shaped 2.0.1__py3-none-any.whl → 2.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (341) hide show
  1. shaped/__init__.py +59 -4
  2. shaped/autogen/__init__.py +527 -66
  3. shaped/autogen/api/__init__.py +4 -3
  4. shaped/autogen/api/engine_api.py +1467 -0
  5. shaped/autogen/api/{dataset_api.py → query_api.py} +159 -194
  6. shaped/autogen/api/table_api.py +1494 -0
  7. shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
  8. shaped/autogen/api_client.py +18 -11
  9. shaped/autogen/configuration.py +22 -9
  10. shaped/autogen/exceptions.py +25 -5
  11. shaped/autogen/models/__init__.py +247 -52
  12. shaped/autogen/models/ai_enrichment_view_config.py +123 -0
  13. shaped/autogen/models/{path.py → algorithm.py} +19 -19
  14. shaped/autogen/models/amplitude_table_config.py +106 -0
  15. shaped/autogen/models/ascending.py +148 -0
  16. shaped/autogen/models/attn_dropout_prob.py +136 -0
  17. shaped/autogen/models/attribute_journey.py +124 -0
  18. shaped/autogen/models/attribute_value.py +178 -0
  19. shaped/autogen/models/autoscaling_config.py +95 -0
  20. shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
  21. shaped/autogen/models/batch_size.py +136 -0
  22. shaped/autogen/models/batch_size1.py +136 -0
  23. shaped/autogen/models/batch_size2.py +136 -0
  24. shaped/autogen/models/big_query_table_config.py +147 -0
  25. shaped/autogen/models/bm25.py +136 -0
  26. shaped/autogen/models/boosted_reorder_step.py +125 -0
  27. shaped/autogen/models/canary_rollout.py +99 -0
  28. shaped/autogen/models/candidate_attributes_retrieve_step.py +113 -0
  29. shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
  30. shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
  31. shaped/autogen/models/clickhouse_table_config.py +146 -0
  32. shaped/autogen/models/column_order_retrieve_step.py +123 -0
  33. shaped/autogen/models/column_ordering.py +91 -0
  34. shaped/autogen/models/create_table_response.py +87 -0
  35. shaped/autogen/models/create_view_response.py +87 -0
  36. shaped/autogen/models/custom_table_config.py +135 -0
  37. shaped/autogen/models/data_compute_config.py +89 -0
  38. shaped/autogen/models/data_config.py +145 -0
  39. shaped/autogen/models/data_config_interaction_table.py +146 -0
  40. shaped/autogen/models/data_split_config.py +88 -0
  41. shaped/autogen/models/data_split_strategy.py +37 -0
  42. shaped/autogen/models/data_tier.py +37 -0
  43. shaped/autogen/models/default.py +246 -0
  44. shaped/autogen/models/delete_engine_response.py +87 -0
  45. shaped/autogen/models/delete_table_response.py +87 -0
  46. shaped/autogen/models/delete_view_response.py +87 -0
  47. shaped/autogen/models/deployment_config.py +117 -0
  48. shaped/autogen/models/distance_function.py +38 -0
  49. shaped/autogen/models/diversity_reorder_step.py +137 -0
  50. shaped/autogen/models/dropout_rate.py +136 -0
  51. shaped/autogen/models/dynamo_db_table_config.py +160 -0
  52. shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
  53. shaped/autogen/models/embedder_batch_size.py +136 -0
  54. shaped/autogen/models/embedding_config.py +93 -0
  55. shaped/autogen/models/embedding_dim.py +136 -0
  56. shaped/autogen/models/embedding_dims.py +136 -0
  57. shaped/autogen/models/embedding_size.py +136 -0
  58. shaped/autogen/models/encoder.py +140 -0
  59. shaped/autogen/models/encoding_pooling_strategy.py +38 -0
  60. shaped/autogen/models/engine.py +109 -0
  61. shaped/autogen/models/engine_config_v2.py +152 -0
  62. shaped/autogen/models/engine_details_response.py +120 -0
  63. shaped/autogen/models/engine_schema.py +113 -0
  64. shaped/autogen/models/engine_schema_user_inner.py +146 -0
  65. shaped/autogen/models/entity_config.py +109 -0
  66. shaped/autogen/models/entity_journey.py +161 -0
  67. shaped/autogen/models/entity_type.py +38 -0
  68. shaped/autogen/models/evaluation_config.py +92 -0
  69. shaped/autogen/models/exploration_reorder_step.py +125 -0
  70. shaped/autogen/models/expression_filter_step.py +106 -0
  71. shaped/autogen/models/factors.py +136 -0
  72. shaped/autogen/models/factors1.py +136 -0
  73. shaped/autogen/models/feature.py +90 -0
  74. shaped/autogen/models/feature_type.py +60 -0
  75. shaped/autogen/models/file_table_config.py +112 -0
  76. shaped/autogen/models/filter_config.py +99 -0
  77. shaped/autogen/models/filter_dataset.py +164 -0
  78. shaped/autogen/models/filter_index_type.py +36 -0
  79. shaped/autogen/models/filter_retrieve_step.py +113 -0
  80. shaped/autogen/models/filter_step_explanation.py +165 -0
  81. shaped/autogen/models/filter_table.py +140 -0
  82. shaped/autogen/models/filter_type.py +134 -0
  83. shaped/autogen/models/global_filter.py +102 -0
  84. shaped/autogen/models/hidden_dropout_prob.py +136 -0
  85. shaped/autogen/models/hidden_size.py +136 -0
  86. shaped/autogen/models/hidden_size1.py +136 -0
  87. shaped/autogen/models/http_problem_response.py +115 -0
  88. shaped/autogen/models/http_validation_error.py +2 -2
  89. shaped/autogen/models/hugging_face_encoder.py +115 -0
  90. shaped/autogen/models/iceberg_table_config.py +154 -0
  91. shaped/autogen/models/index_config.py +101 -0
  92. shaped/autogen/models/inner_entity_id.py +144 -0
  93. shaped/autogen/models/inner_size.py +136 -0
  94. shaped/autogen/models/inner_size1.py +136 -0
  95. shaped/autogen/models/inner_uid.py +144 -0
  96. shaped/autogen/models/interaction_config.py +122 -0
  97. shaped/autogen/models/interaction_pooling_encoder.py +104 -0
  98. shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
  99. shaped/autogen/models/item_attribute_pooling_encoder.py +111 -0
  100. shaped/autogen/models/journey.py +140 -0
  101. shaped/autogen/models/kafka_table_config.py +129 -0
  102. shaped/autogen/models/kinesis_table_config.py +140 -0
  103. shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
  104. shaped/autogen/models/label.py +90 -0
  105. shaped/autogen/models/label_type.py +36 -0
  106. shaped/autogen/models/laplace_smoothing.py +136 -0
  107. shaped/autogen/models/latency_scaling_policy.py +112 -0
  108. shaped/autogen/models/learning_rate.py +136 -0
  109. shaped/autogen/models/learning_rate1.py +136 -0
  110. shaped/autogen/models/learning_rate2.py +136 -0
  111. shaped/autogen/models/learning_rate3.py +136 -0
  112. shaped/autogen/models/lexical_search_mode.py +99 -0
  113. shaped/autogen/models/list_engines_response.py +95 -0
  114. shaped/autogen/models/list_tables_response.py +95 -0
  115. shaped/autogen/models/list_views_response.py +95 -0
  116. shaped/autogen/models/location_inner.py +138 -0
  117. shaped/autogen/models/loss_types.py +37 -0
  118. shaped/autogen/models/lr.py +136 -0
  119. shaped/autogen/models/lr1.py +136 -0
  120. shaped/autogen/models/lr2.py +136 -0
  121. shaped/autogen/models/max_depth.py +136 -0
  122. shaped/autogen/models/max_leaves.py +136 -0
  123. shaped/autogen/models/max_seq_length.py +136 -0
  124. shaped/autogen/models/max_seq_length1.py +136 -0
  125. shaped/autogen/models/max_seq_length2.py +136 -0
  126. shaped/autogen/models/mode.py +134 -0
  127. shaped/autogen/models/mode1.py +136 -0
  128. shaped/autogen/models/mode2.py +150 -0
  129. shaped/autogen/models/models_inner.py +308 -0
  130. shaped/autogen/models/mongo_db_table_config.py +147 -0
  131. shaped/autogen/models/mssql_table_config.py +155 -0
  132. shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
  133. shaped/autogen/models/n_epochs.py +136 -0
  134. shaped/autogen/models/n_epochs1.py +136 -0
  135. shaped/autogen/models/n_epochs2.py +136 -0
  136. shaped/autogen/models/n_estimators.py +136 -0
  137. shaped/autogen/models/n_heads.py +136 -0
  138. shaped/autogen/models/n_layers.py +136 -0
  139. shaped/autogen/models/neg_per_positive.py +136 -0
  140. shaped/autogen/models/negative_samples_count.py +136 -0
  141. shaped/autogen/models/ngram_tokenizer.py +103 -0
  142. shaped/autogen/models/no_op_config.py +117 -0
  143. shaped/autogen/models/num_blocks.py +136 -0
  144. shaped/autogen/models/num_heads.py +136 -0
  145. shaped/autogen/models/num_leaves.py +136 -0
  146. shaped/autogen/models/objective.py +40 -0
  147. shaped/autogen/models/objective1.py +134 -0
  148. shaped/autogen/models/online_store_config.py +89 -0
  149. shaped/autogen/models/pagination_config.py +87 -0
  150. shaped/autogen/models/parameter_definition.py +96 -0
  151. shaped/autogen/models/parameters_value.py +240 -0
  152. shaped/autogen/models/passthrough_score.py +104 -0
  153. shaped/autogen/models/personal_filter.py +104 -0
  154. shaped/autogen/models/pipeline_stage_explanation.py +118 -0
  155. shaped/autogen/models/policy.py +134 -0
  156. shaped/autogen/models/pool_fn.py +152 -0
  157. shaped/autogen/models/pooling_function.py +37 -0
  158. shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
  159. shaped/autogen/models/posthog_table_config.py +133 -0
  160. shaped/autogen/models/prebuilt_filter_step.py +113 -0
  161. shaped/autogen/models/precomputed_item_embedding.py +99 -0
  162. shaped/autogen/models/precomputed_user_embedding.py +99 -0
  163. shaped/autogen/models/query.py +136 -0
  164. shaped/autogen/models/query1.py +136 -0
  165. shaped/autogen/models/query_any_of.py +172 -0
  166. shaped/autogen/models/query_config.py +140 -0
  167. shaped/autogen/models/query_definition.py +106 -0
  168. shaped/autogen/models/query_encoder.py +194 -0
  169. shaped/autogen/models/query_explanation.py +201 -0
  170. shaped/autogen/models/query_request.py +121 -0
  171. shaped/autogen/models/query_result.py +113 -0
  172. shaped/autogen/models/query_table_config.py +99 -0
  173. shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
  174. shaped/autogen/models/rank_query_config.py +167 -0
  175. shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
  176. shaped/autogen/models/rank_query_config_reorder_inner.py +186 -0
  177. shaped/autogen/models/rank_query_config_retrieve_inner.py +265 -0
  178. shaped/autogen/models/recreate_rollout.py +97 -0
  179. shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
  180. shaped/autogen/models/reference_table_config.py +113 -0
  181. shaped/autogen/models/regularization.py +136 -0
  182. shaped/autogen/models/reorder_inner.py +149 -0
  183. shaped/autogen/models/reorder_step_explanation.py +207 -0
  184. shaped/autogen/models/request.py +378 -0
  185. shaped/autogen/models/request1.py +140 -0
  186. shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
  187. shaped/autogen/models/resource_config.py +100 -0
  188. shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
  189. shaped/autogen/models/result.py +132 -0
  190. shaped/autogen/models/result_embeddings_value.py +127 -0
  191. shaped/autogen/models/retrieval_scores_value.py +127 -0
  192. shaped/autogen/models/retrieve_inner.py +196 -0
  193. shaped/autogen/models/retrieve_step_explanation.py +172 -0
  194. shaped/autogen/models/retriever.py +196 -0
  195. shaped/autogen/models/retriever1.py +196 -0
  196. shaped/autogen/models/rollout_config.py +91 -0
  197. shaped/autogen/models/rudderstack_table_config.py +106 -0
  198. shaped/autogen/models/sampling_strategy.py +36 -0
  199. shaped/autogen/models/saved_query_info_response.py +103 -0
  200. shaped/autogen/models/saved_query_list_response.py +87 -0
  201. shaped/autogen/models/saved_query_request.py +115 -0
  202. shaped/autogen/models/schema_config.py +117 -0
  203. shaped/autogen/models/score.py +134 -0
  204. shaped/autogen/models/score_ensemble.py +127 -0
  205. shaped/autogen/models/score_ensemble_policy_config.py +165 -0
  206. shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +755 -0
  207. shaped/autogen/models/score_step_explanation.py +224 -0
  208. shaped/autogen/models/search_config.py +105 -0
  209. shaped/autogen/models/segment_table_config.py +106 -0
  210. shaped/autogen/models/sequence_length.py +136 -0
  211. shaped/autogen/models/server_config.py +100 -0
  212. shaped/autogen/models/setup_engine_response.py +87 -0
  213. shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +154 -0
  214. shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +160 -0
  215. shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +215 -0
  216. shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +156 -0
  217. shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +141 -0
  218. shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +211 -0
  219. shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
  220. shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +195 -0
  221. shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +245 -0
  222. shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
  223. shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +161 -0
  224. shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +108 -0
  225. shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +143 -0
  226. shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
  227. shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +230 -0
  228. shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
  229. shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +165 -0
  230. shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +153 -0
  231. shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +137 -0
  232. shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +155 -0
  233. shaped/autogen/models/shopify_table_config.py +156 -0
  234. shaped/autogen/models/similarity_retrieve_step.py +123 -0
  235. shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
  236. shaped/autogen/models/sql_transform_type.py +37 -0
  237. shaped/autogen/models/sql_view_config.py +111 -0
  238. shaped/autogen/models/stemmer_tokenizer.py +105 -0
  239. shaped/autogen/models/step_explanation.py +137 -0
  240. shaped/autogen/models/steps_inner.py +179 -0
  241. shaped/autogen/models/strategy.py +134 -0
  242. shaped/autogen/models/table.py +102 -0
  243. shaped/autogen/models/table_deployment_type.py +38 -0
  244. shaped/autogen/models/table_insert_arguments.py +87 -0
  245. shaped/autogen/models/table_insert_response.py +87 -0
  246. shaped/autogen/models/text_encoding.py +148 -0
  247. shaped/autogen/models/text_search_retrieve_step.py +121 -0
  248. shaped/autogen/models/time_frequency.py +136 -0
  249. shaped/autogen/models/time_window.py +136 -0
  250. shaped/autogen/models/time_window_in_days.py +154 -0
  251. shaped/autogen/models/tokenizer.py +149 -0
  252. shaped/autogen/models/trained_model_encoder.py +99 -0
  253. shaped/autogen/models/training_compute_config.py +99 -0
  254. shaped/autogen/models/training_config.py +121 -0
  255. shaped/autogen/models/training_config_models_inner.py +540 -0
  256. shaped/autogen/models/training_strategy.py +37 -0
  257. shaped/autogen/models/transform_status.py +41 -0
  258. shaped/autogen/models/trending_mode.py +37 -0
  259. shaped/autogen/models/truncate_filter_step.py +106 -0
  260. shaped/autogen/models/tunable_bool.py +97 -0
  261. shaped/autogen/models/tunable_float.py +118 -0
  262. shaped/autogen/models/tunable_int.py +118 -0
  263. shaped/autogen/models/tunable_int_categorical.py +99 -0
  264. shaped/autogen/models/tunable_string.py +99 -0
  265. shaped/autogen/models/tuning_config.py +89 -0
  266. shaped/autogen/models/type.py +150 -0
  267. shaped/autogen/models/update_table_response.py +87 -0
  268. shaped/autogen/models/update_view_response.py +87 -0
  269. shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
  270. shaped/autogen/models/user_inner.py +134 -0
  271. shaped/autogen/models/val_split.py +136 -0
  272. shaped/autogen/models/validation_error.py +13 -3
  273. shaped/autogen/models/validation_error_loc_inner.py +150 -0
  274. shaped/autogen/models/value_type.py +7 -5
  275. shaped/autogen/models/vector_search_mode.py +101 -0
  276. shaped/autogen/models/view.py +104 -0
  277. shaped/autogen/models/view_details_ai.py +140 -0
  278. shaped/autogen/models/view_details_ai_schema_value.py +153 -0
  279. shaped/autogen/models/view_details_sql.py +140 -0
  280. shaped/autogen/models/view_status.py +41 -0
  281. shaped/autogen/models/weight_decay.py +136 -0
  282. shaped/autogen/models/whitespace_tokenizer.py +97 -0
  283. shaped/autogen/models/window_size.py +136 -0
  284. shaped/autogen/rest.py +10 -4
  285. shaped/cli/shaped_cli.py +163 -35
  286. shaped/client.py +591 -171
  287. shaped/config_builders.py +705 -0
  288. shaped/query_builder.py +781 -0
  289. {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/METADATA +141 -6
  290. shaped-2.0.4.dist-info/RECORD +296 -0
  291. {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/WHEEL +1 -1
  292. shaped-2.0.4.dist-info/entry_points.txt +2 -0
  293. shaped/autogen/api/model_inference_api.py +0 -2825
  294. shaped/autogen/models/amplitude_dataset_config.py +0 -96
  295. shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
  296. shaped/autogen/models/big_query_dataset_config.py +0 -114
  297. shaped/autogen/models/complement_items_request.py +0 -99
  298. shaped/autogen/models/complement_items_response.py +0 -89
  299. shaped/autogen/models/connectors_inner.py +0 -134
  300. shaped/autogen/models/create_dataset_arguments.py +0 -263
  301. shaped/autogen/models/create_embedding_response.py +0 -87
  302. shaped/autogen/models/create_item_embedding_request.py +0 -89
  303. shaped/autogen/models/create_model_arguments.py +0 -107
  304. shaped/autogen/models/create_model_response.py +0 -87
  305. shaped/autogen/models/create_user_embedding_request.py +0 -89
  306. shaped/autogen/models/custom_dataset_config.py +0 -115
  307. shaped/autogen/models/dataset_config.py +0 -101
  308. shaped/autogen/models/dataset_schema_type.py +0 -47
  309. shaped/autogen/models/datasets_inner.py +0 -91
  310. shaped/autogen/models/delete_model_response.py +0 -87
  311. shaped/autogen/models/fetch_config.py +0 -95
  312. shaped/autogen/models/file_config.py +0 -105
  313. shaped/autogen/models/file_source_config.py +0 -89
  314. shaped/autogen/models/inference_config.py +0 -101
  315. shaped/autogen/models/insert_model_response.py +0 -87
  316. shaped/autogen/models/interaction.py +0 -87
  317. shaped/autogen/models/list_datasets_response.py +0 -95
  318. shaped/autogen/models/list_models_response.py +0 -95
  319. shaped/autogen/models/model_config.py +0 -99
  320. shaped/autogen/models/model_response.py +0 -95
  321. shaped/autogen/models/mongo_db_dataset_config.py +0 -119
  322. shaped/autogen/models/post_rank_request.py +0 -117
  323. shaped/autogen/models/rank_attribute_response.py +0 -89
  324. shaped/autogen/models/rank_grid_attribute_request.py +0 -91
  325. shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
  326. shaped/autogen/models/rank_grid_attribute_response.py +0 -91
  327. shaped/autogen/models/rank_response.py +0 -91
  328. shaped/autogen/models/retrieve_request.py +0 -101
  329. shaped/autogen/models/retrieve_response.py +0 -91
  330. shaped/autogen/models/retriever_top_k_override.py +0 -97
  331. shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
  332. shaped/autogen/models/segment_dataset_config.py +0 -96
  333. shaped/autogen/models/similar_item_request.py +0 -101
  334. shaped/autogen/models/similar_response.py +0 -89
  335. shaped/autogen/models/similar_users_request.py +0 -99
  336. shaped/autogen/models/successful_response.py +0 -87
  337. shaped/autogen/models/view_model_response.py +0 -99
  338. shaped-2.0.1.dist-info/RECORD +0 -73
  339. shaped-2.0.1.dist-info/entry_points.txt +0 -2
  340. {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/top_level.txt +0 -0
  341. {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/zip-safe +0 -0
@@ -1,105 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictStr, field_validator
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from shaped.autogen.models.path import Path
23
- from typing import Optional, Set
24
- from typing_extensions import Self
25
-
26
- class FileConfig(BaseModel):
27
- """
28
- Creates a file source that can be used in the fetch queries.
29
- """ # noqa: E501
30
- type: Optional[StrictStr] = 'File'
31
- id: StrictStr
32
- path: Optional[Path] = None
33
- __properties: ClassVar[List[str]] = ["type", "id", "path"]
34
-
35
- @field_validator('type')
36
- def type_validate_enum(cls, value):
37
- """Validates the enum"""
38
- if value is None:
39
- return value
40
-
41
- if value not in set(['File']):
42
- raise ValueError("must be one of enum values ('File')")
43
- return value
44
-
45
- model_config = ConfigDict(
46
- populate_by_name=True,
47
- validate_assignment=True,
48
- protected_namespaces=(),
49
- )
50
-
51
-
52
- def to_str(self) -> str:
53
- """Returns the string representation of the model using alias"""
54
- return pprint.pformat(self.model_dump(by_alias=True))
55
-
56
- def to_json(self) -> str:
57
- """Returns the JSON representation of the model using alias"""
58
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
59
- return json.dumps(self.to_dict())
60
-
61
- @classmethod
62
- def from_json(cls, json_str: str) -> Optional[Self]:
63
- """Create an instance of FileConfig from a JSON string"""
64
- return cls.from_dict(json.loads(json_str))
65
-
66
- def to_dict(self) -> Dict[str, Any]:
67
- """Return the dictionary representation of the model using alias.
68
-
69
- This has the following differences from calling pydantic's
70
- `self.model_dump(by_alias=True)`:
71
-
72
- * `None` is only added to the output dict for nullable fields that
73
- were set at model initialization. Other fields with value `None`
74
- are ignored.
75
- """
76
- excluded_fields: Set[str] = set([
77
- ])
78
-
79
- _dict = self.model_dump(
80
- by_alias=True,
81
- exclude=excluded_fields,
82
- exclude_none=True,
83
- )
84
- # override the default output from pydantic by calling `to_dict()` of path
85
- if self.path:
86
- _dict['path'] = self.path.to_dict()
87
- return _dict
88
-
89
- @classmethod
90
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
91
- """Create an instance of FileConfig from a dict"""
92
- if obj is None:
93
- return None
94
-
95
- if not isinstance(obj, dict):
96
- return cls.model_validate(obj)
97
-
98
- _obj = cls.model_validate({
99
- "type": obj.get("type") if obj.get("type") is not None else 'File',
100
- "id": obj.get("id"),
101
- "path": Path.from_dict(obj["path"]) if obj.get("path") is not None else None
102
- })
103
- return _obj
104
-
105
-
@@ -1,89 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictInt, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class FileSourceConfig(BaseModel):
26
- """
27
- FileSourceConfig
28
- """ # noqa: E501
29
- path: StrictStr
30
- day_lookback: Optional[StrictInt] = 0
31
- __properties: ClassVar[List[str]] = ["path", "day_lookback"]
32
-
33
- model_config = ConfigDict(
34
- populate_by_name=True,
35
- validate_assignment=True,
36
- protected_namespaces=(),
37
- )
38
-
39
-
40
- def to_str(self) -> str:
41
- """Returns the string representation of the model using alias"""
42
- return pprint.pformat(self.model_dump(by_alias=True))
43
-
44
- def to_json(self) -> str:
45
- """Returns the JSON representation of the model using alias"""
46
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
47
- return json.dumps(self.to_dict())
48
-
49
- @classmethod
50
- def from_json(cls, json_str: str) -> Optional[Self]:
51
- """Create an instance of FileSourceConfig from a JSON string"""
52
- return cls.from_dict(json.loads(json_str))
53
-
54
- def to_dict(self) -> Dict[str, Any]:
55
- """Return the dictionary representation of the model using alias.
56
-
57
- This has the following differences from calling pydantic's
58
- `self.model_dump(by_alias=True)`:
59
-
60
- * `None` is only added to the output dict for nullable fields that
61
- were set at model initialization. Other fields with value `None`
62
- are ignored.
63
- """
64
- excluded_fields: Set[str] = set([
65
- ])
66
-
67
- _dict = self.model_dump(
68
- by_alias=True,
69
- exclude=excluded_fields,
70
- exclude_none=True,
71
- )
72
- return _dict
73
-
74
- @classmethod
75
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
76
- """Create an instance of FileSourceConfig from a dict"""
77
- if obj is None:
78
- return None
79
-
80
- if not isinstance(obj, dict):
81
- return cls.model_validate(obj)
82
-
83
- _obj = cls.model_validate({
84
- "path": obj.get("path"),
85
- "day_lookback": obj.get("day_lookback") if obj.get("day_lookback") is not None else 0
86
- })
87
- return _obj
88
-
89
-
@@ -1,101 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, Field, StrictFloat, StrictInt, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional, Union
22
- from shaped.autogen.models.retriever_top_k_override import RetrieverTopKOverride
23
- from typing import Optional, Set
24
- from typing_extensions import Self
25
-
26
- class InferenceConfig(BaseModel):
27
- """
28
- This object defines global configurations for all inference endpoints. It can be set at model definition time, in which case it will be used as the default for all inference requests. It can also be set at inference time, in which case it will override the model's default configuration.
29
- """ # noqa: E501
30
- exploration_factor: Optional[Union[StrictFloat, StrictInt]] = Field(default=None, description="Exploration factor defines how much to explore newer, low interaction items relative to the highest scored relevant items. Higher values are more likely to return items from our cold-start item pools (i.e. new items with less interactions), lower values are more likely to return items with more interactions that are highly relevant. ")
31
- diversity_factor: Optional[Union[StrictFloat, StrictInt]] = Field(default=None, description="Diversity factor defines how much to trade-off relevance and attribute diversity when re-ranking results. We achieve this with a Maximal Marginal Relevance algorithm that chooses the most diverse item out of a set of maximally relevant items at each rank. Higher diversity factor means favor more diverse results over more relevant ones. ")
32
- diversity_attributes: Optional[List[StrictStr]] = Field(default=None, description="The list of item attributes to calculate diversity with. For example, say your content has the following attributes: price, brand, category, timestamp. You may only want to diversify around brand and category, but disregard price and timestamp. In this case, just set diversity_attributes to: [\"brand\", \"category\"]. ")
33
- retrieval_k: Optional[Union[StrictFloat, StrictInt]] = Field(default=None, description="Defines how many candidate items to pull from retrieval stage (i.e. the aggregate of all retrievers). Defaults to 300. ")
34
- retriever_k_override: Optional[RetrieverTopKOverride] = None
35
- limit: Optional[StrictInt] = Field(default=None, description="The number of items to return.")
36
- __properties: ClassVar[List[str]] = ["exploration_factor", "diversity_factor", "diversity_attributes", "retrieval_k", "retriever_k_override", "limit"]
37
-
38
- model_config = ConfigDict(
39
- populate_by_name=True,
40
- validate_assignment=True,
41
- protected_namespaces=(),
42
- )
43
-
44
-
45
- def to_str(self) -> str:
46
- """Returns the string representation of the model using alias"""
47
- return pprint.pformat(self.model_dump(by_alias=True))
48
-
49
- def to_json(self) -> str:
50
- """Returns the JSON representation of the model using alias"""
51
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
52
- return json.dumps(self.to_dict())
53
-
54
- @classmethod
55
- def from_json(cls, json_str: str) -> Optional[Self]:
56
- """Create an instance of InferenceConfig from a JSON string"""
57
- return cls.from_dict(json.loads(json_str))
58
-
59
- def to_dict(self) -> Dict[str, Any]:
60
- """Return the dictionary representation of the model using alias.
61
-
62
- This has the following differences from calling pydantic's
63
- `self.model_dump(by_alias=True)`:
64
-
65
- * `None` is only added to the output dict for nullable fields that
66
- were set at model initialization. Other fields with value `None`
67
- are ignored.
68
- """
69
- excluded_fields: Set[str] = set([
70
- ])
71
-
72
- _dict = self.model_dump(
73
- by_alias=True,
74
- exclude=excluded_fields,
75
- exclude_none=True,
76
- )
77
- # override the default output from pydantic by calling `to_dict()` of retriever_k_override
78
- if self.retriever_k_override:
79
- _dict['retriever_k_override'] = self.retriever_k_override.to_dict()
80
- return _dict
81
-
82
- @classmethod
83
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
84
- """Create an instance of InferenceConfig from a dict"""
85
- if obj is None:
86
- return None
87
-
88
- if not isinstance(obj, dict):
89
- return cls.model_validate(obj)
90
-
91
- _obj = cls.model_validate({
92
- "exploration_factor": obj.get("exploration_factor"),
93
- "diversity_factor": obj.get("diversity_factor"),
94
- "diversity_attributes": obj.get("diversity_attributes"),
95
- "retrieval_k": obj.get("retrieval_k"),
96
- "retriever_k_override": RetrieverTopKOverride.from_dict(obj["retriever_k_override"]) if obj.get("retriever_k_override") is not None else None,
97
- "limit": obj.get("limit")
98
- })
99
- return _obj
100
-
101
-
@@ -1,87 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class InsertModelResponse(BaseModel):
26
- """
27
- InsertModelResponse
28
- """ # noqa: E501
29
- message: Optional[StrictStr] = None
30
- __properties: ClassVar[List[str]] = ["message"]
31
-
32
- model_config = ConfigDict(
33
- populate_by_name=True,
34
- validate_assignment=True,
35
- protected_namespaces=(),
36
- )
37
-
38
-
39
- def to_str(self) -> str:
40
- """Returns the string representation of the model using alias"""
41
- return pprint.pformat(self.model_dump(by_alias=True))
42
-
43
- def to_json(self) -> str:
44
- """Returns the JSON representation of the model using alias"""
45
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
46
- return json.dumps(self.to_dict())
47
-
48
- @classmethod
49
- def from_json(cls, json_str: str) -> Optional[Self]:
50
- """Create an instance of InsertModelResponse from a JSON string"""
51
- return cls.from_dict(json.loads(json_str))
52
-
53
- def to_dict(self) -> Dict[str, Any]:
54
- """Return the dictionary representation of the model using alias.
55
-
56
- This has the following differences from calling pydantic's
57
- `self.model_dump(by_alias=True)`:
58
-
59
- * `None` is only added to the output dict for nullable fields that
60
- were set at model initialization. Other fields with value `None`
61
- are ignored.
62
- """
63
- excluded_fields: Set[str] = set([
64
- ])
65
-
66
- _dict = self.model_dump(
67
- by_alias=True,
68
- exclude=excluded_fields,
69
- exclude_none=True,
70
- )
71
- return _dict
72
-
73
- @classmethod
74
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
75
- """Create an instance of InsertModelResponse from a dict"""
76
- if obj is None:
77
- return None
78
-
79
- if not isinstance(obj, dict):
80
- return cls.model_validate(obj)
81
-
82
- _obj = cls.model_validate({
83
- "message": obj.get("message")
84
- })
85
- return _obj
86
-
87
-
@@ -1,87 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictStr
21
- from typing import Any, ClassVar, Dict, List
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class Interaction(BaseModel):
26
- """
27
- Interaction
28
- """ # noqa: E501
29
- item_id: StrictStr
30
- __properties: ClassVar[List[str]] = ["item_id"]
31
-
32
- model_config = ConfigDict(
33
- populate_by_name=True,
34
- validate_assignment=True,
35
- protected_namespaces=(),
36
- )
37
-
38
-
39
- def to_str(self) -> str:
40
- """Returns the string representation of the model using alias"""
41
- return pprint.pformat(self.model_dump(by_alias=True))
42
-
43
- def to_json(self) -> str:
44
- """Returns the JSON representation of the model using alias"""
45
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
46
- return json.dumps(self.to_dict())
47
-
48
- @classmethod
49
- def from_json(cls, json_str: str) -> Optional[Self]:
50
- """Create an instance of Interaction from a JSON string"""
51
- return cls.from_dict(json.loads(json_str))
52
-
53
- def to_dict(self) -> Dict[str, Any]:
54
- """Return the dictionary representation of the model using alias.
55
-
56
- This has the following differences from calling pydantic's
57
- `self.model_dump(by_alias=True)`:
58
-
59
- * `None` is only added to the output dict for nullable fields that
60
- were set at model initialization. Other fields with value `None`
61
- are ignored.
62
- """
63
- excluded_fields: Set[str] = set([
64
- ])
65
-
66
- _dict = self.model_dump(
67
- by_alias=True,
68
- exclude=excluded_fields,
69
- exclude_none=True,
70
- )
71
- return _dict
72
-
73
- @classmethod
74
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
75
- """Create an instance of Interaction from a dict"""
76
- if obj is None:
77
- return None
78
-
79
- if not isinstance(obj, dict):
80
- return cls.model_validate(obj)
81
-
82
- _obj = cls.model_validate({
83
- "item_id": obj.get("item_id")
84
- })
85
- return _obj
86
-
87
-
@@ -1,95 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict
21
- from typing import Any, ClassVar, Dict, List
22
- from shaped.autogen.models.datasets_inner import DatasetsInner
23
- from typing import Optional, Set
24
- from typing_extensions import Self
25
-
26
- class ListDatasetsResponse(BaseModel):
27
- """
28
- ListDatasetsResponse
29
- """ # noqa: E501
30
- datasets: List[DatasetsInner]
31
- __properties: ClassVar[List[str]] = ["datasets"]
32
-
33
- model_config = ConfigDict(
34
- populate_by_name=True,
35
- validate_assignment=True,
36
- protected_namespaces=(),
37
- )
38
-
39
-
40
- def to_str(self) -> str:
41
- """Returns the string representation of the model using alias"""
42
- return pprint.pformat(self.model_dump(by_alias=True))
43
-
44
- def to_json(self) -> str:
45
- """Returns the JSON representation of the model using alias"""
46
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
47
- return json.dumps(self.to_dict())
48
-
49
- @classmethod
50
- def from_json(cls, json_str: str) -> Optional[Self]:
51
- """Create an instance of ListDatasetsResponse from a JSON string"""
52
- return cls.from_dict(json.loads(json_str))
53
-
54
- def to_dict(self) -> Dict[str, Any]:
55
- """Return the dictionary representation of the model using alias.
56
-
57
- This has the following differences from calling pydantic's
58
- `self.model_dump(by_alias=True)`:
59
-
60
- * `None` is only added to the output dict for nullable fields that
61
- were set at model initialization. Other fields with value `None`
62
- are ignored.
63
- """
64
- excluded_fields: Set[str] = set([
65
- ])
66
-
67
- _dict = self.model_dump(
68
- by_alias=True,
69
- exclude=excluded_fields,
70
- exclude_none=True,
71
- )
72
- # override the default output from pydantic by calling `to_dict()` of each item in datasets (list)
73
- _items = []
74
- if self.datasets:
75
- for _item_datasets in self.datasets:
76
- if _item_datasets:
77
- _items.append(_item_datasets.to_dict())
78
- _dict['datasets'] = _items
79
- return _dict
80
-
81
- @classmethod
82
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
83
- """Create an instance of ListDatasetsResponse from a dict"""
84
- if obj is None:
85
- return None
86
-
87
- if not isinstance(obj, dict):
88
- return cls.model_validate(obj)
89
-
90
- _obj = cls.model_validate({
91
- "datasets": [DatasetsInner.from_dict(_item) for _item in obj["datasets"]] if obj.get("datasets") is not None else None
92
- })
93
- return _obj
94
-
95
-
@@ -1,95 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict
21
- from typing import Any, ClassVar, Dict, List
22
- from shaped.autogen.models.model_response import ModelResponse
23
- from typing import Optional, Set
24
- from typing_extensions import Self
25
-
26
- class ListModelsResponse(BaseModel):
27
- """
28
- ListModelsResponse
29
- """ # noqa: E501
30
- models: List[ModelResponse]
31
- __properties: ClassVar[List[str]] = ["models"]
32
-
33
- model_config = ConfigDict(
34
- populate_by_name=True,
35
- validate_assignment=True,
36
- protected_namespaces=(),
37
- )
38
-
39
-
40
- def to_str(self) -> str:
41
- """Returns the string representation of the model using alias"""
42
- return pprint.pformat(self.model_dump(by_alias=True))
43
-
44
- def to_json(self) -> str:
45
- """Returns the JSON representation of the model using alias"""
46
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
47
- return json.dumps(self.to_dict())
48
-
49
- @classmethod
50
- def from_json(cls, json_str: str) -> Optional[Self]:
51
- """Create an instance of ListModelsResponse from a JSON string"""
52
- return cls.from_dict(json.loads(json_str))
53
-
54
- def to_dict(self) -> Dict[str, Any]:
55
- """Return the dictionary representation of the model using alias.
56
-
57
- This has the following differences from calling pydantic's
58
- `self.model_dump(by_alias=True)`:
59
-
60
- * `None` is only added to the output dict for nullable fields that
61
- were set at model initialization. Other fields with value `None`
62
- are ignored.
63
- """
64
- excluded_fields: Set[str] = set([
65
- ])
66
-
67
- _dict = self.model_dump(
68
- by_alias=True,
69
- exclude=excluded_fields,
70
- exclude_none=True,
71
- )
72
- # override the default output from pydantic by calling `to_dict()` of each item in models (list)
73
- _items = []
74
- if self.models:
75
- for _item_models in self.models:
76
- if _item_models:
77
- _items.append(_item_models.to_dict())
78
- _dict['models'] = _items
79
- return _dict
80
-
81
- @classmethod
82
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
83
- """Create an instance of ListModelsResponse from a dict"""
84
- if obj is None:
85
- return None
86
-
87
- if not isinstance(obj, dict):
88
- return cls.model_validate(obj)
89
-
90
- _obj = cls.model_validate({
91
- "models": [ModelResponse.from_dict(_item) for _item in obj["models"]] if obj.get("models") is not None else None
92
- })
93
- return _obj
94
-
95
-