shaped 2.0.1__py3-none-any.whl → 2.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (323) hide show
  1. shaped/__init__.py +54 -4
  2. shaped/autogen/__init__.py +541 -66
  3. shaped/autogen/api/__init__.py +4 -3
  4. shaped/autogen/api/engine_api.py +1467 -0
  5. shaped/autogen/api/{dataset_api.py → query_api.py} +219 -194
  6. shaped/autogen/api/table_api.py +1494 -0
  7. shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
  8. shaped/autogen/api_client.py +15 -8
  9. shaped/autogen/configuration.py +20 -9
  10. shaped/autogen/exceptions.py +19 -2
  11. shaped/autogen/models/__init__.py +254 -52
  12. shaped/autogen/models/ai_enrichment_view_config.py +123 -0
  13. shaped/autogen/models/{path.py → algorithm.py} +19 -19
  14. shaped/autogen/models/amplitude_table_config.py +106 -0
  15. shaped/autogen/models/ascending.py +136 -0
  16. shaped/autogen/models/attn_dropout_prob.py +136 -0
  17. shaped/autogen/models/attribute_journey.py +124 -0
  18. shaped/autogen/models/attribute_value.py +178 -0
  19. shaped/autogen/models/autoscaling_config.py +95 -0
  20. shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
  21. shaped/autogen/models/batch_size.py +136 -0
  22. shaped/autogen/models/batch_size1.py +136 -0
  23. shaped/autogen/models/batch_size2.py +136 -0
  24. shaped/autogen/models/big_query_table_config.py +147 -0
  25. shaped/autogen/models/bm25.py +136 -0
  26. shaped/autogen/models/boosted_reorder_step.py +125 -0
  27. shaped/autogen/models/canary_rollout.py +99 -0
  28. shaped/autogen/models/candidate_attributes_retrieve_step.py +126 -0
  29. shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
  30. shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
  31. shaped/autogen/models/clickhouse_table_config.py +146 -0
  32. shaped/autogen/models/column_order_retrieve_step.py +123 -0
  33. shaped/autogen/models/column_ordering.py +91 -0
  34. shaped/autogen/models/create_table_response.py +87 -0
  35. shaped/autogen/models/create_view_response.py +87 -0
  36. shaped/autogen/models/custom_table_config.py +135 -0
  37. shaped/autogen/models/data_compute_config.py +89 -0
  38. shaped/autogen/models/data_config.py +145 -0
  39. shaped/autogen/models/data_config_interaction_table.py +146 -0
  40. shaped/autogen/models/data_split_config.py +88 -0
  41. shaped/autogen/models/data_split_strategy.py +37 -0
  42. shaped/autogen/models/data_tier.py +37 -0
  43. shaped/autogen/models/default.py +246 -0
  44. shaped/autogen/models/delete_engine_response.py +87 -0
  45. shaped/autogen/models/delete_table_response.py +87 -0
  46. shaped/autogen/models/delete_view_response.py +87 -0
  47. shaped/autogen/models/deployment_config.py +123 -0
  48. shaped/autogen/models/distance_function.py +38 -0
  49. shaped/autogen/models/diversity_reorder_step.py +137 -0
  50. shaped/autogen/models/dropout_rate.py +136 -0
  51. shaped/autogen/models/dynamo_db_table_config.py +160 -0
  52. shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
  53. shaped/autogen/models/embedder_batch_size.py +136 -0
  54. shaped/autogen/models/embedding_config.py +93 -0
  55. shaped/autogen/models/embedding_dim.py +136 -0
  56. shaped/autogen/models/embedding_dims.py +136 -0
  57. shaped/autogen/models/embedding_size.py +136 -0
  58. shaped/autogen/models/encoder.py +140 -0
  59. shaped/autogen/models/encoding_pooling_strategy.py +38 -0
  60. shaped/autogen/models/engine.py +109 -0
  61. shaped/autogen/models/engine_config_v2.py +152 -0
  62. shaped/autogen/models/engine_details_response.py +120 -0
  63. shaped/autogen/models/engine_schema.py +113 -0
  64. shaped/autogen/models/engine_schema_user_inner.py +134 -0
  65. shaped/autogen/models/entity_config.py +109 -0
  66. shaped/autogen/models/entity_journey.py +152 -0
  67. shaped/autogen/models/entity_type.py +38 -0
  68. shaped/autogen/models/evaluation_config.py +92 -0
  69. shaped/autogen/models/exploration_reorder_step.py +125 -0
  70. shaped/autogen/models/expression_filter_step.py +106 -0
  71. shaped/autogen/models/factors.py +136 -0
  72. shaped/autogen/models/factors1.py +136 -0
  73. shaped/autogen/models/feature.py +90 -0
  74. shaped/autogen/models/feature_type.py +60 -0
  75. shaped/autogen/models/file_table_config.py +112 -0
  76. shaped/autogen/models/filter_config.py +99 -0
  77. shaped/autogen/models/filter_dataset.py +140 -0
  78. shaped/autogen/models/filter_index_type.py +36 -0
  79. shaped/autogen/models/filter_retrieve_step.py +113 -0
  80. shaped/autogen/models/global_filter.py +102 -0
  81. shaped/autogen/models/hidden_dropout_prob.py +136 -0
  82. shaped/autogen/models/hidden_size.py +136 -0
  83. shaped/autogen/models/hidden_size1.py +136 -0
  84. shaped/autogen/models/http_problem_response.py +115 -0
  85. shaped/autogen/models/http_validation_error.py +2 -2
  86. shaped/autogen/models/hugging_face_encoder.py +113 -0
  87. shaped/autogen/models/iceberg_table_config.py +154 -0
  88. shaped/autogen/models/index_config.py +101 -0
  89. shaped/autogen/models/inner_size.py +136 -0
  90. shaped/autogen/models/inner_size1.py +136 -0
  91. shaped/autogen/models/interaction_config.py +122 -0
  92. shaped/autogen/models/interaction_pooling_encoder.py +104 -0
  93. shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
  94. shaped/autogen/models/item_attribute_pooling_encoder.py +124 -0
  95. shaped/autogen/models/journey.py +140 -0
  96. shaped/autogen/models/kafka_table_config.py +129 -0
  97. shaped/autogen/models/kinesis_table_config.py +140 -0
  98. shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
  99. shaped/autogen/models/label.py +90 -0
  100. shaped/autogen/models/label_type.py +37 -0
  101. shaped/autogen/models/laplace_smoothing.py +136 -0
  102. shaped/autogen/models/latency_scaling_policy.py +112 -0
  103. shaped/autogen/models/learning_rate.py +136 -0
  104. shaped/autogen/models/learning_rate1.py +136 -0
  105. shaped/autogen/models/learning_rate2.py +136 -0
  106. shaped/autogen/models/learning_rate3.py +136 -0
  107. shaped/autogen/models/lexical_search_mode.py +99 -0
  108. shaped/autogen/models/list_engines_response.py +95 -0
  109. shaped/autogen/models/list_tables_response.py +95 -0
  110. shaped/autogen/models/list_views_response.py +95 -0
  111. shaped/autogen/models/loss_types.py +37 -0
  112. shaped/autogen/models/lr.py +136 -0
  113. shaped/autogen/models/lr1.py +136 -0
  114. shaped/autogen/models/lr2.py +136 -0
  115. shaped/autogen/models/max_depth.py +136 -0
  116. shaped/autogen/models/max_leaves.py +136 -0
  117. shaped/autogen/models/max_seq_length.py +136 -0
  118. shaped/autogen/models/max_seq_length1.py +136 -0
  119. shaped/autogen/models/max_seq_length2.py +136 -0
  120. shaped/autogen/models/mode.py +134 -0
  121. shaped/autogen/models/mode1.py +134 -0
  122. shaped/autogen/models/mode2.py +136 -0
  123. shaped/autogen/models/mongo_db_table_config.py +147 -0
  124. shaped/autogen/models/mssql_table_config.py +155 -0
  125. shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
  126. shaped/autogen/models/n_epochs.py +136 -0
  127. shaped/autogen/models/n_epochs1.py +136 -0
  128. shaped/autogen/models/n_epochs2.py +136 -0
  129. shaped/autogen/models/n_estimators.py +136 -0
  130. shaped/autogen/models/n_heads.py +136 -0
  131. shaped/autogen/models/n_layers.py +136 -0
  132. shaped/autogen/models/neg_per_positive.py +136 -0
  133. shaped/autogen/models/negative_samples_count.py +136 -0
  134. shaped/autogen/models/ngram_tokenizer.py +103 -0
  135. shaped/autogen/models/no_op_config.py +117 -0
  136. shaped/autogen/models/num_blocks.py +136 -0
  137. shaped/autogen/models/num_heads.py +136 -0
  138. shaped/autogen/models/num_leaves.py +136 -0
  139. shaped/autogen/models/objective.py +40 -0
  140. shaped/autogen/models/objective1.py +134 -0
  141. shaped/autogen/models/online_store_config.py +89 -0
  142. shaped/autogen/models/pagination_config.py +87 -0
  143. shaped/autogen/models/parameter_definition.py +96 -0
  144. shaped/autogen/models/parameters_value.py +240 -0
  145. shaped/autogen/models/passthrough_score.py +104 -0
  146. shaped/autogen/models/personal_filter.py +104 -0
  147. shaped/autogen/models/pipeline_stage_explanation.py +118 -0
  148. shaped/autogen/models/policy.py +134 -0
  149. shaped/autogen/models/pool_fn.py +134 -0
  150. shaped/autogen/models/pooling_function.py +37 -0
  151. shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
  152. shaped/autogen/models/posthog_table_config.py +133 -0
  153. shaped/autogen/models/prebuilt_filter_step.py +113 -0
  154. shaped/autogen/models/precomputed_item_embedding.py +99 -0
  155. shaped/autogen/models/precomputed_user_embedding.py +99 -0
  156. shaped/autogen/models/query.py +136 -0
  157. shaped/autogen/models/query1.py +136 -0
  158. shaped/autogen/models/query_any_of.py +140 -0
  159. shaped/autogen/models/query_definition.py +106 -0
  160. shaped/autogen/models/query_encoder.py +194 -0
  161. shaped/autogen/models/query_explanation.py +197 -0
  162. shaped/autogen/models/query_request.py +121 -0
  163. shaped/autogen/models/query_result.py +113 -0
  164. shaped/autogen/models/query_table_config.py +99 -0
  165. shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
  166. shaped/autogen/models/rank_query_config.py +167 -0
  167. shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
  168. shaped/autogen/models/rank_query_config_reorder_inner.py +149 -0
  169. shaped/autogen/models/rank_query_config_retrieve_inner.py +196 -0
  170. shaped/autogen/models/recreate_rollout.py +97 -0
  171. shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
  172. shaped/autogen/models/reference_table_config.py +113 -0
  173. shaped/autogen/models/regularization.py +136 -0
  174. shaped/autogen/models/request.py +378 -0
  175. shaped/autogen/models/request1.py +140 -0
  176. shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
  177. shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
  178. shaped/autogen/models/result.py +145 -0
  179. shaped/autogen/models/result_embeddings_value.py +127 -0
  180. shaped/autogen/models/retriever.py +196 -0
  181. shaped/autogen/models/retriever1.py +196 -0
  182. shaped/autogen/models/rollout_config.py +91 -0
  183. shaped/autogen/models/rudderstack_table_config.py +106 -0
  184. shaped/autogen/models/sampling_strategy.py +36 -0
  185. shaped/autogen/models/saved_query_info_response.py +89 -0
  186. shaped/autogen/models/saved_query_list_response.py +87 -0
  187. shaped/autogen/models/saved_query_request.py +115 -0
  188. shaped/autogen/models/schema_config.py +117 -0
  189. shaped/autogen/models/score.py +134 -0
  190. shaped/autogen/models/score_ensemble.py +140 -0
  191. shaped/autogen/models/score_ensemble_policy_config.py +141 -0
  192. shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +422 -0
  193. shaped/autogen/models/search_config.py +105 -0
  194. shaped/autogen/models/segment_table_config.py +106 -0
  195. shaped/autogen/models/sequence_length.py +136 -0
  196. shaped/autogen/models/server_config.py +87 -0
  197. shaped/autogen/models/setup_engine_response.py +87 -0
  198. shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +148 -0
  199. shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +154 -0
  200. shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +209 -0
  201. shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +137 -0
  202. shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +139 -0
  203. shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +205 -0
  204. shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
  205. shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +152 -0
  206. shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +239 -0
  207. shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
  208. shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +137 -0
  209. shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +104 -0
  210. shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +130 -0
  211. shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
  212. shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +224 -0
  213. shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
  214. shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +159 -0
  215. shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +131 -0
  216. shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +131 -0
  217. shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +149 -0
  218. shaped/autogen/models/shopify_table_config.py +156 -0
  219. shaped/autogen/models/similarity_retrieve_step.py +121 -0
  220. shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
  221. shaped/autogen/models/sql_transform_type.py +37 -0
  222. shaped/autogen/models/sql_view_config.py +111 -0
  223. shaped/autogen/models/stemmer_tokenizer.py +105 -0
  224. shaped/autogen/models/step_explanation.py +137 -0
  225. shaped/autogen/models/strategy.py +134 -0
  226. shaped/autogen/models/table.py +102 -0
  227. shaped/autogen/models/table_deployment_type.py +38 -0
  228. shaped/autogen/models/table_insert_arguments.py +87 -0
  229. shaped/autogen/models/table_insert_response.py +87 -0
  230. shaped/autogen/models/text_encoding.py +136 -0
  231. shaped/autogen/models/text_search_retrieve_step.py +121 -0
  232. shaped/autogen/models/time_frequency.py +136 -0
  233. shaped/autogen/models/time_window.py +136 -0
  234. shaped/autogen/models/time_window_in_days.py +142 -0
  235. shaped/autogen/models/tokenizer.py +149 -0
  236. shaped/autogen/models/trained_model_encoder.py +99 -0
  237. shaped/autogen/models/training_compute_config.py +99 -0
  238. shaped/autogen/models/training_config.py +121 -0
  239. shaped/autogen/models/training_config_models_inner.py +308 -0
  240. shaped/autogen/models/training_strategy.py +37 -0
  241. shaped/autogen/models/trending_mode.py +37 -0
  242. shaped/autogen/models/truncate_filter_step.py +106 -0
  243. shaped/autogen/models/tunable_bool.py +97 -0
  244. shaped/autogen/models/tunable_float.py +118 -0
  245. shaped/autogen/models/tunable_int.py +118 -0
  246. shaped/autogen/models/tunable_int_categorical.py +99 -0
  247. shaped/autogen/models/tunable_string.py +99 -0
  248. shaped/autogen/models/tuning_config.py +89 -0
  249. shaped/autogen/models/type.py +134 -0
  250. shaped/autogen/models/update_table_response.py +87 -0
  251. shaped/autogen/models/update_view_response.py +87 -0
  252. shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
  253. shaped/autogen/models/val_split.py +136 -0
  254. shaped/autogen/models/validation_error.py +13 -3
  255. shaped/autogen/models/validation_error_loc_inner.py +138 -0
  256. shaped/autogen/models/value_type.py +7 -5
  257. shaped/autogen/models/vector_search_mode.py +99 -0
  258. shaped/autogen/models/view.py +104 -0
  259. shaped/autogen/models/view_details_ai.py +140 -0
  260. shaped/autogen/models/view_details_ai_schema_value.py +153 -0
  261. shaped/autogen/models/view_details_sql.py +140 -0
  262. shaped/autogen/models/view_status.py +41 -0
  263. shaped/autogen/models/weight_decay.py +136 -0
  264. shaped/autogen/models/whitespace_tokenizer.py +97 -0
  265. shaped/autogen/models/window_size.py +136 -0
  266. shaped/autogen/rest.py +8 -2
  267. shaped/cli/shaped_cli.py +12 -7
  268. shaped/client.py +587 -174
  269. shaped/config_builders.py +695 -0
  270. shaped/query_builder.py +774 -0
  271. {shaped-2.0.1.dist-info → shaped-2.0.2.dist-info}/METADATA +140 -5
  272. shaped-2.0.2.dist-info/RECORD +278 -0
  273. shaped-2.0.2.dist-info/entry_points.txt +2 -0
  274. shaped/autogen/api/model_inference_api.py +0 -2825
  275. shaped/autogen/models/amplitude_dataset_config.py +0 -96
  276. shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
  277. shaped/autogen/models/big_query_dataset_config.py +0 -114
  278. shaped/autogen/models/complement_items_request.py +0 -99
  279. shaped/autogen/models/complement_items_response.py +0 -89
  280. shaped/autogen/models/connectors_inner.py +0 -134
  281. shaped/autogen/models/create_dataset_arguments.py +0 -263
  282. shaped/autogen/models/create_embedding_response.py +0 -87
  283. shaped/autogen/models/create_item_embedding_request.py +0 -89
  284. shaped/autogen/models/create_model_arguments.py +0 -107
  285. shaped/autogen/models/create_model_response.py +0 -87
  286. shaped/autogen/models/create_user_embedding_request.py +0 -89
  287. shaped/autogen/models/custom_dataset_config.py +0 -115
  288. shaped/autogen/models/dataset_config.py +0 -101
  289. shaped/autogen/models/dataset_schema_type.py +0 -47
  290. shaped/autogen/models/datasets_inner.py +0 -91
  291. shaped/autogen/models/delete_model_response.py +0 -87
  292. shaped/autogen/models/fetch_config.py +0 -95
  293. shaped/autogen/models/file_config.py +0 -105
  294. shaped/autogen/models/file_source_config.py +0 -89
  295. shaped/autogen/models/inference_config.py +0 -101
  296. shaped/autogen/models/insert_model_response.py +0 -87
  297. shaped/autogen/models/interaction.py +0 -87
  298. shaped/autogen/models/list_datasets_response.py +0 -95
  299. shaped/autogen/models/list_models_response.py +0 -95
  300. shaped/autogen/models/model_config.py +0 -99
  301. shaped/autogen/models/model_response.py +0 -95
  302. shaped/autogen/models/mongo_db_dataset_config.py +0 -119
  303. shaped/autogen/models/post_rank_request.py +0 -117
  304. shaped/autogen/models/rank_attribute_response.py +0 -89
  305. shaped/autogen/models/rank_grid_attribute_request.py +0 -91
  306. shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
  307. shaped/autogen/models/rank_grid_attribute_response.py +0 -91
  308. shaped/autogen/models/rank_response.py +0 -91
  309. shaped/autogen/models/retrieve_request.py +0 -101
  310. shaped/autogen/models/retrieve_response.py +0 -91
  311. shaped/autogen/models/retriever_top_k_override.py +0 -97
  312. shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
  313. shaped/autogen/models/segment_dataset_config.py +0 -96
  314. shaped/autogen/models/similar_item_request.py +0 -101
  315. shaped/autogen/models/similar_response.py +0 -89
  316. shaped/autogen/models/similar_users_request.py +0 -99
  317. shaped/autogen/models/successful_response.py +0 -87
  318. shaped/autogen/models/view_model_response.py +0 -99
  319. shaped-2.0.1.dist-info/RECORD +0 -73
  320. shaped-2.0.1.dist-info/entry_points.txt +0 -2
  321. {shaped-2.0.1.dist-info → shaped-2.0.2.dist-info}/WHEEL +0 -0
  322. {shaped-2.0.1.dist-info → shaped-2.0.2.dist-info}/top_level.txt +0 -0
  323. {shaped-2.0.1.dist-info → shaped-2.0.2.dist-info}/zip-safe +0 -0
@@ -1,99 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, Field, StrictFloat, StrictInt, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional, Union
22
- from shaped.autogen.models.inference_config import InferenceConfig
23
- from typing import Optional, Set
24
- from typing_extensions import Self
25
-
26
- class ModelConfig(BaseModel):
27
- """
28
- ModelConfig
29
- """ # noqa: E501
30
- name: StrictStr = Field(description="Sets the model's identifier")
31
- description: Optional[StrictStr] = Field(default=None, description="Describe your model or add notes future reference")
32
- slate_size: Optional[Union[StrictFloat, StrictInt]] = Field(default=50, description="Slate size defines the number of items expected to be ranked in a single request, having this information at train time can improve the model selection process. ")
33
- pagination_store_ttl: Optional[Union[StrictFloat, StrictInt]] = Field(default=3600, description="All served ids are added to the pagination store to be filtered out on subsequent requests. This parameter defines the time it takes for the inserted iids to be removed. ")
34
- inference_config: Optional[InferenceConfig] = None
35
- __properties: ClassVar[List[str]] = ["name", "description", "slate_size", "pagination_store_ttl", "inference_config"]
36
-
37
- model_config = ConfigDict(
38
- populate_by_name=True,
39
- validate_assignment=True,
40
- protected_namespaces=(),
41
- )
42
-
43
-
44
- def to_str(self) -> str:
45
- """Returns the string representation of the model using alias"""
46
- return pprint.pformat(self.model_dump(by_alias=True))
47
-
48
- def to_json(self) -> str:
49
- """Returns the JSON representation of the model using alias"""
50
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
51
- return json.dumps(self.to_dict())
52
-
53
- @classmethod
54
- def from_json(cls, json_str: str) -> Optional[Self]:
55
- """Create an instance of ModelConfig from a JSON string"""
56
- return cls.from_dict(json.loads(json_str))
57
-
58
- def to_dict(self) -> Dict[str, Any]:
59
- """Return the dictionary representation of the model using alias.
60
-
61
- This has the following differences from calling pydantic's
62
- `self.model_dump(by_alias=True)`:
63
-
64
- * `None` is only added to the output dict for nullable fields that
65
- were set at model initialization. Other fields with value `None`
66
- are ignored.
67
- """
68
- excluded_fields: Set[str] = set([
69
- ])
70
-
71
- _dict = self.model_dump(
72
- by_alias=True,
73
- exclude=excluded_fields,
74
- exclude_none=True,
75
- )
76
- # override the default output from pydantic by calling `to_dict()` of inference_config
77
- if self.inference_config:
78
- _dict['inference_config'] = self.inference_config.to_dict()
79
- return _dict
80
-
81
- @classmethod
82
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
83
- """Create an instance of ModelConfig from a dict"""
84
- if obj is None:
85
- return None
86
-
87
- if not isinstance(obj, dict):
88
- return cls.model_validate(obj)
89
-
90
- _obj = cls.model_validate({
91
- "name": obj.get("name"),
92
- "description": obj.get("description"),
93
- "slate_size": obj.get("slate_size") if obj.get("slate_size") is not None else 50,
94
- "pagination_store_ttl": obj.get("pagination_store_ttl") if obj.get("pagination_store_ttl") is not None else 3600,
95
- "inference_config": InferenceConfig.from_dict(obj["inference_config"]) if obj.get("inference_config") is not None else None
96
- })
97
- return _obj
98
-
99
-
@@ -1,95 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, Field, StrictStr
21
- from typing import Any, ClassVar, Dict, List
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class ModelResponse(BaseModel):
26
- """
27
- ModelResponse
28
- """ # noqa: E501
29
- model_name: StrictStr
30
- model_uri: StrictStr
31
- created_at: StrictStr
32
- trained_at: StrictStr
33
- status: StrictStr = Field(description="Status takes the following values depending on which stage of the model creation pipeline it's at: 1. SCHEDULING -- your model is awaiting resources to be provisioned and used to fetch, train, and deploy your model. 2. FETCHING -- your historic data is being fetched. 3. TUNING -- your recommendation system configuration and models are being optimized for your dataset. 4. TRAINING -- your model is being trained on your historic dataset. 5. DEPLOYING -- your model is being deployed to your custom real-time endpoint. 6. ACTIVE -- your model is active and ready for rank requests. 7. ERROR -- there was an error at some point when creating your model. ")
34
- __properties: ClassVar[List[str]] = ["model_name", "model_uri", "created_at", "trained_at", "status"]
35
-
36
- model_config = ConfigDict(
37
- populate_by_name=True,
38
- validate_assignment=True,
39
- protected_namespaces=(),
40
- )
41
-
42
-
43
- def to_str(self) -> str:
44
- """Returns the string representation of the model using alias"""
45
- return pprint.pformat(self.model_dump(by_alias=True))
46
-
47
- def to_json(self) -> str:
48
- """Returns the JSON representation of the model using alias"""
49
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
50
- return json.dumps(self.to_dict())
51
-
52
- @classmethod
53
- def from_json(cls, json_str: str) -> Optional[Self]:
54
- """Create an instance of ModelResponse from a JSON string"""
55
- return cls.from_dict(json.loads(json_str))
56
-
57
- def to_dict(self) -> Dict[str, Any]:
58
- """Return the dictionary representation of the model using alias.
59
-
60
- This has the following differences from calling pydantic's
61
- `self.model_dump(by_alias=True)`:
62
-
63
- * `None` is only added to the output dict for nullable fields that
64
- were set at model initialization. Other fields with value `None`
65
- are ignored.
66
- """
67
- excluded_fields: Set[str] = set([
68
- ])
69
-
70
- _dict = self.model_dump(
71
- by_alias=True,
72
- exclude=excluded_fields,
73
- exclude_none=True,
74
- )
75
- return _dict
76
-
77
- @classmethod
78
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
79
- """Create an instance of ModelResponse from a dict"""
80
- if obj is None:
81
- return None
82
-
83
- if not isinstance(obj, dict):
84
- return cls.model_validate(obj)
85
-
86
- _obj = cls.model_validate({
87
- "model_name": obj.get("model_name"),
88
- "model_uri": obj.get("model_uri"),
89
- "created_at": obj.get("created_at"),
90
- "trained_at": obj.get("trained_at"),
91
- "status": obj.get("status")
92
- })
93
- return _obj
94
-
95
-
@@ -1,119 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from datetime import datetime
21
- from pydantic import BaseModel, ConfigDict, StrictStr, field_validator
22
- from typing import Any, ClassVar, Dict, List, Optional
23
- from typing import Optional, Set
24
- from typing_extensions import Self
25
-
26
- class MongoDBDatasetConfig(BaseModel):
27
- """
28
- MongoDBDatasetConfig
29
- """ # noqa: E501
30
- name: StrictStr
31
- mongodb_connection_string: StrictStr
32
- database: StrictStr
33
- collection: StrictStr
34
- replication_key: Optional[StrictStr] = None
35
- start_date: Optional[datetime] = None
36
- schedule_interval: Optional[StrictStr] = '@hourly'
37
- schema_type: StrictStr
38
- __properties: ClassVar[List[str]] = ["name", "mongodb_connection_string", "database", "collection", "replication_key", "start_date", "schedule_interval", "schema_type"]
39
-
40
- @field_validator('schema_type')
41
- def schema_type_validate_enum(cls, value):
42
- """Validates the enum"""
43
- if value not in set(['MONGODB']):
44
- raise ValueError("must be one of enum values ('MONGODB')")
45
- return value
46
-
47
- model_config = ConfigDict(
48
- populate_by_name=True,
49
- validate_assignment=True,
50
- protected_namespaces=(),
51
- )
52
-
53
-
54
- def to_str(self) -> str:
55
- """Returns the string representation of the model using alias"""
56
- return pprint.pformat(self.model_dump(by_alias=True))
57
-
58
- def to_json(self) -> str:
59
- """Returns the JSON representation of the model using alias"""
60
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
61
- return json.dumps(self.to_dict())
62
-
63
- @classmethod
64
- def from_json(cls, json_str: str) -> Optional[Self]:
65
- """Create an instance of MongoDBDatasetConfig from a JSON string"""
66
- return cls.from_dict(json.loads(json_str))
67
-
68
- def to_dict(self) -> Dict[str, Any]:
69
- """Return the dictionary representation of the model using alias.
70
-
71
- This has the following differences from calling pydantic's
72
- `self.model_dump(by_alias=True)`:
73
-
74
- * `None` is only added to the output dict for nullable fields that
75
- were set at model initialization. Other fields with value `None`
76
- are ignored.
77
- """
78
- excluded_fields: Set[str] = set([
79
- ])
80
-
81
- _dict = self.model_dump(
82
- by_alias=True,
83
- exclude=excluded_fields,
84
- exclude_none=True,
85
- )
86
- # set to None if replication_key (nullable) is None
87
- # and model_fields_set contains the field
88
- if self.replication_key is None and "replication_key" in self.model_fields_set:
89
- _dict['replication_key'] = None
90
-
91
- # set to None if start_date (nullable) is None
92
- # and model_fields_set contains the field
93
- if self.start_date is None and "start_date" in self.model_fields_set:
94
- _dict['start_date'] = None
95
-
96
- return _dict
97
-
98
- @classmethod
99
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
100
- """Create an instance of MongoDBDatasetConfig from a dict"""
101
- if obj is None:
102
- return None
103
-
104
- if not isinstance(obj, dict):
105
- return cls.model_validate(obj)
106
-
107
- _obj = cls.model_validate({
108
- "name": obj.get("name"),
109
- "mongodb_connection_string": obj.get("mongodb_connection_string"),
110
- "database": obj.get("database"),
111
- "collection": obj.get("collection"),
112
- "replication_key": obj.get("replication_key"),
113
- "start_date": obj.get("start_date"),
114
- "schedule_interval": obj.get("schedule_interval") if obj.get("schedule_interval") is not None else '@hourly',
115
- "schema_type": obj.get("schema_type")
116
- })
117
- return _obj
118
-
119
-
@@ -1,117 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from shaped.autogen.models.inference_config import InferenceConfig
23
- from shaped.autogen.models.interaction import Interaction
24
- from typing import Optional, Set
25
- from typing_extensions import Self
26
-
27
- class PostRankRequest(BaseModel):
28
- """
29
- PostRankRequest
30
- """ # noqa: E501
31
- user_id: Optional[StrictStr] = Field(default=None, description="The user id to personalize the ranking to.")
32
- item_ids: Optional[List[StrictStr]] = Field(default=None, description="A list of candidate items to rank. If not provided then we will use our own retrieval algorithms to fetch relevant items from the input queries. ")
33
- interactions: Optional[List[Interaction]] = Field(default=None, description="A list of historically ordered positive interactions for the current user's session. These interactions are appended onto the interactions found in Shaped's internal interaction store before ranking. ")
34
- filter_predicate: Optional[StrictStr] = Field(default=None, description="A SQL where query that can be used to filter out candidate items.")
35
- user_features: Optional[Dict[str, Any]] = Field(default=None, description="Instead of providing a user id, you may provide the user features directly. This can be helpful when the user features change in real-time and need to be ranked immediately with the updated features. ")
36
- item_features: Optional[Dict[str, Any]] = Field(default=None, description="Instead of providing candidate item ids, you maybe provide their item features directly. This allows new items to be ranked in real-time, even if they haven't been ingested by Shaped yet. ")
37
- text_query: Optional[StrictStr] = Field(default=None, description="A free text text query to filter retrieved items using our underlying hybrid bm25 and semantic search engine on text indexed fields. Note that text_index: True needs to be set when creating a model to enable the this feature. ")
38
- flush_paginations: Optional[StrictBool] = Field(default=False, description="Clears the pagination store for the given input user. This is useful if you want to implement paginations on client side or if you want to start the rankings again, e.g. on a page refresh. ")
39
- return_metadata: Optional[StrictBool] = Field(default=False, description="If true, return the corresponding metadata for the ranked items.")
40
- config: Optional[InferenceConfig] = None
41
- __properties: ClassVar[List[str]] = ["user_id", "item_ids", "interactions", "filter_predicate", "user_features", "item_features", "text_query", "flush_paginations", "return_metadata", "config"]
42
-
43
- model_config = ConfigDict(
44
- populate_by_name=True,
45
- validate_assignment=True,
46
- protected_namespaces=(),
47
- )
48
-
49
-
50
- def to_str(self) -> str:
51
- """Returns the string representation of the model using alias"""
52
- return pprint.pformat(self.model_dump(by_alias=True))
53
-
54
- def to_json(self) -> str:
55
- """Returns the JSON representation of the model using alias"""
56
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
57
- return json.dumps(self.to_dict())
58
-
59
- @classmethod
60
- def from_json(cls, json_str: str) -> Optional[Self]:
61
- """Create an instance of PostRankRequest from a JSON string"""
62
- return cls.from_dict(json.loads(json_str))
63
-
64
- def to_dict(self) -> Dict[str, Any]:
65
- """Return the dictionary representation of the model using alias.
66
-
67
- This has the following differences from calling pydantic's
68
- `self.model_dump(by_alias=True)`:
69
-
70
- * `None` is only added to the output dict for nullable fields that
71
- were set at model initialization. Other fields with value `None`
72
- are ignored.
73
- """
74
- excluded_fields: Set[str] = set([
75
- ])
76
-
77
- _dict = self.model_dump(
78
- by_alias=True,
79
- exclude=excluded_fields,
80
- exclude_none=True,
81
- )
82
- # override the default output from pydantic by calling `to_dict()` of each item in interactions (list)
83
- _items = []
84
- if self.interactions:
85
- for _item_interactions in self.interactions:
86
- if _item_interactions:
87
- _items.append(_item_interactions.to_dict())
88
- _dict['interactions'] = _items
89
- # override the default output from pydantic by calling `to_dict()` of config
90
- if self.config:
91
- _dict['config'] = self.config.to_dict()
92
- return _dict
93
-
94
- @classmethod
95
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
96
- """Create an instance of PostRankRequest from a dict"""
97
- if obj is None:
98
- return None
99
-
100
- if not isinstance(obj, dict):
101
- return cls.model_validate(obj)
102
-
103
- _obj = cls.model_validate({
104
- "user_id": obj.get("user_id"),
105
- "item_ids": obj.get("item_ids"),
106
- "interactions": [Interaction.from_dict(_item) for _item in obj["interactions"]] if obj.get("interactions") is not None else None,
107
- "filter_predicate": obj.get("filter_predicate"),
108
- "user_features": obj.get("user_features"),
109
- "item_features": obj.get("item_features"),
110
- "text_query": obj.get("text_query"),
111
- "flush_paginations": obj.get("flush_paginations") if obj.get("flush_paginations") is not None else False,
112
- "return_metadata": obj.get("return_metadata") if obj.get("return_metadata") is not None else False,
113
- "config": InferenceConfig.from_dict(obj["config"]) if obj.get("config") is not None else None
114
- })
115
- return _obj
116
-
117
-
@@ -1,89 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictFloat, StrictInt, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Union
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class RankAttributeResponse(BaseModel):
26
- """
27
- RankAttributeResponse
28
- """ # noqa: E501
29
- attributes: List[StrictStr]
30
- scores: List[Union[StrictFloat, StrictInt]]
31
- __properties: ClassVar[List[str]] = ["attributes", "scores"]
32
-
33
- model_config = ConfigDict(
34
- populate_by_name=True,
35
- validate_assignment=True,
36
- protected_namespaces=(),
37
- )
38
-
39
-
40
- def to_str(self) -> str:
41
- """Returns the string representation of the model using alias"""
42
- return pprint.pformat(self.model_dump(by_alias=True))
43
-
44
- def to_json(self) -> str:
45
- """Returns the JSON representation of the model using alias"""
46
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
47
- return json.dumps(self.to_dict())
48
-
49
- @classmethod
50
- def from_json(cls, json_str: str) -> Optional[Self]:
51
- """Create an instance of RankAttributeResponse from a JSON string"""
52
- return cls.from_dict(json.loads(json_str))
53
-
54
- def to_dict(self) -> Dict[str, Any]:
55
- """Return the dictionary representation of the model using alias.
56
-
57
- This has the following differences from calling pydantic's
58
- `self.model_dump(by_alias=True)`:
59
-
60
- * `None` is only added to the output dict for nullable fields that
61
- were set at model initialization. Other fields with value `None`
62
- are ignored.
63
- """
64
- excluded_fields: Set[str] = set([
65
- ])
66
-
67
- _dict = self.model_dump(
68
- by_alias=True,
69
- exclude=excluded_fields,
70
- exclude_none=True,
71
- )
72
- return _dict
73
-
74
- @classmethod
75
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
76
- """Create an instance of RankAttributeResponse from a dict"""
77
- if obj is None:
78
- return None
79
-
80
- if not isinstance(obj, dict):
81
- return cls.model_validate(obj)
82
-
83
- _obj = cls.model_validate({
84
- "attributes": obj.get("attributes"),
85
- "scores": obj.get("scores")
86
- })
87
- return _obj
88
-
89
-
@@ -1,91 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictFloat, StrictInt, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional, Union
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class RankGridAttributeRequest(BaseModel):
26
- """
27
- RankGridAttributeRequest
28
- """ # noqa: E501
29
- attribute_name: StrictStr
30
- user_id: Optional[StrictStr] = None
31
- limit: Optional[Union[StrictFloat, StrictInt]] = 10
32
- __properties: ClassVar[List[str]] = ["attribute_name", "user_id", "limit"]
33
-
34
- model_config = ConfigDict(
35
- populate_by_name=True,
36
- validate_assignment=True,
37
- protected_namespaces=(),
38
- )
39
-
40
-
41
- def to_str(self) -> str:
42
- """Returns the string representation of the model using alias"""
43
- return pprint.pformat(self.model_dump(by_alias=True))
44
-
45
- def to_json(self) -> str:
46
- """Returns the JSON representation of the model using alias"""
47
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
48
- return json.dumps(self.to_dict())
49
-
50
- @classmethod
51
- def from_json(cls, json_str: str) -> Optional[Self]:
52
- """Create an instance of RankGridAttributeRequest from a JSON string"""
53
- return cls.from_dict(json.loads(json_str))
54
-
55
- def to_dict(self) -> Dict[str, Any]:
56
- """Return the dictionary representation of the model using alias.
57
-
58
- This has the following differences from calling pydantic's
59
- `self.model_dump(by_alias=True)`:
60
-
61
- * `None` is only added to the output dict for nullable fields that
62
- were set at model initialization. Other fields with value `None`
63
- are ignored.
64
- """
65
- excluded_fields: Set[str] = set([
66
- ])
67
-
68
- _dict = self.model_dump(
69
- by_alias=True,
70
- exclude=excluded_fields,
71
- exclude_none=True,
72
- )
73
- return _dict
74
-
75
- @classmethod
76
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
77
- """Create an instance of RankGridAttributeRequest from a dict"""
78
- if obj is None:
79
- return None
80
-
81
- if not isinstance(obj, dict):
82
- return cls.model_validate(obj)
83
-
84
- _obj = cls.model_validate({
85
- "attribute_name": obj.get("attribute_name"),
86
- "user_id": obj.get("user_id"),
87
- "limit": obj.get("limit") if obj.get("limit") is not None else 10
88
- })
89
- return _obj
90
-
91
-