shaped 2.0.1__py3-none-any.whl → 2.0.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- shaped/__init__.py +59 -4
- shaped/autogen/__init__.py +527 -66
- shaped/autogen/api/__init__.py +4 -3
- shaped/autogen/api/engine_api.py +1467 -0
- shaped/autogen/api/{dataset_api.py → query_api.py} +159 -194
- shaped/autogen/api/table_api.py +1494 -0
- shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
- shaped/autogen/api_client.py +18 -11
- shaped/autogen/configuration.py +22 -9
- shaped/autogen/exceptions.py +25 -5
- shaped/autogen/models/__init__.py +247 -52
- shaped/autogen/models/ai_enrichment_view_config.py +123 -0
- shaped/autogen/models/{path.py → algorithm.py} +19 -19
- shaped/autogen/models/amplitude_table_config.py +106 -0
- shaped/autogen/models/ascending.py +148 -0
- shaped/autogen/models/attn_dropout_prob.py +136 -0
- shaped/autogen/models/attribute_journey.py +124 -0
- shaped/autogen/models/attribute_value.py +178 -0
- shaped/autogen/models/autoscaling_config.py +95 -0
- shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
- shaped/autogen/models/batch_size.py +136 -0
- shaped/autogen/models/batch_size1.py +136 -0
- shaped/autogen/models/batch_size2.py +136 -0
- shaped/autogen/models/big_query_table_config.py +147 -0
- shaped/autogen/models/bm25.py +136 -0
- shaped/autogen/models/boosted_reorder_step.py +125 -0
- shaped/autogen/models/canary_rollout.py +99 -0
- shaped/autogen/models/candidate_attributes_retrieve_step.py +113 -0
- shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
- shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
- shaped/autogen/models/clickhouse_table_config.py +146 -0
- shaped/autogen/models/column_order_retrieve_step.py +123 -0
- shaped/autogen/models/column_ordering.py +91 -0
- shaped/autogen/models/create_table_response.py +87 -0
- shaped/autogen/models/create_view_response.py +87 -0
- shaped/autogen/models/custom_table_config.py +135 -0
- shaped/autogen/models/data_compute_config.py +89 -0
- shaped/autogen/models/data_config.py +145 -0
- shaped/autogen/models/data_config_interaction_table.py +146 -0
- shaped/autogen/models/data_split_config.py +88 -0
- shaped/autogen/models/data_split_strategy.py +37 -0
- shaped/autogen/models/data_tier.py +37 -0
- shaped/autogen/models/default.py +246 -0
- shaped/autogen/models/delete_engine_response.py +87 -0
- shaped/autogen/models/delete_table_response.py +87 -0
- shaped/autogen/models/delete_view_response.py +87 -0
- shaped/autogen/models/deployment_config.py +117 -0
- shaped/autogen/models/distance_function.py +38 -0
- shaped/autogen/models/diversity_reorder_step.py +137 -0
- shaped/autogen/models/dropout_rate.py +136 -0
- shaped/autogen/models/dynamo_db_table_config.py +160 -0
- shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
- shaped/autogen/models/embedder_batch_size.py +136 -0
- shaped/autogen/models/embedding_config.py +93 -0
- shaped/autogen/models/embedding_dim.py +136 -0
- shaped/autogen/models/embedding_dims.py +136 -0
- shaped/autogen/models/embedding_size.py +136 -0
- shaped/autogen/models/encoder.py +140 -0
- shaped/autogen/models/encoding_pooling_strategy.py +38 -0
- shaped/autogen/models/engine.py +109 -0
- shaped/autogen/models/engine_config_v2.py +152 -0
- shaped/autogen/models/engine_details_response.py +120 -0
- shaped/autogen/models/engine_schema.py +113 -0
- shaped/autogen/models/engine_schema_user_inner.py +146 -0
- shaped/autogen/models/entity_config.py +109 -0
- shaped/autogen/models/entity_journey.py +161 -0
- shaped/autogen/models/entity_type.py +38 -0
- shaped/autogen/models/evaluation_config.py +92 -0
- shaped/autogen/models/exploration_reorder_step.py +125 -0
- shaped/autogen/models/expression_filter_step.py +106 -0
- shaped/autogen/models/factors.py +136 -0
- shaped/autogen/models/factors1.py +136 -0
- shaped/autogen/models/feature.py +90 -0
- shaped/autogen/models/feature_type.py +60 -0
- shaped/autogen/models/file_table_config.py +112 -0
- shaped/autogen/models/filter_config.py +99 -0
- shaped/autogen/models/filter_dataset.py +164 -0
- shaped/autogen/models/filter_index_type.py +36 -0
- shaped/autogen/models/filter_retrieve_step.py +113 -0
- shaped/autogen/models/filter_step_explanation.py +165 -0
- shaped/autogen/models/filter_table.py +140 -0
- shaped/autogen/models/filter_type.py +134 -0
- shaped/autogen/models/global_filter.py +102 -0
- shaped/autogen/models/hidden_dropout_prob.py +136 -0
- shaped/autogen/models/hidden_size.py +136 -0
- shaped/autogen/models/hidden_size1.py +136 -0
- shaped/autogen/models/http_problem_response.py +115 -0
- shaped/autogen/models/http_validation_error.py +2 -2
- shaped/autogen/models/hugging_face_encoder.py +115 -0
- shaped/autogen/models/iceberg_table_config.py +154 -0
- shaped/autogen/models/index_config.py +101 -0
- shaped/autogen/models/inner_entity_id.py +144 -0
- shaped/autogen/models/inner_size.py +136 -0
- shaped/autogen/models/inner_size1.py +136 -0
- shaped/autogen/models/inner_uid.py +144 -0
- shaped/autogen/models/interaction_config.py +122 -0
- shaped/autogen/models/interaction_pooling_encoder.py +104 -0
- shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
- shaped/autogen/models/item_attribute_pooling_encoder.py +111 -0
- shaped/autogen/models/journey.py +140 -0
- shaped/autogen/models/kafka_table_config.py +129 -0
- shaped/autogen/models/kinesis_table_config.py +140 -0
- shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
- shaped/autogen/models/label.py +90 -0
- shaped/autogen/models/label_type.py +36 -0
- shaped/autogen/models/laplace_smoothing.py +136 -0
- shaped/autogen/models/latency_scaling_policy.py +112 -0
- shaped/autogen/models/learning_rate.py +136 -0
- shaped/autogen/models/learning_rate1.py +136 -0
- shaped/autogen/models/learning_rate2.py +136 -0
- shaped/autogen/models/learning_rate3.py +136 -0
- shaped/autogen/models/lexical_search_mode.py +99 -0
- shaped/autogen/models/list_engines_response.py +95 -0
- shaped/autogen/models/list_tables_response.py +95 -0
- shaped/autogen/models/list_views_response.py +95 -0
- shaped/autogen/models/location_inner.py +138 -0
- shaped/autogen/models/loss_types.py +37 -0
- shaped/autogen/models/lr.py +136 -0
- shaped/autogen/models/lr1.py +136 -0
- shaped/autogen/models/lr2.py +136 -0
- shaped/autogen/models/max_depth.py +136 -0
- shaped/autogen/models/max_leaves.py +136 -0
- shaped/autogen/models/max_seq_length.py +136 -0
- shaped/autogen/models/max_seq_length1.py +136 -0
- shaped/autogen/models/max_seq_length2.py +136 -0
- shaped/autogen/models/mode.py +134 -0
- shaped/autogen/models/mode1.py +136 -0
- shaped/autogen/models/mode2.py +150 -0
- shaped/autogen/models/models_inner.py +308 -0
- shaped/autogen/models/mongo_db_table_config.py +147 -0
- shaped/autogen/models/mssql_table_config.py +155 -0
- shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
- shaped/autogen/models/n_epochs.py +136 -0
- shaped/autogen/models/n_epochs1.py +136 -0
- shaped/autogen/models/n_epochs2.py +136 -0
- shaped/autogen/models/n_estimators.py +136 -0
- shaped/autogen/models/n_heads.py +136 -0
- shaped/autogen/models/n_layers.py +136 -0
- shaped/autogen/models/neg_per_positive.py +136 -0
- shaped/autogen/models/negative_samples_count.py +136 -0
- shaped/autogen/models/ngram_tokenizer.py +103 -0
- shaped/autogen/models/no_op_config.py +117 -0
- shaped/autogen/models/num_blocks.py +136 -0
- shaped/autogen/models/num_heads.py +136 -0
- shaped/autogen/models/num_leaves.py +136 -0
- shaped/autogen/models/objective.py +40 -0
- shaped/autogen/models/objective1.py +134 -0
- shaped/autogen/models/online_store_config.py +89 -0
- shaped/autogen/models/pagination_config.py +87 -0
- shaped/autogen/models/parameter_definition.py +96 -0
- shaped/autogen/models/parameters_value.py +240 -0
- shaped/autogen/models/passthrough_score.py +104 -0
- shaped/autogen/models/personal_filter.py +104 -0
- shaped/autogen/models/pipeline_stage_explanation.py +118 -0
- shaped/autogen/models/policy.py +134 -0
- shaped/autogen/models/pool_fn.py +152 -0
- shaped/autogen/models/pooling_function.py +37 -0
- shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
- shaped/autogen/models/posthog_table_config.py +133 -0
- shaped/autogen/models/prebuilt_filter_step.py +113 -0
- shaped/autogen/models/precomputed_item_embedding.py +99 -0
- shaped/autogen/models/precomputed_user_embedding.py +99 -0
- shaped/autogen/models/query.py +136 -0
- shaped/autogen/models/query1.py +136 -0
- shaped/autogen/models/query_any_of.py +172 -0
- shaped/autogen/models/query_config.py +140 -0
- shaped/autogen/models/query_definition.py +106 -0
- shaped/autogen/models/query_encoder.py +194 -0
- shaped/autogen/models/query_explanation.py +201 -0
- shaped/autogen/models/query_request.py +121 -0
- shaped/autogen/models/query_result.py +113 -0
- shaped/autogen/models/query_table_config.py +99 -0
- shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
- shaped/autogen/models/rank_query_config.py +167 -0
- shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
- shaped/autogen/models/rank_query_config_reorder_inner.py +186 -0
- shaped/autogen/models/rank_query_config_retrieve_inner.py +265 -0
- shaped/autogen/models/recreate_rollout.py +97 -0
- shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
- shaped/autogen/models/reference_table_config.py +113 -0
- shaped/autogen/models/regularization.py +136 -0
- shaped/autogen/models/reorder_inner.py +149 -0
- shaped/autogen/models/reorder_step_explanation.py +207 -0
- shaped/autogen/models/request.py +378 -0
- shaped/autogen/models/request1.py +140 -0
- shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
- shaped/autogen/models/resource_config.py +100 -0
- shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
- shaped/autogen/models/result.py +132 -0
- shaped/autogen/models/result_embeddings_value.py +127 -0
- shaped/autogen/models/retrieval_scores_value.py +127 -0
- shaped/autogen/models/retrieve_inner.py +196 -0
- shaped/autogen/models/retrieve_step_explanation.py +172 -0
- shaped/autogen/models/retriever.py +196 -0
- shaped/autogen/models/retriever1.py +196 -0
- shaped/autogen/models/rollout_config.py +91 -0
- shaped/autogen/models/rudderstack_table_config.py +106 -0
- shaped/autogen/models/sampling_strategy.py +36 -0
- shaped/autogen/models/saved_query_info_response.py +103 -0
- shaped/autogen/models/saved_query_list_response.py +87 -0
- shaped/autogen/models/saved_query_request.py +115 -0
- shaped/autogen/models/schema_config.py +117 -0
- shaped/autogen/models/score.py +134 -0
- shaped/autogen/models/score_ensemble.py +127 -0
- shaped/autogen/models/score_ensemble_policy_config.py +165 -0
- shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +755 -0
- shaped/autogen/models/score_step_explanation.py +224 -0
- shaped/autogen/models/search_config.py +105 -0
- shaped/autogen/models/segment_table_config.py +106 -0
- shaped/autogen/models/sequence_length.py +136 -0
- shaped/autogen/models/server_config.py +100 -0
- shaped/autogen/models/setup_engine_response.py +87 -0
- shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +154 -0
- shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +160 -0
- shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +215 -0
- shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +156 -0
- shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +141 -0
- shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +211 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +195 -0
- shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +245 -0
- shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +161 -0
- shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +108 -0
- shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +143 -0
- shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
- shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +230 -0
- shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +165 -0
- shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +153 -0
- shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +137 -0
- shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +155 -0
- shaped/autogen/models/shopify_table_config.py +156 -0
- shaped/autogen/models/similarity_retrieve_step.py +123 -0
- shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
- shaped/autogen/models/sql_transform_type.py +37 -0
- shaped/autogen/models/sql_view_config.py +111 -0
- shaped/autogen/models/stemmer_tokenizer.py +105 -0
- shaped/autogen/models/step_explanation.py +137 -0
- shaped/autogen/models/steps_inner.py +179 -0
- shaped/autogen/models/strategy.py +134 -0
- shaped/autogen/models/table.py +102 -0
- shaped/autogen/models/table_deployment_type.py +38 -0
- shaped/autogen/models/table_insert_arguments.py +87 -0
- shaped/autogen/models/table_insert_response.py +87 -0
- shaped/autogen/models/text_encoding.py +148 -0
- shaped/autogen/models/text_search_retrieve_step.py +121 -0
- shaped/autogen/models/time_frequency.py +136 -0
- shaped/autogen/models/time_window.py +136 -0
- shaped/autogen/models/time_window_in_days.py +154 -0
- shaped/autogen/models/tokenizer.py +149 -0
- shaped/autogen/models/trained_model_encoder.py +99 -0
- shaped/autogen/models/training_compute_config.py +99 -0
- shaped/autogen/models/training_config.py +121 -0
- shaped/autogen/models/training_config_models_inner.py +540 -0
- shaped/autogen/models/training_strategy.py +37 -0
- shaped/autogen/models/transform_status.py +41 -0
- shaped/autogen/models/trending_mode.py +37 -0
- shaped/autogen/models/truncate_filter_step.py +106 -0
- shaped/autogen/models/tunable_bool.py +97 -0
- shaped/autogen/models/tunable_float.py +118 -0
- shaped/autogen/models/tunable_int.py +118 -0
- shaped/autogen/models/tunable_int_categorical.py +99 -0
- shaped/autogen/models/tunable_string.py +99 -0
- shaped/autogen/models/tuning_config.py +89 -0
- shaped/autogen/models/type.py +150 -0
- shaped/autogen/models/update_table_response.py +87 -0
- shaped/autogen/models/update_view_response.py +87 -0
- shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
- shaped/autogen/models/user_inner.py +134 -0
- shaped/autogen/models/val_split.py +136 -0
- shaped/autogen/models/validation_error.py +13 -3
- shaped/autogen/models/validation_error_loc_inner.py +150 -0
- shaped/autogen/models/value_type.py +7 -5
- shaped/autogen/models/vector_search_mode.py +101 -0
- shaped/autogen/models/view.py +104 -0
- shaped/autogen/models/view_details_ai.py +140 -0
- shaped/autogen/models/view_details_ai_schema_value.py +153 -0
- shaped/autogen/models/view_details_sql.py +140 -0
- shaped/autogen/models/view_status.py +41 -0
- shaped/autogen/models/weight_decay.py +136 -0
- shaped/autogen/models/whitespace_tokenizer.py +97 -0
- shaped/autogen/models/window_size.py +136 -0
- shaped/autogen/rest.py +10 -4
- shaped/cli/shaped_cli.py +163 -35
- shaped/client.py +591 -171
- shaped/config_builders.py +705 -0
- shaped/query_builder.py +781 -0
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/METADATA +141 -6
- shaped-2.0.4.dist-info/RECORD +296 -0
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/WHEEL +1 -1
- shaped-2.0.4.dist-info/entry_points.txt +2 -0
- shaped/autogen/api/model_inference_api.py +0 -2825
- shaped/autogen/models/amplitude_dataset_config.py +0 -96
- shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
- shaped/autogen/models/big_query_dataset_config.py +0 -114
- shaped/autogen/models/complement_items_request.py +0 -99
- shaped/autogen/models/complement_items_response.py +0 -89
- shaped/autogen/models/connectors_inner.py +0 -134
- shaped/autogen/models/create_dataset_arguments.py +0 -263
- shaped/autogen/models/create_embedding_response.py +0 -87
- shaped/autogen/models/create_item_embedding_request.py +0 -89
- shaped/autogen/models/create_model_arguments.py +0 -107
- shaped/autogen/models/create_model_response.py +0 -87
- shaped/autogen/models/create_user_embedding_request.py +0 -89
- shaped/autogen/models/custom_dataset_config.py +0 -115
- shaped/autogen/models/dataset_config.py +0 -101
- shaped/autogen/models/dataset_schema_type.py +0 -47
- shaped/autogen/models/datasets_inner.py +0 -91
- shaped/autogen/models/delete_model_response.py +0 -87
- shaped/autogen/models/fetch_config.py +0 -95
- shaped/autogen/models/file_config.py +0 -105
- shaped/autogen/models/file_source_config.py +0 -89
- shaped/autogen/models/inference_config.py +0 -101
- shaped/autogen/models/insert_model_response.py +0 -87
- shaped/autogen/models/interaction.py +0 -87
- shaped/autogen/models/list_datasets_response.py +0 -95
- shaped/autogen/models/list_models_response.py +0 -95
- shaped/autogen/models/model_config.py +0 -99
- shaped/autogen/models/model_response.py +0 -95
- shaped/autogen/models/mongo_db_dataset_config.py +0 -119
- shaped/autogen/models/post_rank_request.py +0 -117
- shaped/autogen/models/rank_attribute_response.py +0 -89
- shaped/autogen/models/rank_grid_attribute_request.py +0 -91
- shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
- shaped/autogen/models/rank_grid_attribute_response.py +0 -91
- shaped/autogen/models/rank_response.py +0 -91
- shaped/autogen/models/retrieve_request.py +0 -101
- shaped/autogen/models/retrieve_response.py +0 -91
- shaped/autogen/models/retriever_top_k_override.py +0 -97
- shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
- shaped/autogen/models/segment_dataset_config.py +0 -96
- shaped/autogen/models/similar_item_request.py +0 -101
- shaped/autogen/models/similar_response.py +0 -89
- shaped/autogen/models/similar_users_request.py +0 -99
- shaped/autogen/models/successful_response.py +0 -87
- shaped/autogen/models/view_model_response.py +0 -99
- shaped-2.0.1.dist-info/RECORD +0 -73
- shaped-2.0.1.dist-info/entry_points.txt +0 -2
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/top_level.txt +0 -0
- {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/zip-safe +0 -0
|
@@ -1,263 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import json
|
|
17
|
-
import pprint
|
|
18
|
-
from pydantic import BaseModel, ConfigDict, Field, StrictStr, ValidationError, field_validator
|
|
19
|
-
from typing import Any, List, Optional
|
|
20
|
-
from shaped.autogen.models.amplitude_dataset_config import AmplitudeDatasetConfig
|
|
21
|
-
from shaped.autogen.models.aws_pinpoint_dataset_config import AWSPinpointDatasetConfig
|
|
22
|
-
from shaped.autogen.models.big_query_dataset_config import BigQueryDatasetConfig
|
|
23
|
-
from shaped.autogen.models.custom_dataset_config import CustomDatasetConfig
|
|
24
|
-
from shaped.autogen.models.mongo_db_dataset_config import MongoDBDatasetConfig
|
|
25
|
-
from shaped.autogen.models.my_sql_dataset_config import MySQLDatasetConfig
|
|
26
|
-
from shaped.autogen.models.postgres_dataset_config import PostgresDatasetConfig
|
|
27
|
-
from shaped.autogen.models.redshift_dataset_config import RedshiftDatasetConfig
|
|
28
|
-
from shaped.autogen.models.rudder_stack_dataset_config import RudderStackDatasetConfig
|
|
29
|
-
from shaped.autogen.models.segment_dataset_config import SegmentDatasetConfig
|
|
30
|
-
from shaped.autogen.models.snowflake_dataset_config import SnowflakeDatasetConfig
|
|
31
|
-
from pydantic import StrictStr, Field
|
|
32
|
-
from typing import Union, List, Set, Optional, Dict
|
|
33
|
-
from typing_extensions import Literal, Self
|
|
34
|
-
|
|
35
|
-
CREATEDATASETARGUMENTS_ONE_OF_SCHEMAS = ["AWSPinpointDatasetConfig", "AmplitudeDatasetConfig", "BigQueryDatasetConfig", "CustomDatasetConfig", "MongoDBDatasetConfig", "MySQLDatasetConfig", "PostgresDatasetConfig", "RedshiftDatasetConfig", "RudderStackDatasetConfig", "SegmentDatasetConfig", "SnowflakeDatasetConfig"]
|
|
36
|
-
|
|
37
|
-
class CreateDatasetArguments(BaseModel):
|
|
38
|
-
"""
|
|
39
|
-
CreateDatasetArguments
|
|
40
|
-
"""
|
|
41
|
-
# data type: BigQueryDatasetConfig
|
|
42
|
-
oneof_schema_1_validator: Optional[BigQueryDatasetConfig] = None
|
|
43
|
-
# data type: MongoDBDatasetConfig
|
|
44
|
-
oneof_schema_2_validator: Optional[MongoDBDatasetConfig] = None
|
|
45
|
-
# data type: SnowflakeDatasetConfig
|
|
46
|
-
oneof_schema_3_validator: Optional[SnowflakeDatasetConfig] = None
|
|
47
|
-
# data type: PostgresDatasetConfig
|
|
48
|
-
oneof_schema_4_validator: Optional[PostgresDatasetConfig] = None
|
|
49
|
-
# data type: MySQLDatasetConfig
|
|
50
|
-
oneof_schema_5_validator: Optional[MySQLDatasetConfig] = None
|
|
51
|
-
# data type: RedshiftDatasetConfig
|
|
52
|
-
oneof_schema_6_validator: Optional[RedshiftDatasetConfig] = None
|
|
53
|
-
# data type: AWSPinpointDatasetConfig
|
|
54
|
-
oneof_schema_7_validator: Optional[AWSPinpointDatasetConfig] = None
|
|
55
|
-
# data type: CustomDatasetConfig
|
|
56
|
-
oneof_schema_8_validator: Optional[CustomDatasetConfig] = None
|
|
57
|
-
# data type: AmplitudeDatasetConfig
|
|
58
|
-
oneof_schema_9_validator: Optional[AmplitudeDatasetConfig] = None
|
|
59
|
-
# data type: SegmentDatasetConfig
|
|
60
|
-
oneof_schema_10_validator: Optional[SegmentDatasetConfig] = None
|
|
61
|
-
# data type: RudderStackDatasetConfig
|
|
62
|
-
oneof_schema_11_validator: Optional[RudderStackDatasetConfig] = None
|
|
63
|
-
actual_instance: Optional[Union[AWSPinpointDatasetConfig, AmplitudeDatasetConfig, BigQueryDatasetConfig, CustomDatasetConfig, MongoDBDatasetConfig, MySQLDatasetConfig, PostgresDatasetConfig, RedshiftDatasetConfig, RudderStackDatasetConfig, SegmentDatasetConfig, SnowflakeDatasetConfig]] = None
|
|
64
|
-
one_of_schemas: Set[str] = { "AWSPinpointDatasetConfig", "AmplitudeDatasetConfig", "BigQueryDatasetConfig", "CustomDatasetConfig", "MongoDBDatasetConfig", "MySQLDatasetConfig", "PostgresDatasetConfig", "RedshiftDatasetConfig", "RudderStackDatasetConfig", "SegmentDatasetConfig", "SnowflakeDatasetConfig" }
|
|
65
|
-
|
|
66
|
-
model_config = ConfigDict(
|
|
67
|
-
validate_assignment=True,
|
|
68
|
-
protected_namespaces=(),
|
|
69
|
-
)
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
def __init__(self, *args, **kwargs) -> None:
|
|
73
|
-
if args:
|
|
74
|
-
if len(args) > 1:
|
|
75
|
-
raise ValueError("If a position argument is used, only 1 is allowed to set `actual_instance`")
|
|
76
|
-
if kwargs:
|
|
77
|
-
raise ValueError("If a position argument is used, keyword arguments cannot be used.")
|
|
78
|
-
super().__init__(actual_instance=args[0])
|
|
79
|
-
else:
|
|
80
|
-
super().__init__(**kwargs)
|
|
81
|
-
|
|
82
|
-
@field_validator('actual_instance')
|
|
83
|
-
def actual_instance_must_validate_oneof(cls, v):
|
|
84
|
-
instance = CreateDatasetArguments.model_construct()
|
|
85
|
-
error_messages = []
|
|
86
|
-
match = 0
|
|
87
|
-
# validate data type: BigQueryDatasetConfig
|
|
88
|
-
if not isinstance(v, BigQueryDatasetConfig):
|
|
89
|
-
error_messages.append(f"Error! Input type `{type(v)}` is not `BigQueryDatasetConfig`")
|
|
90
|
-
else:
|
|
91
|
-
match += 1
|
|
92
|
-
# validate data type: MongoDBDatasetConfig
|
|
93
|
-
if not isinstance(v, MongoDBDatasetConfig):
|
|
94
|
-
error_messages.append(f"Error! Input type `{type(v)}` is not `MongoDBDatasetConfig`")
|
|
95
|
-
else:
|
|
96
|
-
match += 1
|
|
97
|
-
# validate data type: SnowflakeDatasetConfig
|
|
98
|
-
if not isinstance(v, SnowflakeDatasetConfig):
|
|
99
|
-
error_messages.append(f"Error! Input type `{type(v)}` is not `SnowflakeDatasetConfig`")
|
|
100
|
-
else:
|
|
101
|
-
match += 1
|
|
102
|
-
# validate data type: PostgresDatasetConfig
|
|
103
|
-
if not isinstance(v, PostgresDatasetConfig):
|
|
104
|
-
error_messages.append(f"Error! Input type `{type(v)}` is not `PostgresDatasetConfig`")
|
|
105
|
-
else:
|
|
106
|
-
match += 1
|
|
107
|
-
# validate data type: MySQLDatasetConfig
|
|
108
|
-
if not isinstance(v, MySQLDatasetConfig):
|
|
109
|
-
error_messages.append(f"Error! Input type `{type(v)}` is not `MySQLDatasetConfig`")
|
|
110
|
-
else:
|
|
111
|
-
match += 1
|
|
112
|
-
# validate data type: RedshiftDatasetConfig
|
|
113
|
-
if not isinstance(v, RedshiftDatasetConfig):
|
|
114
|
-
error_messages.append(f"Error! Input type `{type(v)}` is not `RedshiftDatasetConfig`")
|
|
115
|
-
else:
|
|
116
|
-
match += 1
|
|
117
|
-
# validate data type: AWSPinpointDatasetConfig
|
|
118
|
-
if not isinstance(v, AWSPinpointDatasetConfig):
|
|
119
|
-
error_messages.append(f"Error! Input type `{type(v)}` is not `AWSPinpointDatasetConfig`")
|
|
120
|
-
else:
|
|
121
|
-
match += 1
|
|
122
|
-
# validate data type: CustomDatasetConfig
|
|
123
|
-
if not isinstance(v, CustomDatasetConfig):
|
|
124
|
-
error_messages.append(f"Error! Input type `{type(v)}` is not `CustomDatasetConfig`")
|
|
125
|
-
else:
|
|
126
|
-
match += 1
|
|
127
|
-
# validate data type: AmplitudeDatasetConfig
|
|
128
|
-
if not isinstance(v, AmplitudeDatasetConfig):
|
|
129
|
-
error_messages.append(f"Error! Input type `{type(v)}` is not `AmplitudeDatasetConfig`")
|
|
130
|
-
else:
|
|
131
|
-
match += 1
|
|
132
|
-
# validate data type: SegmentDatasetConfig
|
|
133
|
-
if not isinstance(v, SegmentDatasetConfig):
|
|
134
|
-
error_messages.append(f"Error! Input type `{type(v)}` is not `SegmentDatasetConfig`")
|
|
135
|
-
else:
|
|
136
|
-
match += 1
|
|
137
|
-
# validate data type: RudderStackDatasetConfig
|
|
138
|
-
if not isinstance(v, RudderStackDatasetConfig):
|
|
139
|
-
error_messages.append(f"Error! Input type `{type(v)}` is not `RudderStackDatasetConfig`")
|
|
140
|
-
else:
|
|
141
|
-
match += 1
|
|
142
|
-
if match > 1:
|
|
143
|
-
# more than 1 match
|
|
144
|
-
raise ValueError("Multiple matches found when setting `actual_instance` in CreateDatasetArguments with oneOf schemas: AWSPinpointDatasetConfig, AmplitudeDatasetConfig, BigQueryDatasetConfig, CustomDatasetConfig, MongoDBDatasetConfig, MySQLDatasetConfig, PostgresDatasetConfig, RedshiftDatasetConfig, RudderStackDatasetConfig, SegmentDatasetConfig, SnowflakeDatasetConfig. Details: " + ", ".join(error_messages))
|
|
145
|
-
elif match == 0:
|
|
146
|
-
# no match
|
|
147
|
-
raise ValueError("No match found when setting `actual_instance` in CreateDatasetArguments with oneOf schemas: AWSPinpointDatasetConfig, AmplitudeDatasetConfig, BigQueryDatasetConfig, CustomDatasetConfig, MongoDBDatasetConfig, MySQLDatasetConfig, PostgresDatasetConfig, RedshiftDatasetConfig, RudderStackDatasetConfig, SegmentDatasetConfig, SnowflakeDatasetConfig. Details: " + ", ".join(error_messages))
|
|
148
|
-
else:
|
|
149
|
-
return v
|
|
150
|
-
|
|
151
|
-
@classmethod
|
|
152
|
-
def from_dict(cls, obj: Union[str, Dict[str, Any]]) -> Self:
|
|
153
|
-
return cls.from_json(json.dumps(obj))
|
|
154
|
-
|
|
155
|
-
@classmethod
|
|
156
|
-
def from_json(cls, json_str: str) -> Self:
|
|
157
|
-
"""Returns the object represented by the json string"""
|
|
158
|
-
instance = cls.model_construct()
|
|
159
|
-
error_messages = []
|
|
160
|
-
match = 0
|
|
161
|
-
|
|
162
|
-
# deserialize data into BigQueryDatasetConfig
|
|
163
|
-
try:
|
|
164
|
-
instance.actual_instance = BigQueryDatasetConfig.from_json(json_str)
|
|
165
|
-
match += 1
|
|
166
|
-
except (ValidationError, ValueError) as e:
|
|
167
|
-
error_messages.append(str(e))
|
|
168
|
-
# deserialize data into MongoDBDatasetConfig
|
|
169
|
-
try:
|
|
170
|
-
instance.actual_instance = MongoDBDatasetConfig.from_json(json_str)
|
|
171
|
-
match += 1
|
|
172
|
-
except (ValidationError, ValueError) as e:
|
|
173
|
-
error_messages.append(str(e))
|
|
174
|
-
# deserialize data into SnowflakeDatasetConfig
|
|
175
|
-
try:
|
|
176
|
-
instance.actual_instance = SnowflakeDatasetConfig.from_json(json_str)
|
|
177
|
-
match += 1
|
|
178
|
-
except (ValidationError, ValueError) as e:
|
|
179
|
-
error_messages.append(str(e))
|
|
180
|
-
# deserialize data into PostgresDatasetConfig
|
|
181
|
-
try:
|
|
182
|
-
instance.actual_instance = PostgresDatasetConfig.from_json(json_str)
|
|
183
|
-
match += 1
|
|
184
|
-
except (ValidationError, ValueError) as e:
|
|
185
|
-
error_messages.append(str(e))
|
|
186
|
-
# deserialize data into MySQLDatasetConfig
|
|
187
|
-
try:
|
|
188
|
-
instance.actual_instance = MySQLDatasetConfig.from_json(json_str)
|
|
189
|
-
match += 1
|
|
190
|
-
except (ValidationError, ValueError) as e:
|
|
191
|
-
error_messages.append(str(e))
|
|
192
|
-
# deserialize data into RedshiftDatasetConfig
|
|
193
|
-
try:
|
|
194
|
-
instance.actual_instance = RedshiftDatasetConfig.from_json(json_str)
|
|
195
|
-
match += 1
|
|
196
|
-
except (ValidationError, ValueError) as e:
|
|
197
|
-
error_messages.append(str(e))
|
|
198
|
-
# deserialize data into AWSPinpointDatasetConfig
|
|
199
|
-
try:
|
|
200
|
-
instance.actual_instance = AWSPinpointDatasetConfig.from_json(json_str)
|
|
201
|
-
match += 1
|
|
202
|
-
except (ValidationError, ValueError) as e:
|
|
203
|
-
error_messages.append(str(e))
|
|
204
|
-
# deserialize data into CustomDatasetConfig
|
|
205
|
-
try:
|
|
206
|
-
instance.actual_instance = CustomDatasetConfig.from_json(json_str)
|
|
207
|
-
match += 1
|
|
208
|
-
except (ValidationError, ValueError) as e:
|
|
209
|
-
error_messages.append(str(e))
|
|
210
|
-
# deserialize data into AmplitudeDatasetConfig
|
|
211
|
-
try:
|
|
212
|
-
instance.actual_instance = AmplitudeDatasetConfig.from_json(json_str)
|
|
213
|
-
match += 1
|
|
214
|
-
except (ValidationError, ValueError) as e:
|
|
215
|
-
error_messages.append(str(e))
|
|
216
|
-
# deserialize data into SegmentDatasetConfig
|
|
217
|
-
try:
|
|
218
|
-
instance.actual_instance = SegmentDatasetConfig.from_json(json_str)
|
|
219
|
-
match += 1
|
|
220
|
-
except (ValidationError, ValueError) as e:
|
|
221
|
-
error_messages.append(str(e))
|
|
222
|
-
# deserialize data into RudderStackDatasetConfig
|
|
223
|
-
try:
|
|
224
|
-
instance.actual_instance = RudderStackDatasetConfig.from_json(json_str)
|
|
225
|
-
match += 1
|
|
226
|
-
except (ValidationError, ValueError) as e:
|
|
227
|
-
error_messages.append(str(e))
|
|
228
|
-
|
|
229
|
-
if match > 1:
|
|
230
|
-
# more than 1 match
|
|
231
|
-
raise ValueError("Multiple matches found when deserializing the JSON string into CreateDatasetArguments with oneOf schemas: AWSPinpointDatasetConfig, AmplitudeDatasetConfig, BigQueryDatasetConfig, CustomDatasetConfig, MongoDBDatasetConfig, MySQLDatasetConfig, PostgresDatasetConfig, RedshiftDatasetConfig, RudderStackDatasetConfig, SegmentDatasetConfig, SnowflakeDatasetConfig. Details: " + ", ".join(error_messages))
|
|
232
|
-
elif match == 0:
|
|
233
|
-
# no match
|
|
234
|
-
raise ValueError("No match found when deserializing the JSON string into CreateDatasetArguments with oneOf schemas: AWSPinpointDatasetConfig, AmplitudeDatasetConfig, BigQueryDatasetConfig, CustomDatasetConfig, MongoDBDatasetConfig, MySQLDatasetConfig, PostgresDatasetConfig, RedshiftDatasetConfig, RudderStackDatasetConfig, SegmentDatasetConfig, SnowflakeDatasetConfig. Details: " + ", ".join(error_messages))
|
|
235
|
-
else:
|
|
236
|
-
return instance
|
|
237
|
-
|
|
238
|
-
def to_json(self) -> str:
|
|
239
|
-
"""Returns the JSON representation of the actual instance"""
|
|
240
|
-
if self.actual_instance is None:
|
|
241
|
-
return "null"
|
|
242
|
-
|
|
243
|
-
if hasattr(self.actual_instance, "to_json") and callable(self.actual_instance.to_json):
|
|
244
|
-
return self.actual_instance.to_json()
|
|
245
|
-
else:
|
|
246
|
-
return json.dumps(self.actual_instance)
|
|
247
|
-
|
|
248
|
-
def to_dict(self) -> Optional[Union[Dict[str, Any], AWSPinpointDatasetConfig, AmplitudeDatasetConfig, BigQueryDatasetConfig, CustomDatasetConfig, MongoDBDatasetConfig, MySQLDatasetConfig, PostgresDatasetConfig, RedshiftDatasetConfig, RudderStackDatasetConfig, SegmentDatasetConfig, SnowflakeDatasetConfig]]:
|
|
249
|
-
"""Returns the dict representation of the actual instance"""
|
|
250
|
-
if self.actual_instance is None:
|
|
251
|
-
return None
|
|
252
|
-
|
|
253
|
-
if hasattr(self.actual_instance, "to_dict") and callable(self.actual_instance.to_dict):
|
|
254
|
-
return self.actual_instance.to_dict()
|
|
255
|
-
else:
|
|
256
|
-
# primitive type
|
|
257
|
-
return self.actual_instance
|
|
258
|
-
|
|
259
|
-
def to_str(self) -> str:
|
|
260
|
-
"""Returns the string representation of the actual instance"""
|
|
261
|
-
return pprint.pformat(self.model_dump())
|
|
262
|
-
|
|
263
|
-
|
|
@@ -1,87 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, StrictFloat, StrictInt
|
|
21
|
-
from typing import Any, ClassVar, Dict, List, Union
|
|
22
|
-
from typing import Optional, Set
|
|
23
|
-
from typing_extensions import Self
|
|
24
|
-
|
|
25
|
-
class CreateEmbeddingResponse(BaseModel):
|
|
26
|
-
"""
|
|
27
|
-
CreateEmbeddingResponse
|
|
28
|
-
""" # noqa: E501
|
|
29
|
-
embeddings: List[List[Union[StrictFloat, StrictInt]]]
|
|
30
|
-
__properties: ClassVar[List[str]] = ["embeddings"]
|
|
31
|
-
|
|
32
|
-
model_config = ConfigDict(
|
|
33
|
-
populate_by_name=True,
|
|
34
|
-
validate_assignment=True,
|
|
35
|
-
protected_namespaces=(),
|
|
36
|
-
)
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
def to_str(self) -> str:
|
|
40
|
-
"""Returns the string representation of the model using alias"""
|
|
41
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
42
|
-
|
|
43
|
-
def to_json(self) -> str:
|
|
44
|
-
"""Returns the JSON representation of the model using alias"""
|
|
45
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
46
|
-
return json.dumps(self.to_dict())
|
|
47
|
-
|
|
48
|
-
@classmethod
|
|
49
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
50
|
-
"""Create an instance of CreateEmbeddingResponse from a JSON string"""
|
|
51
|
-
return cls.from_dict(json.loads(json_str))
|
|
52
|
-
|
|
53
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
54
|
-
"""Return the dictionary representation of the model using alias.
|
|
55
|
-
|
|
56
|
-
This has the following differences from calling pydantic's
|
|
57
|
-
`self.model_dump(by_alias=True)`:
|
|
58
|
-
|
|
59
|
-
* `None` is only added to the output dict for nullable fields that
|
|
60
|
-
were set at model initialization. Other fields with value `None`
|
|
61
|
-
are ignored.
|
|
62
|
-
"""
|
|
63
|
-
excluded_fields: Set[str] = set([
|
|
64
|
-
])
|
|
65
|
-
|
|
66
|
-
_dict = self.model_dump(
|
|
67
|
-
by_alias=True,
|
|
68
|
-
exclude=excluded_fields,
|
|
69
|
-
exclude_none=True,
|
|
70
|
-
)
|
|
71
|
-
return _dict
|
|
72
|
-
|
|
73
|
-
@classmethod
|
|
74
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
75
|
-
"""Create an instance of CreateEmbeddingResponse from a dict"""
|
|
76
|
-
if obj is None:
|
|
77
|
-
return None
|
|
78
|
-
|
|
79
|
-
if not isinstance(obj, dict):
|
|
80
|
-
return cls.model_validate(obj)
|
|
81
|
-
|
|
82
|
-
_obj = cls.model_validate({
|
|
83
|
-
"embeddings": obj.get("embeddings")
|
|
84
|
-
})
|
|
85
|
-
return _obj
|
|
86
|
-
|
|
87
|
-
|
|
@@ -1,89 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, StrictInt, StrictStr
|
|
21
|
-
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
-
from typing import Optional, Set
|
|
23
|
-
from typing_extensions import Self
|
|
24
|
-
|
|
25
|
-
class CreateItemEmbeddingRequest(BaseModel):
|
|
26
|
-
"""
|
|
27
|
-
CreateItemEmbeddingRequest
|
|
28
|
-
""" # noqa: E501
|
|
29
|
-
item_ids: List[StrictStr]
|
|
30
|
-
dimension: Optional[StrictInt] = None
|
|
31
|
-
__properties: ClassVar[List[str]] = ["item_ids", "dimension"]
|
|
32
|
-
|
|
33
|
-
model_config = ConfigDict(
|
|
34
|
-
populate_by_name=True,
|
|
35
|
-
validate_assignment=True,
|
|
36
|
-
protected_namespaces=(),
|
|
37
|
-
)
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def to_str(self) -> str:
|
|
41
|
-
"""Returns the string representation of the model using alias"""
|
|
42
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
43
|
-
|
|
44
|
-
def to_json(self) -> str:
|
|
45
|
-
"""Returns the JSON representation of the model using alias"""
|
|
46
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
47
|
-
return json.dumps(self.to_dict())
|
|
48
|
-
|
|
49
|
-
@classmethod
|
|
50
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
51
|
-
"""Create an instance of CreateItemEmbeddingRequest from a JSON string"""
|
|
52
|
-
return cls.from_dict(json.loads(json_str))
|
|
53
|
-
|
|
54
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
55
|
-
"""Return the dictionary representation of the model using alias.
|
|
56
|
-
|
|
57
|
-
This has the following differences from calling pydantic's
|
|
58
|
-
`self.model_dump(by_alias=True)`:
|
|
59
|
-
|
|
60
|
-
* `None` is only added to the output dict for nullable fields that
|
|
61
|
-
were set at model initialization. Other fields with value `None`
|
|
62
|
-
are ignored.
|
|
63
|
-
"""
|
|
64
|
-
excluded_fields: Set[str] = set([
|
|
65
|
-
])
|
|
66
|
-
|
|
67
|
-
_dict = self.model_dump(
|
|
68
|
-
by_alias=True,
|
|
69
|
-
exclude=excluded_fields,
|
|
70
|
-
exclude_none=True,
|
|
71
|
-
)
|
|
72
|
-
return _dict
|
|
73
|
-
|
|
74
|
-
@classmethod
|
|
75
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
76
|
-
"""Create an instance of CreateItemEmbeddingRequest from a dict"""
|
|
77
|
-
if obj is None:
|
|
78
|
-
return None
|
|
79
|
-
|
|
80
|
-
if not isinstance(obj, dict):
|
|
81
|
-
return cls.model_validate(obj)
|
|
82
|
-
|
|
83
|
-
_obj = cls.model_validate({
|
|
84
|
-
"item_ids": obj.get("item_ids"),
|
|
85
|
-
"dimension": obj.get("dimension")
|
|
86
|
-
})
|
|
87
|
-
return _obj
|
|
88
|
-
|
|
89
|
-
|
|
@@ -1,107 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict
|
|
21
|
-
from typing import Any, ClassVar, Dict, List
|
|
22
|
-
from shaped.autogen.models.connectors_inner import ConnectorsInner
|
|
23
|
-
from shaped.autogen.models.fetch_config import FetchConfig
|
|
24
|
-
from shaped.autogen.models.model_config import ModelConfig
|
|
25
|
-
from typing import Optional, Set
|
|
26
|
-
from typing_extensions import Self
|
|
27
|
-
|
|
28
|
-
class CreateModelArguments(BaseModel):
|
|
29
|
-
"""
|
|
30
|
-
CreateModelArguments
|
|
31
|
-
""" # noqa: E501
|
|
32
|
-
model: ModelConfig
|
|
33
|
-
connectors: List[ConnectorsInner]
|
|
34
|
-
fetch: FetchConfig
|
|
35
|
-
__properties: ClassVar[List[str]] = ["model", "connectors", "fetch"]
|
|
36
|
-
|
|
37
|
-
model_config = ConfigDict(
|
|
38
|
-
populate_by_name=True,
|
|
39
|
-
validate_assignment=True,
|
|
40
|
-
protected_namespaces=(),
|
|
41
|
-
)
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
def to_str(self) -> str:
|
|
45
|
-
"""Returns the string representation of the model using alias"""
|
|
46
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
47
|
-
|
|
48
|
-
def to_json(self) -> str:
|
|
49
|
-
"""Returns the JSON representation of the model using alias"""
|
|
50
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
51
|
-
return json.dumps(self.to_dict())
|
|
52
|
-
|
|
53
|
-
@classmethod
|
|
54
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
55
|
-
"""Create an instance of CreateModelArguments from a JSON string"""
|
|
56
|
-
return cls.from_dict(json.loads(json_str))
|
|
57
|
-
|
|
58
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
59
|
-
"""Return the dictionary representation of the model using alias.
|
|
60
|
-
|
|
61
|
-
This has the following differences from calling pydantic's
|
|
62
|
-
`self.model_dump(by_alias=True)`:
|
|
63
|
-
|
|
64
|
-
* `None` is only added to the output dict for nullable fields that
|
|
65
|
-
were set at model initialization. Other fields with value `None`
|
|
66
|
-
are ignored.
|
|
67
|
-
"""
|
|
68
|
-
excluded_fields: Set[str] = set([
|
|
69
|
-
])
|
|
70
|
-
|
|
71
|
-
_dict = self.model_dump(
|
|
72
|
-
by_alias=True,
|
|
73
|
-
exclude=excluded_fields,
|
|
74
|
-
exclude_none=True,
|
|
75
|
-
)
|
|
76
|
-
# override the default output from pydantic by calling `to_dict()` of model
|
|
77
|
-
if self.model:
|
|
78
|
-
_dict['model'] = self.model.to_dict()
|
|
79
|
-
# override the default output from pydantic by calling `to_dict()` of each item in connectors (list)
|
|
80
|
-
_items = []
|
|
81
|
-
if self.connectors:
|
|
82
|
-
for _item_connectors in self.connectors:
|
|
83
|
-
if _item_connectors:
|
|
84
|
-
_items.append(_item_connectors.to_dict())
|
|
85
|
-
_dict['connectors'] = _items
|
|
86
|
-
# override the default output from pydantic by calling `to_dict()` of fetch
|
|
87
|
-
if self.fetch:
|
|
88
|
-
_dict['fetch'] = self.fetch.to_dict()
|
|
89
|
-
return _dict
|
|
90
|
-
|
|
91
|
-
@classmethod
|
|
92
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
93
|
-
"""Create an instance of CreateModelArguments from a dict"""
|
|
94
|
-
if obj is None:
|
|
95
|
-
return None
|
|
96
|
-
|
|
97
|
-
if not isinstance(obj, dict):
|
|
98
|
-
return cls.model_validate(obj)
|
|
99
|
-
|
|
100
|
-
_obj = cls.model_validate({
|
|
101
|
-
"model": ModelConfig.from_dict(obj["model"]) if obj.get("model") is not None else None,
|
|
102
|
-
"connectors": [ConnectorsInner.from_dict(_item) for _item in obj["connectors"]] if obj.get("connectors") is not None else None,
|
|
103
|
-
"fetch": FetchConfig.from_dict(obj["fetch"]) if obj.get("fetch") is not None else None
|
|
104
|
-
})
|
|
105
|
-
return _obj
|
|
106
|
-
|
|
107
|
-
|
|
@@ -1,87 +0,0 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Shaped API
|
|
5
|
-
|
|
6
|
-
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
|
|
7
|
-
|
|
8
|
-
The version of the OpenAPI document: 1.0.1
|
|
9
|
-
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
-
|
|
11
|
-
Do not edit the class manually.
|
|
12
|
-
""" # noqa: E501
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
from __future__ import annotations
|
|
16
|
-
import pprint
|
|
17
|
-
import re # noqa: F401
|
|
18
|
-
import json
|
|
19
|
-
|
|
20
|
-
from pydantic import BaseModel, ConfigDict, StrictStr
|
|
21
|
-
from typing import Any, ClassVar, Dict, List
|
|
22
|
-
from typing import Optional, Set
|
|
23
|
-
from typing_extensions import Self
|
|
24
|
-
|
|
25
|
-
class CreateModelResponse(BaseModel):
|
|
26
|
-
"""
|
|
27
|
-
CreateModelResponse
|
|
28
|
-
""" # noqa: E501
|
|
29
|
-
model_url: StrictStr
|
|
30
|
-
__properties: ClassVar[List[str]] = ["model_url"]
|
|
31
|
-
|
|
32
|
-
model_config = ConfigDict(
|
|
33
|
-
populate_by_name=True,
|
|
34
|
-
validate_assignment=True,
|
|
35
|
-
protected_namespaces=(),
|
|
36
|
-
)
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
def to_str(self) -> str:
|
|
40
|
-
"""Returns the string representation of the model using alias"""
|
|
41
|
-
return pprint.pformat(self.model_dump(by_alias=True))
|
|
42
|
-
|
|
43
|
-
def to_json(self) -> str:
|
|
44
|
-
"""Returns the JSON representation of the model using alias"""
|
|
45
|
-
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
46
|
-
return json.dumps(self.to_dict())
|
|
47
|
-
|
|
48
|
-
@classmethod
|
|
49
|
-
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
50
|
-
"""Create an instance of CreateModelResponse from a JSON string"""
|
|
51
|
-
return cls.from_dict(json.loads(json_str))
|
|
52
|
-
|
|
53
|
-
def to_dict(self) -> Dict[str, Any]:
|
|
54
|
-
"""Return the dictionary representation of the model using alias.
|
|
55
|
-
|
|
56
|
-
This has the following differences from calling pydantic's
|
|
57
|
-
`self.model_dump(by_alias=True)`:
|
|
58
|
-
|
|
59
|
-
* `None` is only added to the output dict for nullable fields that
|
|
60
|
-
were set at model initialization. Other fields with value `None`
|
|
61
|
-
are ignored.
|
|
62
|
-
"""
|
|
63
|
-
excluded_fields: Set[str] = set([
|
|
64
|
-
])
|
|
65
|
-
|
|
66
|
-
_dict = self.model_dump(
|
|
67
|
-
by_alias=True,
|
|
68
|
-
exclude=excluded_fields,
|
|
69
|
-
exclude_none=True,
|
|
70
|
-
)
|
|
71
|
-
return _dict
|
|
72
|
-
|
|
73
|
-
@classmethod
|
|
74
|
-
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
75
|
-
"""Create an instance of CreateModelResponse from a dict"""
|
|
76
|
-
if obj is None:
|
|
77
|
-
return None
|
|
78
|
-
|
|
79
|
-
if not isinstance(obj, dict):
|
|
80
|
-
return cls.model_validate(obj)
|
|
81
|
-
|
|
82
|
-
_obj = cls.model_validate({
|
|
83
|
-
"model_url": obj.get("model_url")
|
|
84
|
-
})
|
|
85
|
-
return _obj
|
|
86
|
-
|
|
87
|
-
|