shaped 2.0.1__py3-none-any.whl → 2.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (341) hide show
  1. shaped/__init__.py +59 -4
  2. shaped/autogen/__init__.py +527 -66
  3. shaped/autogen/api/__init__.py +4 -3
  4. shaped/autogen/api/engine_api.py +1467 -0
  5. shaped/autogen/api/{dataset_api.py → query_api.py} +159 -194
  6. shaped/autogen/api/table_api.py +1494 -0
  7. shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
  8. shaped/autogen/api_client.py +18 -11
  9. shaped/autogen/configuration.py +22 -9
  10. shaped/autogen/exceptions.py +25 -5
  11. shaped/autogen/models/__init__.py +247 -52
  12. shaped/autogen/models/ai_enrichment_view_config.py +123 -0
  13. shaped/autogen/models/{path.py → algorithm.py} +19 -19
  14. shaped/autogen/models/amplitude_table_config.py +106 -0
  15. shaped/autogen/models/ascending.py +148 -0
  16. shaped/autogen/models/attn_dropout_prob.py +136 -0
  17. shaped/autogen/models/attribute_journey.py +124 -0
  18. shaped/autogen/models/attribute_value.py +178 -0
  19. shaped/autogen/models/autoscaling_config.py +95 -0
  20. shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
  21. shaped/autogen/models/batch_size.py +136 -0
  22. shaped/autogen/models/batch_size1.py +136 -0
  23. shaped/autogen/models/batch_size2.py +136 -0
  24. shaped/autogen/models/big_query_table_config.py +147 -0
  25. shaped/autogen/models/bm25.py +136 -0
  26. shaped/autogen/models/boosted_reorder_step.py +125 -0
  27. shaped/autogen/models/canary_rollout.py +99 -0
  28. shaped/autogen/models/candidate_attributes_retrieve_step.py +113 -0
  29. shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
  30. shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
  31. shaped/autogen/models/clickhouse_table_config.py +146 -0
  32. shaped/autogen/models/column_order_retrieve_step.py +123 -0
  33. shaped/autogen/models/column_ordering.py +91 -0
  34. shaped/autogen/models/create_table_response.py +87 -0
  35. shaped/autogen/models/create_view_response.py +87 -0
  36. shaped/autogen/models/custom_table_config.py +135 -0
  37. shaped/autogen/models/data_compute_config.py +89 -0
  38. shaped/autogen/models/data_config.py +145 -0
  39. shaped/autogen/models/data_config_interaction_table.py +146 -0
  40. shaped/autogen/models/data_split_config.py +88 -0
  41. shaped/autogen/models/data_split_strategy.py +37 -0
  42. shaped/autogen/models/data_tier.py +37 -0
  43. shaped/autogen/models/default.py +246 -0
  44. shaped/autogen/models/delete_engine_response.py +87 -0
  45. shaped/autogen/models/delete_table_response.py +87 -0
  46. shaped/autogen/models/delete_view_response.py +87 -0
  47. shaped/autogen/models/deployment_config.py +117 -0
  48. shaped/autogen/models/distance_function.py +38 -0
  49. shaped/autogen/models/diversity_reorder_step.py +137 -0
  50. shaped/autogen/models/dropout_rate.py +136 -0
  51. shaped/autogen/models/dynamo_db_table_config.py +160 -0
  52. shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
  53. shaped/autogen/models/embedder_batch_size.py +136 -0
  54. shaped/autogen/models/embedding_config.py +93 -0
  55. shaped/autogen/models/embedding_dim.py +136 -0
  56. shaped/autogen/models/embedding_dims.py +136 -0
  57. shaped/autogen/models/embedding_size.py +136 -0
  58. shaped/autogen/models/encoder.py +140 -0
  59. shaped/autogen/models/encoding_pooling_strategy.py +38 -0
  60. shaped/autogen/models/engine.py +109 -0
  61. shaped/autogen/models/engine_config_v2.py +152 -0
  62. shaped/autogen/models/engine_details_response.py +120 -0
  63. shaped/autogen/models/engine_schema.py +113 -0
  64. shaped/autogen/models/engine_schema_user_inner.py +146 -0
  65. shaped/autogen/models/entity_config.py +109 -0
  66. shaped/autogen/models/entity_journey.py +161 -0
  67. shaped/autogen/models/entity_type.py +38 -0
  68. shaped/autogen/models/evaluation_config.py +92 -0
  69. shaped/autogen/models/exploration_reorder_step.py +125 -0
  70. shaped/autogen/models/expression_filter_step.py +106 -0
  71. shaped/autogen/models/factors.py +136 -0
  72. shaped/autogen/models/factors1.py +136 -0
  73. shaped/autogen/models/feature.py +90 -0
  74. shaped/autogen/models/feature_type.py +60 -0
  75. shaped/autogen/models/file_table_config.py +112 -0
  76. shaped/autogen/models/filter_config.py +99 -0
  77. shaped/autogen/models/filter_dataset.py +164 -0
  78. shaped/autogen/models/filter_index_type.py +36 -0
  79. shaped/autogen/models/filter_retrieve_step.py +113 -0
  80. shaped/autogen/models/filter_step_explanation.py +165 -0
  81. shaped/autogen/models/filter_table.py +140 -0
  82. shaped/autogen/models/filter_type.py +134 -0
  83. shaped/autogen/models/global_filter.py +102 -0
  84. shaped/autogen/models/hidden_dropout_prob.py +136 -0
  85. shaped/autogen/models/hidden_size.py +136 -0
  86. shaped/autogen/models/hidden_size1.py +136 -0
  87. shaped/autogen/models/http_problem_response.py +115 -0
  88. shaped/autogen/models/http_validation_error.py +2 -2
  89. shaped/autogen/models/hugging_face_encoder.py +115 -0
  90. shaped/autogen/models/iceberg_table_config.py +154 -0
  91. shaped/autogen/models/index_config.py +101 -0
  92. shaped/autogen/models/inner_entity_id.py +144 -0
  93. shaped/autogen/models/inner_size.py +136 -0
  94. shaped/autogen/models/inner_size1.py +136 -0
  95. shaped/autogen/models/inner_uid.py +144 -0
  96. shaped/autogen/models/interaction_config.py +122 -0
  97. shaped/autogen/models/interaction_pooling_encoder.py +104 -0
  98. shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
  99. shaped/autogen/models/item_attribute_pooling_encoder.py +111 -0
  100. shaped/autogen/models/journey.py +140 -0
  101. shaped/autogen/models/kafka_table_config.py +129 -0
  102. shaped/autogen/models/kinesis_table_config.py +140 -0
  103. shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
  104. shaped/autogen/models/label.py +90 -0
  105. shaped/autogen/models/label_type.py +36 -0
  106. shaped/autogen/models/laplace_smoothing.py +136 -0
  107. shaped/autogen/models/latency_scaling_policy.py +112 -0
  108. shaped/autogen/models/learning_rate.py +136 -0
  109. shaped/autogen/models/learning_rate1.py +136 -0
  110. shaped/autogen/models/learning_rate2.py +136 -0
  111. shaped/autogen/models/learning_rate3.py +136 -0
  112. shaped/autogen/models/lexical_search_mode.py +99 -0
  113. shaped/autogen/models/list_engines_response.py +95 -0
  114. shaped/autogen/models/list_tables_response.py +95 -0
  115. shaped/autogen/models/list_views_response.py +95 -0
  116. shaped/autogen/models/location_inner.py +138 -0
  117. shaped/autogen/models/loss_types.py +37 -0
  118. shaped/autogen/models/lr.py +136 -0
  119. shaped/autogen/models/lr1.py +136 -0
  120. shaped/autogen/models/lr2.py +136 -0
  121. shaped/autogen/models/max_depth.py +136 -0
  122. shaped/autogen/models/max_leaves.py +136 -0
  123. shaped/autogen/models/max_seq_length.py +136 -0
  124. shaped/autogen/models/max_seq_length1.py +136 -0
  125. shaped/autogen/models/max_seq_length2.py +136 -0
  126. shaped/autogen/models/mode.py +134 -0
  127. shaped/autogen/models/mode1.py +136 -0
  128. shaped/autogen/models/mode2.py +150 -0
  129. shaped/autogen/models/models_inner.py +308 -0
  130. shaped/autogen/models/mongo_db_table_config.py +147 -0
  131. shaped/autogen/models/mssql_table_config.py +155 -0
  132. shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
  133. shaped/autogen/models/n_epochs.py +136 -0
  134. shaped/autogen/models/n_epochs1.py +136 -0
  135. shaped/autogen/models/n_epochs2.py +136 -0
  136. shaped/autogen/models/n_estimators.py +136 -0
  137. shaped/autogen/models/n_heads.py +136 -0
  138. shaped/autogen/models/n_layers.py +136 -0
  139. shaped/autogen/models/neg_per_positive.py +136 -0
  140. shaped/autogen/models/negative_samples_count.py +136 -0
  141. shaped/autogen/models/ngram_tokenizer.py +103 -0
  142. shaped/autogen/models/no_op_config.py +117 -0
  143. shaped/autogen/models/num_blocks.py +136 -0
  144. shaped/autogen/models/num_heads.py +136 -0
  145. shaped/autogen/models/num_leaves.py +136 -0
  146. shaped/autogen/models/objective.py +40 -0
  147. shaped/autogen/models/objective1.py +134 -0
  148. shaped/autogen/models/online_store_config.py +89 -0
  149. shaped/autogen/models/pagination_config.py +87 -0
  150. shaped/autogen/models/parameter_definition.py +96 -0
  151. shaped/autogen/models/parameters_value.py +240 -0
  152. shaped/autogen/models/passthrough_score.py +104 -0
  153. shaped/autogen/models/personal_filter.py +104 -0
  154. shaped/autogen/models/pipeline_stage_explanation.py +118 -0
  155. shaped/autogen/models/policy.py +134 -0
  156. shaped/autogen/models/pool_fn.py +152 -0
  157. shaped/autogen/models/pooling_function.py +37 -0
  158. shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
  159. shaped/autogen/models/posthog_table_config.py +133 -0
  160. shaped/autogen/models/prebuilt_filter_step.py +113 -0
  161. shaped/autogen/models/precomputed_item_embedding.py +99 -0
  162. shaped/autogen/models/precomputed_user_embedding.py +99 -0
  163. shaped/autogen/models/query.py +136 -0
  164. shaped/autogen/models/query1.py +136 -0
  165. shaped/autogen/models/query_any_of.py +172 -0
  166. shaped/autogen/models/query_config.py +140 -0
  167. shaped/autogen/models/query_definition.py +106 -0
  168. shaped/autogen/models/query_encoder.py +194 -0
  169. shaped/autogen/models/query_explanation.py +201 -0
  170. shaped/autogen/models/query_request.py +121 -0
  171. shaped/autogen/models/query_result.py +113 -0
  172. shaped/autogen/models/query_table_config.py +99 -0
  173. shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
  174. shaped/autogen/models/rank_query_config.py +167 -0
  175. shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
  176. shaped/autogen/models/rank_query_config_reorder_inner.py +186 -0
  177. shaped/autogen/models/rank_query_config_retrieve_inner.py +265 -0
  178. shaped/autogen/models/recreate_rollout.py +97 -0
  179. shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
  180. shaped/autogen/models/reference_table_config.py +113 -0
  181. shaped/autogen/models/regularization.py +136 -0
  182. shaped/autogen/models/reorder_inner.py +149 -0
  183. shaped/autogen/models/reorder_step_explanation.py +207 -0
  184. shaped/autogen/models/request.py +378 -0
  185. shaped/autogen/models/request1.py +140 -0
  186. shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
  187. shaped/autogen/models/resource_config.py +100 -0
  188. shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
  189. shaped/autogen/models/result.py +132 -0
  190. shaped/autogen/models/result_embeddings_value.py +127 -0
  191. shaped/autogen/models/retrieval_scores_value.py +127 -0
  192. shaped/autogen/models/retrieve_inner.py +196 -0
  193. shaped/autogen/models/retrieve_step_explanation.py +172 -0
  194. shaped/autogen/models/retriever.py +196 -0
  195. shaped/autogen/models/retriever1.py +196 -0
  196. shaped/autogen/models/rollout_config.py +91 -0
  197. shaped/autogen/models/rudderstack_table_config.py +106 -0
  198. shaped/autogen/models/sampling_strategy.py +36 -0
  199. shaped/autogen/models/saved_query_info_response.py +103 -0
  200. shaped/autogen/models/saved_query_list_response.py +87 -0
  201. shaped/autogen/models/saved_query_request.py +115 -0
  202. shaped/autogen/models/schema_config.py +117 -0
  203. shaped/autogen/models/score.py +134 -0
  204. shaped/autogen/models/score_ensemble.py +127 -0
  205. shaped/autogen/models/score_ensemble_policy_config.py +165 -0
  206. shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +755 -0
  207. shaped/autogen/models/score_step_explanation.py +224 -0
  208. shaped/autogen/models/search_config.py +105 -0
  209. shaped/autogen/models/segment_table_config.py +106 -0
  210. shaped/autogen/models/sequence_length.py +136 -0
  211. shaped/autogen/models/server_config.py +100 -0
  212. shaped/autogen/models/setup_engine_response.py +87 -0
  213. shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +154 -0
  214. shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +160 -0
  215. shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +215 -0
  216. shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +156 -0
  217. shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +141 -0
  218. shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +211 -0
  219. shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
  220. shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +195 -0
  221. shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +245 -0
  222. shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
  223. shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +161 -0
  224. shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +108 -0
  225. shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +143 -0
  226. shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
  227. shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +230 -0
  228. shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
  229. shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +165 -0
  230. shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +153 -0
  231. shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +137 -0
  232. shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +155 -0
  233. shaped/autogen/models/shopify_table_config.py +156 -0
  234. shaped/autogen/models/similarity_retrieve_step.py +123 -0
  235. shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
  236. shaped/autogen/models/sql_transform_type.py +37 -0
  237. shaped/autogen/models/sql_view_config.py +111 -0
  238. shaped/autogen/models/stemmer_tokenizer.py +105 -0
  239. shaped/autogen/models/step_explanation.py +137 -0
  240. shaped/autogen/models/steps_inner.py +179 -0
  241. shaped/autogen/models/strategy.py +134 -0
  242. shaped/autogen/models/table.py +102 -0
  243. shaped/autogen/models/table_deployment_type.py +38 -0
  244. shaped/autogen/models/table_insert_arguments.py +87 -0
  245. shaped/autogen/models/table_insert_response.py +87 -0
  246. shaped/autogen/models/text_encoding.py +148 -0
  247. shaped/autogen/models/text_search_retrieve_step.py +121 -0
  248. shaped/autogen/models/time_frequency.py +136 -0
  249. shaped/autogen/models/time_window.py +136 -0
  250. shaped/autogen/models/time_window_in_days.py +154 -0
  251. shaped/autogen/models/tokenizer.py +149 -0
  252. shaped/autogen/models/trained_model_encoder.py +99 -0
  253. shaped/autogen/models/training_compute_config.py +99 -0
  254. shaped/autogen/models/training_config.py +121 -0
  255. shaped/autogen/models/training_config_models_inner.py +540 -0
  256. shaped/autogen/models/training_strategy.py +37 -0
  257. shaped/autogen/models/transform_status.py +41 -0
  258. shaped/autogen/models/trending_mode.py +37 -0
  259. shaped/autogen/models/truncate_filter_step.py +106 -0
  260. shaped/autogen/models/tunable_bool.py +97 -0
  261. shaped/autogen/models/tunable_float.py +118 -0
  262. shaped/autogen/models/tunable_int.py +118 -0
  263. shaped/autogen/models/tunable_int_categorical.py +99 -0
  264. shaped/autogen/models/tunable_string.py +99 -0
  265. shaped/autogen/models/tuning_config.py +89 -0
  266. shaped/autogen/models/type.py +150 -0
  267. shaped/autogen/models/update_table_response.py +87 -0
  268. shaped/autogen/models/update_view_response.py +87 -0
  269. shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
  270. shaped/autogen/models/user_inner.py +134 -0
  271. shaped/autogen/models/val_split.py +136 -0
  272. shaped/autogen/models/validation_error.py +13 -3
  273. shaped/autogen/models/validation_error_loc_inner.py +150 -0
  274. shaped/autogen/models/value_type.py +7 -5
  275. shaped/autogen/models/vector_search_mode.py +101 -0
  276. shaped/autogen/models/view.py +104 -0
  277. shaped/autogen/models/view_details_ai.py +140 -0
  278. shaped/autogen/models/view_details_ai_schema_value.py +153 -0
  279. shaped/autogen/models/view_details_sql.py +140 -0
  280. shaped/autogen/models/view_status.py +41 -0
  281. shaped/autogen/models/weight_decay.py +136 -0
  282. shaped/autogen/models/whitespace_tokenizer.py +97 -0
  283. shaped/autogen/models/window_size.py +136 -0
  284. shaped/autogen/rest.py +10 -4
  285. shaped/cli/shaped_cli.py +163 -35
  286. shaped/client.py +591 -171
  287. shaped/config_builders.py +705 -0
  288. shaped/query_builder.py +781 -0
  289. {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/METADATA +141 -6
  290. shaped-2.0.4.dist-info/RECORD +296 -0
  291. {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/WHEEL +1 -1
  292. shaped-2.0.4.dist-info/entry_points.txt +2 -0
  293. shaped/autogen/api/model_inference_api.py +0 -2825
  294. shaped/autogen/models/amplitude_dataset_config.py +0 -96
  295. shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
  296. shaped/autogen/models/big_query_dataset_config.py +0 -114
  297. shaped/autogen/models/complement_items_request.py +0 -99
  298. shaped/autogen/models/complement_items_response.py +0 -89
  299. shaped/autogen/models/connectors_inner.py +0 -134
  300. shaped/autogen/models/create_dataset_arguments.py +0 -263
  301. shaped/autogen/models/create_embedding_response.py +0 -87
  302. shaped/autogen/models/create_item_embedding_request.py +0 -89
  303. shaped/autogen/models/create_model_arguments.py +0 -107
  304. shaped/autogen/models/create_model_response.py +0 -87
  305. shaped/autogen/models/create_user_embedding_request.py +0 -89
  306. shaped/autogen/models/custom_dataset_config.py +0 -115
  307. shaped/autogen/models/dataset_config.py +0 -101
  308. shaped/autogen/models/dataset_schema_type.py +0 -47
  309. shaped/autogen/models/datasets_inner.py +0 -91
  310. shaped/autogen/models/delete_model_response.py +0 -87
  311. shaped/autogen/models/fetch_config.py +0 -95
  312. shaped/autogen/models/file_config.py +0 -105
  313. shaped/autogen/models/file_source_config.py +0 -89
  314. shaped/autogen/models/inference_config.py +0 -101
  315. shaped/autogen/models/insert_model_response.py +0 -87
  316. shaped/autogen/models/interaction.py +0 -87
  317. shaped/autogen/models/list_datasets_response.py +0 -95
  318. shaped/autogen/models/list_models_response.py +0 -95
  319. shaped/autogen/models/model_config.py +0 -99
  320. shaped/autogen/models/model_response.py +0 -95
  321. shaped/autogen/models/mongo_db_dataset_config.py +0 -119
  322. shaped/autogen/models/post_rank_request.py +0 -117
  323. shaped/autogen/models/rank_attribute_response.py +0 -89
  324. shaped/autogen/models/rank_grid_attribute_request.py +0 -91
  325. shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
  326. shaped/autogen/models/rank_grid_attribute_response.py +0 -91
  327. shaped/autogen/models/rank_response.py +0 -91
  328. shaped/autogen/models/retrieve_request.py +0 -101
  329. shaped/autogen/models/retrieve_response.py +0 -91
  330. shaped/autogen/models/retriever_top_k_override.py +0 -97
  331. shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
  332. shaped/autogen/models/segment_dataset_config.py +0 -96
  333. shaped/autogen/models/similar_item_request.py +0 -101
  334. shaped/autogen/models/similar_response.py +0 -89
  335. shaped/autogen/models/similar_users_request.py +0 -99
  336. shaped/autogen/models/successful_response.py +0 -87
  337. shaped/autogen/models/view_model_response.py +0 -99
  338. shaped-2.0.1.dist-info/RECORD +0 -73
  339. shaped-2.0.1.dist-info/entry_points.txt +0 -2
  340. {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/top_level.txt +0 -0
  341. {shaped-2.0.1.dist-info → shaped-2.0.4.dist-info}/zip-safe +0 -0
@@ -1,263 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import json
17
- import pprint
18
- from pydantic import BaseModel, ConfigDict, Field, StrictStr, ValidationError, field_validator
19
- from typing import Any, List, Optional
20
- from shaped.autogen.models.amplitude_dataset_config import AmplitudeDatasetConfig
21
- from shaped.autogen.models.aws_pinpoint_dataset_config import AWSPinpointDatasetConfig
22
- from shaped.autogen.models.big_query_dataset_config import BigQueryDatasetConfig
23
- from shaped.autogen.models.custom_dataset_config import CustomDatasetConfig
24
- from shaped.autogen.models.mongo_db_dataset_config import MongoDBDatasetConfig
25
- from shaped.autogen.models.my_sql_dataset_config import MySQLDatasetConfig
26
- from shaped.autogen.models.postgres_dataset_config import PostgresDatasetConfig
27
- from shaped.autogen.models.redshift_dataset_config import RedshiftDatasetConfig
28
- from shaped.autogen.models.rudder_stack_dataset_config import RudderStackDatasetConfig
29
- from shaped.autogen.models.segment_dataset_config import SegmentDatasetConfig
30
- from shaped.autogen.models.snowflake_dataset_config import SnowflakeDatasetConfig
31
- from pydantic import StrictStr, Field
32
- from typing import Union, List, Set, Optional, Dict
33
- from typing_extensions import Literal, Self
34
-
35
- CREATEDATASETARGUMENTS_ONE_OF_SCHEMAS = ["AWSPinpointDatasetConfig", "AmplitudeDatasetConfig", "BigQueryDatasetConfig", "CustomDatasetConfig", "MongoDBDatasetConfig", "MySQLDatasetConfig", "PostgresDatasetConfig", "RedshiftDatasetConfig", "RudderStackDatasetConfig", "SegmentDatasetConfig", "SnowflakeDatasetConfig"]
36
-
37
- class CreateDatasetArguments(BaseModel):
38
- """
39
- CreateDatasetArguments
40
- """
41
- # data type: BigQueryDatasetConfig
42
- oneof_schema_1_validator: Optional[BigQueryDatasetConfig] = None
43
- # data type: MongoDBDatasetConfig
44
- oneof_schema_2_validator: Optional[MongoDBDatasetConfig] = None
45
- # data type: SnowflakeDatasetConfig
46
- oneof_schema_3_validator: Optional[SnowflakeDatasetConfig] = None
47
- # data type: PostgresDatasetConfig
48
- oneof_schema_4_validator: Optional[PostgresDatasetConfig] = None
49
- # data type: MySQLDatasetConfig
50
- oneof_schema_5_validator: Optional[MySQLDatasetConfig] = None
51
- # data type: RedshiftDatasetConfig
52
- oneof_schema_6_validator: Optional[RedshiftDatasetConfig] = None
53
- # data type: AWSPinpointDatasetConfig
54
- oneof_schema_7_validator: Optional[AWSPinpointDatasetConfig] = None
55
- # data type: CustomDatasetConfig
56
- oneof_schema_8_validator: Optional[CustomDatasetConfig] = None
57
- # data type: AmplitudeDatasetConfig
58
- oneof_schema_9_validator: Optional[AmplitudeDatasetConfig] = None
59
- # data type: SegmentDatasetConfig
60
- oneof_schema_10_validator: Optional[SegmentDatasetConfig] = None
61
- # data type: RudderStackDatasetConfig
62
- oneof_schema_11_validator: Optional[RudderStackDatasetConfig] = None
63
- actual_instance: Optional[Union[AWSPinpointDatasetConfig, AmplitudeDatasetConfig, BigQueryDatasetConfig, CustomDatasetConfig, MongoDBDatasetConfig, MySQLDatasetConfig, PostgresDatasetConfig, RedshiftDatasetConfig, RudderStackDatasetConfig, SegmentDatasetConfig, SnowflakeDatasetConfig]] = None
64
- one_of_schemas: Set[str] = { "AWSPinpointDatasetConfig", "AmplitudeDatasetConfig", "BigQueryDatasetConfig", "CustomDatasetConfig", "MongoDBDatasetConfig", "MySQLDatasetConfig", "PostgresDatasetConfig", "RedshiftDatasetConfig", "RudderStackDatasetConfig", "SegmentDatasetConfig", "SnowflakeDatasetConfig" }
65
-
66
- model_config = ConfigDict(
67
- validate_assignment=True,
68
- protected_namespaces=(),
69
- )
70
-
71
-
72
- def __init__(self, *args, **kwargs) -> None:
73
- if args:
74
- if len(args) > 1:
75
- raise ValueError("If a position argument is used, only 1 is allowed to set `actual_instance`")
76
- if kwargs:
77
- raise ValueError("If a position argument is used, keyword arguments cannot be used.")
78
- super().__init__(actual_instance=args[0])
79
- else:
80
- super().__init__(**kwargs)
81
-
82
- @field_validator('actual_instance')
83
- def actual_instance_must_validate_oneof(cls, v):
84
- instance = CreateDatasetArguments.model_construct()
85
- error_messages = []
86
- match = 0
87
- # validate data type: BigQueryDatasetConfig
88
- if not isinstance(v, BigQueryDatasetConfig):
89
- error_messages.append(f"Error! Input type `{type(v)}` is not `BigQueryDatasetConfig`")
90
- else:
91
- match += 1
92
- # validate data type: MongoDBDatasetConfig
93
- if not isinstance(v, MongoDBDatasetConfig):
94
- error_messages.append(f"Error! Input type `{type(v)}` is not `MongoDBDatasetConfig`")
95
- else:
96
- match += 1
97
- # validate data type: SnowflakeDatasetConfig
98
- if not isinstance(v, SnowflakeDatasetConfig):
99
- error_messages.append(f"Error! Input type `{type(v)}` is not `SnowflakeDatasetConfig`")
100
- else:
101
- match += 1
102
- # validate data type: PostgresDatasetConfig
103
- if not isinstance(v, PostgresDatasetConfig):
104
- error_messages.append(f"Error! Input type `{type(v)}` is not `PostgresDatasetConfig`")
105
- else:
106
- match += 1
107
- # validate data type: MySQLDatasetConfig
108
- if not isinstance(v, MySQLDatasetConfig):
109
- error_messages.append(f"Error! Input type `{type(v)}` is not `MySQLDatasetConfig`")
110
- else:
111
- match += 1
112
- # validate data type: RedshiftDatasetConfig
113
- if not isinstance(v, RedshiftDatasetConfig):
114
- error_messages.append(f"Error! Input type `{type(v)}` is not `RedshiftDatasetConfig`")
115
- else:
116
- match += 1
117
- # validate data type: AWSPinpointDatasetConfig
118
- if not isinstance(v, AWSPinpointDatasetConfig):
119
- error_messages.append(f"Error! Input type `{type(v)}` is not `AWSPinpointDatasetConfig`")
120
- else:
121
- match += 1
122
- # validate data type: CustomDatasetConfig
123
- if not isinstance(v, CustomDatasetConfig):
124
- error_messages.append(f"Error! Input type `{type(v)}` is not `CustomDatasetConfig`")
125
- else:
126
- match += 1
127
- # validate data type: AmplitudeDatasetConfig
128
- if not isinstance(v, AmplitudeDatasetConfig):
129
- error_messages.append(f"Error! Input type `{type(v)}` is not `AmplitudeDatasetConfig`")
130
- else:
131
- match += 1
132
- # validate data type: SegmentDatasetConfig
133
- if not isinstance(v, SegmentDatasetConfig):
134
- error_messages.append(f"Error! Input type `{type(v)}` is not `SegmentDatasetConfig`")
135
- else:
136
- match += 1
137
- # validate data type: RudderStackDatasetConfig
138
- if not isinstance(v, RudderStackDatasetConfig):
139
- error_messages.append(f"Error! Input type `{type(v)}` is not `RudderStackDatasetConfig`")
140
- else:
141
- match += 1
142
- if match > 1:
143
- # more than 1 match
144
- raise ValueError("Multiple matches found when setting `actual_instance` in CreateDatasetArguments with oneOf schemas: AWSPinpointDatasetConfig, AmplitudeDatasetConfig, BigQueryDatasetConfig, CustomDatasetConfig, MongoDBDatasetConfig, MySQLDatasetConfig, PostgresDatasetConfig, RedshiftDatasetConfig, RudderStackDatasetConfig, SegmentDatasetConfig, SnowflakeDatasetConfig. Details: " + ", ".join(error_messages))
145
- elif match == 0:
146
- # no match
147
- raise ValueError("No match found when setting `actual_instance` in CreateDatasetArguments with oneOf schemas: AWSPinpointDatasetConfig, AmplitudeDatasetConfig, BigQueryDatasetConfig, CustomDatasetConfig, MongoDBDatasetConfig, MySQLDatasetConfig, PostgresDatasetConfig, RedshiftDatasetConfig, RudderStackDatasetConfig, SegmentDatasetConfig, SnowflakeDatasetConfig. Details: " + ", ".join(error_messages))
148
- else:
149
- return v
150
-
151
- @classmethod
152
- def from_dict(cls, obj: Union[str, Dict[str, Any]]) -> Self:
153
- return cls.from_json(json.dumps(obj))
154
-
155
- @classmethod
156
- def from_json(cls, json_str: str) -> Self:
157
- """Returns the object represented by the json string"""
158
- instance = cls.model_construct()
159
- error_messages = []
160
- match = 0
161
-
162
- # deserialize data into BigQueryDatasetConfig
163
- try:
164
- instance.actual_instance = BigQueryDatasetConfig.from_json(json_str)
165
- match += 1
166
- except (ValidationError, ValueError) as e:
167
- error_messages.append(str(e))
168
- # deserialize data into MongoDBDatasetConfig
169
- try:
170
- instance.actual_instance = MongoDBDatasetConfig.from_json(json_str)
171
- match += 1
172
- except (ValidationError, ValueError) as e:
173
- error_messages.append(str(e))
174
- # deserialize data into SnowflakeDatasetConfig
175
- try:
176
- instance.actual_instance = SnowflakeDatasetConfig.from_json(json_str)
177
- match += 1
178
- except (ValidationError, ValueError) as e:
179
- error_messages.append(str(e))
180
- # deserialize data into PostgresDatasetConfig
181
- try:
182
- instance.actual_instance = PostgresDatasetConfig.from_json(json_str)
183
- match += 1
184
- except (ValidationError, ValueError) as e:
185
- error_messages.append(str(e))
186
- # deserialize data into MySQLDatasetConfig
187
- try:
188
- instance.actual_instance = MySQLDatasetConfig.from_json(json_str)
189
- match += 1
190
- except (ValidationError, ValueError) as e:
191
- error_messages.append(str(e))
192
- # deserialize data into RedshiftDatasetConfig
193
- try:
194
- instance.actual_instance = RedshiftDatasetConfig.from_json(json_str)
195
- match += 1
196
- except (ValidationError, ValueError) as e:
197
- error_messages.append(str(e))
198
- # deserialize data into AWSPinpointDatasetConfig
199
- try:
200
- instance.actual_instance = AWSPinpointDatasetConfig.from_json(json_str)
201
- match += 1
202
- except (ValidationError, ValueError) as e:
203
- error_messages.append(str(e))
204
- # deserialize data into CustomDatasetConfig
205
- try:
206
- instance.actual_instance = CustomDatasetConfig.from_json(json_str)
207
- match += 1
208
- except (ValidationError, ValueError) as e:
209
- error_messages.append(str(e))
210
- # deserialize data into AmplitudeDatasetConfig
211
- try:
212
- instance.actual_instance = AmplitudeDatasetConfig.from_json(json_str)
213
- match += 1
214
- except (ValidationError, ValueError) as e:
215
- error_messages.append(str(e))
216
- # deserialize data into SegmentDatasetConfig
217
- try:
218
- instance.actual_instance = SegmentDatasetConfig.from_json(json_str)
219
- match += 1
220
- except (ValidationError, ValueError) as e:
221
- error_messages.append(str(e))
222
- # deserialize data into RudderStackDatasetConfig
223
- try:
224
- instance.actual_instance = RudderStackDatasetConfig.from_json(json_str)
225
- match += 1
226
- except (ValidationError, ValueError) as e:
227
- error_messages.append(str(e))
228
-
229
- if match > 1:
230
- # more than 1 match
231
- raise ValueError("Multiple matches found when deserializing the JSON string into CreateDatasetArguments with oneOf schemas: AWSPinpointDatasetConfig, AmplitudeDatasetConfig, BigQueryDatasetConfig, CustomDatasetConfig, MongoDBDatasetConfig, MySQLDatasetConfig, PostgresDatasetConfig, RedshiftDatasetConfig, RudderStackDatasetConfig, SegmentDatasetConfig, SnowflakeDatasetConfig. Details: " + ", ".join(error_messages))
232
- elif match == 0:
233
- # no match
234
- raise ValueError("No match found when deserializing the JSON string into CreateDatasetArguments with oneOf schemas: AWSPinpointDatasetConfig, AmplitudeDatasetConfig, BigQueryDatasetConfig, CustomDatasetConfig, MongoDBDatasetConfig, MySQLDatasetConfig, PostgresDatasetConfig, RedshiftDatasetConfig, RudderStackDatasetConfig, SegmentDatasetConfig, SnowflakeDatasetConfig. Details: " + ", ".join(error_messages))
235
- else:
236
- return instance
237
-
238
- def to_json(self) -> str:
239
- """Returns the JSON representation of the actual instance"""
240
- if self.actual_instance is None:
241
- return "null"
242
-
243
- if hasattr(self.actual_instance, "to_json") and callable(self.actual_instance.to_json):
244
- return self.actual_instance.to_json()
245
- else:
246
- return json.dumps(self.actual_instance)
247
-
248
- def to_dict(self) -> Optional[Union[Dict[str, Any], AWSPinpointDatasetConfig, AmplitudeDatasetConfig, BigQueryDatasetConfig, CustomDatasetConfig, MongoDBDatasetConfig, MySQLDatasetConfig, PostgresDatasetConfig, RedshiftDatasetConfig, RudderStackDatasetConfig, SegmentDatasetConfig, SnowflakeDatasetConfig]]:
249
- """Returns the dict representation of the actual instance"""
250
- if self.actual_instance is None:
251
- return None
252
-
253
- if hasattr(self.actual_instance, "to_dict") and callable(self.actual_instance.to_dict):
254
- return self.actual_instance.to_dict()
255
- else:
256
- # primitive type
257
- return self.actual_instance
258
-
259
- def to_str(self) -> str:
260
- """Returns the string representation of the actual instance"""
261
- return pprint.pformat(self.model_dump())
262
-
263
-
@@ -1,87 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictFloat, StrictInt
21
- from typing import Any, ClassVar, Dict, List, Union
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class CreateEmbeddingResponse(BaseModel):
26
- """
27
- CreateEmbeddingResponse
28
- """ # noqa: E501
29
- embeddings: List[List[Union[StrictFloat, StrictInt]]]
30
- __properties: ClassVar[List[str]] = ["embeddings"]
31
-
32
- model_config = ConfigDict(
33
- populate_by_name=True,
34
- validate_assignment=True,
35
- protected_namespaces=(),
36
- )
37
-
38
-
39
- def to_str(self) -> str:
40
- """Returns the string representation of the model using alias"""
41
- return pprint.pformat(self.model_dump(by_alias=True))
42
-
43
- def to_json(self) -> str:
44
- """Returns the JSON representation of the model using alias"""
45
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
46
- return json.dumps(self.to_dict())
47
-
48
- @classmethod
49
- def from_json(cls, json_str: str) -> Optional[Self]:
50
- """Create an instance of CreateEmbeddingResponse from a JSON string"""
51
- return cls.from_dict(json.loads(json_str))
52
-
53
- def to_dict(self) -> Dict[str, Any]:
54
- """Return the dictionary representation of the model using alias.
55
-
56
- This has the following differences from calling pydantic's
57
- `self.model_dump(by_alias=True)`:
58
-
59
- * `None` is only added to the output dict for nullable fields that
60
- were set at model initialization. Other fields with value `None`
61
- are ignored.
62
- """
63
- excluded_fields: Set[str] = set([
64
- ])
65
-
66
- _dict = self.model_dump(
67
- by_alias=True,
68
- exclude=excluded_fields,
69
- exclude_none=True,
70
- )
71
- return _dict
72
-
73
- @classmethod
74
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
75
- """Create an instance of CreateEmbeddingResponse from a dict"""
76
- if obj is None:
77
- return None
78
-
79
- if not isinstance(obj, dict):
80
- return cls.model_validate(obj)
81
-
82
- _obj = cls.model_validate({
83
- "embeddings": obj.get("embeddings")
84
- })
85
- return _obj
86
-
87
-
@@ -1,89 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictInt, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class CreateItemEmbeddingRequest(BaseModel):
26
- """
27
- CreateItemEmbeddingRequest
28
- """ # noqa: E501
29
- item_ids: List[StrictStr]
30
- dimension: Optional[StrictInt] = None
31
- __properties: ClassVar[List[str]] = ["item_ids", "dimension"]
32
-
33
- model_config = ConfigDict(
34
- populate_by_name=True,
35
- validate_assignment=True,
36
- protected_namespaces=(),
37
- )
38
-
39
-
40
- def to_str(self) -> str:
41
- """Returns the string representation of the model using alias"""
42
- return pprint.pformat(self.model_dump(by_alias=True))
43
-
44
- def to_json(self) -> str:
45
- """Returns the JSON representation of the model using alias"""
46
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
47
- return json.dumps(self.to_dict())
48
-
49
- @classmethod
50
- def from_json(cls, json_str: str) -> Optional[Self]:
51
- """Create an instance of CreateItemEmbeddingRequest from a JSON string"""
52
- return cls.from_dict(json.loads(json_str))
53
-
54
- def to_dict(self) -> Dict[str, Any]:
55
- """Return the dictionary representation of the model using alias.
56
-
57
- This has the following differences from calling pydantic's
58
- `self.model_dump(by_alias=True)`:
59
-
60
- * `None` is only added to the output dict for nullable fields that
61
- were set at model initialization. Other fields with value `None`
62
- are ignored.
63
- """
64
- excluded_fields: Set[str] = set([
65
- ])
66
-
67
- _dict = self.model_dump(
68
- by_alias=True,
69
- exclude=excluded_fields,
70
- exclude_none=True,
71
- )
72
- return _dict
73
-
74
- @classmethod
75
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
76
- """Create an instance of CreateItemEmbeddingRequest from a dict"""
77
- if obj is None:
78
- return None
79
-
80
- if not isinstance(obj, dict):
81
- return cls.model_validate(obj)
82
-
83
- _obj = cls.model_validate({
84
- "item_ids": obj.get("item_ids"),
85
- "dimension": obj.get("dimension")
86
- })
87
- return _obj
88
-
89
-
@@ -1,107 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict
21
- from typing import Any, ClassVar, Dict, List
22
- from shaped.autogen.models.connectors_inner import ConnectorsInner
23
- from shaped.autogen.models.fetch_config import FetchConfig
24
- from shaped.autogen.models.model_config import ModelConfig
25
- from typing import Optional, Set
26
- from typing_extensions import Self
27
-
28
- class CreateModelArguments(BaseModel):
29
- """
30
- CreateModelArguments
31
- """ # noqa: E501
32
- model: ModelConfig
33
- connectors: List[ConnectorsInner]
34
- fetch: FetchConfig
35
- __properties: ClassVar[List[str]] = ["model", "connectors", "fetch"]
36
-
37
- model_config = ConfigDict(
38
- populate_by_name=True,
39
- validate_assignment=True,
40
- protected_namespaces=(),
41
- )
42
-
43
-
44
- def to_str(self) -> str:
45
- """Returns the string representation of the model using alias"""
46
- return pprint.pformat(self.model_dump(by_alias=True))
47
-
48
- def to_json(self) -> str:
49
- """Returns the JSON representation of the model using alias"""
50
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
51
- return json.dumps(self.to_dict())
52
-
53
- @classmethod
54
- def from_json(cls, json_str: str) -> Optional[Self]:
55
- """Create an instance of CreateModelArguments from a JSON string"""
56
- return cls.from_dict(json.loads(json_str))
57
-
58
- def to_dict(self) -> Dict[str, Any]:
59
- """Return the dictionary representation of the model using alias.
60
-
61
- This has the following differences from calling pydantic's
62
- `self.model_dump(by_alias=True)`:
63
-
64
- * `None` is only added to the output dict for nullable fields that
65
- were set at model initialization. Other fields with value `None`
66
- are ignored.
67
- """
68
- excluded_fields: Set[str] = set([
69
- ])
70
-
71
- _dict = self.model_dump(
72
- by_alias=True,
73
- exclude=excluded_fields,
74
- exclude_none=True,
75
- )
76
- # override the default output from pydantic by calling `to_dict()` of model
77
- if self.model:
78
- _dict['model'] = self.model.to_dict()
79
- # override the default output from pydantic by calling `to_dict()` of each item in connectors (list)
80
- _items = []
81
- if self.connectors:
82
- for _item_connectors in self.connectors:
83
- if _item_connectors:
84
- _items.append(_item_connectors.to_dict())
85
- _dict['connectors'] = _items
86
- # override the default output from pydantic by calling `to_dict()` of fetch
87
- if self.fetch:
88
- _dict['fetch'] = self.fetch.to_dict()
89
- return _dict
90
-
91
- @classmethod
92
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
93
- """Create an instance of CreateModelArguments from a dict"""
94
- if obj is None:
95
- return None
96
-
97
- if not isinstance(obj, dict):
98
- return cls.model_validate(obj)
99
-
100
- _obj = cls.model_validate({
101
- "model": ModelConfig.from_dict(obj["model"]) if obj.get("model") is not None else None,
102
- "connectors": [ConnectorsInner.from_dict(_item) for _item in obj["connectors"]] if obj.get("connectors") is not None else None,
103
- "fetch": FetchConfig.from_dict(obj["fetch"]) if obj.get("fetch") is not None else None
104
- })
105
- return _obj
106
-
107
-
@@ -1,87 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictStr
21
- from typing import Any, ClassVar, Dict, List
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class CreateModelResponse(BaseModel):
26
- """
27
- CreateModelResponse
28
- """ # noqa: E501
29
- model_url: StrictStr
30
- __properties: ClassVar[List[str]] = ["model_url"]
31
-
32
- model_config = ConfigDict(
33
- populate_by_name=True,
34
- validate_assignment=True,
35
- protected_namespaces=(),
36
- )
37
-
38
-
39
- def to_str(self) -> str:
40
- """Returns the string representation of the model using alias"""
41
- return pprint.pformat(self.model_dump(by_alias=True))
42
-
43
- def to_json(self) -> str:
44
- """Returns the JSON representation of the model using alias"""
45
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
46
- return json.dumps(self.to_dict())
47
-
48
- @classmethod
49
- def from_json(cls, json_str: str) -> Optional[Self]:
50
- """Create an instance of CreateModelResponse from a JSON string"""
51
- return cls.from_dict(json.loads(json_str))
52
-
53
- def to_dict(self) -> Dict[str, Any]:
54
- """Return the dictionary representation of the model using alias.
55
-
56
- This has the following differences from calling pydantic's
57
- `self.model_dump(by_alias=True)`:
58
-
59
- * `None` is only added to the output dict for nullable fields that
60
- were set at model initialization. Other fields with value `None`
61
- are ignored.
62
- """
63
- excluded_fields: Set[str] = set([
64
- ])
65
-
66
- _dict = self.model_dump(
67
- by_alias=True,
68
- exclude=excluded_fields,
69
- exclude_none=True,
70
- )
71
- return _dict
72
-
73
- @classmethod
74
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
75
- """Create an instance of CreateModelResponse from a dict"""
76
- if obj is None:
77
- return None
78
-
79
- if not isinstance(obj, dict):
80
- return cls.model_validate(obj)
81
-
82
- _obj = cls.model_validate({
83
- "model_url": obj.get("model_url")
84
- })
85
- return _obj
86
-
87
-