shaped 2.0.1__py3-none-any.whl → 2.0.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- shaped/__init__.py +59 -4
- shaped/autogen/__init__.py +527 -66
- shaped/autogen/api/__init__.py +4 -3
- shaped/autogen/api/engine_api.py +1467 -0
- shaped/autogen/api/{dataset_api.py → query_api.py} +159 -194
- shaped/autogen/api/table_api.py +1494 -0
- shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
- shaped/autogen/api_client.py +18 -11
- shaped/autogen/configuration.py +22 -9
- shaped/autogen/exceptions.py +25 -5
- shaped/autogen/models/__init__.py +247 -52
- shaped/autogen/models/ai_enrichment_view_config.py +123 -0
- shaped/autogen/models/{path.py → algorithm.py} +19 -19
- shaped/autogen/models/amplitude_table_config.py +106 -0
- shaped/autogen/models/ascending.py +148 -0
- shaped/autogen/models/attn_dropout_prob.py +136 -0
- shaped/autogen/models/attribute_journey.py +124 -0
- shaped/autogen/models/attribute_value.py +178 -0
- shaped/autogen/models/autoscaling_config.py +95 -0
- shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
- shaped/autogen/models/batch_size.py +136 -0
- shaped/autogen/models/batch_size1.py +136 -0
- shaped/autogen/models/batch_size2.py +136 -0
- shaped/autogen/models/big_query_table_config.py +147 -0
- shaped/autogen/models/bm25.py +136 -0
- shaped/autogen/models/boosted_reorder_step.py +125 -0
- shaped/autogen/models/canary_rollout.py +99 -0
- shaped/autogen/models/candidate_attributes_retrieve_step.py +113 -0
- shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
- shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
- shaped/autogen/models/clickhouse_table_config.py +146 -0
- shaped/autogen/models/column_order_retrieve_step.py +123 -0
- shaped/autogen/models/column_ordering.py +91 -0
- shaped/autogen/models/create_table_response.py +87 -0
- shaped/autogen/models/create_view_response.py +87 -0
- shaped/autogen/models/custom_table_config.py +135 -0
- shaped/autogen/models/data_compute_config.py +89 -0
- shaped/autogen/models/data_config.py +145 -0
- shaped/autogen/models/data_config_interaction_table.py +146 -0
- shaped/autogen/models/data_split_config.py +88 -0
- shaped/autogen/models/data_split_strategy.py +37 -0
- shaped/autogen/models/data_tier.py +37 -0
- shaped/autogen/models/default.py +246 -0
- shaped/autogen/models/delete_engine_response.py +87 -0
- shaped/autogen/models/delete_table_response.py +87 -0
- shaped/autogen/models/delete_view_response.py +87 -0
- shaped/autogen/models/deployment_config.py +117 -0
- shaped/autogen/models/distance_function.py +38 -0
- shaped/autogen/models/diversity_reorder_step.py +137 -0
- shaped/autogen/models/dropout_rate.py +136 -0
- shaped/autogen/models/dynamo_db_table_config.py +160 -0
- shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
- shaped/autogen/models/embedder_batch_size.py +136 -0
- shaped/autogen/models/embedding_config.py +93 -0
- shaped/autogen/models/embedding_dim.py +136 -0
- shaped/autogen/models/embedding_dims.py +136 -0
- shaped/autogen/models/embedding_size.py +136 -0
- shaped/autogen/models/encoder.py +140 -0
- shaped/autogen/models/encoding_pooling_strategy.py +38 -0
- shaped/autogen/models/engine.py +109 -0
- shaped/autogen/models/engine_config_v2.py +152 -0
- shaped/autogen/models/engine_details_response.py +120 -0
- shaped/autogen/models/engine_schema.py +113 -0
- shaped/autogen/models/engine_schema_user_inner.py +146 -0
- shaped/autogen/models/entity_config.py +109 -0
- shaped/autogen/models/entity_journey.py +161 -0
- shaped/autogen/models/entity_type.py +38 -0
- shaped/autogen/models/evaluation_config.py +92 -0
- shaped/autogen/models/exploration_reorder_step.py +125 -0
- shaped/autogen/models/expression_filter_step.py +106 -0
- shaped/autogen/models/factors.py +136 -0
- shaped/autogen/models/factors1.py +136 -0
- shaped/autogen/models/feature.py +90 -0
- shaped/autogen/models/feature_type.py +60 -0
- shaped/autogen/models/file_table_config.py +112 -0
- shaped/autogen/models/filter_config.py +99 -0
- shaped/autogen/models/filter_dataset.py +164 -0
- shaped/autogen/models/filter_index_type.py +36 -0
- shaped/autogen/models/filter_retrieve_step.py +113 -0
- shaped/autogen/models/filter_step_explanation.py +165 -0
- shaped/autogen/models/filter_table.py +140 -0
- shaped/autogen/models/filter_type.py +134 -0
- shaped/autogen/models/global_filter.py +102 -0
- shaped/autogen/models/hidden_dropout_prob.py +136 -0
- shaped/autogen/models/hidden_size.py +136 -0
- shaped/autogen/models/hidden_size1.py +136 -0
- shaped/autogen/models/http_problem_response.py +115 -0
- shaped/autogen/models/http_validation_error.py +2 -2
- shaped/autogen/models/hugging_face_encoder.py +115 -0
- shaped/autogen/models/iceberg_table_config.py +154 -0
- shaped/autogen/models/index_config.py +101 -0
- shaped/autogen/models/inner_entity_id.py +144 -0
- shaped/autogen/models/inner_size.py +136 -0
- shaped/autogen/models/inner_size1.py +136 -0
- shaped/autogen/models/inner_uid.py +144 -0
- shaped/autogen/models/interaction_config.py +122 -0
- shaped/autogen/models/interaction_pooling_encoder.py +104 -0
- shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
- shaped/autogen/models/item_attribute_pooling_encoder.py +111 -0
- shaped/autogen/models/journey.py +140 -0
- shaped/autogen/models/kafka_table_config.py +129 -0
- shaped/autogen/models/kinesis_table_config.py +140 -0
- shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
- shaped/autogen/models/label.py +90 -0
- shaped/autogen/models/label_type.py +36 -0
- shaped/autogen/models/laplace_smoothing.py +136 -0
- shaped/autogen/models/latency_scaling_policy.py +112 -0
- shaped/autogen/models/learning_rate.py +136 -0
- shaped/autogen/models/learning_rate1.py +136 -0
- shaped/autogen/models/learning_rate2.py +136 -0
- shaped/autogen/models/learning_rate3.py +136 -0
- shaped/autogen/models/lexical_search_mode.py +99 -0
- shaped/autogen/models/list_engines_response.py +95 -0
- shaped/autogen/models/list_tables_response.py +95 -0
- shaped/autogen/models/list_views_response.py +95 -0
- shaped/autogen/models/location_inner.py +138 -0
- shaped/autogen/models/loss_types.py +37 -0
- shaped/autogen/models/lr.py +136 -0
- shaped/autogen/models/lr1.py +136 -0
- shaped/autogen/models/lr2.py +136 -0
- shaped/autogen/models/max_depth.py +136 -0
- shaped/autogen/models/max_leaves.py +136 -0
- shaped/autogen/models/max_seq_length.py +136 -0
- shaped/autogen/models/max_seq_length1.py +136 -0
- shaped/autogen/models/max_seq_length2.py +136 -0
- shaped/autogen/models/mode.py +134 -0
- shaped/autogen/models/mode1.py +136 -0
- shaped/autogen/models/mode2.py +150 -0
- shaped/autogen/models/models_inner.py +308 -0
- shaped/autogen/models/mongo_db_table_config.py +147 -0
- shaped/autogen/models/mssql_table_config.py +155 -0
- shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
- shaped/autogen/models/n_epochs.py +136 -0
- shaped/autogen/models/n_epochs1.py +136 -0
- shaped/autogen/models/n_epochs2.py +136 -0
- shaped/autogen/models/n_estimators.py +136 -0
- shaped/autogen/models/n_heads.py +136 -0
- shaped/autogen/models/n_layers.py +136 -0
- shaped/autogen/models/neg_per_positive.py +136 -0
- shaped/autogen/models/negative_samples_count.py +136 -0
- shaped/autogen/models/ngram_tokenizer.py +103 -0
- shaped/autogen/models/no_op_config.py +117 -0
- shaped/autogen/models/num_blocks.py +136 -0
- shaped/autogen/models/num_heads.py +136 -0
- shaped/autogen/models/num_leaves.py +136 -0
- shaped/autogen/models/objective.py +40 -0
- shaped/autogen/models/objective1.py +134 -0
- shaped/autogen/models/online_store_config.py +89 -0
- shaped/autogen/models/pagination_config.py +87 -0
- shaped/autogen/models/parameter_definition.py +96 -0
- shaped/autogen/models/parameters_value.py +240 -0
- shaped/autogen/models/passthrough_score.py +104 -0
- shaped/autogen/models/personal_filter.py +104 -0
- shaped/autogen/models/pipeline_stage_explanation.py +118 -0
- shaped/autogen/models/policy.py +134 -0
- shaped/autogen/models/pool_fn.py +152 -0
- shaped/autogen/models/pooling_function.py +37 -0
- shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
- shaped/autogen/models/posthog_table_config.py +133 -0
- shaped/autogen/models/prebuilt_filter_step.py +113 -0
- shaped/autogen/models/precomputed_item_embedding.py +99 -0
- shaped/autogen/models/precomputed_user_embedding.py +99 -0
- shaped/autogen/models/query.py +136 -0
- shaped/autogen/models/query1.py +136 -0
- shaped/autogen/models/query_any_of.py +172 -0
- shaped/autogen/models/query_config.py +140 -0
- shaped/autogen/models/query_definition.py +106 -0
- shaped/autogen/models/query_encoder.py +194 -0
- shaped/autogen/models/query_explanation.py +201 -0
- shaped/autogen/models/query_request.py +121 -0
- shaped/autogen/models/query_result.py +113 -0
- shaped/autogen/models/query_table_config.py +99 -0
- shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
- shaped/autogen/models/rank_query_config.py +167 -0
- shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
- shaped/autogen/models/rank_query_config_reorder_inner.py +186 -0
- shaped/autogen/models/rank_query_config_retrieve_inner.py +265 -0
- shaped/autogen/models/recreate_rollout.py +97 -0
- shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
- shaped/autogen/models/reference_table_config.py +113 -0
- shaped/autogen/models/regularization.py +136 -0
- shaped/autogen/models/reorder_inner.py +149 -0
- shaped/autogen/models/reorder_step_explanation.py +207 -0
- shaped/autogen/models/request.py +378 -0
- shaped/autogen/models/request1.py +140 -0
- shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
- shaped/autogen/models/resource_config.py +100 -0
- shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
- shaped/autogen/models/result.py +132 -0
- shaped/autogen/models/result_embeddings_value.py +127 -0
- shaped/autogen/models/retrieval_scores_value.py +127 -0
- shaped/autogen/models/retrieve_inner.py +196 -0
- shaped/autogen/models/retrieve_step_explanation.py +172 -0
- shaped/autogen/models/retriever.py +196 -0
- shaped/autogen/models/retriever1.py +196 -0
- shaped/autogen/models/rollout_config.py +91 -0
- shaped/autogen/models/rudderstack_table_config.py +106 -0
- shaped/autogen/models/sampling_strategy.py +36 -0
- shaped/autogen/models/saved_query_info_response.py +103 -0
- shaped/autogen/models/saved_query_list_response.py +87 -0
- shaped/autogen/models/saved_query_request.py +115 -0
- shaped/autogen/models/schema_config.py +117 -0
- shaped/autogen/models/score.py +134 -0
- shaped/autogen/models/score_ensemble.py +127 -0
- shaped/autogen/models/score_ensemble_policy_config.py +165 -0
- shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +755 -0
- shaped/autogen/models/score_step_explanation.py +224 -0
- shaped/autogen/models/search_config.py +105 -0
- shaped/autogen/models/segment_table_config.py +106 -0
- shaped/autogen/models/sequence_length.py +136 -0
- shaped/autogen/models/server_config.py +100 -0
- shaped/autogen/models/setup_engine_response.py +87 -0
- shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +154 -0
- shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +160 -0
- shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +215 -0
- shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +156 -0
- shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +141 -0
- shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +211 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +195 -0
- shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +245 -0
- shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +161 -0
- shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +108 -0
- shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +143 -0
- shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
- shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +230 -0
- shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +165 -0
- shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +153 -0
- shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +137 -0
- shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +155 -0
- shaped/autogen/models/shopify_table_config.py +156 -0
- shaped/autogen/models/similarity_retrieve_step.py +123 -0
- shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
- shaped/autogen/models/sql_transform_type.py +37 -0
- shaped/autogen/models/sql_view_config.py +111 -0
- shaped/autogen/models/stemmer_tokenizer.py +105 -0
- shaped/autogen/models/step_explanation.py +137 -0
- shaped/autogen/models/steps_inner.py +179 -0
- shaped/autogen/models/strategy.py +134 -0
- shaped/autogen/models/table.py +102 -0
- shaped/autogen/models/table_deployment_type.py +38 -0
- shaped/autogen/models/table_insert_arguments.py +87 -0
- shaped/autogen/models/table_insert_response.py +87 -0
- shaped/autogen/models/text_encoding.py +148 -0
- shaped/autogen/models/text_search_retrieve_step.py +121 -0
- shaped/autogen/models/time_frequency.py +136 -0
- shaped/autogen/models/time_window.py +136 -0
- shaped/autogen/models/time_window_in_days.py +154 -0
- shaped/autogen/models/tokenizer.py +149 -0
- shaped/autogen/models/trained_model_encoder.py +99 -0
- shaped/autogen/models/training_compute_config.py +99 -0
- shaped/autogen/models/training_config.py +121 -0
- shaped/autogen/models/training_config_models_inner.py +540 -0
- shaped/autogen/models/training_strategy.py +37 -0
- shaped/autogen/models/transform_status.py +41 -0
- shaped/autogen/models/trending_mode.py +37 -0
- shaped/autogen/models/truncate_filter_step.py +106 -0
- shaped/autogen/models/tunable_bool.py +97 -0
- shaped/autogen/models/tunable_float.py +118 -0
- shaped/autogen/models/tunable_int.py +118 -0
- shaped/autogen/models/tunable_int_categorical.py +99 -0
- shaped/autogen/models/tunable_string.py +99 -0
- shaped/autogen/models/tuning_config.py +89 -0
- shaped/autogen/models/type.py +150 -0
- shaped/autogen/models/update_table_response.py +87 -0
- shaped/autogen/models/update_view_response.py +87 -0
- shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
- shaped/autogen/models/user_inner.py +134 -0
- shaped/autogen/models/val_split.py +136 -0
- shaped/autogen/models/validation_error.py +13 -3
- shaped/autogen/models/validation_error_loc_inner.py +150 -0
- shaped/autogen/models/value_type.py +7 -5
- shaped/autogen/models/vector_search_mode.py +101 -0
- shaped/autogen/models/view.py +104 -0
- shaped/autogen/models/view_details_ai.py +140 -0
- shaped/autogen/models/view_details_ai_schema_value.py +153 -0
- shaped/autogen/models/view_details_sql.py +140 -0
- shaped/autogen/models/view_status.py +41 -0
- shaped/autogen/models/weight_decay.py +136 -0
- shaped/autogen/models/whitespace_tokenizer.py +97 -0
- shaped/autogen/models/window_size.py +136 -0
- shaped/autogen/rest.py +10 -4
- shaped/cli/shaped_cli.py +163 -35
- shaped/client.py +591 -171
- shaped/config_builders.py +705 -0
- shaped/query_builder.py +781 -0
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/METADATA +141 -6
- shaped-2.0.4.dist-info/RECORD +296 -0
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/WHEEL +1 -1
- shaped-2.0.4.dist-info/entry_points.txt +2 -0
- shaped/autogen/api/model_inference_api.py +0 -2825
- shaped/autogen/models/amplitude_dataset_config.py +0 -96
- shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
- shaped/autogen/models/big_query_dataset_config.py +0 -114
- shaped/autogen/models/complement_items_request.py +0 -99
- shaped/autogen/models/complement_items_response.py +0 -89
- shaped/autogen/models/connectors_inner.py +0 -134
- shaped/autogen/models/create_dataset_arguments.py +0 -263
- shaped/autogen/models/create_embedding_response.py +0 -87
- shaped/autogen/models/create_item_embedding_request.py +0 -89
- shaped/autogen/models/create_model_arguments.py +0 -107
- shaped/autogen/models/create_model_response.py +0 -87
- shaped/autogen/models/create_user_embedding_request.py +0 -89
- shaped/autogen/models/custom_dataset_config.py +0 -115
- shaped/autogen/models/dataset_config.py +0 -101
- shaped/autogen/models/dataset_schema_type.py +0 -47
- shaped/autogen/models/datasets_inner.py +0 -91
- shaped/autogen/models/delete_model_response.py +0 -87
- shaped/autogen/models/fetch_config.py +0 -95
- shaped/autogen/models/file_config.py +0 -105
- shaped/autogen/models/file_source_config.py +0 -89
- shaped/autogen/models/inference_config.py +0 -101
- shaped/autogen/models/insert_model_response.py +0 -87
- shaped/autogen/models/interaction.py +0 -87
- shaped/autogen/models/list_datasets_response.py +0 -95
- shaped/autogen/models/list_models_response.py +0 -95
- shaped/autogen/models/model_config.py +0 -99
- shaped/autogen/models/model_response.py +0 -95
- shaped/autogen/models/mongo_db_dataset_config.py +0 -119
- shaped/autogen/models/post_rank_request.py +0 -117
- shaped/autogen/models/rank_attribute_response.py +0 -89
- shaped/autogen/models/rank_grid_attribute_request.py +0 -91
- shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
- shaped/autogen/models/rank_grid_attribute_response.py +0 -91
- shaped/autogen/models/rank_response.py +0 -91
- shaped/autogen/models/retrieve_request.py +0 -101
- shaped/autogen/models/retrieve_response.py +0 -91
- shaped/autogen/models/retriever_top_k_override.py +0 -97
- shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
- shaped/autogen/models/segment_dataset_config.py +0 -96
- shaped/autogen/models/similar_item_request.py +0 -101
- shaped/autogen/models/similar_response.py +0 -89
- shaped/autogen/models/similar_users_request.py +0 -99
- shaped/autogen/models/successful_response.py +0 -87
- shaped/autogen/models/view_model_response.py +0 -99
- shaped-2.0.1.dist-info/RECORD +0 -73
- shaped-2.0.1.dist-info/entry_points.txt +0 -2
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/top_level.txt +0 -0
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/zip-safe +0 -0
|
@@ -1,89 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, StrictInt, StrictStr
|
|
21
|
-
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
-
from typing import Optional, Set
|
|
23
|
-
from typing_extensions import Self
|
|
24
|
-
|
|
25
|
-
class CreateUserEmbeddingRequest(BaseModel):
|
|
26
|
-
"""
|
|
27
|
-
CreateUserEmbeddingRequest
|
|
28
|
-
""" # noqa: E501
|
|
29
|
-
user_ids: List[StrictStr]
|
|
30
|
-
dimension: Optional[StrictInt] = None
|
|
31
|
-
__properties: ClassVar[List[str]] = ["user_ids", "dimension"]
|
|
32
|
-
|
|
33
|
-
model_config = ConfigDict(
|
|
34
|
-
populate_by_name=True,
|
|
35
|
-
validate_assignment=True,
|
|
36
|
-
protected_namespaces=(),
|
|
37
|
-
)
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def to_str(self) -> str:
|
|
41
|
-
"""Returns the string representation of the model using alias"""
|
|
42
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
43
|
-
|
|
44
|
-
def to_json(self) -> str:
|
|
45
|
-
"""Returns the JSON representation of the model using alias"""
|
|
46
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
47
|
-
return json.dumps(self.to_dict())
|
|
48
|
-
|
|
49
|
-
@classmethod
|
|
50
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
51
|
-
"""Create an instance of CreateUserEmbeddingRequest from a JSON string"""
|
|
52
|
-
return cls.from_dict(json.loads(json_str))
|
|
53
|
-
|
|
54
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
55
|
-
"""Return the dictionary representation of the model using alias.
|
|
56
|
-
|
|
57
|
-
This has the following differences from calling pydantic's
|
|
58
|
-
`self.model_dump(by_alias=True)`:
|
|
59
|
-
|
|
60
|
-
* `None` is only added to the output dict for nullable fields that
|
|
61
|
-
were set at model initialization. Other fields with value `None`
|
|
62
|
-
are ignored.
|
|
63
|
-
"""
|
|
64
|
-
excluded_fields: Set[str] = set([
|
|
65
|
-
])
|
|
66
|
-
|
|
67
|
-
_dict = self.model_dump(
|
|
68
|
-
by_alias=True,
|
|
69
|
-
exclude=excluded_fields,
|
|
70
|
-
exclude_none=True,
|
|
71
|
-
)
|
|
72
|
-
return _dict
|
|
73
|
-
|
|
74
|
-
@classmethod
|
|
75
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
76
|
-
"""Create an instance of CreateUserEmbeddingRequest from a dict"""
|
|
77
|
-
if obj is None:
|
|
78
|
-
return None
|
|
79
|
-
|
|
80
|
-
if not isinstance(obj, dict):
|
|
81
|
-
return cls.model_validate(obj)
|
|
82
|
-
|
|
83
|
-
_obj = cls.model_validate({
|
|
84
|
-
"user_ids": obj.get("user_ids"),
|
|
85
|
-
"dimension": obj.get("dimension")
|
|
86
|
-
})
|
|
87
|
-
return _obj
|
|
88
|
-
|
|
89
|
-
|
|
@@ -1,115 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictStr, field_validator
|
|
21
|
-
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
-
from shaped.autogen.models.value_type import ValueType
|
|
23
|
-
from typing import Optional, Set
|
|
24
|
-
from typing_extensions import Self
|
|
25
|
-
|
|
26
|
-
class CustomDatasetConfig(BaseModel):
|
|
27
|
-
"""
|
|
28
|
-
CustomDatasetConfig
|
|
29
|
-
""" # noqa: E501
|
|
30
|
-
name: Optional[StrictStr] = None
|
|
31
|
-
deploy_realtime: StrictBool
|
|
32
|
-
tenant_aws_account_id: Optional[StrictStr] = None
|
|
33
|
-
schedule_interval: Optional[StrictStr] = '@hourly'
|
|
34
|
-
schema_type: StrictStr
|
|
35
|
-
column_schema: Optional[Dict[str, ValueType]] = Field(default=None, description="Defines the schema for the dataset where the keys of the object are the data tables columns and the values are the data types. ")
|
|
36
|
-
__properties: ClassVar[List[str]] = ["name", "deploy_realtime", "tenant_aws_account_id", "schedule_interval", "schema_type", "column_schema"]
|
|
37
|
-
|
|
38
|
-
@field_validator('schema_type')
|
|
39
|
-
def schema_type_validate_enum(cls, value):
|
|
40
|
-
"""Validates the enum"""
|
|
41
|
-
if value not in set(['CUSTOM']):
|
|
42
|
-
raise ValueError("must be one of enum values ('CUSTOM')")
|
|
43
|
-
return value
|
|
44
|
-
|
|
45
|
-
model_config = ConfigDict(
|
|
46
|
-
populate_by_name=True,
|
|
47
|
-
validate_assignment=True,
|
|
48
|
-
protected_namespaces=(),
|
|
49
|
-
)
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
def to_str(self) -> str:
|
|
53
|
-
"""Returns the string representation of the model using alias"""
|
|
54
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
55
|
-
|
|
56
|
-
def to_json(self) -> str:
|
|
57
|
-
"""Returns the JSON representation of the model using alias"""
|
|
58
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
59
|
-
return json.dumps(self.to_dict())
|
|
60
|
-
|
|
61
|
-
@classmethod
|
|
62
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
63
|
-
"""Create an instance of CustomDatasetConfig from a JSON string"""
|
|
64
|
-
return cls.from_dict(json.loads(json_str))
|
|
65
|
-
|
|
66
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
67
|
-
"""Return the dictionary representation of the model using alias.
|
|
68
|
-
|
|
69
|
-
This has the following differences from calling pydantic's
|
|
70
|
-
`self.model_dump(by_alias=True)`:
|
|
71
|
-
|
|
72
|
-
* `None` is only added to the output dict for nullable fields that
|
|
73
|
-
were set at model initialization. Other fields with value `None`
|
|
74
|
-
are ignored.
|
|
75
|
-
"""
|
|
76
|
-
excluded_fields: Set[str] = set([
|
|
77
|
-
])
|
|
78
|
-
|
|
79
|
-
_dict = self.model_dump(
|
|
80
|
-
by_alias=True,
|
|
81
|
-
exclude=excluded_fields,
|
|
82
|
-
exclude_none=True,
|
|
83
|
-
)
|
|
84
|
-
# set to None if tenant_aws_account_id (nullable) is None
|
|
85
|
-
# and model_fields_set contains the field
|
|
86
|
-
if self.tenant_aws_account_id is None and "tenant_aws_account_id" in self.model_fields_set:
|
|
87
|
-
_dict['tenant_aws_account_id'] = None
|
|
88
|
-
|
|
89
|
-
# set to None if column_schema (nullable) is None
|
|
90
|
-
# and model_fields_set contains the field
|
|
91
|
-
if self.column_schema is None and "column_schema" in self.model_fields_set:
|
|
92
|
-
_dict['column_schema'] = None
|
|
93
|
-
|
|
94
|
-
return _dict
|
|
95
|
-
|
|
96
|
-
@classmethod
|
|
97
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
98
|
-
"""Create an instance of CustomDatasetConfig from a dict"""
|
|
99
|
-
if obj is None:
|
|
100
|
-
return None
|
|
101
|
-
|
|
102
|
-
if not isinstance(obj, dict):
|
|
103
|
-
return cls.model_validate(obj)
|
|
104
|
-
|
|
105
|
-
_obj = cls.model_validate({
|
|
106
|
-
"name": obj.get("name"),
|
|
107
|
-
"deploy_realtime": obj.get("deploy_realtime") if obj.get("deploy_realtime") is not None else False,
|
|
108
|
-
"tenant_aws_account_id": obj.get("tenant_aws_account_id"),
|
|
109
|
-
"schedule_interval": obj.get("schedule_interval") if obj.get("schedule_interval") is not None else '@hourly',
|
|
110
|
-
"schema_type": obj.get("schema_type"),
|
|
111
|
-
"column_schema": dict((_k, _v) for _k, _v in obj.get("column_schema").items())
|
|
112
|
-
})
|
|
113
|
-
return _obj
|
|
114
|
-
|
|
115
|
-
|
|
@@ -1,101 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, Field, StrictStr, field_validator
|
|
21
|
-
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
-
from typing import Optional, Set
|
|
23
|
-
from typing_extensions import Self
|
|
24
|
-
|
|
25
|
-
class DatasetConfig(BaseModel):
|
|
26
|
-
"""
|
|
27
|
-
Creates a Shaped Dataset source that can be used in the fetch queries.
|
|
28
|
-
""" # noqa: E501
|
|
29
|
-
type: Optional[StrictStr] = 'Dataset'
|
|
30
|
-
id: StrictStr
|
|
31
|
-
name: StrictStr = Field(description="This is used to identify the dataset in the fetch queries.")
|
|
32
|
-
__properties: ClassVar[List[str]] = ["type", "id", "name"]
|
|
33
|
-
|
|
34
|
-
@field_validator('type')
|
|
35
|
-
def type_validate_enum(cls, value):
|
|
36
|
-
"""Validates the enum"""
|
|
37
|
-
if value is None:
|
|
38
|
-
return value
|
|
39
|
-
|
|
40
|
-
if value not in set(['Dataset']):
|
|
41
|
-
raise ValueError("must be one of enum values ('Dataset')")
|
|
42
|
-
return value
|
|
43
|
-
|
|
44
|
-
model_config = ConfigDict(
|
|
45
|
-
populate_by_name=True,
|
|
46
|
-
validate_assignment=True,
|
|
47
|
-
protected_namespaces=(),
|
|
48
|
-
)
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
def to_str(self) -> str:
|
|
52
|
-
"""Returns the string representation of the model using alias"""
|
|
53
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
54
|
-
|
|
55
|
-
def to_json(self) -> str:
|
|
56
|
-
"""Returns the JSON representation of the model using alias"""
|
|
57
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
58
|
-
return json.dumps(self.to_dict())
|
|
59
|
-
|
|
60
|
-
@classmethod
|
|
61
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
62
|
-
"""Create an instance of DatasetConfig from a JSON string"""
|
|
63
|
-
return cls.from_dict(json.loads(json_str))
|
|
64
|
-
|
|
65
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
66
|
-
"""Return the dictionary representation of the model using alias.
|
|
67
|
-
|
|
68
|
-
This has the following differences from calling pydantic's
|
|
69
|
-
`self.model_dump(by_alias=True)`:
|
|
70
|
-
|
|
71
|
-
* `None` is only added to the output dict for nullable fields that
|
|
72
|
-
were set at model initialization. Other fields with value `None`
|
|
73
|
-
are ignored.
|
|
74
|
-
"""
|
|
75
|
-
excluded_fields: Set[str] = set([
|
|
76
|
-
])
|
|
77
|
-
|
|
78
|
-
_dict = self.model_dump(
|
|
79
|
-
by_alias=True,
|
|
80
|
-
exclude=excluded_fields,
|
|
81
|
-
exclude_none=True,
|
|
82
|
-
)
|
|
83
|
-
return _dict
|
|
84
|
-
|
|
85
|
-
@classmethod
|
|
86
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
87
|
-
"""Create an instance of DatasetConfig from a dict"""
|
|
88
|
-
if obj is None:
|
|
89
|
-
return None
|
|
90
|
-
|
|
91
|
-
if not isinstance(obj, dict):
|
|
92
|
-
return cls.model_validate(obj)
|
|
93
|
-
|
|
94
|
-
_obj = cls.model_validate({
|
|
95
|
-
"type": obj.get("type") if obj.get("type") is not None else 'Dataset',
|
|
96
|
-
"id": obj.get("id"),
|
|
97
|
-
"name": obj.get("name")
|
|
98
|
-
})
|
|
99
|
-
return _obj
|
|
100
|
-
|
|
101
|
-
|
|
@@ -1,47 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import json
|
|
17
|
-
from enum import Enum
|
|
18
|
-
from typing_extensions import Self
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
class DatasetSchemaType(str, Enum):
|
|
22
|
-
"""
|
|
23
|
-
The schema type defines the type of the dataset. This is used to provision the correct data ingestion pipeline for the dataset.
|
|
24
|
-
"""
|
|
25
|
-
|
|
26
|
-
"""
|
|
27
|
-
allowed enum values
|
|
28
|
-
"""
|
|
29
|
-
BIGQUERY = 'BIGQUERY'
|
|
30
|
-
MONGODB = 'MONGODB'
|
|
31
|
-
SNOWFLAKE = 'SNOWFLAKE'
|
|
32
|
-
POSTGRES = 'POSTGRES'
|
|
33
|
-
MYSQL = 'MYSQL'
|
|
34
|
-
SEGMENT = 'SEGMENT'
|
|
35
|
-
RUDDERSTACK = 'RUDDERSTACK'
|
|
36
|
-
AMPLITUDE = 'AMPLITUDE'
|
|
37
|
-
AWS_PINPOINT = 'AWS_PINPOINT'
|
|
38
|
-
REDSHIFT = 'REDSHIFT'
|
|
39
|
-
KINESIS = 'KINESIS'
|
|
40
|
-
CUSTOM = 'CUSTOM'
|
|
41
|
-
|
|
42
|
-
@classmethod
|
|
43
|
-
def from_json(cls, json_str: str) -> Self:
|
|
44
|
-
"""Create an instance of DatasetSchemaType from a JSON string"""
|
|
45
|
-
return cls(json.loads(json_str))
|
|
46
|
-
|
|
47
|
-
|
|
@@ -1,91 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, StrictStr
|
|
21
|
-
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
-
from typing import Optional, Set
|
|
23
|
-
from typing_extensions import Self
|
|
24
|
-
|
|
25
|
-
class DatasetsInner(BaseModel):
|
|
26
|
-
"""
|
|
27
|
-
DatasetsInner
|
|
28
|
-
""" # noqa: E501
|
|
29
|
-
dataset_name: Optional[StrictStr] = None
|
|
30
|
-
schema_type: Optional[StrictStr] = None
|
|
31
|
-
status: Optional[StrictStr] = None
|
|
32
|
-
__properties: ClassVar[List[str]] = ["dataset_name", "schema_type", "status"]
|
|
33
|
-
|
|
34
|
-
model_config = ConfigDict(
|
|
35
|
-
populate_by_name=True,
|
|
36
|
-
validate_assignment=True,
|
|
37
|
-
protected_namespaces=(),
|
|
38
|
-
)
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
def to_str(self) -> str:
|
|
42
|
-
"""Returns the string representation of the model using alias"""
|
|
43
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
44
|
-
|
|
45
|
-
def to_json(self) -> str:
|
|
46
|
-
"""Returns the JSON representation of the model using alias"""
|
|
47
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
48
|
-
return json.dumps(self.to_dict())
|
|
49
|
-
|
|
50
|
-
@classmethod
|
|
51
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
52
|
-
"""Create an instance of DatasetsInner from a JSON string"""
|
|
53
|
-
return cls.from_dict(json.loads(json_str))
|
|
54
|
-
|
|
55
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
56
|
-
"""Return the dictionary representation of the model using alias.
|
|
57
|
-
|
|
58
|
-
This has the following differences from calling pydantic's
|
|
59
|
-
`self.model_dump(by_alias=True)`:
|
|
60
|
-
|
|
61
|
-
* `None` is only added to the output dict for nullable fields that
|
|
62
|
-
were set at model initialization. Other fields with value `None`
|
|
63
|
-
are ignored.
|
|
64
|
-
"""
|
|
65
|
-
excluded_fields: Set[str] = set([
|
|
66
|
-
])
|
|
67
|
-
|
|
68
|
-
_dict = self.model_dump(
|
|
69
|
-
by_alias=True,
|
|
70
|
-
exclude=excluded_fields,
|
|
71
|
-
exclude_none=True,
|
|
72
|
-
)
|
|
73
|
-
return _dict
|
|
74
|
-
|
|
75
|
-
@classmethod
|
|
76
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
77
|
-
"""Create an instance of DatasetsInner from a dict"""
|
|
78
|
-
if obj is None:
|
|
79
|
-
return None
|
|
80
|
-
|
|
81
|
-
if not isinstance(obj, dict):
|
|
82
|
-
return cls.model_validate(obj)
|
|
83
|
-
|
|
84
|
-
_obj = cls.model_validate({
|
|
85
|
-
"dataset_name": obj.get("dataset_name"),
|
|
86
|
-
"schema_type": obj.get("schema_type"),
|
|
87
|
-
"status": obj.get("status")
|
|
88
|
-
})
|
|
89
|
-
return _obj
|
|
90
|
-
|
|
91
|
-
|
|
@@ -1,87 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, StrictStr
|
|
21
|
-
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
-
from typing import Optional, Set
|
|
23
|
-
from typing_extensions import Self
|
|
24
|
-
|
|
25
|
-
class DeleteModelResponse(BaseModel):
|
|
26
|
-
"""
|
|
27
|
-
DeleteModelResponse
|
|
28
|
-
""" # noqa: E501
|
|
29
|
-
message: Optional[StrictStr] = None
|
|
30
|
-
__properties: ClassVar[List[str]] = ["message"]
|
|
31
|
-
|
|
32
|
-
model_config = ConfigDict(
|
|
33
|
-
populate_by_name=True,
|
|
34
|
-
validate_assignment=True,
|
|
35
|
-
protected_namespaces=(),
|
|
36
|
-
)
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
def to_str(self) -> str:
|
|
40
|
-
"""Returns the string representation of the model using alias"""
|
|
41
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
42
|
-
|
|
43
|
-
def to_json(self) -> str:
|
|
44
|
-
"""Returns the JSON representation of the model using alias"""
|
|
45
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
46
|
-
return json.dumps(self.to_dict())
|
|
47
|
-
|
|
48
|
-
@classmethod
|
|
49
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
50
|
-
"""Create an instance of DeleteModelResponse from a JSON string"""
|
|
51
|
-
return cls.from_dict(json.loads(json_str))
|
|
52
|
-
|
|
53
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
54
|
-
"""Return the dictionary representation of the model using alias.
|
|
55
|
-
|
|
56
|
-
This has the following differences from calling pydantic's
|
|
57
|
-
`self.model_dump(by_alias=True)`:
|
|
58
|
-
|
|
59
|
-
* `None` is only added to the output dict for nullable fields that
|
|
60
|
-
were set at model initialization. Other fields with value `None`
|
|
61
|
-
are ignored.
|
|
62
|
-
"""
|
|
63
|
-
excluded_fields: Set[str] = set([
|
|
64
|
-
])
|
|
65
|
-
|
|
66
|
-
_dict = self.model_dump(
|
|
67
|
-
by_alias=True,
|
|
68
|
-
exclude=excluded_fields,
|
|
69
|
-
exclude_none=True,
|
|
70
|
-
)
|
|
71
|
-
return _dict
|
|
72
|
-
|
|
73
|
-
@classmethod
|
|
74
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
75
|
-
"""Create an instance of DeleteModelResponse from a dict"""
|
|
76
|
-
if obj is None:
|
|
77
|
-
return None
|
|
78
|
-
|
|
79
|
-
if not isinstance(obj, dict):
|
|
80
|
-
return cls.model_validate(obj)
|
|
81
|
-
|
|
82
|
-
_obj = cls.model_validate({
|
|
83
|
-
"message": obj.get("message")
|
|
84
|
-
})
|
|
85
|
-
return _obj
|
|
86
|
-
|
|
87
|
-
|
|
@@ -1,95 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, Field, StrictStr
|
|
21
|
-
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
-
from typing import Optional, Set
|
|
23
|
-
from typing_extensions import Self
|
|
24
|
-
|
|
25
|
-
class FetchConfig(BaseModel):
|
|
26
|
-
"""
|
|
27
|
-
The fetch queries describe the SQL transforms needed to retrieve the data from the connectors into the specified data views required by Shaped. All queries use DuckDB sequence and can reference the connector sources directly as: '... from {connector_id}.{table_id}'.
|
|
28
|
-
""" # noqa: E501
|
|
29
|
-
events: StrictStr = Field(description="Selects the events used to train your model. The selected sql view must have the following columns: user_id, item_id, label, created_at. Any other columns found are used as features. ")
|
|
30
|
-
users: Optional[StrictStr] = Field(default=None, description="Selects the user attributes used to train your model. The selected sql view must have the following columns: user_id. Any other columns found are used as features. ")
|
|
31
|
-
items: Optional[StrictStr] = Field(default=None, description="Selects the items attributes used to train your model and used when ranking. The selected sql view must have the following columns: item_id. Any other columns found are used as features. ")
|
|
32
|
-
global_filters: Optional[StrictStr] = Field(default=None, description="Selects the items that should be filtered out when ranking for all requests. The selected sql view must have the following columns: item_id. ")
|
|
33
|
-
personal_filters: Optional[StrictStr] = Field(default=None, description="Selects user and item pairs that will be filtered out when ranking. The selected sql view must have the following columns: item_id, user_id. ")
|
|
34
|
-
__properties: ClassVar[List[str]] = ["events", "users", "items", "global_filters", "personal_filters"]
|
|
35
|
-
|
|
36
|
-
model_config = ConfigDict(
|
|
37
|
-
populate_by_name=True,
|
|
38
|
-
validate_assignment=True,
|
|
39
|
-
protected_namespaces=(),
|
|
40
|
-
)
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
def to_str(self) -> str:
|
|
44
|
-
"""Returns the string representation of the model using alias"""
|
|
45
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
46
|
-
|
|
47
|
-
def to_json(self) -> str:
|
|
48
|
-
"""Returns the JSON representation of the model using alias"""
|
|
49
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
50
|
-
return json.dumps(self.to_dict())
|
|
51
|
-
|
|
52
|
-
@classmethod
|
|
53
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
54
|
-
"""Create an instance of FetchConfig from a JSON string"""
|
|
55
|
-
return cls.from_dict(json.loads(json_str))
|
|
56
|
-
|
|
57
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
58
|
-
"""Return the dictionary representation of the model using alias.
|
|
59
|
-
|
|
60
|
-
This has the following differences from calling pydantic's
|
|
61
|
-
`self.model_dump(by_alias=True)`:
|
|
62
|
-
|
|
63
|
-
* `None` is only added to the output dict for nullable fields that
|
|
64
|
-
were set at model initialization. Other fields with value `None`
|
|
65
|
-
are ignored.
|
|
66
|
-
"""
|
|
67
|
-
excluded_fields: Set[str] = set([
|
|
68
|
-
])
|
|
69
|
-
|
|
70
|
-
_dict = self.model_dump(
|
|
71
|
-
by_alias=True,
|
|
72
|
-
exclude=excluded_fields,
|
|
73
|
-
exclude_none=True,
|
|
74
|
-
)
|
|
75
|
-
return _dict
|
|
76
|
-
|
|
77
|
-
@classmethod
|
|
78
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
79
|
-
"""Create an instance of FetchConfig from a dict"""
|
|
80
|
-
if obj is None:
|
|
81
|
-
return None
|
|
82
|
-
|
|
83
|
-
if not isinstance(obj, dict):
|
|
84
|
-
return cls.model_validate(obj)
|
|
85
|
-
|
|
86
|
-
_obj = cls.model_validate({
|
|
87
|
-
"events": obj.get("events"),
|
|
88
|
-
"users": obj.get("users"),
|
|
89
|
-
"items": obj.get("items"),
|
|
90
|
-
"global_filters": obj.get("global_filters"),
|
|
91
|
-
"personal_filters": obj.get("personal_filters")
|
|
92
|
-
})
|
|
93
|
-
return _obj
|
|
94
|
-
|
|
95
|
-
|