shaped 2.0.1__py3-none-any.whl → 2.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (323) hide show
  1. shaped/__init__.py +54 -4
  2. shaped/autogen/__init__.py +541 -66
  3. shaped/autogen/api/__init__.py +4 -3
  4. shaped/autogen/api/engine_api.py +1467 -0
  5. shaped/autogen/api/{dataset_api.py → query_api.py} +219 -194
  6. shaped/autogen/api/table_api.py +1494 -0
  7. shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
  8. shaped/autogen/api_client.py +15 -8
  9. shaped/autogen/configuration.py +20 -9
  10. shaped/autogen/exceptions.py +19 -2
  11. shaped/autogen/models/__init__.py +254 -52
  12. shaped/autogen/models/ai_enrichment_view_config.py +123 -0
  13. shaped/autogen/models/{path.py → algorithm.py} +19 -19
  14. shaped/autogen/models/amplitude_table_config.py +106 -0
  15. shaped/autogen/models/ascending.py +136 -0
  16. shaped/autogen/models/attn_dropout_prob.py +136 -0
  17. shaped/autogen/models/attribute_journey.py +124 -0
  18. shaped/autogen/models/attribute_value.py +178 -0
  19. shaped/autogen/models/autoscaling_config.py +95 -0
  20. shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
  21. shaped/autogen/models/batch_size.py +136 -0
  22. shaped/autogen/models/batch_size1.py +136 -0
  23. shaped/autogen/models/batch_size2.py +136 -0
  24. shaped/autogen/models/big_query_table_config.py +147 -0
  25. shaped/autogen/models/bm25.py +136 -0
  26. shaped/autogen/models/boosted_reorder_step.py +125 -0
  27. shaped/autogen/models/canary_rollout.py +99 -0
  28. shaped/autogen/models/candidate_attributes_retrieve_step.py +126 -0
  29. shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
  30. shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
  31. shaped/autogen/models/clickhouse_table_config.py +146 -0
  32. shaped/autogen/models/column_order_retrieve_step.py +123 -0
  33. shaped/autogen/models/column_ordering.py +91 -0
  34. shaped/autogen/models/create_table_response.py +87 -0
  35. shaped/autogen/models/create_view_response.py +87 -0
  36. shaped/autogen/models/custom_table_config.py +135 -0
  37. shaped/autogen/models/data_compute_config.py +89 -0
  38. shaped/autogen/models/data_config.py +145 -0
  39. shaped/autogen/models/data_config_interaction_table.py +146 -0
  40. shaped/autogen/models/data_split_config.py +88 -0
  41. shaped/autogen/models/data_split_strategy.py +37 -0
  42. shaped/autogen/models/data_tier.py +37 -0
  43. shaped/autogen/models/default.py +246 -0
  44. shaped/autogen/models/delete_engine_response.py +87 -0
  45. shaped/autogen/models/delete_table_response.py +87 -0
  46. shaped/autogen/models/delete_view_response.py +87 -0
  47. shaped/autogen/models/deployment_config.py +123 -0
  48. shaped/autogen/models/distance_function.py +38 -0
  49. shaped/autogen/models/diversity_reorder_step.py +137 -0
  50. shaped/autogen/models/dropout_rate.py +136 -0
  51. shaped/autogen/models/dynamo_db_table_config.py +160 -0
  52. shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
  53. shaped/autogen/models/embedder_batch_size.py +136 -0
  54. shaped/autogen/models/embedding_config.py +93 -0
  55. shaped/autogen/models/embedding_dim.py +136 -0
  56. shaped/autogen/models/embedding_dims.py +136 -0
  57. shaped/autogen/models/embedding_size.py +136 -0
  58. shaped/autogen/models/encoder.py +140 -0
  59. shaped/autogen/models/encoding_pooling_strategy.py +38 -0
  60. shaped/autogen/models/engine.py +109 -0
  61. shaped/autogen/models/engine_config_v2.py +152 -0
  62. shaped/autogen/models/engine_details_response.py +120 -0
  63. shaped/autogen/models/engine_schema.py +113 -0
  64. shaped/autogen/models/engine_schema_user_inner.py +134 -0
  65. shaped/autogen/models/entity_config.py +109 -0
  66. shaped/autogen/models/entity_journey.py +152 -0
  67. shaped/autogen/models/entity_type.py +38 -0
  68. shaped/autogen/models/evaluation_config.py +92 -0
  69. shaped/autogen/models/exploration_reorder_step.py +125 -0
  70. shaped/autogen/models/expression_filter_step.py +106 -0
  71. shaped/autogen/models/factors.py +136 -0
  72. shaped/autogen/models/factors1.py +136 -0
  73. shaped/autogen/models/feature.py +90 -0
  74. shaped/autogen/models/feature_type.py +60 -0
  75. shaped/autogen/models/file_table_config.py +112 -0
  76. shaped/autogen/models/filter_config.py +99 -0
  77. shaped/autogen/models/filter_dataset.py +140 -0
  78. shaped/autogen/models/filter_index_type.py +36 -0
  79. shaped/autogen/models/filter_retrieve_step.py +113 -0
  80. shaped/autogen/models/global_filter.py +102 -0
  81. shaped/autogen/models/hidden_dropout_prob.py +136 -0
  82. shaped/autogen/models/hidden_size.py +136 -0
  83. shaped/autogen/models/hidden_size1.py +136 -0
  84. shaped/autogen/models/http_problem_response.py +115 -0
  85. shaped/autogen/models/http_validation_error.py +2 -2
  86. shaped/autogen/models/hugging_face_encoder.py +113 -0
  87. shaped/autogen/models/iceberg_table_config.py +154 -0
  88. shaped/autogen/models/index_config.py +101 -0
  89. shaped/autogen/models/inner_size.py +136 -0
  90. shaped/autogen/models/inner_size1.py +136 -0
  91. shaped/autogen/models/interaction_config.py +122 -0
  92. shaped/autogen/models/interaction_pooling_encoder.py +104 -0
  93. shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
  94. shaped/autogen/models/item_attribute_pooling_encoder.py +124 -0
  95. shaped/autogen/models/journey.py +140 -0
  96. shaped/autogen/models/kafka_table_config.py +129 -0
  97. shaped/autogen/models/kinesis_table_config.py +140 -0
  98. shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
  99. shaped/autogen/models/label.py +90 -0
  100. shaped/autogen/models/label_type.py +37 -0
  101. shaped/autogen/models/laplace_smoothing.py +136 -0
  102. shaped/autogen/models/latency_scaling_policy.py +112 -0
  103. shaped/autogen/models/learning_rate.py +136 -0
  104. shaped/autogen/models/learning_rate1.py +136 -0
  105. shaped/autogen/models/learning_rate2.py +136 -0
  106. shaped/autogen/models/learning_rate3.py +136 -0
  107. shaped/autogen/models/lexical_search_mode.py +99 -0
  108. shaped/autogen/models/list_engines_response.py +95 -0
  109. shaped/autogen/models/list_tables_response.py +95 -0
  110. shaped/autogen/models/list_views_response.py +95 -0
  111. shaped/autogen/models/loss_types.py +37 -0
  112. shaped/autogen/models/lr.py +136 -0
  113. shaped/autogen/models/lr1.py +136 -0
  114. shaped/autogen/models/lr2.py +136 -0
  115. shaped/autogen/models/max_depth.py +136 -0
  116. shaped/autogen/models/max_leaves.py +136 -0
  117. shaped/autogen/models/max_seq_length.py +136 -0
  118. shaped/autogen/models/max_seq_length1.py +136 -0
  119. shaped/autogen/models/max_seq_length2.py +136 -0
  120. shaped/autogen/models/mode.py +134 -0
  121. shaped/autogen/models/mode1.py +134 -0
  122. shaped/autogen/models/mode2.py +136 -0
  123. shaped/autogen/models/mongo_db_table_config.py +147 -0
  124. shaped/autogen/models/mssql_table_config.py +155 -0
  125. shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
  126. shaped/autogen/models/n_epochs.py +136 -0
  127. shaped/autogen/models/n_epochs1.py +136 -0
  128. shaped/autogen/models/n_epochs2.py +136 -0
  129. shaped/autogen/models/n_estimators.py +136 -0
  130. shaped/autogen/models/n_heads.py +136 -0
  131. shaped/autogen/models/n_layers.py +136 -0
  132. shaped/autogen/models/neg_per_positive.py +136 -0
  133. shaped/autogen/models/negative_samples_count.py +136 -0
  134. shaped/autogen/models/ngram_tokenizer.py +103 -0
  135. shaped/autogen/models/no_op_config.py +117 -0
  136. shaped/autogen/models/num_blocks.py +136 -0
  137. shaped/autogen/models/num_heads.py +136 -0
  138. shaped/autogen/models/num_leaves.py +136 -0
  139. shaped/autogen/models/objective.py +40 -0
  140. shaped/autogen/models/objective1.py +134 -0
  141. shaped/autogen/models/online_store_config.py +89 -0
  142. shaped/autogen/models/pagination_config.py +87 -0
  143. shaped/autogen/models/parameter_definition.py +96 -0
  144. shaped/autogen/models/parameters_value.py +240 -0
  145. shaped/autogen/models/passthrough_score.py +104 -0
  146. shaped/autogen/models/personal_filter.py +104 -0
  147. shaped/autogen/models/pipeline_stage_explanation.py +118 -0
  148. shaped/autogen/models/policy.py +134 -0
  149. shaped/autogen/models/pool_fn.py +134 -0
  150. shaped/autogen/models/pooling_function.py +37 -0
  151. shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
  152. shaped/autogen/models/posthog_table_config.py +133 -0
  153. shaped/autogen/models/prebuilt_filter_step.py +113 -0
  154. shaped/autogen/models/precomputed_item_embedding.py +99 -0
  155. shaped/autogen/models/precomputed_user_embedding.py +99 -0
  156. shaped/autogen/models/query.py +136 -0
  157. shaped/autogen/models/query1.py +136 -0
  158. shaped/autogen/models/query_any_of.py +140 -0
  159. shaped/autogen/models/query_definition.py +106 -0
  160. shaped/autogen/models/query_encoder.py +194 -0
  161. shaped/autogen/models/query_explanation.py +197 -0
  162. shaped/autogen/models/query_request.py +121 -0
  163. shaped/autogen/models/query_result.py +113 -0
  164. shaped/autogen/models/query_table_config.py +99 -0
  165. shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
  166. shaped/autogen/models/rank_query_config.py +167 -0
  167. shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
  168. shaped/autogen/models/rank_query_config_reorder_inner.py +149 -0
  169. shaped/autogen/models/rank_query_config_retrieve_inner.py +196 -0
  170. shaped/autogen/models/recreate_rollout.py +97 -0
  171. shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
  172. shaped/autogen/models/reference_table_config.py +113 -0
  173. shaped/autogen/models/regularization.py +136 -0
  174. shaped/autogen/models/request.py +378 -0
  175. shaped/autogen/models/request1.py +140 -0
  176. shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
  177. shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
  178. shaped/autogen/models/result.py +145 -0
  179. shaped/autogen/models/result_embeddings_value.py +127 -0
  180. shaped/autogen/models/retriever.py +196 -0
  181. shaped/autogen/models/retriever1.py +196 -0
  182. shaped/autogen/models/rollout_config.py +91 -0
  183. shaped/autogen/models/rudderstack_table_config.py +106 -0
  184. shaped/autogen/models/sampling_strategy.py +36 -0
  185. shaped/autogen/models/saved_query_info_response.py +89 -0
  186. shaped/autogen/models/saved_query_list_response.py +87 -0
  187. shaped/autogen/models/saved_query_request.py +115 -0
  188. shaped/autogen/models/schema_config.py +117 -0
  189. shaped/autogen/models/score.py +134 -0
  190. shaped/autogen/models/score_ensemble.py +140 -0
  191. shaped/autogen/models/score_ensemble_policy_config.py +141 -0
  192. shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +422 -0
  193. shaped/autogen/models/search_config.py +105 -0
  194. shaped/autogen/models/segment_table_config.py +106 -0
  195. shaped/autogen/models/sequence_length.py +136 -0
  196. shaped/autogen/models/server_config.py +87 -0
  197. shaped/autogen/models/setup_engine_response.py +87 -0
  198. shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +148 -0
  199. shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +154 -0
  200. shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +209 -0
  201. shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +137 -0
  202. shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +139 -0
  203. shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +205 -0
  204. shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
  205. shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +152 -0
  206. shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +239 -0
  207. shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
  208. shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +137 -0
  209. shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +104 -0
  210. shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +130 -0
  211. shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
  212. shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +224 -0
  213. shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
  214. shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +159 -0
  215. shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +131 -0
  216. shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +131 -0
  217. shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +149 -0
  218. shaped/autogen/models/shopify_table_config.py +156 -0
  219. shaped/autogen/models/similarity_retrieve_step.py +121 -0
  220. shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
  221. shaped/autogen/models/sql_transform_type.py +37 -0
  222. shaped/autogen/models/sql_view_config.py +111 -0
  223. shaped/autogen/models/stemmer_tokenizer.py +105 -0
  224. shaped/autogen/models/step_explanation.py +137 -0
  225. shaped/autogen/models/strategy.py +134 -0
  226. shaped/autogen/models/table.py +102 -0
  227. shaped/autogen/models/table_deployment_type.py +38 -0
  228. shaped/autogen/models/table_insert_arguments.py +87 -0
  229. shaped/autogen/models/table_insert_response.py +87 -0
  230. shaped/autogen/models/text_encoding.py +136 -0
  231. shaped/autogen/models/text_search_retrieve_step.py +121 -0
  232. shaped/autogen/models/time_frequency.py +136 -0
  233. shaped/autogen/models/time_window.py +136 -0
  234. shaped/autogen/models/time_window_in_days.py +142 -0
  235. shaped/autogen/models/tokenizer.py +149 -0
  236. shaped/autogen/models/trained_model_encoder.py +99 -0
  237. shaped/autogen/models/training_compute_config.py +99 -0
  238. shaped/autogen/models/training_config.py +121 -0
  239. shaped/autogen/models/training_config_models_inner.py +308 -0
  240. shaped/autogen/models/training_strategy.py +37 -0
  241. shaped/autogen/models/trending_mode.py +37 -0
  242. shaped/autogen/models/truncate_filter_step.py +106 -0
  243. shaped/autogen/models/tunable_bool.py +97 -0
  244. shaped/autogen/models/tunable_float.py +118 -0
  245. shaped/autogen/models/tunable_int.py +118 -0
  246. shaped/autogen/models/tunable_int_categorical.py +99 -0
  247. shaped/autogen/models/tunable_string.py +99 -0
  248. shaped/autogen/models/tuning_config.py +89 -0
  249. shaped/autogen/models/type.py +134 -0
  250. shaped/autogen/models/update_table_response.py +87 -0
  251. shaped/autogen/models/update_view_response.py +87 -0
  252. shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
  253. shaped/autogen/models/val_split.py +136 -0
  254. shaped/autogen/models/validation_error.py +13 -3
  255. shaped/autogen/models/validation_error_loc_inner.py +138 -0
  256. shaped/autogen/models/value_type.py +7 -5
  257. shaped/autogen/models/vector_search_mode.py +99 -0
  258. shaped/autogen/models/view.py +104 -0
  259. shaped/autogen/models/view_details_ai.py +140 -0
  260. shaped/autogen/models/view_details_ai_schema_value.py +153 -0
  261. shaped/autogen/models/view_details_sql.py +140 -0
  262. shaped/autogen/models/view_status.py +41 -0
  263. shaped/autogen/models/weight_decay.py +136 -0
  264. shaped/autogen/models/whitespace_tokenizer.py +97 -0
  265. shaped/autogen/models/window_size.py +136 -0
  266. shaped/autogen/rest.py +8 -2
  267. shaped/cli/shaped_cli.py +12 -7
  268. shaped/client.py +587 -174
  269. shaped/config_builders.py +695 -0
  270. shaped/query_builder.py +774 -0
  271. {shaped-2.0.1.dist-info → shaped-2.0.2.dist-info}/METADATA +140 -5
  272. shaped-2.0.2.dist-info/RECORD +278 -0
  273. shaped-2.0.2.dist-info/entry_points.txt +2 -0
  274. shaped/autogen/api/model_inference_api.py +0 -2825
  275. shaped/autogen/models/amplitude_dataset_config.py +0 -96
  276. shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
  277. shaped/autogen/models/big_query_dataset_config.py +0 -114
  278. shaped/autogen/models/complement_items_request.py +0 -99
  279. shaped/autogen/models/complement_items_response.py +0 -89
  280. shaped/autogen/models/connectors_inner.py +0 -134
  281. shaped/autogen/models/create_dataset_arguments.py +0 -263
  282. shaped/autogen/models/create_embedding_response.py +0 -87
  283. shaped/autogen/models/create_item_embedding_request.py +0 -89
  284. shaped/autogen/models/create_model_arguments.py +0 -107
  285. shaped/autogen/models/create_model_response.py +0 -87
  286. shaped/autogen/models/create_user_embedding_request.py +0 -89
  287. shaped/autogen/models/custom_dataset_config.py +0 -115
  288. shaped/autogen/models/dataset_config.py +0 -101
  289. shaped/autogen/models/dataset_schema_type.py +0 -47
  290. shaped/autogen/models/datasets_inner.py +0 -91
  291. shaped/autogen/models/delete_model_response.py +0 -87
  292. shaped/autogen/models/fetch_config.py +0 -95
  293. shaped/autogen/models/file_config.py +0 -105
  294. shaped/autogen/models/file_source_config.py +0 -89
  295. shaped/autogen/models/inference_config.py +0 -101
  296. shaped/autogen/models/insert_model_response.py +0 -87
  297. shaped/autogen/models/interaction.py +0 -87
  298. shaped/autogen/models/list_datasets_response.py +0 -95
  299. shaped/autogen/models/list_models_response.py +0 -95
  300. shaped/autogen/models/model_config.py +0 -99
  301. shaped/autogen/models/model_response.py +0 -95
  302. shaped/autogen/models/mongo_db_dataset_config.py +0 -119
  303. shaped/autogen/models/post_rank_request.py +0 -117
  304. shaped/autogen/models/rank_attribute_response.py +0 -89
  305. shaped/autogen/models/rank_grid_attribute_request.py +0 -91
  306. shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
  307. shaped/autogen/models/rank_grid_attribute_response.py +0 -91
  308. shaped/autogen/models/rank_response.py +0 -91
  309. shaped/autogen/models/retrieve_request.py +0 -101
  310. shaped/autogen/models/retrieve_response.py +0 -91
  311. shaped/autogen/models/retriever_top_k_override.py +0 -97
  312. shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
  313. shaped/autogen/models/segment_dataset_config.py +0 -96
  314. shaped/autogen/models/similar_item_request.py +0 -101
  315. shaped/autogen/models/similar_response.py +0 -89
  316. shaped/autogen/models/similar_users_request.py +0 -99
  317. shaped/autogen/models/successful_response.py +0 -87
  318. shaped/autogen/models/view_model_response.py +0 -99
  319. shaped-2.0.1.dist-info/RECORD +0 -73
  320. shaped-2.0.1.dist-info/entry_points.txt +0 -2
  321. {shaped-2.0.1.dist-info → shaped-2.0.2.dist-info}/WHEEL +0 -0
  322. {shaped-2.0.1.dist-info → shaped-2.0.2.dist-info}/top_level.txt +0 -0
  323. {shaped-2.0.1.dist-info → shaped-2.0.2.dist-info}/zip-safe +0 -0
@@ -1,96 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictStr, field_validator
21
- from typing import Any, ClassVar, Dict, List
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class RudderStackDatasetConfig(BaseModel):
26
- """
27
- RudderStackDatasetConfig
28
- """ # noqa: E501
29
- name: StrictStr
30
- schema_type: StrictStr
31
- __properties: ClassVar[List[str]] = ["name", "schema_type"]
32
-
33
- @field_validator('schema_type')
34
- def schema_type_validate_enum(cls, value):
35
- """Validates the enum"""
36
- if value not in set(['RUDDERSTACK']):
37
- raise ValueError("must be one of enum values ('RUDDERSTACK')")
38
- return value
39
-
40
- model_config = ConfigDict(
41
- populate_by_name=True,
42
- validate_assignment=True,
43
- protected_namespaces=(),
44
- )
45
-
46
-
47
- def to_str(self) -> str:
48
- """Returns the string representation of the model using alias"""
49
- return pprint.pformat(self.model_dump(by_alias=True))
50
-
51
- def to_json(self) -> str:
52
- """Returns the JSON representation of the model using alias"""
53
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
54
- return json.dumps(self.to_dict())
55
-
56
- @classmethod
57
- def from_json(cls, json_str: str) -> Optional[Self]:
58
- """Create an instance of RudderStackDatasetConfig from a JSON string"""
59
- return cls.from_dict(json.loads(json_str))
60
-
61
- def to_dict(self) -> Dict[str, Any]:
62
- """Return the dictionary representation of the model using alias.
63
-
64
- This has the following differences from calling pydantic's
65
- `self.model_dump(by_alias=True)`:
66
-
67
- * `None` is only added to the output dict for nullable fields that
68
- were set at model initialization. Other fields with value `None`
69
- are ignored.
70
- """
71
- excluded_fields: Set[str] = set([
72
- ])
73
-
74
- _dict = self.model_dump(
75
- by_alias=True,
76
- exclude=excluded_fields,
77
- exclude_none=True,
78
- )
79
- return _dict
80
-
81
- @classmethod
82
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
83
- """Create an instance of RudderStackDatasetConfig from a dict"""
84
- if obj is None:
85
- return None
86
-
87
- if not isinstance(obj, dict):
88
- return cls.model_validate(obj)
89
-
90
- _obj = cls.model_validate({
91
- "name": obj.get("name"),
92
- "schema_type": obj.get("schema_type")
93
- })
94
- return _obj
95
-
96
-
@@ -1,96 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictStr, field_validator
21
- from typing import Any, ClassVar, Dict, List
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class SegmentDatasetConfig(BaseModel):
26
- """
27
- SegmentDatasetConfig
28
- """ # noqa: E501
29
- name: StrictStr
30
- schema_type: StrictStr
31
- __properties: ClassVar[List[str]] = ["name", "schema_type"]
32
-
33
- @field_validator('schema_type')
34
- def schema_type_validate_enum(cls, value):
35
- """Validates the enum"""
36
- if value not in set(['SEGMENT']):
37
- raise ValueError("must be one of enum values ('SEGMENT')")
38
- return value
39
-
40
- model_config = ConfigDict(
41
- populate_by_name=True,
42
- validate_assignment=True,
43
- protected_namespaces=(),
44
- )
45
-
46
-
47
- def to_str(self) -> str:
48
- """Returns the string representation of the model using alias"""
49
- return pprint.pformat(self.model_dump(by_alias=True))
50
-
51
- def to_json(self) -> str:
52
- """Returns the JSON representation of the model using alias"""
53
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
54
- return json.dumps(self.to_dict())
55
-
56
- @classmethod
57
- def from_json(cls, json_str: str) -> Optional[Self]:
58
- """Create an instance of SegmentDatasetConfig from a JSON string"""
59
- return cls.from_dict(json.loads(json_str))
60
-
61
- def to_dict(self) -> Dict[str, Any]:
62
- """Return the dictionary representation of the model using alias.
63
-
64
- This has the following differences from calling pydantic's
65
- `self.model_dump(by_alias=True)`:
66
-
67
- * `None` is only added to the output dict for nullable fields that
68
- were set at model initialization. Other fields with value `None`
69
- are ignored.
70
- """
71
- excluded_fields: Set[str] = set([
72
- ])
73
-
74
- _dict = self.model_dump(
75
- by_alias=True,
76
- exclude=excluded_fields,
77
- exclude_none=True,
78
- )
79
- return _dict
80
-
81
- @classmethod
82
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
83
- """Create an instance of SegmentDatasetConfig from a dict"""
84
- if obj is None:
85
- return None
86
-
87
- if not isinstance(obj, dict):
88
- return cls.model_validate(obj)
89
-
90
- _obj = cls.model_validate({
91
- "name": obj.get("name"),
92
- "schema_type": obj.get("schema_type")
93
- })
94
- return _obj
95
-
96
-
@@ -1,101 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from shaped.autogen.models.inference_config import InferenceConfig
23
- from typing import Optional, Set
24
- from typing_extensions import Self
25
-
26
- class SimilarItemRequest(BaseModel):
27
- """
28
- SimilarItemRequest
29
- """ # noqa: E501
30
- item_id: StrictStr = Field(description="The query item to find similar results for.")
31
- user_id: Optional[StrictStr] = Field(default=None, description="An optional user to personalize results for.")
32
- return_metadata: Optional[StrictBool] = Field(default=False, description="If true, return the corresponding metadata for the ranked ids.")
33
- flush_paginations: Optional[StrictBool] = Field(default=False, description="Clears the pagination store for the given input user. This is useful if you want to implement paginations on client side or if you want to start the rankings again, e.g. on a page refresh. ")
34
- filter_predicate: Optional[StrictStr] = Field(default=None, description="A SQL where query that can be used to filter candidate items.")
35
- config: Optional[InferenceConfig] = None
36
- __properties: ClassVar[List[str]] = ["item_id", "user_id", "return_metadata", "flush_paginations", "filter_predicate", "config"]
37
-
38
- model_config = ConfigDict(
39
- populate_by_name=True,
40
- validate_assignment=True,
41
- protected_namespaces=(),
42
- )
43
-
44
-
45
- def to_str(self) -> str:
46
- """Returns the string representation of the model using alias"""
47
- return pprint.pformat(self.model_dump(by_alias=True))
48
-
49
- def to_json(self) -> str:
50
- """Returns the JSON representation of the model using alias"""
51
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
52
- return json.dumps(self.to_dict())
53
-
54
- @classmethod
55
- def from_json(cls, json_str: str) -> Optional[Self]:
56
- """Create an instance of SimilarItemRequest from a JSON string"""
57
- return cls.from_dict(json.loads(json_str))
58
-
59
- def to_dict(self) -> Dict[str, Any]:
60
- """Return the dictionary representation of the model using alias.
61
-
62
- This has the following differences from calling pydantic's
63
- `self.model_dump(by_alias=True)`:
64
-
65
- * `None` is only added to the output dict for nullable fields that
66
- were set at model initialization. Other fields with value `None`
67
- are ignored.
68
- """
69
- excluded_fields: Set[str] = set([
70
- ])
71
-
72
- _dict = self.model_dump(
73
- by_alias=True,
74
- exclude=excluded_fields,
75
- exclude_none=True,
76
- )
77
- # override the default output from pydantic by calling `to_dict()` of config
78
- if self.config:
79
- _dict['config'] = self.config.to_dict()
80
- return _dict
81
-
82
- @classmethod
83
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
84
- """Create an instance of SimilarItemRequest from a dict"""
85
- if obj is None:
86
- return None
87
-
88
- if not isinstance(obj, dict):
89
- return cls.model_validate(obj)
90
-
91
- _obj = cls.model_validate({
92
- "item_id": obj.get("item_id"),
93
- "user_id": obj.get("user_id"),
94
- "return_metadata": obj.get("return_metadata") if obj.get("return_metadata") is not None else False,
95
- "flush_paginations": obj.get("flush_paginations") if obj.get("flush_paginations") is not None else False,
96
- "filter_predicate": obj.get("filter_predicate"),
97
- "config": InferenceConfig.from_dict(obj["config"]) if obj.get("config") is not None else None
98
- })
99
- return _obj
100
-
101
-
@@ -1,89 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class SimilarResponse(BaseModel):
26
- """
27
- SimilarResponse
28
- """ # noqa: E501
29
- ids: List[StrictStr]
30
- metadata: Optional[List[Dict[str, Any]]] = None
31
- __properties: ClassVar[List[str]] = ["ids", "metadata"]
32
-
33
- model_config = ConfigDict(
34
- populate_by_name=True,
35
- validate_assignment=True,
36
- protected_namespaces=(),
37
- )
38
-
39
-
40
- def to_str(self) -> str:
41
- """Returns the string representation of the model using alias"""
42
- return pprint.pformat(self.model_dump(by_alias=True))
43
-
44
- def to_json(self) -> str:
45
- """Returns the JSON representation of the model using alias"""
46
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
47
- return json.dumps(self.to_dict())
48
-
49
- @classmethod
50
- def from_json(cls, json_str: str) -> Optional[Self]:
51
- """Create an instance of SimilarResponse from a JSON string"""
52
- return cls.from_dict(json.loads(json_str))
53
-
54
- def to_dict(self) -> Dict[str, Any]:
55
- """Return the dictionary representation of the model using alias.
56
-
57
- This has the following differences from calling pydantic's
58
- `self.model_dump(by_alias=True)`:
59
-
60
- * `None` is only added to the output dict for nullable fields that
61
- were set at model initialization. Other fields with value `None`
62
- are ignored.
63
- """
64
- excluded_fields: Set[str] = set([
65
- ])
66
-
67
- _dict = self.model_dump(
68
- by_alias=True,
69
- exclude=excluded_fields,
70
- exclude_none=True,
71
- )
72
- return _dict
73
-
74
- @classmethod
75
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
76
- """Create an instance of SimilarResponse from a dict"""
77
- if obj is None:
78
- return None
79
-
80
- if not isinstance(obj, dict):
81
- return cls.model_validate(obj)
82
-
83
- _obj = cls.model_validate({
84
- "ids": obj.get("ids"),
85
- "metadata": obj.get("metadata")
86
- })
87
- return _obj
88
-
89
-
@@ -1,99 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from shaped.autogen.models.inference_config import InferenceConfig
23
- from typing import Optional, Set
24
- from typing_extensions import Self
25
-
26
- class SimilarUsersRequest(BaseModel):
27
- """
28
- SimilarUsersRequest
29
- """ # noqa: E501
30
- user_id: StrictStr = Field(description="The query user to find similar results for.")
31
- return_metadata: Optional[StrictBool] = Field(default=False, description="If true, return the corresponding metadata for the ranked ids.")
32
- flush_paginations: Optional[StrictBool] = Field(default=False, description="Clears the pagination store for the given input user. This is useful if you want to implement paginations on client side or if you want to start the rankings again, e.g. on a page refresh. ")
33
- filter_predicate: Optional[StrictStr] = Field(default=None, description="A SQL where query that can be used to filter candidate users.")
34
- config: Optional[InferenceConfig] = None
35
- __properties: ClassVar[List[str]] = ["user_id", "return_metadata", "flush_paginations", "filter_predicate", "config"]
36
-
37
- model_config = ConfigDict(
38
- populate_by_name=True,
39
- validate_assignment=True,
40
- protected_namespaces=(),
41
- )
42
-
43
-
44
- def to_str(self) -> str:
45
- """Returns the string representation of the model using alias"""
46
- return pprint.pformat(self.model_dump(by_alias=True))
47
-
48
- def to_json(self) -> str:
49
- """Returns the JSON representation of the model using alias"""
50
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
51
- return json.dumps(self.to_dict())
52
-
53
- @classmethod
54
- def from_json(cls, json_str: str) -> Optional[Self]:
55
- """Create an instance of SimilarUsersRequest from a JSON string"""
56
- return cls.from_dict(json.loads(json_str))
57
-
58
- def to_dict(self) -> Dict[str, Any]:
59
- """Return the dictionary representation of the model using alias.
60
-
61
- This has the following differences from calling pydantic's
62
- `self.model_dump(by_alias=True)`:
63
-
64
- * `None` is only added to the output dict for nullable fields that
65
- were set at model initialization. Other fields with value `None`
66
- are ignored.
67
- """
68
- excluded_fields: Set[str] = set([
69
- ])
70
-
71
- _dict = self.model_dump(
72
- by_alias=True,
73
- exclude=excluded_fields,
74
- exclude_none=True,
75
- )
76
- # override the default output from pydantic by calling `to_dict()` of config
77
- if self.config:
78
- _dict['config'] = self.config.to_dict()
79
- return _dict
80
-
81
- @classmethod
82
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
83
- """Create an instance of SimilarUsersRequest from a dict"""
84
- if obj is None:
85
- return None
86
-
87
- if not isinstance(obj, dict):
88
- return cls.model_validate(obj)
89
-
90
- _obj = cls.model_validate({
91
- "user_id": obj.get("user_id"),
92
- "return_metadata": obj.get("return_metadata") if obj.get("return_metadata") is not None else False,
93
- "flush_paginations": obj.get("flush_paginations") if obj.get("flush_paginations") is not None else False,
94
- "filter_predicate": obj.get("filter_predicate"),
95
- "config": InferenceConfig.from_dict(obj["config"]) if obj.get("config") is not None else None
96
- })
97
- return _obj
98
-
99
-
@@ -1,87 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class SuccessfulResponse(BaseModel):
26
- """
27
- SuccessfulResponse
28
- """ # noqa: E501
29
- message: Optional[StrictStr] = None
30
- __properties: ClassVar[List[str]] = ["message"]
31
-
32
- model_config = ConfigDict(
33
- populate_by_name=True,
34
- validate_assignment=True,
35
- protected_namespaces=(),
36
- )
37
-
38
-
39
- def to_str(self) -> str:
40
- """Returns the string representation of the model using alias"""
41
- return pprint.pformat(self.model_dump(by_alias=True))
42
-
43
- def to_json(self) -> str:
44
- """Returns the JSON representation of the model using alias"""
45
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
46
- return json.dumps(self.to_dict())
47
-
48
- @classmethod
49
- def from_json(cls, json_str: str) -> Optional[Self]:
50
- """Create an instance of SuccessfulResponse from a JSON string"""
51
- return cls.from_dict(json.loads(json_str))
52
-
53
- def to_dict(self) -> Dict[str, Any]:
54
- """Return the dictionary representation of the model using alias.
55
-
56
- This has the following differences from calling pydantic's
57
- `self.model_dump(by_alias=True)`:
58
-
59
- * `None` is only added to the output dict for nullable fields that
60
- were set at model initialization. Other fields with value `None`
61
- are ignored.
62
- """
63
- excluded_fields: Set[str] = set([
64
- ])
65
-
66
- _dict = self.model_dump(
67
- by_alias=True,
68
- exclude=excluded_fields,
69
- exclude_none=True,
70
- )
71
- return _dict
72
-
73
- @classmethod
74
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
75
- """Create an instance of SuccessfulResponse from a dict"""
76
- if obj is None:
77
- return None
78
-
79
- if not isinstance(obj, dict):
80
- return cls.model_validate(obj)
81
-
82
- _obj = cls.model_validate({
83
- "message": obj.get("message")
84
- })
85
- return _obj
86
-
87
-