shaped 2.0.1__py3-none-any.whl → 2.0.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- shaped/__init__.py +59 -4
- shaped/autogen/__init__.py +527 -66
- shaped/autogen/api/__init__.py +4 -3
- shaped/autogen/api/engine_api.py +1467 -0
- shaped/autogen/api/{dataset_api.py → query_api.py} +159 -194
- shaped/autogen/api/table_api.py +1494 -0
- shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
- shaped/autogen/api_client.py +18 -11
- shaped/autogen/configuration.py +22 -9
- shaped/autogen/exceptions.py +25 -5
- shaped/autogen/models/__init__.py +247 -52
- shaped/autogen/models/ai_enrichment_view_config.py +123 -0
- shaped/autogen/models/{path.py → algorithm.py} +19 -19
- shaped/autogen/models/amplitude_table_config.py +106 -0
- shaped/autogen/models/ascending.py +148 -0
- shaped/autogen/models/attn_dropout_prob.py +136 -0
- shaped/autogen/models/attribute_journey.py +124 -0
- shaped/autogen/models/attribute_value.py +178 -0
- shaped/autogen/models/autoscaling_config.py +95 -0
- shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
- shaped/autogen/models/batch_size.py +136 -0
- shaped/autogen/models/batch_size1.py +136 -0
- shaped/autogen/models/batch_size2.py +136 -0
- shaped/autogen/models/big_query_table_config.py +147 -0
- shaped/autogen/models/bm25.py +136 -0
- shaped/autogen/models/boosted_reorder_step.py +125 -0
- shaped/autogen/models/canary_rollout.py +99 -0
- shaped/autogen/models/candidate_attributes_retrieve_step.py +113 -0
- shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
- shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
- shaped/autogen/models/clickhouse_table_config.py +146 -0
- shaped/autogen/models/column_order_retrieve_step.py +123 -0
- shaped/autogen/models/column_ordering.py +91 -0
- shaped/autogen/models/create_table_response.py +87 -0
- shaped/autogen/models/create_view_response.py +87 -0
- shaped/autogen/models/custom_table_config.py +135 -0
- shaped/autogen/models/data_compute_config.py +89 -0
- shaped/autogen/models/data_config.py +145 -0
- shaped/autogen/models/data_config_interaction_table.py +146 -0
- shaped/autogen/models/data_split_config.py +88 -0
- shaped/autogen/models/data_split_strategy.py +37 -0
- shaped/autogen/models/data_tier.py +37 -0
- shaped/autogen/models/default.py +246 -0
- shaped/autogen/models/delete_engine_response.py +87 -0
- shaped/autogen/models/delete_table_response.py +87 -0
- shaped/autogen/models/delete_view_response.py +87 -0
- shaped/autogen/models/deployment_config.py +117 -0
- shaped/autogen/models/distance_function.py +38 -0
- shaped/autogen/models/diversity_reorder_step.py +137 -0
- shaped/autogen/models/dropout_rate.py +136 -0
- shaped/autogen/models/dynamo_db_table_config.py +160 -0
- shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
- shaped/autogen/models/embedder_batch_size.py +136 -0
- shaped/autogen/models/embedding_config.py +93 -0
- shaped/autogen/models/embedding_dim.py +136 -0
- shaped/autogen/models/embedding_dims.py +136 -0
- shaped/autogen/models/embedding_size.py +136 -0
- shaped/autogen/models/encoder.py +140 -0
- shaped/autogen/models/encoding_pooling_strategy.py +38 -0
- shaped/autogen/models/engine.py +109 -0
- shaped/autogen/models/engine_config_v2.py +152 -0
- shaped/autogen/models/engine_details_response.py +120 -0
- shaped/autogen/models/engine_schema.py +113 -0
- shaped/autogen/models/engine_schema_user_inner.py +146 -0
- shaped/autogen/models/entity_config.py +109 -0
- shaped/autogen/models/entity_journey.py +161 -0
- shaped/autogen/models/entity_type.py +38 -0
- shaped/autogen/models/evaluation_config.py +92 -0
- shaped/autogen/models/exploration_reorder_step.py +125 -0
- shaped/autogen/models/expression_filter_step.py +106 -0
- shaped/autogen/models/factors.py +136 -0
- shaped/autogen/models/factors1.py +136 -0
- shaped/autogen/models/feature.py +90 -0
- shaped/autogen/models/feature_type.py +60 -0
- shaped/autogen/models/file_table_config.py +112 -0
- shaped/autogen/models/filter_config.py +99 -0
- shaped/autogen/models/filter_dataset.py +164 -0
- shaped/autogen/models/filter_index_type.py +36 -0
- shaped/autogen/models/filter_retrieve_step.py +113 -0
- shaped/autogen/models/filter_step_explanation.py +165 -0
- shaped/autogen/models/filter_table.py +140 -0
- shaped/autogen/models/filter_type.py +134 -0
- shaped/autogen/models/global_filter.py +102 -0
- shaped/autogen/models/hidden_dropout_prob.py +136 -0
- shaped/autogen/models/hidden_size.py +136 -0
- shaped/autogen/models/hidden_size1.py +136 -0
- shaped/autogen/models/http_problem_response.py +115 -0
- shaped/autogen/models/http_validation_error.py +2 -2
- shaped/autogen/models/hugging_face_encoder.py +115 -0
- shaped/autogen/models/iceberg_table_config.py +154 -0
- shaped/autogen/models/index_config.py +101 -0
- shaped/autogen/models/inner_entity_id.py +144 -0
- shaped/autogen/models/inner_size.py +136 -0
- shaped/autogen/models/inner_size1.py +136 -0
- shaped/autogen/models/inner_uid.py +144 -0
- shaped/autogen/models/interaction_config.py +122 -0
- shaped/autogen/models/interaction_pooling_encoder.py +104 -0
- shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
- shaped/autogen/models/item_attribute_pooling_encoder.py +111 -0
- shaped/autogen/models/journey.py +140 -0
- shaped/autogen/models/kafka_table_config.py +129 -0
- shaped/autogen/models/kinesis_table_config.py +140 -0
- shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
- shaped/autogen/models/label.py +90 -0
- shaped/autogen/models/label_type.py +36 -0
- shaped/autogen/models/laplace_smoothing.py +136 -0
- shaped/autogen/models/latency_scaling_policy.py +112 -0
- shaped/autogen/models/learning_rate.py +136 -0
- shaped/autogen/models/learning_rate1.py +136 -0
- shaped/autogen/models/learning_rate2.py +136 -0
- shaped/autogen/models/learning_rate3.py +136 -0
- shaped/autogen/models/lexical_search_mode.py +99 -0
- shaped/autogen/models/list_engines_response.py +95 -0
- shaped/autogen/models/list_tables_response.py +95 -0
- shaped/autogen/models/list_views_response.py +95 -0
- shaped/autogen/models/location_inner.py +138 -0
- shaped/autogen/models/loss_types.py +37 -0
- shaped/autogen/models/lr.py +136 -0
- shaped/autogen/models/lr1.py +136 -0
- shaped/autogen/models/lr2.py +136 -0
- shaped/autogen/models/max_depth.py +136 -0
- shaped/autogen/models/max_leaves.py +136 -0
- shaped/autogen/models/max_seq_length.py +136 -0
- shaped/autogen/models/max_seq_length1.py +136 -0
- shaped/autogen/models/max_seq_length2.py +136 -0
- shaped/autogen/models/mode.py +134 -0
- shaped/autogen/models/mode1.py +136 -0
- shaped/autogen/models/mode2.py +150 -0
- shaped/autogen/models/models_inner.py +308 -0
- shaped/autogen/models/mongo_db_table_config.py +147 -0
- shaped/autogen/models/mssql_table_config.py +155 -0
- shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
- shaped/autogen/models/n_epochs.py +136 -0
- shaped/autogen/models/n_epochs1.py +136 -0
- shaped/autogen/models/n_epochs2.py +136 -0
- shaped/autogen/models/n_estimators.py +136 -0
- shaped/autogen/models/n_heads.py +136 -0
- shaped/autogen/models/n_layers.py +136 -0
- shaped/autogen/models/neg_per_positive.py +136 -0
- shaped/autogen/models/negative_samples_count.py +136 -0
- shaped/autogen/models/ngram_tokenizer.py +103 -0
- shaped/autogen/models/no_op_config.py +117 -0
- shaped/autogen/models/num_blocks.py +136 -0
- shaped/autogen/models/num_heads.py +136 -0
- shaped/autogen/models/num_leaves.py +136 -0
- shaped/autogen/models/objective.py +40 -0
- shaped/autogen/models/objective1.py +134 -0
- shaped/autogen/models/online_store_config.py +89 -0
- shaped/autogen/models/pagination_config.py +87 -0
- shaped/autogen/models/parameter_definition.py +96 -0
- shaped/autogen/models/parameters_value.py +240 -0
- shaped/autogen/models/passthrough_score.py +104 -0
- shaped/autogen/models/personal_filter.py +104 -0
- shaped/autogen/models/pipeline_stage_explanation.py +118 -0
- shaped/autogen/models/policy.py +134 -0
- shaped/autogen/models/pool_fn.py +152 -0
- shaped/autogen/models/pooling_function.py +37 -0
- shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
- shaped/autogen/models/posthog_table_config.py +133 -0
- shaped/autogen/models/prebuilt_filter_step.py +113 -0
- shaped/autogen/models/precomputed_item_embedding.py +99 -0
- shaped/autogen/models/precomputed_user_embedding.py +99 -0
- shaped/autogen/models/query.py +136 -0
- shaped/autogen/models/query1.py +136 -0
- shaped/autogen/models/query_any_of.py +172 -0
- shaped/autogen/models/query_config.py +140 -0
- shaped/autogen/models/query_definition.py +106 -0
- shaped/autogen/models/query_encoder.py +194 -0
- shaped/autogen/models/query_explanation.py +201 -0
- shaped/autogen/models/query_request.py +121 -0
- shaped/autogen/models/query_result.py +113 -0
- shaped/autogen/models/query_table_config.py +99 -0
- shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
- shaped/autogen/models/rank_query_config.py +167 -0
- shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
- shaped/autogen/models/rank_query_config_reorder_inner.py +186 -0
- shaped/autogen/models/rank_query_config_retrieve_inner.py +265 -0
- shaped/autogen/models/recreate_rollout.py +97 -0
- shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
- shaped/autogen/models/reference_table_config.py +113 -0
- shaped/autogen/models/regularization.py +136 -0
- shaped/autogen/models/reorder_inner.py +149 -0
- shaped/autogen/models/reorder_step_explanation.py +207 -0
- shaped/autogen/models/request.py +378 -0
- shaped/autogen/models/request1.py +140 -0
- shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
- shaped/autogen/models/resource_config.py +100 -0
- shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
- shaped/autogen/models/result.py +132 -0
- shaped/autogen/models/result_embeddings_value.py +127 -0
- shaped/autogen/models/retrieval_scores_value.py +127 -0
- shaped/autogen/models/retrieve_inner.py +196 -0
- shaped/autogen/models/retrieve_step_explanation.py +172 -0
- shaped/autogen/models/retriever.py +196 -0
- shaped/autogen/models/retriever1.py +196 -0
- shaped/autogen/models/rollout_config.py +91 -0
- shaped/autogen/models/rudderstack_table_config.py +106 -0
- shaped/autogen/models/sampling_strategy.py +36 -0
- shaped/autogen/models/saved_query_info_response.py +103 -0
- shaped/autogen/models/saved_query_list_response.py +87 -0
- shaped/autogen/models/saved_query_request.py +115 -0
- shaped/autogen/models/schema_config.py +117 -0
- shaped/autogen/models/score.py +134 -0
- shaped/autogen/models/score_ensemble.py +127 -0
- shaped/autogen/models/score_ensemble_policy_config.py +165 -0
- shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +755 -0
- shaped/autogen/models/score_step_explanation.py +224 -0
- shaped/autogen/models/search_config.py +105 -0
- shaped/autogen/models/segment_table_config.py +106 -0
- shaped/autogen/models/sequence_length.py +136 -0
- shaped/autogen/models/server_config.py +100 -0
- shaped/autogen/models/setup_engine_response.py +87 -0
- shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +154 -0
- shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +160 -0
- shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +215 -0
- shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +156 -0
- shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +141 -0
- shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +211 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +195 -0
- shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +245 -0
- shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +161 -0
- shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +108 -0
- shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +143 -0
- shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
- shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +230 -0
- shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +165 -0
- shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +153 -0
- shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +137 -0
- shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +155 -0
- shaped/autogen/models/shopify_table_config.py +156 -0
- shaped/autogen/models/similarity_retrieve_step.py +123 -0
- shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
- shaped/autogen/models/sql_transform_type.py +37 -0
- shaped/autogen/models/sql_view_config.py +111 -0
- shaped/autogen/models/stemmer_tokenizer.py +105 -0
- shaped/autogen/models/step_explanation.py +137 -0
- shaped/autogen/models/steps_inner.py +179 -0
- shaped/autogen/models/strategy.py +134 -0
- shaped/autogen/models/table.py +102 -0
- shaped/autogen/models/table_deployment_type.py +38 -0
- shaped/autogen/models/table_insert_arguments.py +87 -0
- shaped/autogen/models/table_insert_response.py +87 -0
- shaped/autogen/models/text_encoding.py +148 -0
- shaped/autogen/models/text_search_retrieve_step.py +121 -0
- shaped/autogen/models/time_frequency.py +136 -0
- shaped/autogen/models/time_window.py +136 -0
- shaped/autogen/models/time_window_in_days.py +154 -0
- shaped/autogen/models/tokenizer.py +149 -0
- shaped/autogen/models/trained_model_encoder.py +99 -0
- shaped/autogen/models/training_compute_config.py +99 -0
- shaped/autogen/models/training_config.py +121 -0
- shaped/autogen/models/training_config_models_inner.py +540 -0
- shaped/autogen/models/training_strategy.py +37 -0
- shaped/autogen/models/transform_status.py +41 -0
- shaped/autogen/models/trending_mode.py +37 -0
- shaped/autogen/models/truncate_filter_step.py +106 -0
- shaped/autogen/models/tunable_bool.py +97 -0
- shaped/autogen/models/tunable_float.py +118 -0
- shaped/autogen/models/tunable_int.py +118 -0
- shaped/autogen/models/tunable_int_categorical.py +99 -0
- shaped/autogen/models/tunable_string.py +99 -0
- shaped/autogen/models/tuning_config.py +89 -0
- shaped/autogen/models/type.py +150 -0
- shaped/autogen/models/update_table_response.py +87 -0
- shaped/autogen/models/update_view_response.py +87 -0
- shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
- shaped/autogen/models/user_inner.py +134 -0
- shaped/autogen/models/val_split.py +136 -0
- shaped/autogen/models/validation_error.py +13 -3
- shaped/autogen/models/validation_error_loc_inner.py +150 -0
- shaped/autogen/models/value_type.py +7 -5
- shaped/autogen/models/vector_search_mode.py +101 -0
- shaped/autogen/models/view.py +104 -0
- shaped/autogen/models/view_details_ai.py +140 -0
- shaped/autogen/models/view_details_ai_schema_value.py +153 -0
- shaped/autogen/models/view_details_sql.py +140 -0
- shaped/autogen/models/view_status.py +41 -0
- shaped/autogen/models/weight_decay.py +136 -0
- shaped/autogen/models/whitespace_tokenizer.py +97 -0
- shaped/autogen/models/window_size.py +136 -0
- shaped/autogen/rest.py +10 -4
- shaped/cli/shaped_cli.py +163 -35
- shaped/client.py +591 -171
- shaped/config_builders.py +705 -0
- shaped/query_builder.py +781 -0
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/METADATA +141 -6
- shaped-2.0.4.dist-info/RECORD +296 -0
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/WHEEL +1 -1
- shaped-2.0.4.dist-info/entry_points.txt +2 -0
- shaped/autogen/api/model_inference_api.py +0 -2825
- shaped/autogen/models/amplitude_dataset_config.py +0 -96
- shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
- shaped/autogen/models/big_query_dataset_config.py +0 -114
- shaped/autogen/models/complement_items_request.py +0 -99
- shaped/autogen/models/complement_items_response.py +0 -89
- shaped/autogen/models/connectors_inner.py +0 -134
- shaped/autogen/models/create_dataset_arguments.py +0 -263
- shaped/autogen/models/create_embedding_response.py +0 -87
- shaped/autogen/models/create_item_embedding_request.py +0 -89
- shaped/autogen/models/create_model_arguments.py +0 -107
- shaped/autogen/models/create_model_response.py +0 -87
- shaped/autogen/models/create_user_embedding_request.py +0 -89
- shaped/autogen/models/custom_dataset_config.py +0 -115
- shaped/autogen/models/dataset_config.py +0 -101
- shaped/autogen/models/dataset_schema_type.py +0 -47
- shaped/autogen/models/datasets_inner.py +0 -91
- shaped/autogen/models/delete_model_response.py +0 -87
- shaped/autogen/models/fetch_config.py +0 -95
- shaped/autogen/models/file_config.py +0 -105
- shaped/autogen/models/file_source_config.py +0 -89
- shaped/autogen/models/inference_config.py +0 -101
- shaped/autogen/models/insert_model_response.py +0 -87
- shaped/autogen/models/interaction.py +0 -87
- shaped/autogen/models/list_datasets_response.py +0 -95
- shaped/autogen/models/list_models_response.py +0 -95
- shaped/autogen/models/model_config.py +0 -99
- shaped/autogen/models/model_response.py +0 -95
- shaped/autogen/models/mongo_db_dataset_config.py +0 -119
- shaped/autogen/models/post_rank_request.py +0 -117
- shaped/autogen/models/rank_attribute_response.py +0 -89
- shaped/autogen/models/rank_grid_attribute_request.py +0 -91
- shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
- shaped/autogen/models/rank_grid_attribute_response.py +0 -91
- shaped/autogen/models/rank_response.py +0 -91
- shaped/autogen/models/retrieve_request.py +0 -101
- shaped/autogen/models/retrieve_response.py +0 -91
- shaped/autogen/models/retriever_top_k_override.py +0 -97
- shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
- shaped/autogen/models/segment_dataset_config.py +0 -96
- shaped/autogen/models/similar_item_request.py +0 -101
- shaped/autogen/models/similar_response.py +0 -89
- shaped/autogen/models/similar_users_request.py +0 -99
- shaped/autogen/models/successful_response.py +0 -87
- shaped/autogen/models/view_model_response.py +0 -99
- shaped-2.0.1.dist-info/RECORD +0 -73
- shaped-2.0.1.dist-info/entry_points.txt +0 -2
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/top_level.txt +0 -0
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/zip-safe +0 -0
|
@@ -1,105 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, StrictStr, field_validator
|
|
21
|
-
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
-
from shaped.autogen.models.path import Path
|
|
23
|
-
from typing import Optional, Set
|
|
24
|
-
from typing_extensions import Self
|
|
25
|
-
|
|
26
|
-
class FileConfig(BaseModel):
|
|
27
|
-
"""
|
|
28
|
-
Creates a file source that can be used in the fetch queries.
|
|
29
|
-
""" # noqa: E501
|
|
30
|
-
type: Optional[StrictStr] = 'File'
|
|
31
|
-
id: StrictStr
|
|
32
|
-
path: Optional[Path] = None
|
|
33
|
-
__properties: ClassVar[List[str]] = ["type", "id", "path"]
|
|
34
|
-
|
|
35
|
-
@field_validator('type')
|
|
36
|
-
def type_validate_enum(cls, value):
|
|
37
|
-
"""Validates the enum"""
|
|
38
|
-
if value is None:
|
|
39
|
-
return value
|
|
40
|
-
|
|
41
|
-
if value not in set(['File']):
|
|
42
|
-
raise ValueError("must be one of enum values ('File')")
|
|
43
|
-
return value
|
|
44
|
-
|
|
45
|
-
model_config = ConfigDict(
|
|
46
|
-
populate_by_name=True,
|
|
47
|
-
validate_assignment=True,
|
|
48
|
-
protected_namespaces=(),
|
|
49
|
-
)
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
def to_str(self) -> str:
|
|
53
|
-
"""Returns the string representation of the model using alias"""
|
|
54
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
55
|
-
|
|
56
|
-
def to_json(self) -> str:
|
|
57
|
-
"""Returns the JSON representation of the model using alias"""
|
|
58
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
59
|
-
return json.dumps(self.to_dict())
|
|
60
|
-
|
|
61
|
-
@classmethod
|
|
62
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
63
|
-
"""Create an instance of FileConfig from a JSON string"""
|
|
64
|
-
return cls.from_dict(json.loads(json_str))
|
|
65
|
-
|
|
66
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
67
|
-
"""Return the dictionary representation of the model using alias.
|
|
68
|
-
|
|
69
|
-
This has the following differences from calling pydantic's
|
|
70
|
-
`self.model_dump(by_alias=True)`:
|
|
71
|
-
|
|
72
|
-
* `None` is only added to the output dict for nullable fields that
|
|
73
|
-
were set at model initialization. Other fields with value `None`
|
|
74
|
-
are ignored.
|
|
75
|
-
"""
|
|
76
|
-
excluded_fields: Set[str] = set([
|
|
77
|
-
])
|
|
78
|
-
|
|
79
|
-
_dict = self.model_dump(
|
|
80
|
-
by_alias=True,
|
|
81
|
-
exclude=excluded_fields,
|
|
82
|
-
exclude_none=True,
|
|
83
|
-
)
|
|
84
|
-
# override the default output from pydantic by calling `to_dict()` of path
|
|
85
|
-
if self.path:
|
|
86
|
-
_dict['path'] = self.path.to_dict()
|
|
87
|
-
return _dict
|
|
88
|
-
|
|
89
|
-
@classmethod
|
|
90
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
91
|
-
"""Create an instance of FileConfig from a dict"""
|
|
92
|
-
if obj is None:
|
|
93
|
-
return None
|
|
94
|
-
|
|
95
|
-
if not isinstance(obj, dict):
|
|
96
|
-
return cls.model_validate(obj)
|
|
97
|
-
|
|
98
|
-
_obj = cls.model_validate({
|
|
99
|
-
"type": obj.get("type") if obj.get("type") is not None else 'File',
|
|
100
|
-
"id": obj.get("id"),
|
|
101
|
-
"path": Path.from_dict(obj["path"]) if obj.get("path") is not None else None
|
|
102
|
-
})
|
|
103
|
-
return _obj
|
|
104
|
-
|
|
105
|
-
|
|
@@ -1,89 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, StrictInt, StrictStr
|
|
21
|
-
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
-
from typing import Optional, Set
|
|
23
|
-
from typing_extensions import Self
|
|
24
|
-
|
|
25
|
-
class FileSourceConfig(BaseModel):
|
|
26
|
-
"""
|
|
27
|
-
FileSourceConfig
|
|
28
|
-
""" # noqa: E501
|
|
29
|
-
path: StrictStr
|
|
30
|
-
day_lookback: Optional[StrictInt] = 0
|
|
31
|
-
__properties: ClassVar[List[str]] = ["path", "day_lookback"]
|
|
32
|
-
|
|
33
|
-
model_config = ConfigDict(
|
|
34
|
-
populate_by_name=True,
|
|
35
|
-
validate_assignment=True,
|
|
36
|
-
protected_namespaces=(),
|
|
37
|
-
)
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def to_str(self) -> str:
|
|
41
|
-
"""Returns the string representation of the model using alias"""
|
|
42
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
43
|
-
|
|
44
|
-
def to_json(self) -> str:
|
|
45
|
-
"""Returns the JSON representation of the model using alias"""
|
|
46
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
47
|
-
return json.dumps(self.to_dict())
|
|
48
|
-
|
|
49
|
-
@classmethod
|
|
50
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
51
|
-
"""Create an instance of FileSourceConfig from a JSON string"""
|
|
52
|
-
return cls.from_dict(json.loads(json_str))
|
|
53
|
-
|
|
54
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
55
|
-
"""Return the dictionary representation of the model using alias.
|
|
56
|
-
|
|
57
|
-
This has the following differences from calling pydantic's
|
|
58
|
-
`self.model_dump(by_alias=True)`:
|
|
59
|
-
|
|
60
|
-
* `None` is only added to the output dict for nullable fields that
|
|
61
|
-
were set at model initialization. Other fields with value `None`
|
|
62
|
-
are ignored.
|
|
63
|
-
"""
|
|
64
|
-
excluded_fields: Set[str] = set([
|
|
65
|
-
])
|
|
66
|
-
|
|
67
|
-
_dict = self.model_dump(
|
|
68
|
-
by_alias=True,
|
|
69
|
-
exclude=excluded_fields,
|
|
70
|
-
exclude_none=True,
|
|
71
|
-
)
|
|
72
|
-
return _dict
|
|
73
|
-
|
|
74
|
-
@classmethod
|
|
75
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
76
|
-
"""Create an instance of FileSourceConfig from a dict"""
|
|
77
|
-
if obj is None:
|
|
78
|
-
return None
|
|
79
|
-
|
|
80
|
-
if not isinstance(obj, dict):
|
|
81
|
-
return cls.model_validate(obj)
|
|
82
|
-
|
|
83
|
-
_obj = cls.model_validate({
|
|
84
|
-
"path": obj.get("path"),
|
|
85
|
-
"day_lookback": obj.get("day_lookback") if obj.get("day_lookback") is not None else 0
|
|
86
|
-
})
|
|
87
|
-
return _obj
|
|
88
|
-
|
|
89
|
-
|
|
@@ -1,101 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, Field, StrictFloat, StrictInt, StrictStr
|
|
21
|
-
from typing import Any, ClassVar, Dict, List, Optional, Union
|
|
22
|
-
from shaped.autogen.models.retriever_top_k_override import RetrieverTopKOverride
|
|
23
|
-
from typing import Optional, Set
|
|
24
|
-
from typing_extensions import Self
|
|
25
|
-
|
|
26
|
-
class InferenceConfig(BaseModel):
|
|
27
|
-
"""
|
|
28
|
-
This object defines global configurations for all inference endpoints. It can be set at model definition time, in which case it will be used as the default for all inference requests. It can also be set at inference time, in which case it will override the model's default configuration.
|
|
29
|
-
""" # noqa: E501
|
|
30
|
-
exploration_factor: Optional[Union[StrictFloat, StrictInt]] = Field(default=None, description="Exploration factor defines how much to explore newer, low interaction items relative to the highest scored relevant items. Higher values are more likely to return items from our cold-start item pools (i.e. new items with less interactions), lower values are more likely to return items with more interactions that are highly relevant. ")
|
|
31
|
-
diversity_factor: Optional[Union[StrictFloat, StrictInt]] = Field(default=None, description="Diversity factor defines how much to trade-off relevance and attribute diversity when re-ranking results. We achieve this with a Maximal Marginal Relevance algorithm that chooses the most diverse item out of a set of maximally relevant items at each rank. Higher diversity factor means favor more diverse results over more relevant ones. ")
|
|
32
|
-
diversity_attributes: Optional[List[StrictStr]] = Field(default=None, description="The list of item attributes to calculate diversity with. For example, say your content has the following attributes: price, brand, category, timestamp. You may only want to diversify around brand and category, but disregard price and timestamp. In this case, just set diversity_attributes to: [\"brand\", \"category\"]. ")
|
|
33
|
-
retrieval_k: Optional[Union[StrictFloat, StrictInt]] = Field(default=None, description="Defines how many candidate items to pull from retrieval stage (i.e. the aggregate of all retrievers). Defaults to 300. ")
|
|
34
|
-
retriever_k_override: Optional[RetrieverTopKOverride] = None
|
|
35
|
-
limit: Optional[StrictInt] = Field(default=None, description="The number of items to return.")
|
|
36
|
-
__properties: ClassVar[List[str]] = ["exploration_factor", "diversity_factor", "diversity_attributes", "retrieval_k", "retriever_k_override", "limit"]
|
|
37
|
-
|
|
38
|
-
model_config = ConfigDict(
|
|
39
|
-
populate_by_name=True,
|
|
40
|
-
validate_assignment=True,
|
|
41
|
-
protected_namespaces=(),
|
|
42
|
-
)
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
def to_str(self) -> str:
|
|
46
|
-
"""Returns the string representation of the model using alias"""
|
|
47
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
48
|
-
|
|
49
|
-
def to_json(self) -> str:
|
|
50
|
-
"""Returns the JSON representation of the model using alias"""
|
|
51
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
52
|
-
return json.dumps(self.to_dict())
|
|
53
|
-
|
|
54
|
-
@classmethod
|
|
55
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
56
|
-
"""Create an instance of InferenceConfig from a JSON string"""
|
|
57
|
-
return cls.from_dict(json.loads(json_str))
|
|
58
|
-
|
|
59
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
60
|
-
"""Return the dictionary representation of the model using alias.
|
|
61
|
-
|
|
62
|
-
This has the following differences from calling pydantic's
|
|
63
|
-
`self.model_dump(by_alias=True)`:
|
|
64
|
-
|
|
65
|
-
* `None` is only added to the output dict for nullable fields that
|
|
66
|
-
were set at model initialization. Other fields with value `None`
|
|
67
|
-
are ignored.
|
|
68
|
-
"""
|
|
69
|
-
excluded_fields: Set[str] = set([
|
|
70
|
-
])
|
|
71
|
-
|
|
72
|
-
_dict = self.model_dump(
|
|
73
|
-
by_alias=True,
|
|
74
|
-
exclude=excluded_fields,
|
|
75
|
-
exclude_none=True,
|
|
76
|
-
)
|
|
77
|
-
# override the default output from pydantic by calling `to_dict()` of retriever_k_override
|
|
78
|
-
if self.retriever_k_override:
|
|
79
|
-
_dict['retriever_k_override'] = self.retriever_k_override.to_dict()
|
|
80
|
-
return _dict
|
|
81
|
-
|
|
82
|
-
@classmethod
|
|
83
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
84
|
-
"""Create an instance of InferenceConfig from a dict"""
|
|
85
|
-
if obj is None:
|
|
86
|
-
return None
|
|
87
|
-
|
|
88
|
-
if not isinstance(obj, dict):
|
|
89
|
-
return cls.model_validate(obj)
|
|
90
|
-
|
|
91
|
-
_obj = cls.model_validate({
|
|
92
|
-
"exploration_factor": obj.get("exploration_factor"),
|
|
93
|
-
"diversity_factor": obj.get("diversity_factor"),
|
|
94
|
-
"diversity_attributes": obj.get("diversity_attributes"),
|
|
95
|
-
"retrieval_k": obj.get("retrieval_k"),
|
|
96
|
-
"retriever_k_override": RetrieverTopKOverride.from_dict(obj["retriever_k_override"]) if obj.get("retriever_k_override") is not None else None,
|
|
97
|
-
"limit": obj.get("limit")
|
|
98
|
-
})
|
|
99
|
-
return _obj
|
|
100
|
-
|
|
101
|
-
|
|
@@ -1,87 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, StrictStr
|
|
21
|
-
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
-
from typing import Optional, Set
|
|
23
|
-
from typing_extensions import Self
|
|
24
|
-
|
|
25
|
-
class InsertModelResponse(BaseModel):
|
|
26
|
-
"""
|
|
27
|
-
InsertModelResponse
|
|
28
|
-
""" # noqa: E501
|
|
29
|
-
message: Optional[StrictStr] = None
|
|
30
|
-
__properties: ClassVar[List[str]] = ["message"]
|
|
31
|
-
|
|
32
|
-
model_config = ConfigDict(
|
|
33
|
-
populate_by_name=True,
|
|
34
|
-
validate_assignment=True,
|
|
35
|
-
protected_namespaces=(),
|
|
36
|
-
)
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
def to_str(self) -> str:
|
|
40
|
-
"""Returns the string representation of the model using alias"""
|
|
41
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
42
|
-
|
|
43
|
-
def to_json(self) -> str:
|
|
44
|
-
"""Returns the JSON representation of the model using alias"""
|
|
45
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
46
|
-
return json.dumps(self.to_dict())
|
|
47
|
-
|
|
48
|
-
@classmethod
|
|
49
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
50
|
-
"""Create an instance of InsertModelResponse from a JSON string"""
|
|
51
|
-
return cls.from_dict(json.loads(json_str))
|
|
52
|
-
|
|
53
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
54
|
-
"""Return the dictionary representation of the model using alias.
|
|
55
|
-
|
|
56
|
-
This has the following differences from calling pydantic's
|
|
57
|
-
`self.model_dump(by_alias=True)`:
|
|
58
|
-
|
|
59
|
-
* `None` is only added to the output dict for nullable fields that
|
|
60
|
-
were set at model initialization. Other fields with value `None`
|
|
61
|
-
are ignored.
|
|
62
|
-
"""
|
|
63
|
-
excluded_fields: Set[str] = set([
|
|
64
|
-
])
|
|
65
|
-
|
|
66
|
-
_dict = self.model_dump(
|
|
67
|
-
by_alias=True,
|
|
68
|
-
exclude=excluded_fields,
|
|
69
|
-
exclude_none=True,
|
|
70
|
-
)
|
|
71
|
-
return _dict
|
|
72
|
-
|
|
73
|
-
@classmethod
|
|
74
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
75
|
-
"""Create an instance of InsertModelResponse from a dict"""
|
|
76
|
-
if obj is None:
|
|
77
|
-
return None
|
|
78
|
-
|
|
79
|
-
if not isinstance(obj, dict):
|
|
80
|
-
return cls.model_validate(obj)
|
|
81
|
-
|
|
82
|
-
_obj = cls.model_validate({
|
|
83
|
-
"message": obj.get("message")
|
|
84
|
-
})
|
|
85
|
-
return _obj
|
|
86
|
-
|
|
87
|
-
|
|
@@ -1,87 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, StrictStr
|
|
21
|
-
from typing import Any, ClassVar, Dict, List
|
|
22
|
-
from typing import Optional, Set
|
|
23
|
-
from typing_extensions import Self
|
|
24
|
-
|
|
25
|
-
class Interaction(BaseModel):
|
|
26
|
-
"""
|
|
27
|
-
Interaction
|
|
28
|
-
""" # noqa: E501
|
|
29
|
-
item_id: StrictStr
|
|
30
|
-
__properties: ClassVar[List[str]] = ["item_id"]
|
|
31
|
-
|
|
32
|
-
model_config = ConfigDict(
|
|
33
|
-
populate_by_name=True,
|
|
34
|
-
validate_assignment=True,
|
|
35
|
-
protected_namespaces=(),
|
|
36
|
-
)
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
def to_str(self) -> str:
|
|
40
|
-
"""Returns the string representation of the model using alias"""
|
|
41
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
42
|
-
|
|
43
|
-
def to_json(self) -> str:
|
|
44
|
-
"""Returns the JSON representation of the model using alias"""
|
|
45
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
46
|
-
return json.dumps(self.to_dict())
|
|
47
|
-
|
|
48
|
-
@classmethod
|
|
49
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
50
|
-
"""Create an instance of Interaction from a JSON string"""
|
|
51
|
-
return cls.from_dict(json.loads(json_str))
|
|
52
|
-
|
|
53
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
54
|
-
"""Return the dictionary representation of the model using alias.
|
|
55
|
-
|
|
56
|
-
This has the following differences from calling pydantic's
|
|
57
|
-
`self.model_dump(by_alias=True)`:
|
|
58
|
-
|
|
59
|
-
* `None` is only added to the output dict for nullable fields that
|
|
60
|
-
were set at model initialization. Other fields with value `None`
|
|
61
|
-
are ignored.
|
|
62
|
-
"""
|
|
63
|
-
excluded_fields: Set[str] = set([
|
|
64
|
-
])
|
|
65
|
-
|
|
66
|
-
_dict = self.model_dump(
|
|
67
|
-
by_alias=True,
|
|
68
|
-
exclude=excluded_fields,
|
|
69
|
-
exclude_none=True,
|
|
70
|
-
)
|
|
71
|
-
return _dict
|
|
72
|
-
|
|
73
|
-
@classmethod
|
|
74
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
75
|
-
"""Create an instance of Interaction from a dict"""
|
|
76
|
-
if obj is None:
|
|
77
|
-
return None
|
|
78
|
-
|
|
79
|
-
if not isinstance(obj, dict):
|
|
80
|
-
return cls.model_validate(obj)
|
|
81
|
-
|
|
82
|
-
_obj = cls.model_validate({
|
|
83
|
-
"item_id": obj.get("item_id")
|
|
84
|
-
})
|
|
85
|
-
return _obj
|
|
86
|
-
|
|
87
|
-
|
|
@@ -1,95 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict
|
|
21
|
-
from typing import Any, ClassVar, Dict, List
|
|
22
|
-
from shaped.autogen.models.datasets_inner import DatasetsInner
|
|
23
|
-
from typing import Optional, Set
|
|
24
|
-
from typing_extensions import Self
|
|
25
|
-
|
|
26
|
-
class ListDatasetsResponse(BaseModel):
|
|
27
|
-
"""
|
|
28
|
-
ListDatasetsResponse
|
|
29
|
-
""" # noqa: E501
|
|
30
|
-
datasets: List[DatasetsInner]
|
|
31
|
-
__properties: ClassVar[List[str]] = ["datasets"]
|
|
32
|
-
|
|
33
|
-
model_config = ConfigDict(
|
|
34
|
-
populate_by_name=True,
|
|
35
|
-
validate_assignment=True,
|
|
36
|
-
protected_namespaces=(),
|
|
37
|
-
)
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def to_str(self) -> str:
|
|
41
|
-
"""Returns the string representation of the model using alias"""
|
|
42
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
43
|
-
|
|
44
|
-
def to_json(self) -> str:
|
|
45
|
-
"""Returns the JSON representation of the model using alias"""
|
|
46
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
47
|
-
return json.dumps(self.to_dict())
|
|
48
|
-
|
|
49
|
-
@classmethod
|
|
50
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
51
|
-
"""Create an instance of ListDatasetsResponse from a JSON string"""
|
|
52
|
-
return cls.from_dict(json.loads(json_str))
|
|
53
|
-
|
|
54
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
55
|
-
"""Return the dictionary representation of the model using alias.
|
|
56
|
-
|
|
57
|
-
This has the following differences from calling pydantic's
|
|
58
|
-
`self.model_dump(by_alias=True)`:
|
|
59
|
-
|
|
60
|
-
* `None` is only added to the output dict for nullable fields that
|
|
61
|
-
were set at model initialization. Other fields with value `None`
|
|
62
|
-
are ignored.
|
|
63
|
-
"""
|
|
64
|
-
excluded_fields: Set[str] = set([
|
|
65
|
-
])
|
|
66
|
-
|
|
67
|
-
_dict = self.model_dump(
|
|
68
|
-
by_alias=True,
|
|
69
|
-
exclude=excluded_fields,
|
|
70
|
-
exclude_none=True,
|
|
71
|
-
)
|
|
72
|
-
# override the default output from pydantic by calling `to_dict()` of each item in datasets (list)
|
|
73
|
-
_items = []
|
|
74
|
-
if self.datasets:
|
|
75
|
-
for _item_datasets in self.datasets:
|
|
76
|
-
if _item_datasets:
|
|
77
|
-
_items.append(_item_datasets.to_dict())
|
|
78
|
-
_dict['datasets'] = _items
|
|
79
|
-
return _dict
|
|
80
|
-
|
|
81
|
-
@classmethod
|
|
82
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
83
|
-
"""Create an instance of ListDatasetsResponse from a dict"""
|
|
84
|
-
if obj is None:
|
|
85
|
-
return None
|
|
86
|
-
|
|
87
|
-
if not isinstance(obj, dict):
|
|
88
|
-
return cls.model_validate(obj)
|
|
89
|
-
|
|
90
|
-
_obj = cls.model_validate({
|
|
91
|
-
"datasets": [DatasetsInner.from_dict(_item) for _item in obj["datasets"]] if obj.get("datasets") is not None else None
|
|
92
|
-
})
|
|
93
|
-
return _obj
|
|
94
|
-
|
|
95
|
-
|
|
@@ -1,95 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict
|
|
21
|
-
from typing import Any, ClassVar, Dict, List
|
|
22
|
-
from shaped.autogen.models.model_response import ModelResponse
|
|
23
|
-
from typing import Optional, Set
|
|
24
|
-
from typing_extensions import Self
|
|
25
|
-
|
|
26
|
-
class ListModelsResponse(BaseModel):
|
|
27
|
-
"""
|
|
28
|
-
ListModelsResponse
|
|
29
|
-
""" # noqa: E501
|
|
30
|
-
models: List[ModelResponse]
|
|
31
|
-
__properties: ClassVar[List[str]] = ["models"]
|
|
32
|
-
|
|
33
|
-
model_config = ConfigDict(
|
|
34
|
-
populate_by_name=True,
|
|
35
|
-
validate_assignment=True,
|
|
36
|
-
protected_namespaces=(),
|
|
37
|
-
)
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def to_str(self) -> str:
|
|
41
|
-
"""Returns the string representation of the model using alias"""
|
|
42
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
43
|
-
|
|
44
|
-
def to_json(self) -> str:
|
|
45
|
-
"""Returns the JSON representation of the model using alias"""
|
|
46
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
47
|
-
return json.dumps(self.to_dict())
|
|
48
|
-
|
|
49
|
-
@classmethod
|
|
50
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
51
|
-
"""Create an instance of ListModelsResponse from a JSON string"""
|
|
52
|
-
return cls.from_dict(json.loads(json_str))
|
|
53
|
-
|
|
54
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
55
|
-
"""Return the dictionary representation of the model using alias.
|
|
56
|
-
|
|
57
|
-
This has the following differences from calling pydantic's
|
|
58
|
-
`self.model_dump(by_alias=True)`:
|
|
59
|
-
|
|
60
|
-
* `None` is only added to the output dict for nullable fields that
|
|
61
|
-
were set at model initialization. Other fields with value `None`
|
|
62
|
-
are ignored.
|
|
63
|
-
"""
|
|
64
|
-
excluded_fields: Set[str] = set([
|
|
65
|
-
])
|
|
66
|
-
|
|
67
|
-
_dict = self.model_dump(
|
|
68
|
-
by_alias=True,
|
|
69
|
-
exclude=excluded_fields,
|
|
70
|
-
exclude_none=True,
|
|
71
|
-
)
|
|
72
|
-
# override the default output from pydantic by calling `to_dict()` of each item in models (list)
|
|
73
|
-
_items = []
|
|
74
|
-
if self.models:
|
|
75
|
-
for _item_models in self.models:
|
|
76
|
-
if _item_models:
|
|
77
|
-
_items.append(_item_models.to_dict())
|
|
78
|
-
_dict['models'] = _items
|
|
79
|
-
return _dict
|
|
80
|
-
|
|
81
|
-
@classmethod
|
|
82
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
83
|
-
"""Create an instance of ListModelsResponse from a dict"""
|
|
84
|
-
if obj is None:
|
|
85
|
-
return None
|
|
86
|
-
|
|
87
|
-
if not isinstance(obj, dict):
|
|
88
|
-
return cls.model_validate(obj)
|
|
89
|
-
|
|
90
|
-
_obj = cls.model_validate({
|
|
91
|
-
"models": [ModelResponse.from_dict(_item) for _item in obj["models"]] if obj.get("models") is not None else None
|
|
92
|
-
})
|
|
93
|
-
return _obj
|
|
94
|
-
|
|
95
|
-
|