shaped 2.0.1__py3-none-any.whl → 2.0.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- shaped/__init__.py +59 -4
- shaped/autogen/__init__.py +527 -66
- shaped/autogen/api/__init__.py +4 -3
- shaped/autogen/api/engine_api.py +1467 -0
- shaped/autogen/api/{dataset_api.py → query_api.py} +159 -194
- shaped/autogen/api/table_api.py +1494 -0
- shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
- shaped/autogen/api_client.py +18 -11
- shaped/autogen/configuration.py +22 -9
- shaped/autogen/exceptions.py +25 -5
- shaped/autogen/models/__init__.py +247 -52
- shaped/autogen/models/ai_enrichment_view_config.py +123 -0
- shaped/autogen/models/{path.py → algorithm.py} +19 -19
- shaped/autogen/models/amplitude_table_config.py +106 -0
- shaped/autogen/models/ascending.py +148 -0
- shaped/autogen/models/attn_dropout_prob.py +136 -0
- shaped/autogen/models/attribute_journey.py +124 -0
- shaped/autogen/models/attribute_value.py +178 -0
- shaped/autogen/models/autoscaling_config.py +95 -0
- shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
- shaped/autogen/models/batch_size.py +136 -0
- shaped/autogen/models/batch_size1.py +136 -0
- shaped/autogen/models/batch_size2.py +136 -0
- shaped/autogen/models/big_query_table_config.py +147 -0
- shaped/autogen/models/bm25.py +136 -0
- shaped/autogen/models/boosted_reorder_step.py +125 -0
- shaped/autogen/models/canary_rollout.py +99 -0
- shaped/autogen/models/candidate_attributes_retrieve_step.py +113 -0
- shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
- shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
- shaped/autogen/models/clickhouse_table_config.py +146 -0
- shaped/autogen/models/column_order_retrieve_step.py +123 -0
- shaped/autogen/models/column_ordering.py +91 -0
- shaped/autogen/models/create_table_response.py +87 -0
- shaped/autogen/models/create_view_response.py +87 -0
- shaped/autogen/models/custom_table_config.py +135 -0
- shaped/autogen/models/data_compute_config.py +89 -0
- shaped/autogen/models/data_config.py +145 -0
- shaped/autogen/models/data_config_interaction_table.py +146 -0
- shaped/autogen/models/data_split_config.py +88 -0
- shaped/autogen/models/data_split_strategy.py +37 -0
- shaped/autogen/models/data_tier.py +37 -0
- shaped/autogen/models/default.py +246 -0
- shaped/autogen/models/delete_engine_response.py +87 -0
- shaped/autogen/models/delete_table_response.py +87 -0
- shaped/autogen/models/delete_view_response.py +87 -0
- shaped/autogen/models/deployment_config.py +117 -0
- shaped/autogen/models/distance_function.py +38 -0
- shaped/autogen/models/diversity_reorder_step.py +137 -0
- shaped/autogen/models/dropout_rate.py +136 -0
- shaped/autogen/models/dynamo_db_table_config.py +160 -0
- shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
- shaped/autogen/models/embedder_batch_size.py +136 -0
- shaped/autogen/models/embedding_config.py +93 -0
- shaped/autogen/models/embedding_dim.py +136 -0
- shaped/autogen/models/embedding_dims.py +136 -0
- shaped/autogen/models/embedding_size.py +136 -0
- shaped/autogen/models/encoder.py +140 -0
- shaped/autogen/models/encoding_pooling_strategy.py +38 -0
- shaped/autogen/models/engine.py +109 -0
- shaped/autogen/models/engine_config_v2.py +152 -0
- shaped/autogen/models/engine_details_response.py +120 -0
- shaped/autogen/models/engine_schema.py +113 -0
- shaped/autogen/models/engine_schema_user_inner.py +146 -0
- shaped/autogen/models/entity_config.py +109 -0
- shaped/autogen/models/entity_journey.py +161 -0
- shaped/autogen/models/entity_type.py +38 -0
- shaped/autogen/models/evaluation_config.py +92 -0
- shaped/autogen/models/exploration_reorder_step.py +125 -0
- shaped/autogen/models/expression_filter_step.py +106 -0
- shaped/autogen/models/factors.py +136 -0
- shaped/autogen/models/factors1.py +136 -0
- shaped/autogen/models/feature.py +90 -0
- shaped/autogen/models/feature_type.py +60 -0
- shaped/autogen/models/file_table_config.py +112 -0
- shaped/autogen/models/filter_config.py +99 -0
- shaped/autogen/models/filter_dataset.py +164 -0
- shaped/autogen/models/filter_index_type.py +36 -0
- shaped/autogen/models/filter_retrieve_step.py +113 -0
- shaped/autogen/models/filter_step_explanation.py +165 -0
- shaped/autogen/models/filter_table.py +140 -0
- shaped/autogen/models/filter_type.py +134 -0
- shaped/autogen/models/global_filter.py +102 -0
- shaped/autogen/models/hidden_dropout_prob.py +136 -0
- shaped/autogen/models/hidden_size.py +136 -0
- shaped/autogen/models/hidden_size1.py +136 -0
- shaped/autogen/models/http_problem_response.py +115 -0
- shaped/autogen/models/http_validation_error.py +2 -2
- shaped/autogen/models/hugging_face_encoder.py +115 -0
- shaped/autogen/models/iceberg_table_config.py +154 -0
- shaped/autogen/models/index_config.py +101 -0
- shaped/autogen/models/inner_entity_id.py +144 -0
- shaped/autogen/models/inner_size.py +136 -0
- shaped/autogen/models/inner_size1.py +136 -0
- shaped/autogen/models/inner_uid.py +144 -0
- shaped/autogen/models/interaction_config.py +122 -0
- shaped/autogen/models/interaction_pooling_encoder.py +104 -0
- shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
- shaped/autogen/models/item_attribute_pooling_encoder.py +111 -0
- shaped/autogen/models/journey.py +140 -0
- shaped/autogen/models/kafka_table_config.py +129 -0
- shaped/autogen/models/kinesis_table_config.py +140 -0
- shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
- shaped/autogen/models/label.py +90 -0
- shaped/autogen/models/label_type.py +36 -0
- shaped/autogen/models/laplace_smoothing.py +136 -0
- shaped/autogen/models/latency_scaling_policy.py +112 -0
- shaped/autogen/models/learning_rate.py +136 -0
- shaped/autogen/models/learning_rate1.py +136 -0
- shaped/autogen/models/learning_rate2.py +136 -0
- shaped/autogen/models/learning_rate3.py +136 -0
- shaped/autogen/models/lexical_search_mode.py +99 -0
- shaped/autogen/models/list_engines_response.py +95 -0
- shaped/autogen/models/list_tables_response.py +95 -0
- shaped/autogen/models/list_views_response.py +95 -0
- shaped/autogen/models/location_inner.py +138 -0
- shaped/autogen/models/loss_types.py +37 -0
- shaped/autogen/models/lr.py +136 -0
- shaped/autogen/models/lr1.py +136 -0
- shaped/autogen/models/lr2.py +136 -0
- shaped/autogen/models/max_depth.py +136 -0
- shaped/autogen/models/max_leaves.py +136 -0
- shaped/autogen/models/max_seq_length.py +136 -0
- shaped/autogen/models/max_seq_length1.py +136 -0
- shaped/autogen/models/max_seq_length2.py +136 -0
- shaped/autogen/models/mode.py +134 -0
- shaped/autogen/models/mode1.py +136 -0
- shaped/autogen/models/mode2.py +150 -0
- shaped/autogen/models/models_inner.py +308 -0
- shaped/autogen/models/mongo_db_table_config.py +147 -0
- shaped/autogen/models/mssql_table_config.py +155 -0
- shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
- shaped/autogen/models/n_epochs.py +136 -0
- shaped/autogen/models/n_epochs1.py +136 -0
- shaped/autogen/models/n_epochs2.py +136 -0
- shaped/autogen/models/n_estimators.py +136 -0
- shaped/autogen/models/n_heads.py +136 -0
- shaped/autogen/models/n_layers.py +136 -0
- shaped/autogen/models/neg_per_positive.py +136 -0
- shaped/autogen/models/negative_samples_count.py +136 -0
- shaped/autogen/models/ngram_tokenizer.py +103 -0
- shaped/autogen/models/no_op_config.py +117 -0
- shaped/autogen/models/num_blocks.py +136 -0
- shaped/autogen/models/num_heads.py +136 -0
- shaped/autogen/models/num_leaves.py +136 -0
- shaped/autogen/models/objective.py +40 -0
- shaped/autogen/models/objective1.py +134 -0
- shaped/autogen/models/online_store_config.py +89 -0
- shaped/autogen/models/pagination_config.py +87 -0
- shaped/autogen/models/parameter_definition.py +96 -0
- shaped/autogen/models/parameters_value.py +240 -0
- shaped/autogen/models/passthrough_score.py +104 -0
- shaped/autogen/models/personal_filter.py +104 -0
- shaped/autogen/models/pipeline_stage_explanation.py +118 -0
- shaped/autogen/models/policy.py +134 -0
- shaped/autogen/models/pool_fn.py +152 -0
- shaped/autogen/models/pooling_function.py +37 -0
- shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
- shaped/autogen/models/posthog_table_config.py +133 -0
- shaped/autogen/models/prebuilt_filter_step.py +113 -0
- shaped/autogen/models/precomputed_item_embedding.py +99 -0
- shaped/autogen/models/precomputed_user_embedding.py +99 -0
- shaped/autogen/models/query.py +136 -0
- shaped/autogen/models/query1.py +136 -0
- shaped/autogen/models/query_any_of.py +172 -0
- shaped/autogen/models/query_config.py +140 -0
- shaped/autogen/models/query_definition.py +106 -0
- shaped/autogen/models/query_encoder.py +194 -0
- shaped/autogen/models/query_explanation.py +201 -0
- shaped/autogen/models/query_request.py +121 -0
- shaped/autogen/models/query_result.py +113 -0
- shaped/autogen/models/query_table_config.py +99 -0
- shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
- shaped/autogen/models/rank_query_config.py +167 -0
- shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
- shaped/autogen/models/rank_query_config_reorder_inner.py +186 -0
- shaped/autogen/models/rank_query_config_retrieve_inner.py +265 -0
- shaped/autogen/models/recreate_rollout.py +97 -0
- shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
- shaped/autogen/models/reference_table_config.py +113 -0
- shaped/autogen/models/regularization.py +136 -0
- shaped/autogen/models/reorder_inner.py +149 -0
- shaped/autogen/models/reorder_step_explanation.py +207 -0
- shaped/autogen/models/request.py +378 -0
- shaped/autogen/models/request1.py +140 -0
- shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
- shaped/autogen/models/resource_config.py +100 -0
- shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
- shaped/autogen/models/result.py +132 -0
- shaped/autogen/models/result_embeddings_value.py +127 -0
- shaped/autogen/models/retrieval_scores_value.py +127 -0
- shaped/autogen/models/retrieve_inner.py +196 -0
- shaped/autogen/models/retrieve_step_explanation.py +172 -0
- shaped/autogen/models/retriever.py +196 -0
- shaped/autogen/models/retriever1.py +196 -0
- shaped/autogen/models/rollout_config.py +91 -0
- shaped/autogen/models/rudderstack_table_config.py +106 -0
- shaped/autogen/models/sampling_strategy.py +36 -0
- shaped/autogen/models/saved_query_info_response.py +103 -0
- shaped/autogen/models/saved_query_list_response.py +87 -0
- shaped/autogen/models/saved_query_request.py +115 -0
- shaped/autogen/models/schema_config.py +117 -0
- shaped/autogen/models/score.py +134 -0
- shaped/autogen/models/score_ensemble.py +127 -0
- shaped/autogen/models/score_ensemble_policy_config.py +165 -0
- shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +755 -0
- shaped/autogen/models/score_step_explanation.py +224 -0
- shaped/autogen/models/search_config.py +105 -0
- shaped/autogen/models/segment_table_config.py +106 -0
- shaped/autogen/models/sequence_length.py +136 -0
- shaped/autogen/models/server_config.py +100 -0
- shaped/autogen/models/setup_engine_response.py +87 -0
- shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +154 -0
- shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +160 -0
- shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +215 -0
- shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +156 -0
- shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +141 -0
- shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +211 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +195 -0
- shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +245 -0
- shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +161 -0
- shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +108 -0
- shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +143 -0
- shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
- shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +230 -0
- shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +165 -0
- shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +153 -0
- shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +137 -0
- shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +155 -0
- shaped/autogen/models/shopify_table_config.py +156 -0
- shaped/autogen/models/similarity_retrieve_step.py +123 -0
- shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
- shaped/autogen/models/sql_transform_type.py +37 -0
- shaped/autogen/models/sql_view_config.py +111 -0
- shaped/autogen/models/stemmer_tokenizer.py +105 -0
- shaped/autogen/models/step_explanation.py +137 -0
- shaped/autogen/models/steps_inner.py +179 -0
- shaped/autogen/models/strategy.py +134 -0
- shaped/autogen/models/table.py +102 -0
- shaped/autogen/models/table_deployment_type.py +38 -0
- shaped/autogen/models/table_insert_arguments.py +87 -0
- shaped/autogen/models/table_insert_response.py +87 -0
- shaped/autogen/models/text_encoding.py +148 -0
- shaped/autogen/models/text_search_retrieve_step.py +121 -0
- shaped/autogen/models/time_frequency.py +136 -0
- shaped/autogen/models/time_window.py +136 -0
- shaped/autogen/models/time_window_in_days.py +154 -0
- shaped/autogen/models/tokenizer.py +149 -0
- shaped/autogen/models/trained_model_encoder.py +99 -0
- shaped/autogen/models/training_compute_config.py +99 -0
- shaped/autogen/models/training_config.py +121 -0
- shaped/autogen/models/training_config_models_inner.py +540 -0
- shaped/autogen/models/training_strategy.py +37 -0
- shaped/autogen/models/transform_status.py +41 -0
- shaped/autogen/models/trending_mode.py +37 -0
- shaped/autogen/models/truncate_filter_step.py +106 -0
- shaped/autogen/models/tunable_bool.py +97 -0
- shaped/autogen/models/tunable_float.py +118 -0
- shaped/autogen/models/tunable_int.py +118 -0
- shaped/autogen/models/tunable_int_categorical.py +99 -0
- shaped/autogen/models/tunable_string.py +99 -0
- shaped/autogen/models/tuning_config.py +89 -0
- shaped/autogen/models/type.py +150 -0
- shaped/autogen/models/update_table_response.py +87 -0
- shaped/autogen/models/update_view_response.py +87 -0
- shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
- shaped/autogen/models/user_inner.py +134 -0
- shaped/autogen/models/val_split.py +136 -0
- shaped/autogen/models/validation_error.py +13 -3
- shaped/autogen/models/validation_error_loc_inner.py +150 -0
- shaped/autogen/models/value_type.py +7 -5
- shaped/autogen/models/vector_search_mode.py +101 -0
- shaped/autogen/models/view.py +104 -0
- shaped/autogen/models/view_details_ai.py +140 -0
- shaped/autogen/models/view_details_ai_schema_value.py +153 -0
- shaped/autogen/models/view_details_sql.py +140 -0
- shaped/autogen/models/view_status.py +41 -0
- shaped/autogen/models/weight_decay.py +136 -0
- shaped/autogen/models/whitespace_tokenizer.py +97 -0
- shaped/autogen/models/window_size.py +136 -0
- shaped/autogen/rest.py +10 -4
- shaped/cli/shaped_cli.py +163 -35
- shaped/client.py +591 -171
- shaped/config_builders.py +705 -0
- shaped/query_builder.py +781 -0
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/METADATA +141 -6
- shaped-2.0.4.dist-info/RECORD +296 -0
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/WHEEL +1 -1
- shaped-2.0.4.dist-info/entry_points.txt +2 -0
- shaped/autogen/api/model_inference_api.py +0 -2825
- shaped/autogen/models/amplitude_dataset_config.py +0 -96
- shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
- shaped/autogen/models/big_query_dataset_config.py +0 -114
- shaped/autogen/models/complement_items_request.py +0 -99
- shaped/autogen/models/complement_items_response.py +0 -89
- shaped/autogen/models/connectors_inner.py +0 -134
- shaped/autogen/models/create_dataset_arguments.py +0 -263
- shaped/autogen/models/create_embedding_response.py +0 -87
- shaped/autogen/models/create_item_embedding_request.py +0 -89
- shaped/autogen/models/create_model_arguments.py +0 -107
- shaped/autogen/models/create_model_response.py +0 -87
- shaped/autogen/models/create_user_embedding_request.py +0 -89
- shaped/autogen/models/custom_dataset_config.py +0 -115
- shaped/autogen/models/dataset_config.py +0 -101
- shaped/autogen/models/dataset_schema_type.py +0 -47
- shaped/autogen/models/datasets_inner.py +0 -91
- shaped/autogen/models/delete_model_response.py +0 -87
- shaped/autogen/models/fetch_config.py +0 -95
- shaped/autogen/models/file_config.py +0 -105
- shaped/autogen/models/file_source_config.py +0 -89
- shaped/autogen/models/inference_config.py +0 -101
- shaped/autogen/models/insert_model_response.py +0 -87
- shaped/autogen/models/interaction.py +0 -87
- shaped/autogen/models/list_datasets_response.py +0 -95
- shaped/autogen/models/list_models_response.py +0 -95
- shaped/autogen/models/model_config.py +0 -99
- shaped/autogen/models/model_response.py +0 -95
- shaped/autogen/models/mongo_db_dataset_config.py +0 -119
- shaped/autogen/models/post_rank_request.py +0 -117
- shaped/autogen/models/rank_attribute_response.py +0 -89
- shaped/autogen/models/rank_grid_attribute_request.py +0 -91
- shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
- shaped/autogen/models/rank_grid_attribute_response.py +0 -91
- shaped/autogen/models/rank_response.py +0 -91
- shaped/autogen/models/retrieve_request.py +0 -101
- shaped/autogen/models/retrieve_response.py +0 -91
- shaped/autogen/models/retriever_top_k_override.py +0 -97
- shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
- shaped/autogen/models/segment_dataset_config.py +0 -96
- shaped/autogen/models/similar_item_request.py +0 -101
- shaped/autogen/models/similar_response.py +0 -89
- shaped/autogen/models/similar_users_request.py +0 -99
- shaped/autogen/models/successful_response.py +0 -87
- shaped/autogen/models/view_model_response.py +0 -99
- shaped-2.0.1.dist-info/RECORD +0 -73
- shaped-2.0.1.dist-info/entry_points.txt +0 -2
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/top_level.txt +0 -0
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,224 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.4
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictFloat, StrictInt, StrictStr
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional, Union
|
|
22
|
+
from shaped.autogen.models.retrieval_scores_value import RetrievalScoresValue
|
|
23
|
+
from typing import Optional, Set
|
|
24
|
+
from typing_extensions import Self
|
|
25
|
+
|
|
26
|
+
class ScoreStepExplanation(BaseModel):
|
|
27
|
+
"""
|
|
28
|
+
Explanation for a scoring step.
|
|
29
|
+
""" # noqa: E501
|
|
30
|
+
step_name: Optional[StrictStr] = None
|
|
31
|
+
step_type: Optional[StrictStr] = Field(default='', description="Type of step. Examples: 'column_order', 'similarity', 'text_search', 'prebuilt', 'expression', 'score_ensemble', 'diversity', etc.")
|
|
32
|
+
input_count: Optional[StrictInt] = None
|
|
33
|
+
output_count: Optional[StrictInt] = None
|
|
34
|
+
filtered_count: Optional[StrictInt] = None
|
|
35
|
+
execution_time_ms: Optional[Union[StrictFloat, StrictInt]] = None
|
|
36
|
+
metadata: Optional[Dict[str, Any]] = Field(default=None, description="Additional step-specific metadata. Contains implementation details specific to the step type.")
|
|
37
|
+
score_type: Optional[StrictStr] = None
|
|
38
|
+
value_model: Optional[StrictStr] = None
|
|
39
|
+
score_distribution: Optional[Dict[str, Union[StrictFloat, StrictInt]]] = None
|
|
40
|
+
items_scored: Optional[StrictInt] = None
|
|
41
|
+
scoring_policy_scores: Optional[Dict[str, List[Optional[RetrievalScoresValue]]]] = None
|
|
42
|
+
is_user_found_in_feature_store: Optional[StrictBool] = None
|
|
43
|
+
user_interaction_count: Optional[StrictInt] = None
|
|
44
|
+
user_feature_column_count: Optional[StrictInt] = None
|
|
45
|
+
item_feature_column_count: Optional[StrictInt] = None
|
|
46
|
+
candidate_item_features_count: Optional[StrictInt] = None
|
|
47
|
+
additional_properties: Dict[str, Any] = {}
|
|
48
|
+
__properties: ClassVar[List[str]] = ["step_name", "step_type", "input_count", "output_count", "filtered_count", "execution_time_ms", "metadata", "score_type", "value_model", "score_distribution", "items_scored", "scoring_policy_scores", "is_user_found_in_feature_store", "user_interaction_count", "user_feature_column_count", "item_feature_column_count", "candidate_item_features_count"]
|
|
49
|
+
|
|
50
|
+
model_config = ConfigDict(
|
|
51
|
+
populate_by_name=True,
|
|
52
|
+
validate_assignment=True,
|
|
53
|
+
protected_namespaces=(),
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def to_str(self) -> str:
|
|
58
|
+
"""Returns the string representation of the model using alias"""
|
|
59
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
60
|
+
|
|
61
|
+
def to_json(self) -> str:
|
|
62
|
+
"""Returns the JSON representation of the model using alias"""
|
|
63
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
64
|
+
return json.dumps(self.to_dict())
|
|
65
|
+
|
|
66
|
+
@classmethod
|
|
67
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
68
|
+
"""Create an instance of ScoreStepExplanation from a JSON string"""
|
|
69
|
+
return cls.from_dict(json.loads(json_str))
|
|
70
|
+
|
|
71
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
72
|
+
"""Return the dictionary representation of the model using alias.
|
|
73
|
+
|
|
74
|
+
This has the following differences from calling pydantic's
|
|
75
|
+
`self.model_dump(by_alias=True)`:
|
|
76
|
+
|
|
77
|
+
* `None` is only added to the output dict for nullable fields that
|
|
78
|
+
were set at model initialization. Other fields with value `None`
|
|
79
|
+
are ignored.
|
|
80
|
+
* Fields in `self.additional_properties` are added to the output dict.
|
|
81
|
+
"""
|
|
82
|
+
excluded_fields: Set[str] = set([
|
|
83
|
+
"additional_properties",
|
|
84
|
+
])
|
|
85
|
+
|
|
86
|
+
_dict = self.model_dump(
|
|
87
|
+
by_alias=True,
|
|
88
|
+
exclude=excluded_fields,
|
|
89
|
+
exclude_none=True,
|
|
90
|
+
)
|
|
91
|
+
# override the default output from pydantic by calling `to_dict()` of each value in scoring_policy_scores (dict of array)
|
|
92
|
+
_field_dict_of_array = {}
|
|
93
|
+
if self.scoring_policy_scores:
|
|
94
|
+
for _key_scoring_policy_scores in self.scoring_policy_scores:
|
|
95
|
+
if self.scoring_policy_scores[_key_scoring_policy_scores] is not None:
|
|
96
|
+
_field_dict_of_array[_key_scoring_policy_scores] = [
|
|
97
|
+
_item.to_dict() for _item in self.scoring_policy_scores[_key_scoring_policy_scores]
|
|
98
|
+
]
|
|
99
|
+
_dict['scoring_policy_scores'] = _field_dict_of_array
|
|
100
|
+
# puts key-value pairs in additional_properties in the top level
|
|
101
|
+
if self.additional_properties is not None:
|
|
102
|
+
for _key, _value in self.additional_properties.items():
|
|
103
|
+
_dict[_key] = _value
|
|
104
|
+
|
|
105
|
+
# set to None if step_name (nullable) is None
|
|
106
|
+
# and model_fields_set contains the field
|
|
107
|
+
if self.step_name is None and "step_name" in self.model_fields_set:
|
|
108
|
+
_dict['step_name'] = None
|
|
109
|
+
|
|
110
|
+
# set to None if input_count (nullable) is None
|
|
111
|
+
# and model_fields_set contains the field
|
|
112
|
+
if self.input_count is None and "input_count" in self.model_fields_set:
|
|
113
|
+
_dict['input_count'] = None
|
|
114
|
+
|
|
115
|
+
# set to None if output_count (nullable) is None
|
|
116
|
+
# and model_fields_set contains the field
|
|
117
|
+
if self.output_count is None and "output_count" in self.model_fields_set:
|
|
118
|
+
_dict['output_count'] = None
|
|
119
|
+
|
|
120
|
+
# set to None if filtered_count (nullable) is None
|
|
121
|
+
# and model_fields_set contains the field
|
|
122
|
+
if self.filtered_count is None and "filtered_count" in self.model_fields_set:
|
|
123
|
+
_dict['filtered_count'] = None
|
|
124
|
+
|
|
125
|
+
# set to None if execution_time_ms (nullable) is None
|
|
126
|
+
# and model_fields_set contains the field
|
|
127
|
+
if self.execution_time_ms is None and "execution_time_ms" in self.model_fields_set:
|
|
128
|
+
_dict['execution_time_ms'] = None
|
|
129
|
+
|
|
130
|
+
# set to None if score_type (nullable) is None
|
|
131
|
+
# and model_fields_set contains the field
|
|
132
|
+
if self.score_type is None and "score_type" in self.model_fields_set:
|
|
133
|
+
_dict['score_type'] = None
|
|
134
|
+
|
|
135
|
+
# set to None if value_model (nullable) is None
|
|
136
|
+
# and model_fields_set contains the field
|
|
137
|
+
if self.value_model is None and "value_model" in self.model_fields_set:
|
|
138
|
+
_dict['value_model'] = None
|
|
139
|
+
|
|
140
|
+
# set to None if score_distribution (nullable) is None
|
|
141
|
+
# and model_fields_set contains the field
|
|
142
|
+
if self.score_distribution is None and "score_distribution" in self.model_fields_set:
|
|
143
|
+
_dict['score_distribution'] = None
|
|
144
|
+
|
|
145
|
+
# set to None if items_scored (nullable) is None
|
|
146
|
+
# and model_fields_set contains the field
|
|
147
|
+
if self.items_scored is None and "items_scored" in self.model_fields_set:
|
|
148
|
+
_dict['items_scored'] = None
|
|
149
|
+
|
|
150
|
+
# set to None if scoring_policy_scores (nullable) is None
|
|
151
|
+
# and model_fields_set contains the field
|
|
152
|
+
if self.scoring_policy_scores is None and "scoring_policy_scores" in self.model_fields_set:
|
|
153
|
+
_dict['scoring_policy_scores'] = None
|
|
154
|
+
|
|
155
|
+
# set to None if is_user_found_in_feature_store (nullable) is None
|
|
156
|
+
# and model_fields_set contains the field
|
|
157
|
+
if self.is_user_found_in_feature_store is None and "is_user_found_in_feature_store" in self.model_fields_set:
|
|
158
|
+
_dict['is_user_found_in_feature_store'] = None
|
|
159
|
+
|
|
160
|
+
# set to None if user_interaction_count (nullable) is None
|
|
161
|
+
# and model_fields_set contains the field
|
|
162
|
+
if self.user_interaction_count is None and "user_interaction_count" in self.model_fields_set:
|
|
163
|
+
_dict['user_interaction_count'] = None
|
|
164
|
+
|
|
165
|
+
# set to None if user_feature_column_count (nullable) is None
|
|
166
|
+
# and model_fields_set contains the field
|
|
167
|
+
if self.user_feature_column_count is None and "user_feature_column_count" in self.model_fields_set:
|
|
168
|
+
_dict['user_feature_column_count'] = None
|
|
169
|
+
|
|
170
|
+
# set to None if item_feature_column_count (nullable) is None
|
|
171
|
+
# and model_fields_set contains the field
|
|
172
|
+
if self.item_feature_column_count is None and "item_feature_column_count" in self.model_fields_set:
|
|
173
|
+
_dict['item_feature_column_count'] = None
|
|
174
|
+
|
|
175
|
+
# set to None if candidate_item_features_count (nullable) is None
|
|
176
|
+
# and model_fields_set contains the field
|
|
177
|
+
if self.candidate_item_features_count is None and "candidate_item_features_count" in self.model_fields_set:
|
|
178
|
+
_dict['candidate_item_features_count'] = None
|
|
179
|
+
|
|
180
|
+
return _dict
|
|
181
|
+
|
|
182
|
+
@classmethod
|
|
183
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
184
|
+
"""Create an instance of ScoreStepExplanation from a dict"""
|
|
185
|
+
if obj is None:
|
|
186
|
+
return None
|
|
187
|
+
|
|
188
|
+
if not isinstance(obj, dict):
|
|
189
|
+
return cls.model_validate(obj)
|
|
190
|
+
|
|
191
|
+
_obj = cls.model_validate({
|
|
192
|
+
"step_name": obj.get("step_name"),
|
|
193
|
+
"step_type": obj.get("step_type") if obj.get("step_type") is not None else '',
|
|
194
|
+
"input_count": obj.get("input_count"),
|
|
195
|
+
"output_count": obj.get("output_count"),
|
|
196
|
+
"filtered_count": obj.get("filtered_count"),
|
|
197
|
+
"execution_time_ms": obj.get("execution_time_ms"),
|
|
198
|
+
"metadata": obj.get("metadata"),
|
|
199
|
+
"score_type": obj.get("score_type"),
|
|
200
|
+
"value_model": obj.get("value_model"),
|
|
201
|
+
"score_distribution": obj.get("score_distribution"),
|
|
202
|
+
"items_scored": obj.get("items_scored"),
|
|
203
|
+
"scoring_policy_scores": dict(
|
|
204
|
+
(_k,
|
|
205
|
+
[RetrievalScoresValue.from_dict(_item) for _item in _v]
|
|
206
|
+
if _v is not None
|
|
207
|
+
else None
|
|
208
|
+
)
|
|
209
|
+
for _k, _v in obj.get("scoring_policy_scores", {}).items()
|
|
210
|
+
),
|
|
211
|
+
"is_user_found_in_feature_store": obj.get("is_user_found_in_feature_store"),
|
|
212
|
+
"user_interaction_count": obj.get("user_interaction_count"),
|
|
213
|
+
"user_feature_column_count": obj.get("user_feature_column_count"),
|
|
214
|
+
"item_feature_column_count": obj.get("item_feature_column_count"),
|
|
215
|
+
"candidate_item_features_count": obj.get("candidate_item_features_count")
|
|
216
|
+
})
|
|
217
|
+
# store additional fields in additional_properties
|
|
218
|
+
for _key in obj.keys():
|
|
219
|
+
if _key not in cls.__properties:
|
|
220
|
+
_obj.additional_properties[_key] = obj.get(_key)
|
|
221
|
+
|
|
222
|
+
return _obj
|
|
223
|
+
|
|
224
|
+
|
|
@@ -0,0 +1,105 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.4
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, StrictStr
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
+
from shaped.autogen.models.tokenizer import Tokenizer
|
|
23
|
+
from typing import Optional, Set
|
|
24
|
+
from typing_extensions import Self
|
|
25
|
+
|
|
26
|
+
class SearchConfig(BaseModel):
|
|
27
|
+
"""
|
|
28
|
+
SearchConfig
|
|
29
|
+
""" # noqa: E501
|
|
30
|
+
tokenizer: Optional[Tokenizer] = None
|
|
31
|
+
user_fields: Optional[List[StrictStr]] = None
|
|
32
|
+
item_fields: Optional[List[StrictStr]] = None
|
|
33
|
+
__properties: ClassVar[List[str]] = ["tokenizer", "user_fields", "item_fields"]
|
|
34
|
+
|
|
35
|
+
model_config = ConfigDict(
|
|
36
|
+
populate_by_name=True,
|
|
37
|
+
validate_assignment=True,
|
|
38
|
+
protected_namespaces=(),
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def to_str(self) -> str:
|
|
43
|
+
"""Returns the string representation of the model using alias"""
|
|
44
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
45
|
+
|
|
46
|
+
def to_json(self) -> str:
|
|
47
|
+
"""Returns the JSON representation of the model using alias"""
|
|
48
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
49
|
+
return json.dumps(self.to_dict())
|
|
50
|
+
|
|
51
|
+
@classmethod
|
|
52
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
53
|
+
"""Create an instance of SearchConfig from a JSON string"""
|
|
54
|
+
return cls.from_dict(json.loads(json_str))
|
|
55
|
+
|
|
56
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
57
|
+
"""Return the dictionary representation of the model using alias.
|
|
58
|
+
|
|
59
|
+
This has the following differences from calling pydantic's
|
|
60
|
+
`self.model_dump(by_alias=True)`:
|
|
61
|
+
|
|
62
|
+
* `None` is only added to the output dict for nullable fields that
|
|
63
|
+
were set at model initialization. Other fields with value `None`
|
|
64
|
+
are ignored.
|
|
65
|
+
"""
|
|
66
|
+
excluded_fields: Set[str] = set([
|
|
67
|
+
])
|
|
68
|
+
|
|
69
|
+
_dict = self.model_dump(
|
|
70
|
+
by_alias=True,
|
|
71
|
+
exclude=excluded_fields,
|
|
72
|
+
exclude_none=True,
|
|
73
|
+
)
|
|
74
|
+
# override the default output from pydantic by calling `to_dict()` of tokenizer
|
|
75
|
+
if self.tokenizer:
|
|
76
|
+
_dict['tokenizer'] = self.tokenizer.to_dict()
|
|
77
|
+
# set to None if user_fields (nullable) is None
|
|
78
|
+
# and model_fields_set contains the field
|
|
79
|
+
if self.user_fields is None and "user_fields" in self.model_fields_set:
|
|
80
|
+
_dict['user_fields'] = None
|
|
81
|
+
|
|
82
|
+
# set to None if item_fields (nullable) is None
|
|
83
|
+
# and model_fields_set contains the field
|
|
84
|
+
if self.item_fields is None and "item_fields" in self.model_fields_set:
|
|
85
|
+
_dict['item_fields'] = None
|
|
86
|
+
|
|
87
|
+
return _dict
|
|
88
|
+
|
|
89
|
+
@classmethod
|
|
90
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
91
|
+
"""Create an instance of SearchConfig from a dict"""
|
|
92
|
+
if obj is None:
|
|
93
|
+
return None
|
|
94
|
+
|
|
95
|
+
if not isinstance(obj, dict):
|
|
96
|
+
return cls.model_validate(obj)
|
|
97
|
+
|
|
98
|
+
_obj = cls.model_validate({
|
|
99
|
+
"tokenizer": Tokenizer.from_dict(obj["tokenizer"]) if obj.get("tokenizer") is not None else None,
|
|
100
|
+
"user_fields": obj.get("user_fields"),
|
|
101
|
+
"item_fields": obj.get("item_fields")
|
|
102
|
+
})
|
|
103
|
+
return _obj
|
|
104
|
+
|
|
105
|
+
|
|
@@ -0,0 +1,106 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.4
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictStr, field_validator
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
+
from typing import Optional, Set
|
|
23
|
+
from typing_extensions import Self
|
|
24
|
+
|
|
25
|
+
class SegmentTableConfig(BaseModel):
|
|
26
|
+
"""
|
|
27
|
+
SegmentTableConfig
|
|
28
|
+
""" # noqa: E501
|
|
29
|
+
schema_type: Optional[StrictStr] = Field(default='SEGMENT', description="Schema type discriminator for Segment datasets.")
|
|
30
|
+
name: StrictStr = Field(description="Unique identifier for the Segment dataset.")
|
|
31
|
+
description: Optional[StrictStr] = None
|
|
32
|
+
__properties: ClassVar[List[str]] = ["schema_type", "name", "description"]
|
|
33
|
+
|
|
34
|
+
@field_validator('schema_type')
|
|
35
|
+
def schema_type_validate_enum(cls, value):
|
|
36
|
+
"""Validates the enum"""
|
|
37
|
+
if value is None:
|
|
38
|
+
return value
|
|
39
|
+
|
|
40
|
+
if value not in set(['SEGMENT']):
|
|
41
|
+
raise ValueError("must be one of enum values ('SEGMENT')")
|
|
42
|
+
return value
|
|
43
|
+
|
|
44
|
+
model_config = ConfigDict(
|
|
45
|
+
populate_by_name=True,
|
|
46
|
+
validate_assignment=True,
|
|
47
|
+
protected_namespaces=(),
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def to_str(self) -> str:
|
|
52
|
+
"""Returns the string representation of the model using alias"""
|
|
53
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
54
|
+
|
|
55
|
+
def to_json(self) -> str:
|
|
56
|
+
"""Returns the JSON representation of the model using alias"""
|
|
57
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
58
|
+
return json.dumps(self.to_dict())
|
|
59
|
+
|
|
60
|
+
@classmethod
|
|
61
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
62
|
+
"""Create an instance of SegmentTableConfig from a JSON string"""
|
|
63
|
+
return cls.from_dict(json.loads(json_str))
|
|
64
|
+
|
|
65
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
66
|
+
"""Return the dictionary representation of the model using alias.
|
|
67
|
+
|
|
68
|
+
This has the following differences from calling pydantic's
|
|
69
|
+
`self.model_dump(by_alias=True)`:
|
|
70
|
+
|
|
71
|
+
* `None` is only added to the output dict for nullable fields that
|
|
72
|
+
were set at model initialization. Other fields with value `None`
|
|
73
|
+
are ignored.
|
|
74
|
+
"""
|
|
75
|
+
excluded_fields: Set[str] = set([
|
|
76
|
+
])
|
|
77
|
+
|
|
78
|
+
_dict = self.model_dump(
|
|
79
|
+
by_alias=True,
|
|
80
|
+
exclude=excluded_fields,
|
|
81
|
+
exclude_none=True,
|
|
82
|
+
)
|
|
83
|
+
# set to None if description (nullable) is None
|
|
84
|
+
# and model_fields_set contains the field
|
|
85
|
+
if self.description is None and "description" in self.model_fields_set:
|
|
86
|
+
_dict['description'] = None
|
|
87
|
+
|
|
88
|
+
return _dict
|
|
89
|
+
|
|
90
|
+
@classmethod
|
|
91
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
92
|
+
"""Create an instance of SegmentTableConfig from a dict"""
|
|
93
|
+
if obj is None:
|
|
94
|
+
return None
|
|
95
|
+
|
|
96
|
+
if not isinstance(obj, dict):
|
|
97
|
+
return cls.model_validate(obj)
|
|
98
|
+
|
|
99
|
+
_obj = cls.model_validate({
|
|
100
|
+
"schema_type": obj.get("schema_type") if obj.get("schema_type") is not None else 'SEGMENT',
|
|
101
|
+
"name": obj.get("name"),
|
|
102
|
+
"description": obj.get("description")
|
|
103
|
+
})
|
|
104
|
+
return _obj
|
|
105
|
+
|
|
106
|
+
|
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.4
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
from inspect import getfullargspec
|
|
17
|
+
import json
|
|
18
|
+
import pprint
|
|
19
|
+
import re # noqa: F401
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictInt, StrictStr, ValidationError, field_validator
|
|
21
|
+
from typing import Optional
|
|
22
|
+
from shaped.autogen.models.tunable_int_categorical import TunableIntCategorical
|
|
23
|
+
from typing import Union, Any, List, Set, TYPE_CHECKING, Optional, Dict
|
|
24
|
+
from typing_extensions import Literal, Self
|
|
25
|
+
from pydantic import Field
|
|
26
|
+
|
|
27
|
+
SEQUENCELENGTH_ANY_OF_SCHEMAS = ["TunableIntCategorical", "int"]
|
|
28
|
+
|
|
29
|
+
class SequenceLength(BaseModel):
|
|
30
|
+
"""
|
|
31
|
+
Maximum length of input sequences.
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
# data type: int
|
|
35
|
+
anyof_schema_1_validator: Optional[StrictInt] = None
|
|
36
|
+
# data type: TunableIntCategorical
|
|
37
|
+
anyof_schema_2_validator: Optional[TunableIntCategorical] = None
|
|
38
|
+
if TYPE_CHECKING:
|
|
39
|
+
actual_instance: Optional[Union[TunableIntCategorical, int]] = None
|
|
40
|
+
else:
|
|
41
|
+
actual_instance: Any = None
|
|
42
|
+
any_of_schemas: Set[str] = { "TunableIntCategorical", "int" }
|
|
43
|
+
|
|
44
|
+
model_config = {
|
|
45
|
+
"validate_assignment": True,
|
|
46
|
+
"protected_namespaces": (),
|
|
47
|
+
}
|
|
48
|
+
|
|
49
|
+
def __init__(self, *args, **kwargs) -> None:
|
|
50
|
+
if args:
|
|
51
|
+
if len(args) > 1:
|
|
52
|
+
raise ValueError("If a position argument is used, only 1 is allowed to set `actual_instance`")
|
|
53
|
+
if kwargs:
|
|
54
|
+
raise ValueError("If a position argument is used, keyword arguments cannot be used.")
|
|
55
|
+
super().__init__(actual_instance=args[0])
|
|
56
|
+
else:
|
|
57
|
+
super().__init__(**kwargs)
|
|
58
|
+
|
|
59
|
+
@field_validator('actual_instance')
|
|
60
|
+
def actual_instance_must_validate_anyof(cls, v):
|
|
61
|
+
instance = SequenceLength.model_construct()
|
|
62
|
+
error_messages = []
|
|
63
|
+
# validate data type: int
|
|
64
|
+
try:
|
|
65
|
+
instance.anyof_schema_1_validator = v
|
|
66
|
+
return v
|
|
67
|
+
except (ValidationError, ValueError) as e:
|
|
68
|
+
error_messages.append(str(e))
|
|
69
|
+
# validate data type: TunableIntCategorical
|
|
70
|
+
if not isinstance(v, TunableIntCategorical):
|
|
71
|
+
error_messages.append(f"Error! Input type `{type(v)}` is not `TunableIntCategorical`")
|
|
72
|
+
else:
|
|
73
|
+
return v
|
|
74
|
+
|
|
75
|
+
if error_messages:
|
|
76
|
+
# no match
|
|
77
|
+
raise ValueError("No match found when setting the actual_instance in SequenceLength with anyOf schemas: TunableIntCategorical, int. Details: " + ", ".join(error_messages))
|
|
78
|
+
else:
|
|
79
|
+
return v
|
|
80
|
+
|
|
81
|
+
@classmethod
|
|
82
|
+
def from_dict(cls, obj: Dict[str, Any]) -> Self:
|
|
83
|
+
return cls.from_json(json.dumps(obj))
|
|
84
|
+
|
|
85
|
+
@classmethod
|
|
86
|
+
def from_json(cls, json_str: str) -> Self:
|
|
87
|
+
"""Returns the object represented by the json string"""
|
|
88
|
+
instance = cls.model_construct()
|
|
89
|
+
error_messages = []
|
|
90
|
+
# deserialize data into int
|
|
91
|
+
try:
|
|
92
|
+
# validation
|
|
93
|
+
instance.anyof_schema_1_validator = json.loads(json_str)
|
|
94
|
+
# assign value to actual_instance
|
|
95
|
+
instance.actual_instance = instance.anyof_schema_1_validator
|
|
96
|
+
return instance
|
|
97
|
+
except (ValidationError, ValueError) as e:
|
|
98
|
+
error_messages.append(str(e))
|
|
99
|
+
# anyof_schema_2_validator: Optional[TunableIntCategorical] = None
|
|
100
|
+
try:
|
|
101
|
+
instance.actual_instance = TunableIntCategorical.from_json(json_str)
|
|
102
|
+
return instance
|
|
103
|
+
except (ValidationError, ValueError) as e:
|
|
104
|
+
error_messages.append(str(e))
|
|
105
|
+
|
|
106
|
+
if error_messages:
|
|
107
|
+
# no match
|
|
108
|
+
raise ValueError("No match found when deserializing the JSON string into SequenceLength with anyOf schemas: TunableIntCategorical, int. Details: " + ", ".join(error_messages))
|
|
109
|
+
else:
|
|
110
|
+
return instance
|
|
111
|
+
|
|
112
|
+
def to_json(self) -> str:
|
|
113
|
+
"""Returns the JSON representation of the actual instance"""
|
|
114
|
+
if self.actual_instance is None:
|
|
115
|
+
return "null"
|
|
116
|
+
|
|
117
|
+
if hasattr(self.actual_instance, "to_json") and callable(self.actual_instance.to_json):
|
|
118
|
+
return self.actual_instance.to_json()
|
|
119
|
+
else:
|
|
120
|
+
return json.dumps(self.actual_instance)
|
|
121
|
+
|
|
122
|
+
def to_dict(self) -> Optional[Union[Dict[str, Any], TunableIntCategorical, int]]:
|
|
123
|
+
"""Returns the dict representation of the actual instance"""
|
|
124
|
+
if self.actual_instance is None:
|
|
125
|
+
return None
|
|
126
|
+
|
|
127
|
+
if hasattr(self.actual_instance, "to_dict") and callable(self.actual_instance.to_dict):
|
|
128
|
+
return self.actual_instance.to_dict()
|
|
129
|
+
else:
|
|
130
|
+
return self.actual_instance
|
|
131
|
+
|
|
132
|
+
def to_str(self) -> str:
|
|
133
|
+
"""Returns the string representation of the actual instance"""
|
|
134
|
+
return pprint.pformat(self.model_dump())
|
|
135
|
+
|
|
136
|
+
|
|
@@ -0,0 +1,100 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.4
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictInt
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
+
from typing import Optional, Set
|
|
23
|
+
from typing_extensions import Self
|
|
24
|
+
|
|
25
|
+
class ServerConfig(BaseModel):
|
|
26
|
+
"""
|
|
27
|
+
Low-level configuration for the inference server process.
|
|
28
|
+
""" # noqa: E501
|
|
29
|
+
worker_count: Optional[StrictInt] = Field(default=1, description="Number of worker processes per inference pod.")
|
|
30
|
+
additional_properties: Dict[str, Any] = {}
|
|
31
|
+
__properties: ClassVar[List[str]] = ["worker_count"]
|
|
32
|
+
|
|
33
|
+
model_config = ConfigDict(
|
|
34
|
+
populate_by_name=True,
|
|
35
|
+
validate_assignment=True,
|
|
36
|
+
protected_namespaces=(),
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def to_str(self) -> str:
|
|
41
|
+
"""Returns the string representation of the model using alias"""
|
|
42
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
43
|
+
|
|
44
|
+
def to_json(self) -> str:
|
|
45
|
+
"""Returns the JSON representation of the model using alias"""
|
|
46
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
47
|
+
return json.dumps(self.to_dict())
|
|
48
|
+
|
|
49
|
+
@classmethod
|
|
50
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
51
|
+
"""Create an instance of ServerConfig from a JSON string"""
|
|
52
|
+
return cls.from_dict(json.loads(json_str))
|
|
53
|
+
|
|
54
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
55
|
+
"""Return the dictionary representation of the model using alias.
|
|
56
|
+
|
|
57
|
+
This has the following differences from calling pydantic's
|
|
58
|
+
`self.model_dump(by_alias=True)`:
|
|
59
|
+
|
|
60
|
+
* `None` is only added to the output dict for nullable fields that
|
|
61
|
+
were set at model initialization. Other fields with value `None`
|
|
62
|
+
are ignored.
|
|
63
|
+
* Fields in `self.additional_properties` are added to the output dict.
|
|
64
|
+
"""
|
|
65
|
+
excluded_fields: Set[str] = set([
|
|
66
|
+
"additional_properties",
|
|
67
|
+
])
|
|
68
|
+
|
|
69
|
+
_dict = self.model_dump(
|
|
70
|
+
by_alias=True,
|
|
71
|
+
exclude=excluded_fields,
|
|
72
|
+
exclude_none=True,
|
|
73
|
+
)
|
|
74
|
+
# puts key-value pairs in additional_properties in the top level
|
|
75
|
+
if self.additional_properties is not None:
|
|
76
|
+
for _key, _value in self.additional_properties.items():
|
|
77
|
+
_dict[_key] = _value
|
|
78
|
+
|
|
79
|
+
return _dict
|
|
80
|
+
|
|
81
|
+
@classmethod
|
|
82
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
83
|
+
"""Create an instance of ServerConfig from a dict"""
|
|
84
|
+
if obj is None:
|
|
85
|
+
return None
|
|
86
|
+
|
|
87
|
+
if not isinstance(obj, dict):
|
|
88
|
+
return cls.model_validate(obj)
|
|
89
|
+
|
|
90
|
+
_obj = cls.model_validate({
|
|
91
|
+
"worker_count": obj.get("worker_count") if obj.get("worker_count") is not None else 1
|
|
92
|
+
})
|
|
93
|
+
# store additional fields in additional_properties
|
|
94
|
+
for _key in obj.keys():
|
|
95
|
+
if _key not in cls.__properties:
|
|
96
|
+
_obj.additional_properties[_key] = obj.get(_key)
|
|
97
|
+
|
|
98
|
+
return _obj
|
|
99
|
+
|
|
100
|
+
|