsEngine.py +165 -0
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +122 -0
- snappy/dev/vericlosed/orb/__init__.py +1 -0
- snappy/dev/vericlosed/orb/orb_solution_for_snappea_finite_triangulation_mac +0 -0
- snappy/dev/vericlosed/parseVertexGramMatrixFile.py +47 -0
- snappy/dev/vericlosed/polishApproxHyperbolicStructure.py +61 -0
- snappy/dev/vericlosed/test.py +54 -0
- snappy/dev/vericlosed/truncatedComplex.py +176 -0
- snappy/dev/vericlosed/verificationError.py +58 -0
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +177 -0
- snappy/doc/_images/SnapPy-196.png +0 -0
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/mac.png +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_images/plink-action.png +0 -0
- snappy/doc/_images/ubuntu.png +0 -0
- snappy/doc/_images/win7.png +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -0
- snappy/doc/_sources/bugs.rst.txt +14 -0
- snappy/doc/_sources/censuses.rst.txt +51 -0
- snappy/doc/_sources/credits.rst.txt +75 -0
- snappy/doc/_sources/development.rst.txt +259 -0
- snappy/doc/_sources/index.rst.txt +182 -0
- snappy/doc/_sources/installing.rst.txt +247 -0
- snappy/doc/_sources/manifold.rst.txt +6 -0
- snappy/doc/_sources/manifoldhp.rst.txt +46 -0
- snappy/doc/_sources/news.rst.txt +355 -0
- snappy/doc/_sources/other.rst.txt +25 -0
- snappy/doc/_sources/platonic_census.rst.txt +20 -0
- snappy/doc/_sources/plink.rst.txt +102 -0
- snappy/doc/_sources/ptolemy.rst.txt +66 -0
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -0
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -0
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -0
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -0
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -0
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -0
- snappy/doc/_sources/screenshots.rst.txt +21 -0
- snappy/doc/_sources/snap.rst.txt +87 -0
- snappy/doc/_sources/snappy.rst.txt +28 -0
- snappy/doc/_sources/spherogram.rst.txt +103 -0
- snappy/doc/_sources/todo.rst.txt +47 -0
- snappy/doc/_sources/triangulation.rst.txt +11 -0
- snappy/doc/_sources/tutorial.rst.txt +49 -0
- snappy/doc/_sources/verify.rst.txt +210 -0
- snappy/doc/_sources/verify_internals.rst.txt +79 -0
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +925 -0
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +156 -0
- snappy/doc/_static/documentation_options.js +13 -0
- snappy/doc/_static/file.png +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -0
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +199 -0
- snappy/doc/_static/minus.png +0 -0
- snappy/doc/_static/plus.png +0 -0
- snappy/doc/_static/pygments.css +75 -0
- snappy/doc/_static/searchtools.js +620 -0
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +1500 -0
- snappy/doc/bugs.html +132 -0
- snappy/doc/censuses.html +427 -0
- snappy/doc/credits.html +181 -0
- snappy/doc/development.html +384 -0
- snappy/doc/genindex.html +1331 -0
- snappy/doc/index.html +262 -0
- snappy/doc/installing.html +346 -0
- snappy/doc/manifold.html +3452 -0
- snappy/doc/manifoldhp.html +180 -0
- snappy/doc/news.html +388 -0
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +161 -0
- snappy/doc/platonic_census.html +375 -0
- snappy/doc/plink.html +210 -0
- snappy/doc/ptolemy.html +254 -0
- snappy/doc/ptolemy_classes.html +1144 -0
- snappy/doc/ptolemy_examples1.html +409 -0
- snappy/doc/ptolemy_examples2.html +471 -0
- snappy/doc/ptolemy_examples3.html +414 -0
- snappy/doc/ptolemy_examples4.html +195 -0
- snappy/doc/ptolemy_prelim.html +248 -0
- snappy/doc/py-modindex.html +165 -0
- snappy/doc/screenshots.html +141 -0
- snappy/doc/search.html +135 -0
- snappy/doc/searchindex.js +1 -0
- snappy/doc/snap.html +202 -0
- snappy/doc/snappy.html +181 -0
- snappy/doc/spherogram.html +1211 -0
- snappy/doc/todo.html +166 -0
- snappy/doc/triangulation.html +1584 -0
- snappy/doc/tutorial.html +159 -0
- snappy/doc/verify.html +330 -0
- snappy/doc/verify_internals.html +1235 -0
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +26 -0
- snappy/export_stl.py +120 -0
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/filedialog.py +28 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +121 -0
- snappy/horoviewer.py +443 -0
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/info_icon.gif +0 -0
- snappy/infowindow.py +65 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/HTWKnots/alternating.gz +0 -0
- snappy/manifolds/HTWKnots/nonalternating.gz +0 -0
- snappy/manifolds/__init__.py +3 -0
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +657 -0
- snappy/numeric_output_checker.py +345 -0
- snappy/pari.py +41 -0
- snappy/phone_home.py +57 -0
- snappy/polyviewer.py +259 -0
- snappy/ptolemy/__init__.py +17 -0
- snappy/ptolemy/component.py +103 -0
- snappy/ptolemy/coordinates.py +2290 -0
- snappy/ptolemy/fieldExtensions.py +153 -0
- snappy/ptolemy/findLoops.py +473 -0
- snappy/ptolemy/geometricRep.py +59 -0
- snappy/ptolemy/homology.py +165 -0
- snappy/ptolemy/magma/default.magma_template +229 -0
- snappy/ptolemy/magma/radicalsOfPrimaryDecomposition.magma_template +79 -0
- snappy/ptolemy/manifoldMethods.py +395 -0
- snappy/ptolemy/matrix.py +350 -0
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +113 -0
- snappy/ptolemy/polynomial.py +857 -0
- snappy/ptolemy/processComponents.py +173 -0
- snappy/ptolemy/processFileBase.py +247 -0
- snappy/ptolemy/processFileDispatch.py +46 -0
- snappy/ptolemy/processMagmaFile.py +392 -0
- snappy/ptolemy/processRurFile.py +150 -0
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +102 -0
- snappy/ptolemy/ptolemyObstructionClass.py +64 -0
- snappy/ptolemy/ptolemyVariety.py +1029 -0
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +140 -0
- snappy/ptolemy/reginaWrapper.py +698 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/rur.py +545 -0
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +277 -0
- snappy/ptolemy/test.py +1126 -0
- snappy/ptolemy/testing_files/3_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/3_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c0.magma_out +95 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c1.magma_out +95 -0
- snappy/ptolemy/testing_files/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_rur/m052__sl3_c0.rur.bz2 +0 -0
- snappy/ptolemy/utilities.py +236 -0
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +197 -0
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +237 -0
- snappy/raytracing/finite_viewer.py +590 -0
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +293 -0
- snappy/raytracing/hyperboloid_navigation.py +556 -0
- snappy/raytracing/hyperboloid_utilities.py +234 -0
- snappy/raytracing/ideal_raytracing_data.py +592 -0
- snappy/raytracing/inside_viewer.py +974 -0
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +126 -0
- snappy/raytracing/raytracing_view.py +454 -0
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +101 -0
- snappy/raytracing/shaders/fragment.glsl +1744 -0
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +263 -0
- snappy/raytracing/zoom_slider/inward.png +0 -0
- snappy/raytracing/zoom_slider/inward18.png +0 -0
- snappy/raytracing/zoom_slider/outward.png +0 -0
- snappy/raytracing/zoom_slider/outward18.png +0 -0
- snappy/raytracing/zoom_slider/test.py +20 -0
- snappy/sage_helper.py +117 -0
- snappy/settings.py +409 -0
- snappy/shell.py +53 -0
- snappy/snap/__init__.py +114 -0
- snappy/snap/character_varieties.py +375 -0
- snappy/snap/find_field.py +372 -0
- snappy/snap/fundamental_polyhedron.py +569 -0
- snappy/snap/generators.py +39 -0
- snappy/snap/interval_reps.py +81 -0
- snappy/snap/kernel_structures.py +128 -0
- snappy/snap/mcomplex_base.py +18 -0
- snappy/snap/nsagetools.py +702 -0
- snappy/snap/peripheral/__init__.py +1 -0
- snappy/snap/peripheral/dual_cellulation.py +219 -0
- snappy/snap/peripheral/link.py +127 -0
- snappy/snap/peripheral/peripheral.py +159 -0
- snappy/snap/peripheral/surface.py +522 -0
- snappy/snap/peripheral/test.py +35 -0
- snappy/snap/polished_reps.py +335 -0
- snappy/snap/shapes.py +152 -0
- snappy/snap/slice_obs_HKL.py +668 -0
- snappy/snap/t3mlite/__init__.py +2 -0
- snappy/snap/t3mlite/arrow.py +243 -0
- snappy/snap/t3mlite/corner.py +22 -0
- snappy/snap/t3mlite/edge.py +172 -0
- snappy/snap/t3mlite/face.py +37 -0
- snappy/snap/t3mlite/files.py +211 -0
- snappy/snap/t3mlite/homology.py +53 -0
- snappy/snap/t3mlite/linalg.py +419 -0
- snappy/snap/t3mlite/mcomplex.py +1499 -0
- snappy/snap/t3mlite/perm4.py +320 -0
- snappy/snap/t3mlite/setup.py +12 -0
- snappy/snap/t3mlite/simplex.py +199 -0
- snappy/snap/t3mlite/spun.py +297 -0
- snappy/snap/t3mlite/surface.py +519 -0
- snappy/snap/t3mlite/test.py +20 -0
- snappy/snap/t3mlite/test_vs_regina.py +86 -0
- snappy/snap/t3mlite/tetrahedron.py +109 -0
- snappy/snap/t3mlite/vertex.py +42 -0
- snappy/snap/test.py +134 -0
- snappy/snap/utilities.py +288 -0
- snappy/test.py +209 -0
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +920 -0
- snappy/twister/__init__.py +20 -0
- snappy/twister/main.py +646 -0
- snappy/twister/surfaces/S_0_1 +3 -0
- snappy/twister/surfaces/S_0_2 +3 -0
- snappy/twister/surfaces/S_0_4 +7 -0
- snappy/twister/surfaces/S_0_4_Lantern +8 -0
- snappy/twister/surfaces/S_1 +3 -0
- snappy/twister/surfaces/S_1_1 +4 -0
- snappy/twister/surfaces/S_1_2 +5 -0
- snappy/twister/surfaces/S_1_2_5 +6 -0
- snappy/twister/surfaces/S_2 +6 -0
- snappy/twister/surfaces/S_2_1 +8 -0
- snappy/twister/surfaces/S_2_heeg +10 -0
- snappy/twister/surfaces/S_3 +8 -0
- snappy/twister/surfaces/S_3_1 +10 -0
- snappy/twister/surfaces/S_4_1 +12 -0
- snappy/twister/surfaces/S_5_1 +14 -0
- snappy/twister/surfaces/heeg_fig8 +9 -0
- snappy/twister/twister_core.cpython-39-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +13 -0
- snappy/verify/canonical.py +542 -0
- snappy/verify/complex_volume/__init__.py +18 -0
- snappy/verify/complex_volume/adjust_torsion.py +86 -0
- snappy/verify/complex_volume/closed.py +168 -0
- snappy/verify/complex_volume/compute_ptolemys.py +90 -0
- snappy/verify/complex_volume/cusped.py +56 -0
- snappy/verify/complex_volume/extended_bloch.py +201 -0
- snappy/verify/cusp_translations.py +85 -0
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +254 -0
- snappy/verify/hyperbolicity.py +224 -0
- snappy/verify/interval_newton_shapes_engine.py +523 -0
- snappy/verify/interval_tree.py +400 -0
- snappy/verify/krawczyk_shapes_engine.py +518 -0
- snappy/verify/maximal_cusp_area_matrix/__init__.py +46 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +419 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +153 -0
- snappy/verify/real_algebra.py +286 -0
- snappy/verify/shapes.py +25 -0
- snappy/verify/short_slopes.py +200 -0
- snappy/verify/square_extensions.py +1005 -0
- snappy/verify/test.py +78 -0
- snappy/verify/upper_halfspace/__init__.py +9 -0
- snappy/verify/upper_halfspace/extended_matrix.py +100 -0
- snappy/verify/upper_halfspace/finite_point.py +283 -0
- snappy/verify/upper_halfspace/ideal_point.py +426 -0
- snappy/verify/volume.py +128 -0
- snappy/version.py +2 -0
- snappy-3.2.dist-info/METADATA +58 -0
- snappy-3.2.dist-info/RECORD +503 -0
- snappy-3.2.dist-info/WHEEL +5 -0
- snappy-3.2.dist-info/entry_points.txt +2 -0
- snappy-3.2.dist-info/top_level.txt +28 -0
@@ -0,0 +1,569 @@
|
|
1
|
+
from .mcomplex_base import *
|
2
|
+
from .kernel_structures import *
|
3
|
+
from . import t3mlite as t3m
|
4
|
+
from .t3mlite import ZeroSubsimplices, simplex
|
5
|
+
from .t3mlite import Corner, Perm4
|
6
|
+
from .t3mlite import V0, V1, V2, V3
|
7
|
+
from ..math_basics import prod
|
8
|
+
from functools import reduce
|
9
|
+
|
10
|
+
__all__ = ['FundamentalPolyhedronEngine']
|
11
|
+
|
12
|
+
from ..sage_helper import _within_sage
|
13
|
+
if _within_sage:
|
14
|
+
from ..sage_helper import matrix
|
15
|
+
else:
|
16
|
+
from .utilities import Matrix2x2 as matrix
|
17
|
+
|
18
|
+
_VerticesInFace = {
|
19
|
+
F: [V for V in simplex.ZeroSubsimplices if t3m.is_subset(V, F)]
|
20
|
+
for F in simplex.TwoSubsimplices }
|
21
|
+
|
22
|
+
|
23
|
+
class FundamentalPolyhedronEngine(McomplexEngine):
|
24
|
+
@staticmethod
|
25
|
+
def from_manifold_and_shapes(
|
26
|
+
manifold, shapes, normalize_matrices=False, match_kernel=True):
|
27
|
+
"""
|
28
|
+
Given a SnapPy.Manifold and shapes (which can be numbers or intervals),
|
29
|
+
create a t3mlite.Mcomplex for the fundamental polyhedron that the
|
30
|
+
SnapPea kernel computed, assign each vertex of it to a point on the
|
31
|
+
boundary of upper half space H^3, and compute the matrices pairing the
|
32
|
+
faces of the fundamental polyhedron. The matrices will have determinant
|
33
|
+
one if normalize_matrices is True.
|
34
|
+
|
35
|
+
Some notes about the vertices: We use the one-point
|
36
|
+
compactification to represent the boundary of H^3, i.e., we
|
37
|
+
either assign a complex number (or interval) to a vertex or
|
38
|
+
Infinity (a sentinel in kernel_structures). If match_kernel is True,
|
39
|
+
the vertices are at the same positions than in the SnapPea kernel.
|
40
|
+
This has the disadvantage that the matrices computed that way no longer
|
41
|
+
have entries in the trace field. Use match_kernel is False for matrices
|
42
|
+
over the trace field (e.g., obtain the quaternion algebra).
|
43
|
+
|
44
|
+
Some notes about the matrices: If normalize_matrices is False, the
|
45
|
+
product of a matrix for a generator and its inverse is not necessarily
|
46
|
+
the identity, but a multiple of the identity.
|
47
|
+
Even if normalize_matrices is True, the product of matrices
|
48
|
+
corresponding to the letters in a relation might still yield minus the
|
49
|
+
identity (i.e., we do not lift to SL(2,C)).
|
50
|
+
|
51
|
+
>>> M = Manifold("m004")
|
52
|
+
>>> F = FundamentalPolyhedronEngine.from_manifold_and_shapes(
|
53
|
+
... M, M.tetrahedra_shapes('rect'))
|
54
|
+
|
55
|
+
The above code adds the given shapes to each edge (here 01) of each
|
56
|
+
tetrahedron::
|
57
|
+
|
58
|
+
>>> from snappy.snap.t3mlite import simplex
|
59
|
+
>>> F.mcomplex.Tetrahedra[0].ShapeParameters[simplex.E01] # doctest: +NUMERIC6
|
60
|
+
0.500000000000000 + 0.866025403784438*I
|
61
|
+
|
62
|
+
And annotates each face (here 1) of each tetrahedron with the
|
63
|
+
corresponding generator (here, the inverse of the second generator)
|
64
|
+
or 0 if the face is internal to the fundamental polyhedron::
|
65
|
+
|
66
|
+
>>> F.mcomplex.Tetrahedra[0].GeneratorsInfo[simplex.F1]
|
67
|
+
-2
|
68
|
+
|
69
|
+
This information is also available in a dict keyed by generator.
|
70
|
+
For each generator, it gives a list of the corresponding face pairing
|
71
|
+
data (there might be multiple face pairings corresponding to the same
|
72
|
+
generator). The face pairing data consists of a pair of t3mlite.Corner's
|
73
|
+
indicating the paired faces as well as the permutation to take one
|
74
|
+
face to the other.
|
75
|
+
Here, for example, the generator corresponds to exactly one face
|
76
|
+
pairing of face 2 of tet 1 to face 1 of tet0 such that face 2 is
|
77
|
+
taken to face 1 by the permutation (3, 0, 1, 2)::
|
78
|
+
|
79
|
+
>>> F.mcomplex.Generators[2]
|
80
|
+
[((<F2 of tet1>, <F1 of tet0>), (3, 0, 1, 2))]
|
81
|
+
|
82
|
+
The four vertices of tetrahedron 1::
|
83
|
+
|
84
|
+
>>> for v in simplex.ZeroSubsimplices: # doctest: +NUMERIC6
|
85
|
+
... F.mcomplex.Tetrahedra[1].Class[v].IdealPoint
|
86
|
+
'Infinity'
|
87
|
+
0.000000000000000
|
88
|
+
0.866025403784439 - 0.500000000000000*I
|
89
|
+
0.866025403784439 + 0.500000000000000*I
|
90
|
+
|
91
|
+
The matrix for generator 1 (of the unsimplified presentation)::
|
92
|
+
|
93
|
+
>>> F.mcomplex.GeneratorMatrices[1] # doctest: +NUMERIC6 +ELLIPSIS
|
94
|
+
[ -0.577350269189626 - 1.00000000000000*I 0.500000000000000 + 0.288675134594813*I...]
|
95
|
+
[ -0.500000000000000 - 0.288675134594813*I 0.577350269189626 + 2.22044604925031e-16*I...]
|
96
|
+
|
97
|
+
Get the cusp that a vertex of the fundamental polyhedron corresponds
|
98
|
+
to::
|
99
|
+
|
100
|
+
>>> F.mcomplex.Tetrahedra[1].Class[simplex.V0].SubsimplexIndexInManifold
|
101
|
+
0
|
102
|
+
|
103
|
+
"""
|
104
|
+
|
105
|
+
m = t3m.Mcomplex(manifold)
|
106
|
+
|
107
|
+
f = FundamentalPolyhedronEngine(m)
|
108
|
+
t = TransferKernelStructuresEngine(m, manifold)
|
109
|
+
|
110
|
+
t.add_shapes(shapes)
|
111
|
+
t.choose_and_transfer_generators(
|
112
|
+
compute_corners=True, centroid_at_origin=False)
|
113
|
+
|
114
|
+
f.unglue()
|
115
|
+
|
116
|
+
if match_kernel:
|
117
|
+
init_verts = f.init_vertices_kernel()
|
118
|
+
else:
|
119
|
+
init_verts = f.init_vertices()
|
120
|
+
|
121
|
+
f.visit_tetrahedra_to_compute_vertices(
|
122
|
+
m.ChooseGenInitialTet, init_verts)
|
123
|
+
f.compute_matrices(normalize_matrices=normalize_matrices)
|
124
|
+
|
125
|
+
return f
|
126
|
+
|
127
|
+
def unglue(self):
|
128
|
+
"""
|
129
|
+
It will unglue all face-pairings corresponding to generators.
|
130
|
+
What is left is a fundamental polyhedron.
|
131
|
+
|
132
|
+
It assumes that GeneratorsInfo has been set (by the
|
133
|
+
TranferKernelStructuresEngine).
|
134
|
+
|
135
|
+
Besides ungluing, it will add the field Generators to the Mcomplex
|
136
|
+
and SubsimplexIndexInManifold to each Vertex, Edge, Face, see
|
137
|
+
examples in from_manifold_and_shapes.
|
138
|
+
"""
|
139
|
+
|
140
|
+
originalSubsimplexIndices = [
|
141
|
+
[ tet.Class[subsimplex].Index for subsimplex in range(1, 15) ]
|
142
|
+
for tet in self.mcomplex.Tetrahedra ]
|
143
|
+
|
144
|
+
self.mcomplex.Generators = {}
|
145
|
+
|
146
|
+
# Record for each generators what faces need to be unglued as well as
|
147
|
+
# the permutations.
|
148
|
+
for tet in self.mcomplex.Tetrahedra:
|
149
|
+
for face in simplex.TwoSubsimplices:
|
150
|
+
# Index of generator
|
151
|
+
g = tet.GeneratorsInfo[face]
|
152
|
+
# g == 0 does not correspond to a generator
|
153
|
+
if g != 0:
|
154
|
+
# Add to dictionary value
|
155
|
+
l = self.mcomplex.Generators.setdefault(g, [])
|
156
|
+
l.append(
|
157
|
+
( (
|
158
|
+
# Inbound face
|
159
|
+
Corner(tet, face),
|
160
|
+
# Outbound face
|
161
|
+
Corner(tet.Neighbor[face], tet.Gluing[face].image(face))),
|
162
|
+
# Permutation
|
163
|
+
tet.Gluing[face]))
|
164
|
+
|
165
|
+
# Unglue
|
166
|
+
for g, pairings in self.mcomplex.Generators.items():
|
167
|
+
# Unglue only once, ignore inverse
|
168
|
+
if g > 0:
|
169
|
+
for corners, perm in pairings:
|
170
|
+
for corner in corners:
|
171
|
+
corner.Tetrahedron.attach(corner.Subsimplex, None, None)
|
172
|
+
|
173
|
+
# Rebuild the vertex classes, edge classes, ...
|
174
|
+
self.mcomplex.rebuild()
|
175
|
+
|
176
|
+
# Use the saved data to populate SubsimplexIndexInManifold
|
177
|
+
for tet, o in zip(self.mcomplex.Tetrahedra, originalSubsimplexIndices):
|
178
|
+
for subsimplex, index in enumerate(o):
|
179
|
+
tet.Class[subsimplex + 1].SubsimplexIndexInManifold = index
|
180
|
+
|
181
|
+
def visit_tetrahedra_to_compute_vertices(self, init_tet, init_vertices):
|
182
|
+
"""
|
183
|
+
Computes the positions of the vertices of fundamental polyhedron in
|
184
|
+
the boundary of H^3, assuming the Mcomplex has been unglued and
|
185
|
+
ShapeParameters were assigned to the tetrahedra.
|
186
|
+
|
187
|
+
It starts by assigning the vertices of the given init_tet using
|
188
|
+
init_vertices.
|
189
|
+
"""
|
190
|
+
|
191
|
+
for vertex in self.mcomplex.Vertices:
|
192
|
+
vertex.IdealPoint = None
|
193
|
+
for tet in self.mcomplex.Tetrahedra:
|
194
|
+
tet.visited = False
|
195
|
+
|
196
|
+
self.mcomplex.InitialTet = init_tet
|
197
|
+
|
198
|
+
for v, idealPoint in init_vertices.items():
|
199
|
+
init_tet.Class[v].IdealPoint = idealPoint
|
200
|
+
init_tet.visited = True
|
201
|
+
|
202
|
+
queue = [ init_tet ]
|
203
|
+
while len(queue) > 0:
|
204
|
+
tet = queue.pop(0)
|
205
|
+
for F in simplex.TwoSubsimplices:
|
206
|
+
if bool(tet.Neighbor[F]) != bool(tet.GeneratorsInfo[F] == 0):
|
207
|
+
raise Exception(
|
208
|
+
"Improper fundamental domain, "
|
209
|
+
"probably a bug in unglue code")
|
210
|
+
|
211
|
+
S = tet.Neighbor[F]
|
212
|
+
if S and not S.visited:
|
213
|
+
perm = tet.Gluing[F]
|
214
|
+
for V in _VerticesInFace[F]:
|
215
|
+
vertex_class = S.Class[perm.image(V)]
|
216
|
+
if vertex_class.IdealPoint is None:
|
217
|
+
vertex_class.IdealPoint = tet.Class[V].IdealPoint
|
218
|
+
_compute_fourth_corner(S)
|
219
|
+
S.visited = True
|
220
|
+
queue.append(S)
|
221
|
+
|
222
|
+
def init_vertices(self):
|
223
|
+
"""
|
224
|
+
Computes vertices for the initial tetrahedron such that vertex 0, 1
|
225
|
+
and 2 are at Infinity, 0 and z.
|
226
|
+
"""
|
227
|
+
|
228
|
+
tet = self.mcomplex.ChooseGenInitialTet
|
229
|
+
|
230
|
+
z = tet.ShapeParameters[simplex.E01]
|
231
|
+
CF = z.parent()
|
232
|
+
|
233
|
+
return { simplex.V0 : Infinity,
|
234
|
+
simplex.V1 : CF(0),
|
235
|
+
simplex.V2 : CF(1),
|
236
|
+
simplex.V3 : z }
|
237
|
+
|
238
|
+
def init_vertices_kernel(self):
|
239
|
+
"""
|
240
|
+
Computes vertices for the initial tetrahedron matching the choices
|
241
|
+
made by the SnapPea kernel.
|
242
|
+
"""
|
243
|
+
|
244
|
+
# Note that initial_tetrahedron in choose_generators.c picks
|
245
|
+
# the initial tetrahedron and best edge in a purely combinatorial way -
|
246
|
+
# and doesn't use shapes to assign 0 and Infinity to the ends of
|
247
|
+
# the edges.
|
248
|
+
#
|
249
|
+
# Hence, the code below can't be tricked into picking a different
|
250
|
+
# permutation by setting the unverified shapes stored in the
|
251
|
+
# kernel Triangulation (to some non-sensical values). It would fail
|
252
|
+
# instead.
|
253
|
+
|
254
|
+
tet = self.mcomplex.ChooseGenInitialTet
|
255
|
+
|
256
|
+
candidates = []
|
257
|
+
|
258
|
+
for perm in Perm4.A4():
|
259
|
+
z = tet.ShapeParameters[perm.image(simplex.E01)]
|
260
|
+
# Complex field
|
261
|
+
CF = z.parent()
|
262
|
+
sqrt_z = z.sqrt()
|
263
|
+
sqrt_z_inv = CF(1) / sqrt_z
|
264
|
+
|
265
|
+
candidate = {
|
266
|
+
perm.image(simplex.V0) : Infinity,
|
267
|
+
perm.image(simplex.V1) : CF(0),
|
268
|
+
perm.image(simplex.V2) : sqrt_z_inv,
|
269
|
+
perm.image(simplex.V3) : sqrt_z
|
270
|
+
}
|
271
|
+
|
272
|
+
if _are_vertices_close_to_kernel(
|
273
|
+
candidate, tet.SnapPeaIdealVertices):
|
274
|
+
candidates.append(candidate)
|
275
|
+
|
276
|
+
if len(candidates) == 1:
|
277
|
+
return candidates[0]
|
278
|
+
|
279
|
+
raise Exception(
|
280
|
+
"Could not match vertices to vertices from SnapPea kernel")
|
281
|
+
|
282
|
+
def compute_matrices(self, normalize_matrices=False):
|
283
|
+
"""
|
284
|
+
Assuming positions were assigned to the vertices, adds
|
285
|
+
GeneratorMatrices to the Mcomplex which assigns a matrix to each
|
286
|
+
generator.
|
287
|
+
|
288
|
+
Compute generator matrices:
|
289
|
+
|
290
|
+
>>> M = Manifold("s776")
|
291
|
+
>>> F = FundamentalPolyhedronEngine.from_manifold_and_shapes(
|
292
|
+
... M, M.tetrahedra_shapes('rect'), normalize_matrices = True)
|
293
|
+
>>> generatorMatrices = F.mcomplex.GeneratorMatrices
|
294
|
+
|
295
|
+
Given a letter such as 'a' or 'A', return matrix for corresponding
|
296
|
+
generator:
|
297
|
+
|
298
|
+
>>> def letterToMatrix(l, generatorMatrices):
|
299
|
+
... g = ord(l.lower()) - ord('a') + 1
|
300
|
+
... if l.isupper():
|
301
|
+
... g = -g
|
302
|
+
... return generatorMatrices[g]
|
303
|
+
|
304
|
+
Check that relations are fulfilled up to sign:
|
305
|
+
|
306
|
+
>>> def p(L): return reduce(lambda x, y: x * y, L)
|
307
|
+
>>> def close_to_identity(m, epsilon = 1e-12):
|
308
|
+
... return abs(m[(0,0)] - 1) < epsilon and abs(m[(1,1)] - 1) < epsilon and abs(m[(0,1)]) < epsilon and abs(m[(1,0)]) < epsilon
|
309
|
+
>>> def close_to_pm_identity(m, epsilon = 1e-12):
|
310
|
+
... return close_to_identity(m, epsilon) or close_to_identity(-m, epsilon)
|
311
|
+
>>> G = M.fundamental_group(simplify_presentation = False)
|
312
|
+
>>> for rel in G.relators():
|
313
|
+
... close_to_pm_identity(p([letterToMatrix(l, generatorMatrices) for l in rel]))
|
314
|
+
True
|
315
|
+
True
|
316
|
+
True
|
317
|
+
True
|
318
|
+
|
319
|
+
"""
|
320
|
+
|
321
|
+
z = self.mcomplex.Tetrahedra[0].ShapeParameters[simplex.E01]
|
322
|
+
CF = z.parent()
|
323
|
+
|
324
|
+
self.mcomplex.GeneratorMatrices = { 0 : matrix([[CF(1), CF(0)],
|
325
|
+
[CF(0), CF(1)]]) }
|
326
|
+
|
327
|
+
for g, pairings in self.mcomplex.Generators.items():
|
328
|
+
# We compute the matrix for the generator and its inverse at the
|
329
|
+
# same time, so ignore inverses.
|
330
|
+
if g > 0:
|
331
|
+
m = _compute_pairing_matrix(pairings[0])
|
332
|
+
if normalize_matrices:
|
333
|
+
m = m / m.det().sqrt()
|
334
|
+
self.mcomplex.GeneratorMatrices[ g] = m
|
335
|
+
self.mcomplex.GeneratorMatrices[-g] = _adjoint2(m)
|
336
|
+
|
337
|
+
def matrices_for_presentation(self, G, match_kernel=False):
|
338
|
+
"""
|
339
|
+
Given the result of M.fundamental_group(...) where M is the
|
340
|
+
corresponding SnapPy.Manifold, return the matrices for that
|
341
|
+
presentation of the fundamental polyhedron.
|
342
|
+
|
343
|
+
The GeneratorMatrices computed here are for the face-pairing
|
344
|
+
presentation with respect to the fundamental polyhedron.
|
345
|
+
That presentation can be simplified by M.fundamental_group(...)
|
346
|
+
and this function will compute the matrices for the simplified
|
347
|
+
presentation from the GeneratorMatrices.
|
348
|
+
|
349
|
+
If match_kernel is True, it will flip the signs of some of
|
350
|
+
the matrices to match the ones in the given G (which were determined
|
351
|
+
by the SnapPea kernel).
|
352
|
+
|
353
|
+
This makes the result stable when changing precision (when normalizing
|
354
|
+
matrices with determinant -1, sqrt(-1) might jump between i and -i when
|
355
|
+
increasing precision).
|
356
|
+
"""
|
357
|
+
|
358
|
+
num_generators = len(self.mcomplex.GeneratorMatrices) // 2
|
359
|
+
matrices = [ self.mcomplex.GeneratorMatrices[g + 1]
|
360
|
+
for g in range(num_generators) ]
|
361
|
+
|
362
|
+
result = _perform_word_moves(matrices, G)
|
363
|
+
if match_kernel:
|
364
|
+
return _negate_matrices_to_match_kernel(result, G)
|
365
|
+
else:
|
366
|
+
return result
|
367
|
+
|
368
|
+
|
369
|
+
def _diff_to_kernel(value, snappeaValue):
|
370
|
+
"""
|
371
|
+
The SnapPea kernel will always give us a number, but we might deal
|
372
|
+
with a number or an interval.
|
373
|
+
|
374
|
+
Cast to our numeric type so that we can compare.
|
375
|
+
"""
|
376
|
+
CF = value.parent()
|
377
|
+
return value - CF(snappeaValue)
|
378
|
+
|
379
|
+
|
380
|
+
def _is_number_close_to_kernel(value, snappeaValue, error=10**-6):
|
381
|
+
CF = value.parent()
|
382
|
+
return abs(_diff_to_kernel(value, snappeaValue)) < CF(error)
|
383
|
+
|
384
|
+
|
385
|
+
def _is_vertex_close_to_kernel(vertex, snappeaVertex):
|
386
|
+
if vertex == Infinity or snappeaVertex == Infinity:
|
387
|
+
return vertex == snappeaVertex
|
388
|
+
return _is_number_close_to_kernel(vertex, snappeaVertex)
|
389
|
+
|
390
|
+
|
391
|
+
def _are_vertices_close_to_kernel(verts, snappeaVerts):
|
392
|
+
for key, vert in verts.items():
|
393
|
+
snappeaVert = snappeaVerts[key]
|
394
|
+
if not _is_vertex_close_to_kernel(vert, snappeaVert):
|
395
|
+
return False
|
396
|
+
return True
|
397
|
+
|
398
|
+
|
399
|
+
_RemainingFace = { (V0, V1): V3, (V0, V2): V1, (V0, V3): V2,
|
400
|
+
(V1, V0): V2, (V1, V2): V3, (V1, V3): V0,
|
401
|
+
(V2, V0): V3, (V2, V1): V0, (V2, V3): V1,
|
402
|
+
(V3, V0): V1, (V3, V1): V2, (V3, V2): V0}
|
403
|
+
|
404
|
+
|
405
|
+
def _compute_fourth_corner(T):
|
406
|
+
v = 4 * [ None ]
|
407
|
+
missing_corners = [V for V in ZeroSubsimplices if T.Class[V].IdealPoint is None]
|
408
|
+
if not missing_corners:
|
409
|
+
return
|
410
|
+
missing_corner = missing_corners[0]
|
411
|
+
|
412
|
+
v[3] = missing_corner
|
413
|
+
v[0] = ( [V for V in ZeroSubsimplices if T.Class[V].IdealPoint == Infinity] +
|
414
|
+
[V for V in ZeroSubsimplices if V != missing_corner])[0]
|
415
|
+
v[1], v[2] = _RemainingFace[ (v[3], v[0]) ], _RemainingFace[ (v[0], v[3]) ]
|
416
|
+
z = [T.Class[V].IdealPoint for V in v]
|
417
|
+
|
418
|
+
cross_ratio = T.ShapeParameters[ v[0] | v[1] ]
|
419
|
+
if z[0] == Infinity:
|
420
|
+
z[3] = z[1] + cross_ratio * (z[2] - z[1])
|
421
|
+
else:
|
422
|
+
diff20 = z[2] - z[0]
|
423
|
+
diff21 = z[2] - z[1]
|
424
|
+
numerator = (z[1]*diff20 - cross_ratio*(z[0]*diff21))
|
425
|
+
denominator = (diff20 - cross_ratio*diff21)
|
426
|
+
if abs(denominator) == 0 and abs(numerator) > 0:
|
427
|
+
z[3] = Infinity
|
428
|
+
else:
|
429
|
+
z[3] = numerator/denominator
|
430
|
+
|
431
|
+
T.Class[missing_corner].IdealPoint = z[3]
|
432
|
+
|
433
|
+
|
434
|
+
def _normalize_points(a, b):
|
435
|
+
"""
|
436
|
+
Reduce the number of cases involving infinity that we need to
|
437
|
+
consider.
|
438
|
+
|
439
|
+
In particular (assuming no degeneracy), a[0], a[1] and b[0] are
|
440
|
+
never infinite.
|
441
|
+
"""
|
442
|
+
a_infinities = [i for i, z in enumerate(a) if z == Infinity]
|
443
|
+
if len(a_infinities) > 0:
|
444
|
+
i = a_infinities[0]
|
445
|
+
a, b = a[i : ] + a[ : i], b[i : ] + b[ : i]
|
446
|
+
|
447
|
+
b_infinities = [i for i, z in enumerate(b) if z == Infinity]
|
448
|
+
if len(b_infinities) > 0:
|
449
|
+
i = b_infinities[0]
|
450
|
+
if a[0] != Infinity:
|
451
|
+
a, b = a[i : ] + a[ : i], b[i : ] + b[ : i]
|
452
|
+
else:
|
453
|
+
if i == 2:
|
454
|
+
a, b = [a[0], a[2], a[1]], [b[0], b[2], b[1]]
|
455
|
+
|
456
|
+
a.reverse(), b.reverse()
|
457
|
+
return a, b
|
458
|
+
|
459
|
+
|
460
|
+
def _matrix_taking_triple_to_triple(a, b):
|
461
|
+
"""
|
462
|
+
To quote Jeff:
|
463
|
+
|
464
|
+
The formula for the Moebius transformation taking the a[] to the b[]
|
465
|
+
is simple enough:
|
466
|
+
|
467
|
+
f(z) = [ (b1*k - b0) * z + (b0*a1 - b1*a0*k)] /
|
468
|
+
[ (k - 1) * z + (a1 - k*a0) ]
|
469
|
+
|
470
|
+
where
|
471
|
+
|
472
|
+
k = [(b2-b0)/(b2-b1)] * [(a2-a1)/(a2-a0)]
|
473
|
+
"""
|
474
|
+
# Let's make it so that a[0], a[1], and b[0] are never infinite
|
475
|
+
|
476
|
+
(a0, a1, a2), (b0, b1, b2) = _normalize_points(a,b)
|
477
|
+
|
478
|
+
ka = (a2 - a1)/(a2 - a0) if a2 != Infinity else 1
|
479
|
+
|
480
|
+
if b1 == Infinity:
|
481
|
+
kb, b1kb = 0, -(b2 - b0)
|
482
|
+
else:
|
483
|
+
kb = (b2 - b0)/(b2 - b1) if b2 != Infinity else 1
|
484
|
+
b1kb = b1 * kb
|
485
|
+
|
486
|
+
k = kb * ka
|
487
|
+
|
488
|
+
return matrix([(b1kb * ka - b0, b0 * a1 - a0 * b1kb * ka),
|
489
|
+
(k - 1, a1 - k * a0)])
|
490
|
+
|
491
|
+
|
492
|
+
def _adjoint2(m):
|
493
|
+
"""
|
494
|
+
Sage matrix.adjoint() produces an unnecessary large interval for
|
495
|
+
ComplexIntervalField entries.
|
496
|
+
"""
|
497
|
+
return matrix([[m[1, 1], -m[0, 1]], [-m[1, 0], m[0, 0]]])
|
498
|
+
|
499
|
+
|
500
|
+
def _perform_word_moves(matrices, G):
|
501
|
+
mats = [ None ] + matrices
|
502
|
+
moves = G._word_moves()
|
503
|
+
while moves:
|
504
|
+
a = moves.pop(0)
|
505
|
+
if a >= len(mats): # new generator added
|
506
|
+
n = moves.index(a) # end symbol location
|
507
|
+
word, moves = moves[:n], moves[n+1:]
|
508
|
+
mats.append( prod( [mats[g] if g > 0 else _adjoint2(mats[-g]) for g in word] ) )
|
509
|
+
else:
|
510
|
+
b = moves.pop(0)
|
511
|
+
if a == b: # generator removed
|
512
|
+
mats[a] = mats[-1]
|
513
|
+
mats = mats[:-1]
|
514
|
+
elif a == -b: # invert generator
|
515
|
+
mats[a] = _adjoint2(mats[a])
|
516
|
+
else: # handle slide
|
517
|
+
A, B = mats[abs(a)], mats[abs(b)]
|
518
|
+
if a*b < 0:
|
519
|
+
B = _adjoint2(B)
|
520
|
+
mats[abs(a)] = A*B if a > 0 else B*A
|
521
|
+
|
522
|
+
return mats[1 : G.num_generators() + 1]
|
523
|
+
|
524
|
+
|
525
|
+
def _matrix_L1_distance_to_kernel(m, snappeaM):
|
526
|
+
return sum([ abs(_diff_to_kernel(m[i,j], snappeaM[i,j]))
|
527
|
+
for i in range(2)
|
528
|
+
for j in range(2)])
|
529
|
+
|
530
|
+
|
531
|
+
def _negate_matrix_to_match_kernel(m, snappeaM):
|
532
|
+
diff_plus = _matrix_L1_distance_to_kernel(m, snappeaM)
|
533
|
+
|
534
|
+
diff_minus = _matrix_L1_distance_to_kernel(m, -snappeaM)
|
535
|
+
|
536
|
+
# Note that from an interval perspective, (not diff_plus < diff_minus)
|
537
|
+
# is not implying that diff_plus >= diff_minus and that "-m" is the
|
538
|
+
# "correct" answer.
|
539
|
+
# But both +m and -m are valid, we just try to heuristically match the
|
540
|
+
# choice that the SnapPea kernel made.
|
541
|
+
|
542
|
+
if diff_plus < diff_minus:
|
543
|
+
return m
|
544
|
+
else:
|
545
|
+
return -m
|
546
|
+
|
547
|
+
|
548
|
+
def _negate_matrices_to_match_kernel(matrices, G):
|
549
|
+
"""
|
550
|
+
Normalize things so the signs of the matices match SnapPy's default
|
551
|
+
This makes the representations stay close as one increases the precision.
|
552
|
+
"""
|
553
|
+
|
554
|
+
return [ _negate_matrix_to_match_kernel(m, matrix(G.SL2C(g)))
|
555
|
+
for m, g in zip(matrices, G.generators()) ]
|
556
|
+
|
557
|
+
|
558
|
+
def _compute_pairing_matrix(pairing):
|
559
|
+
(inCorner, outCorner), perm = pairing
|
560
|
+
|
561
|
+
inTriple = []
|
562
|
+
outTriple = []
|
563
|
+
|
564
|
+
for v in simplex.ZeroSubsimplices:
|
565
|
+
if simplex.is_subset(v, inCorner.Subsimplex):
|
566
|
+
inTriple.append(inCorner.Tetrahedron.Class[v].IdealPoint)
|
567
|
+
outTriple.append(outCorner.Tetrahedron.Class[perm.image(v)].IdealPoint)
|
568
|
+
|
569
|
+
return _matrix_taking_triple_to_triple(outTriple, inTriple)
|
@@ -0,0 +1,39 @@
|
|
1
|
+
"""
|
2
|
+
This has been moved to FundamentalPolyhedronEngine.
|
3
|
+
Only the testing code was left here.
|
4
|
+
|
5
|
+
Replicating how SnapPea finds the matrices of the geometric generators,
|
6
|
+
so that this can replicated using e.g. extended precision.
|
7
|
+
"""
|
8
|
+
|
9
|
+
from .fundamental_polyhedron import *
|
10
|
+
from . import t3mlite as t3m
|
11
|
+
from .t3mlite import ZeroSubsimplices
|
12
|
+
|
13
|
+
|
14
|
+
# Testing code
|
15
|
+
|
16
|
+
def matrix_norm(A):
|
17
|
+
return max(map(abs, A.list()))
|
18
|
+
|
19
|
+
|
20
|
+
def check_example(M, shapes=None):
|
21
|
+
e = fromManifoldAndShapes(M, shapes)
|
22
|
+
|
23
|
+
MM = e.mcomplex
|
24
|
+
max_error = 0
|
25
|
+
for T in MM:
|
26
|
+
for V in ZeroSubsimplices:
|
27
|
+
vs, vn = T.SnapPeaIdealVertices[V], T.IdealVertices[V]
|
28
|
+
if vn != vs:
|
29
|
+
max_error = max(max_error, abs(vs-vn))
|
30
|
+
|
31
|
+
G = M.fundamental_group(False, False, False)
|
32
|
+
mats = compute_matrices(MM)
|
33
|
+
for i in range(1, G.num_generators() + 1):
|
34
|
+
A = mats[i]
|
35
|
+
B = G.SL2C(G.generators()[i - 1])
|
36
|
+
error = min(matrix_norm(A - B), matrix_norm(A + B))
|
37
|
+
max_error = max(max_error, error)
|
38
|
+
|
39
|
+
return max_error
|
@@ -0,0 +1,81 @@
|
|
1
|
+
"""
|
2
|
+
Creating a group representation from shape *intervals*,
|
3
|
+
specifically elements of Sage's ComplexIntervalField. Also contains
|
4
|
+
some utility functions for dealing with such representations.
|
5
|
+
"""
|
6
|
+
|
7
|
+
from .polished_reps import ManifoldGroup
|
8
|
+
from .fundamental_polyhedron import *
|
9
|
+
|
10
|
+
# Most of the below small functions are not used in SnapPy proper, but
|
11
|
+
# published code (https://doi.org/10.7910/DVN/LCYXPO) depends on them,
|
12
|
+
# so they should not be removed.
|
13
|
+
|
14
|
+
|
15
|
+
def matrix_difference_norm(A, B):
|
16
|
+
B = B.change_ring(A.base_ring())
|
17
|
+
return max([abs(a - b) for a,b in zip(A.list(), B.list())])
|
18
|
+
|
19
|
+
|
20
|
+
def diameter(A):
|
21
|
+
return max(x.diameter() for x in A.list())
|
22
|
+
|
23
|
+
|
24
|
+
def contains_zero(A):
|
25
|
+
return all(x.contains_zero() for x in A.list())
|
26
|
+
|
27
|
+
|
28
|
+
def contains_one(A):
|
29
|
+
return contains_zero(A - 1)
|
30
|
+
|
31
|
+
|
32
|
+
def contains_plus_minus_one(A):
|
33
|
+
return contains_one(A) or contains_one(-A)
|
34
|
+
|
35
|
+
|
36
|
+
def could_be_equal_numbers(x, y):
|
37
|
+
return (x - y).contains_zero()
|
38
|
+
|
39
|
+
|
40
|
+
def could_be_equal(A, B):
|
41
|
+
return contains_zero(A - B)
|
42
|
+
|
43
|
+
|
44
|
+
def holonomy_from_shape_intervals(manifold, shape_intervals,
|
45
|
+
fundamental_group_args=[], lift_to_SL2=True):
|
46
|
+
"""
|
47
|
+
Returns the representation
|
48
|
+
|
49
|
+
rho: pi_1(manifold) -> (P)SL(2, ComplexIntervalField)
|
50
|
+
|
51
|
+
determined by the given shape_intervals. If shape_intervals
|
52
|
+
contains an exact solution z0 to the gluing equations with
|
53
|
+
corresponding holonomy representation rho0, then for all g the
|
54
|
+
ComplexIntervalField matrix rho(g) contains rho0(g)::
|
55
|
+
|
56
|
+
sage: M = Manifold('m004(1,2)')
|
57
|
+
sage: success, shapes = M.verify_hyperbolicity(bits_prec=53)
|
58
|
+
sage: success
|
59
|
+
True
|
60
|
+
sage: rho = holonomy_from_shape_intervals(M, shapes)
|
61
|
+
sage: (rho('a').det() - 1).contains_zero()
|
62
|
+
True
|
63
|
+
|
64
|
+
Of course, for long words the matrix entries will smear out::
|
65
|
+
|
66
|
+
sage: diameter(rho('a')).log10() # doctest: +NUMERIC0
|
67
|
+
-10.9576580520835
|
68
|
+
sage: diameter(rho(10*'abAB')).log10() # doctest: +NUMERIC0
|
69
|
+
-8.39987365046327
|
70
|
+
"""
|
71
|
+
|
72
|
+
M = manifold
|
73
|
+
G = M.fundamental_group(*fundamental_group_args)
|
74
|
+
f = FundamentalPolyhedronEngine.from_manifold_and_shapes(
|
75
|
+
M, shape_intervals, normalize_matrices=True)
|
76
|
+
mats = f.matrices_for_presentation(G, match_kernel=True)
|
77
|
+
PG = ManifoldGroup(G.generators(), G.relators(),
|
78
|
+
G.peripheral_curves(), mats)
|
79
|
+
if lift_to_SL2:
|
80
|
+
PG.lift_to_SL2C()
|
81
|
+
return PG
|