shaped 2.0.1__py3-none-any.whl → 2.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (323) hide show
  1. shaped/__init__.py +54 -4
  2. shaped/autogen/__init__.py +541 -66
  3. shaped/autogen/api/__init__.py +4 -3
  4. shaped/autogen/api/engine_api.py +1467 -0
  5. shaped/autogen/api/{dataset_api.py → query_api.py} +219 -194
  6. shaped/autogen/api/table_api.py +1494 -0
  7. shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
  8. shaped/autogen/api_client.py +15 -8
  9. shaped/autogen/configuration.py +20 -9
  10. shaped/autogen/exceptions.py +19 -2
  11. shaped/autogen/models/__init__.py +254 -52
  12. shaped/autogen/models/ai_enrichment_view_config.py +123 -0
  13. shaped/autogen/models/{path.py → algorithm.py} +19 -19
  14. shaped/autogen/models/amplitude_table_config.py +106 -0
  15. shaped/autogen/models/ascending.py +136 -0
  16. shaped/autogen/models/attn_dropout_prob.py +136 -0
  17. shaped/autogen/models/attribute_journey.py +124 -0
  18. shaped/autogen/models/attribute_value.py +178 -0
  19. shaped/autogen/models/autoscaling_config.py +95 -0
  20. shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
  21. shaped/autogen/models/batch_size.py +136 -0
  22. shaped/autogen/models/batch_size1.py +136 -0
  23. shaped/autogen/models/batch_size2.py +136 -0
  24. shaped/autogen/models/big_query_table_config.py +147 -0
  25. shaped/autogen/models/bm25.py +136 -0
  26. shaped/autogen/models/boosted_reorder_step.py +125 -0
  27. shaped/autogen/models/canary_rollout.py +99 -0
  28. shaped/autogen/models/candidate_attributes_retrieve_step.py +126 -0
  29. shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
  30. shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
  31. shaped/autogen/models/clickhouse_table_config.py +146 -0
  32. shaped/autogen/models/column_order_retrieve_step.py +123 -0
  33. shaped/autogen/models/column_ordering.py +91 -0
  34. shaped/autogen/models/create_table_response.py +87 -0
  35. shaped/autogen/models/create_view_response.py +87 -0
  36. shaped/autogen/models/custom_table_config.py +135 -0
  37. shaped/autogen/models/data_compute_config.py +89 -0
  38. shaped/autogen/models/data_config.py +145 -0
  39. shaped/autogen/models/data_config_interaction_table.py +146 -0
  40. shaped/autogen/models/data_split_config.py +88 -0
  41. shaped/autogen/models/data_split_strategy.py +37 -0
  42. shaped/autogen/models/data_tier.py +37 -0
  43. shaped/autogen/models/default.py +246 -0
  44. shaped/autogen/models/delete_engine_response.py +87 -0
  45. shaped/autogen/models/delete_table_response.py +87 -0
  46. shaped/autogen/models/delete_view_response.py +87 -0
  47. shaped/autogen/models/deployment_config.py +123 -0
  48. shaped/autogen/models/distance_function.py +38 -0
  49. shaped/autogen/models/diversity_reorder_step.py +137 -0
  50. shaped/autogen/models/dropout_rate.py +136 -0
  51. shaped/autogen/models/dynamo_db_table_config.py +160 -0
  52. shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
  53. shaped/autogen/models/embedder_batch_size.py +136 -0
  54. shaped/autogen/models/embedding_config.py +93 -0
  55. shaped/autogen/models/embedding_dim.py +136 -0
  56. shaped/autogen/models/embedding_dims.py +136 -0
  57. shaped/autogen/models/embedding_size.py +136 -0
  58. shaped/autogen/models/encoder.py +140 -0
  59. shaped/autogen/models/encoding_pooling_strategy.py +38 -0
  60. shaped/autogen/models/engine.py +109 -0
  61. shaped/autogen/models/engine_config_v2.py +152 -0
  62. shaped/autogen/models/engine_details_response.py +120 -0
  63. shaped/autogen/models/engine_schema.py +113 -0
  64. shaped/autogen/models/engine_schema_user_inner.py +134 -0
  65. shaped/autogen/models/entity_config.py +109 -0
  66. shaped/autogen/models/entity_journey.py +152 -0
  67. shaped/autogen/models/entity_type.py +38 -0
  68. shaped/autogen/models/evaluation_config.py +92 -0
  69. shaped/autogen/models/exploration_reorder_step.py +125 -0
  70. shaped/autogen/models/expression_filter_step.py +106 -0
  71. shaped/autogen/models/factors.py +136 -0
  72. shaped/autogen/models/factors1.py +136 -0
  73. shaped/autogen/models/feature.py +90 -0
  74. shaped/autogen/models/feature_type.py +60 -0
  75. shaped/autogen/models/file_table_config.py +112 -0
  76. shaped/autogen/models/filter_config.py +99 -0
  77. shaped/autogen/models/filter_dataset.py +140 -0
  78. shaped/autogen/models/filter_index_type.py +36 -0
  79. shaped/autogen/models/filter_retrieve_step.py +113 -0
  80. shaped/autogen/models/global_filter.py +102 -0
  81. shaped/autogen/models/hidden_dropout_prob.py +136 -0
  82. shaped/autogen/models/hidden_size.py +136 -0
  83. shaped/autogen/models/hidden_size1.py +136 -0
  84. shaped/autogen/models/http_problem_response.py +115 -0
  85. shaped/autogen/models/http_validation_error.py +2 -2
  86. shaped/autogen/models/hugging_face_encoder.py +113 -0
  87. shaped/autogen/models/iceberg_table_config.py +154 -0
  88. shaped/autogen/models/index_config.py +101 -0
  89. shaped/autogen/models/inner_size.py +136 -0
  90. shaped/autogen/models/inner_size1.py +136 -0
  91. shaped/autogen/models/interaction_config.py +122 -0
  92. shaped/autogen/models/interaction_pooling_encoder.py +104 -0
  93. shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
  94. shaped/autogen/models/item_attribute_pooling_encoder.py +124 -0
  95. shaped/autogen/models/journey.py +140 -0
  96. shaped/autogen/models/kafka_table_config.py +129 -0
  97. shaped/autogen/models/kinesis_table_config.py +140 -0
  98. shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
  99. shaped/autogen/models/label.py +90 -0
  100. shaped/autogen/models/label_type.py +37 -0
  101. shaped/autogen/models/laplace_smoothing.py +136 -0
  102. shaped/autogen/models/latency_scaling_policy.py +112 -0
  103. shaped/autogen/models/learning_rate.py +136 -0
  104. shaped/autogen/models/learning_rate1.py +136 -0
  105. shaped/autogen/models/learning_rate2.py +136 -0
  106. shaped/autogen/models/learning_rate3.py +136 -0
  107. shaped/autogen/models/lexical_search_mode.py +99 -0
  108. shaped/autogen/models/list_engines_response.py +95 -0
  109. shaped/autogen/models/list_tables_response.py +95 -0
  110. shaped/autogen/models/list_views_response.py +95 -0
  111. shaped/autogen/models/loss_types.py +37 -0
  112. shaped/autogen/models/lr.py +136 -0
  113. shaped/autogen/models/lr1.py +136 -0
  114. shaped/autogen/models/lr2.py +136 -0
  115. shaped/autogen/models/max_depth.py +136 -0
  116. shaped/autogen/models/max_leaves.py +136 -0
  117. shaped/autogen/models/max_seq_length.py +136 -0
  118. shaped/autogen/models/max_seq_length1.py +136 -0
  119. shaped/autogen/models/max_seq_length2.py +136 -0
  120. shaped/autogen/models/mode.py +134 -0
  121. shaped/autogen/models/mode1.py +134 -0
  122. shaped/autogen/models/mode2.py +136 -0
  123. shaped/autogen/models/mongo_db_table_config.py +147 -0
  124. shaped/autogen/models/mssql_table_config.py +155 -0
  125. shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
  126. shaped/autogen/models/n_epochs.py +136 -0
  127. shaped/autogen/models/n_epochs1.py +136 -0
  128. shaped/autogen/models/n_epochs2.py +136 -0
  129. shaped/autogen/models/n_estimators.py +136 -0
  130. shaped/autogen/models/n_heads.py +136 -0
  131. shaped/autogen/models/n_layers.py +136 -0
  132. shaped/autogen/models/neg_per_positive.py +136 -0
  133. shaped/autogen/models/negative_samples_count.py +136 -0
  134. shaped/autogen/models/ngram_tokenizer.py +103 -0
  135. shaped/autogen/models/no_op_config.py +117 -0
  136. shaped/autogen/models/num_blocks.py +136 -0
  137. shaped/autogen/models/num_heads.py +136 -0
  138. shaped/autogen/models/num_leaves.py +136 -0
  139. shaped/autogen/models/objective.py +40 -0
  140. shaped/autogen/models/objective1.py +134 -0
  141. shaped/autogen/models/online_store_config.py +89 -0
  142. shaped/autogen/models/pagination_config.py +87 -0
  143. shaped/autogen/models/parameter_definition.py +96 -0
  144. shaped/autogen/models/parameters_value.py +240 -0
  145. shaped/autogen/models/passthrough_score.py +104 -0
  146. shaped/autogen/models/personal_filter.py +104 -0
  147. shaped/autogen/models/pipeline_stage_explanation.py +118 -0
  148. shaped/autogen/models/policy.py +134 -0
  149. shaped/autogen/models/pool_fn.py +134 -0
  150. shaped/autogen/models/pooling_function.py +37 -0
  151. shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
  152. shaped/autogen/models/posthog_table_config.py +133 -0
  153. shaped/autogen/models/prebuilt_filter_step.py +113 -0
  154. shaped/autogen/models/precomputed_item_embedding.py +99 -0
  155. shaped/autogen/models/precomputed_user_embedding.py +99 -0
  156. shaped/autogen/models/query.py +136 -0
  157. shaped/autogen/models/query1.py +136 -0
  158. shaped/autogen/models/query_any_of.py +140 -0
  159. shaped/autogen/models/query_definition.py +106 -0
  160. shaped/autogen/models/query_encoder.py +194 -0
  161. shaped/autogen/models/query_explanation.py +197 -0
  162. shaped/autogen/models/query_request.py +121 -0
  163. shaped/autogen/models/query_result.py +113 -0
  164. shaped/autogen/models/query_table_config.py +99 -0
  165. shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
  166. shaped/autogen/models/rank_query_config.py +167 -0
  167. shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
  168. shaped/autogen/models/rank_query_config_reorder_inner.py +149 -0
  169. shaped/autogen/models/rank_query_config_retrieve_inner.py +196 -0
  170. shaped/autogen/models/recreate_rollout.py +97 -0
  171. shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
  172. shaped/autogen/models/reference_table_config.py +113 -0
  173. shaped/autogen/models/regularization.py +136 -0
  174. shaped/autogen/models/request.py +378 -0
  175. shaped/autogen/models/request1.py +140 -0
  176. shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
  177. shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
  178. shaped/autogen/models/result.py +145 -0
  179. shaped/autogen/models/result_embeddings_value.py +127 -0
  180. shaped/autogen/models/retriever.py +196 -0
  181. shaped/autogen/models/retriever1.py +196 -0
  182. shaped/autogen/models/rollout_config.py +91 -0
  183. shaped/autogen/models/rudderstack_table_config.py +106 -0
  184. shaped/autogen/models/sampling_strategy.py +36 -0
  185. shaped/autogen/models/saved_query_info_response.py +89 -0
  186. shaped/autogen/models/saved_query_list_response.py +87 -0
  187. shaped/autogen/models/saved_query_request.py +115 -0
  188. shaped/autogen/models/schema_config.py +117 -0
  189. shaped/autogen/models/score.py +134 -0
  190. shaped/autogen/models/score_ensemble.py +140 -0
  191. shaped/autogen/models/score_ensemble_policy_config.py +141 -0
  192. shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +422 -0
  193. shaped/autogen/models/search_config.py +105 -0
  194. shaped/autogen/models/segment_table_config.py +106 -0
  195. shaped/autogen/models/sequence_length.py +136 -0
  196. shaped/autogen/models/server_config.py +87 -0
  197. shaped/autogen/models/setup_engine_response.py +87 -0
  198. shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +148 -0
  199. shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +154 -0
  200. shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +209 -0
  201. shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +137 -0
  202. shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +139 -0
  203. shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +205 -0
  204. shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
  205. shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +152 -0
  206. shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +239 -0
  207. shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
  208. shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +137 -0
  209. shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +104 -0
  210. shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +130 -0
  211. shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
  212. shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +224 -0
  213. shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
  214. shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +159 -0
  215. shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +131 -0
  216. shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +131 -0
  217. shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +149 -0
  218. shaped/autogen/models/shopify_table_config.py +156 -0
  219. shaped/autogen/models/similarity_retrieve_step.py +121 -0
  220. shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
  221. shaped/autogen/models/sql_transform_type.py +37 -0
  222. shaped/autogen/models/sql_view_config.py +111 -0
  223. shaped/autogen/models/stemmer_tokenizer.py +105 -0
  224. shaped/autogen/models/step_explanation.py +137 -0
  225. shaped/autogen/models/strategy.py +134 -0
  226. shaped/autogen/models/table.py +102 -0
  227. shaped/autogen/models/table_deployment_type.py +38 -0
  228. shaped/autogen/models/table_insert_arguments.py +87 -0
  229. shaped/autogen/models/table_insert_response.py +87 -0
  230. shaped/autogen/models/text_encoding.py +136 -0
  231. shaped/autogen/models/text_search_retrieve_step.py +121 -0
  232. shaped/autogen/models/time_frequency.py +136 -0
  233. shaped/autogen/models/time_window.py +136 -0
  234. shaped/autogen/models/time_window_in_days.py +142 -0
  235. shaped/autogen/models/tokenizer.py +149 -0
  236. shaped/autogen/models/trained_model_encoder.py +99 -0
  237. shaped/autogen/models/training_compute_config.py +99 -0
  238. shaped/autogen/models/training_config.py +121 -0
  239. shaped/autogen/models/training_config_models_inner.py +308 -0
  240. shaped/autogen/models/training_strategy.py +37 -0
  241. shaped/autogen/models/trending_mode.py +37 -0
  242. shaped/autogen/models/truncate_filter_step.py +106 -0
  243. shaped/autogen/models/tunable_bool.py +97 -0
  244. shaped/autogen/models/tunable_float.py +118 -0
  245. shaped/autogen/models/tunable_int.py +118 -0
  246. shaped/autogen/models/tunable_int_categorical.py +99 -0
  247. shaped/autogen/models/tunable_string.py +99 -0
  248. shaped/autogen/models/tuning_config.py +89 -0
  249. shaped/autogen/models/type.py +134 -0
  250. shaped/autogen/models/update_table_response.py +87 -0
  251. shaped/autogen/models/update_view_response.py +87 -0
  252. shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
  253. shaped/autogen/models/val_split.py +136 -0
  254. shaped/autogen/models/validation_error.py +13 -3
  255. shaped/autogen/models/validation_error_loc_inner.py +138 -0
  256. shaped/autogen/models/value_type.py +7 -5
  257. shaped/autogen/models/vector_search_mode.py +99 -0
  258. shaped/autogen/models/view.py +104 -0
  259. shaped/autogen/models/view_details_ai.py +140 -0
  260. shaped/autogen/models/view_details_ai_schema_value.py +153 -0
  261. shaped/autogen/models/view_details_sql.py +140 -0
  262. shaped/autogen/models/view_status.py +41 -0
  263. shaped/autogen/models/weight_decay.py +136 -0
  264. shaped/autogen/models/whitespace_tokenizer.py +97 -0
  265. shaped/autogen/models/window_size.py +136 -0
  266. shaped/autogen/rest.py +8 -2
  267. shaped/cli/shaped_cli.py +12 -7
  268. shaped/client.py +587 -174
  269. shaped/config_builders.py +695 -0
  270. shaped/query_builder.py +774 -0
  271. {shaped-2.0.1.dist-info → shaped-2.0.2.dist-info}/METADATA +140 -5
  272. shaped-2.0.2.dist-info/RECORD +278 -0
  273. shaped-2.0.2.dist-info/entry_points.txt +2 -0
  274. shaped/autogen/api/model_inference_api.py +0 -2825
  275. shaped/autogen/models/amplitude_dataset_config.py +0 -96
  276. shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
  277. shaped/autogen/models/big_query_dataset_config.py +0 -114
  278. shaped/autogen/models/complement_items_request.py +0 -99
  279. shaped/autogen/models/complement_items_response.py +0 -89
  280. shaped/autogen/models/connectors_inner.py +0 -134
  281. shaped/autogen/models/create_dataset_arguments.py +0 -263
  282. shaped/autogen/models/create_embedding_response.py +0 -87
  283. shaped/autogen/models/create_item_embedding_request.py +0 -89
  284. shaped/autogen/models/create_model_arguments.py +0 -107
  285. shaped/autogen/models/create_model_response.py +0 -87
  286. shaped/autogen/models/create_user_embedding_request.py +0 -89
  287. shaped/autogen/models/custom_dataset_config.py +0 -115
  288. shaped/autogen/models/dataset_config.py +0 -101
  289. shaped/autogen/models/dataset_schema_type.py +0 -47
  290. shaped/autogen/models/datasets_inner.py +0 -91
  291. shaped/autogen/models/delete_model_response.py +0 -87
  292. shaped/autogen/models/fetch_config.py +0 -95
  293. shaped/autogen/models/file_config.py +0 -105
  294. shaped/autogen/models/file_source_config.py +0 -89
  295. shaped/autogen/models/inference_config.py +0 -101
  296. shaped/autogen/models/insert_model_response.py +0 -87
  297. shaped/autogen/models/interaction.py +0 -87
  298. shaped/autogen/models/list_datasets_response.py +0 -95
  299. shaped/autogen/models/list_models_response.py +0 -95
  300. shaped/autogen/models/model_config.py +0 -99
  301. shaped/autogen/models/model_response.py +0 -95
  302. shaped/autogen/models/mongo_db_dataset_config.py +0 -119
  303. shaped/autogen/models/post_rank_request.py +0 -117
  304. shaped/autogen/models/rank_attribute_response.py +0 -89
  305. shaped/autogen/models/rank_grid_attribute_request.py +0 -91
  306. shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
  307. shaped/autogen/models/rank_grid_attribute_response.py +0 -91
  308. shaped/autogen/models/rank_response.py +0 -91
  309. shaped/autogen/models/retrieve_request.py +0 -101
  310. shaped/autogen/models/retrieve_response.py +0 -91
  311. shaped/autogen/models/retriever_top_k_override.py +0 -97
  312. shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
  313. shaped/autogen/models/segment_dataset_config.py +0 -96
  314. shaped/autogen/models/similar_item_request.py +0 -101
  315. shaped/autogen/models/similar_response.py +0 -89
  316. shaped/autogen/models/similar_users_request.py +0 -99
  317. shaped/autogen/models/successful_response.py +0 -87
  318. shaped/autogen/models/view_model_response.py +0 -99
  319. shaped-2.0.1.dist-info/RECORD +0 -73
  320. shaped-2.0.1.dist-info/entry_points.txt +0 -2
  321. {shaped-2.0.1.dist-info → shaped-2.0.2.dist-info}/WHEEL +0 -0
  322. {shaped-2.0.1.dist-info → shaped-2.0.2.dist-info}/top_level.txt +0 -0
  323. {shaped-2.0.1.dist-info → shaped-2.0.2.dist-info}/zip-safe +0 -0
@@ -1,93 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictFloat, StrictInt, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional, Union
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class RankGridAttributeRequest1(BaseModel):
26
- """
27
- RankGridAttributeRequest1
28
- """ # noqa: E501
29
- attribute_name: StrictStr
30
- user_id: Optional[StrictStr] = None
31
- row_limit: Optional[Union[StrictFloat, StrictInt]] = 10
32
- col_limit: Optional[Union[StrictFloat, StrictInt]] = 10
33
- __properties: ClassVar[List[str]] = ["attribute_name", "user_id", "row_limit", "col_limit"]
34
-
35
- model_config = ConfigDict(
36
- populate_by_name=True,
37
- validate_assignment=True,
38
- protected_namespaces=(),
39
- )
40
-
41
-
42
- def to_str(self) -> str:
43
- """Returns the string representation of the model using alias"""
44
- return pprint.pformat(self.model_dump(by_alias=True))
45
-
46
- def to_json(self) -> str:
47
- """Returns the JSON representation of the model using alias"""
48
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
49
- return json.dumps(self.to_dict())
50
-
51
- @classmethod
52
- def from_json(cls, json_str: str) -> Optional[Self]:
53
- """Create an instance of RankGridAttributeRequest1 from a JSON string"""
54
- return cls.from_dict(json.loads(json_str))
55
-
56
- def to_dict(self) -> Dict[str, Any]:
57
- """Return the dictionary representation of the model using alias.
58
-
59
- This has the following differences from calling pydantic's
60
- `self.model_dump(by_alias=True)`:
61
-
62
- * `None` is only added to the output dict for nullable fields that
63
- were set at model initialization. Other fields with value `None`
64
- are ignored.
65
- """
66
- excluded_fields: Set[str] = set([
67
- ])
68
-
69
- _dict = self.model_dump(
70
- by_alias=True,
71
- exclude=excluded_fields,
72
- exclude_none=True,
73
- )
74
- return _dict
75
-
76
- @classmethod
77
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
78
- """Create an instance of RankGridAttributeRequest1 from a dict"""
79
- if obj is None:
80
- return None
81
-
82
- if not isinstance(obj, dict):
83
- return cls.model_validate(obj)
84
-
85
- _obj = cls.model_validate({
86
- "attribute_name": obj.get("attribute_name"),
87
- "user_id": obj.get("user_id"),
88
- "row_limit": obj.get("row_limit") if obj.get("row_limit") is not None else 10,
89
- "col_limit": obj.get("col_limit") if obj.get("col_limit") is not None else 10
90
- })
91
- return _obj
92
-
93
-
@@ -1,91 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictFloat, StrictInt, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional, Union
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class RankGridAttributeResponse(BaseModel):
26
- """
27
- RankGridAttributeResponse
28
- """ # noqa: E501
29
- id_grid: Optional[List[List[StrictStr]]] = None
30
- scoregrid: Optional[List[List[Union[StrictFloat, StrictInt]]]] = None
31
- attributes: Optional[List[StrictStr]] = None
32
- __properties: ClassVar[List[str]] = ["id_grid", "scoregrid", "attributes"]
33
-
34
- model_config = ConfigDict(
35
- populate_by_name=True,
36
- validate_assignment=True,
37
- protected_namespaces=(),
38
- )
39
-
40
-
41
- def to_str(self) -> str:
42
- """Returns the string representation of the model using alias"""
43
- return pprint.pformat(self.model_dump(by_alias=True))
44
-
45
- def to_json(self) -> str:
46
- """Returns the JSON representation of the model using alias"""
47
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
48
- return json.dumps(self.to_dict())
49
-
50
- @classmethod
51
- def from_json(cls, json_str: str) -> Optional[Self]:
52
- """Create an instance of RankGridAttributeResponse from a JSON string"""
53
- return cls.from_dict(json.loads(json_str))
54
-
55
- def to_dict(self) -> Dict[str, Any]:
56
- """Return the dictionary representation of the model using alias.
57
-
58
- This has the following differences from calling pydantic's
59
- `self.model_dump(by_alias=True)`:
60
-
61
- * `None` is only added to the output dict for nullable fields that
62
- were set at model initialization. Other fields with value `None`
63
- are ignored.
64
- """
65
- excluded_fields: Set[str] = set([
66
- ])
67
-
68
- _dict = self.model_dump(
69
- by_alias=True,
70
- exclude=excluded_fields,
71
- exclude_none=True,
72
- )
73
- return _dict
74
-
75
- @classmethod
76
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
77
- """Create an instance of RankGridAttributeResponse from a dict"""
78
- if obj is None:
79
- return None
80
-
81
- if not isinstance(obj, dict):
82
- return cls.model_validate(obj)
83
-
84
- _obj = cls.model_validate({
85
- "id_grid": obj.get("id_grid"),
86
- "scoregrid": obj.get("scoregrid"),
87
- "attributes": obj.get("attributes")
88
- })
89
- return _obj
90
-
91
-
@@ -1,91 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictFloat, StrictInt, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional, Union
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class RankResponse(BaseModel):
26
- """
27
- RankResponse
28
- """ # noqa: E501
29
- ids: List[StrictStr]
30
- scores: List[Union[StrictFloat, StrictInt]]
31
- metadata: Optional[List[Dict[str, Any]]] = None
32
- __properties: ClassVar[List[str]] = ["ids", "scores", "metadata"]
33
-
34
- model_config = ConfigDict(
35
- populate_by_name=True,
36
- validate_assignment=True,
37
- protected_namespaces=(),
38
- )
39
-
40
-
41
- def to_str(self) -> str:
42
- """Returns the string representation of the model using alias"""
43
- return pprint.pformat(self.model_dump(by_alias=True))
44
-
45
- def to_json(self) -> str:
46
- """Returns the JSON representation of the model using alias"""
47
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
48
- return json.dumps(self.to_dict())
49
-
50
- @classmethod
51
- def from_json(cls, json_str: str) -> Optional[Self]:
52
- """Create an instance of RankResponse from a JSON string"""
53
- return cls.from_dict(json.loads(json_str))
54
-
55
- def to_dict(self) -> Dict[str, Any]:
56
- """Return the dictionary representation of the model using alias.
57
-
58
- This has the following differences from calling pydantic's
59
- `self.model_dump(by_alias=True)`:
60
-
61
- * `None` is only added to the output dict for nullable fields that
62
- were set at model initialization. Other fields with value `None`
63
- are ignored.
64
- """
65
- excluded_fields: Set[str] = set([
66
- ])
67
-
68
- _dict = self.model_dump(
69
- by_alias=True,
70
- exclude=excluded_fields,
71
- exclude_none=True,
72
- )
73
- return _dict
74
-
75
- @classmethod
76
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
77
- """Create an instance of RankResponse from a dict"""
78
- if obj is None:
79
- return None
80
-
81
- if not isinstance(obj, dict):
82
- return cls.model_validate(obj)
83
-
84
- _obj = cls.model_validate({
85
- "ids": obj.get("ids"),
86
- "scores": obj.get("scores"),
87
- "metadata": obj.get("metadata")
88
- })
89
- return _obj
90
-
91
-
@@ -1,101 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from shaped.autogen.models.inference_config import InferenceConfig
23
- from typing import Optional, Set
24
- from typing_extensions import Self
25
-
26
- class RetrieveRequest(BaseModel):
27
- """
28
- RetrieveRequest
29
- """ # noqa: E501
30
- user_id_query: Optional[StrictStr] = Field(default=None, description="If provided return items that are relevant the to the given user.")
31
- text_query: Optional[StrictStr] = Field(default=None, description="If provided return items that are relevant the to the given text query.")
32
- filter_predicate: Optional[StrictStr] = Field(default=None, description="A SQL where query that can be used to filter out candidate items.")
33
- flush_paginations: Optional[StrictBool] = Field(default=False, description="Clears the pagination store for the given input user. This is useful if you want to implement paginations on client side or if you want to start the rankings again, e.g. on a page refresh. ")
34
- return_metadata: Optional[StrictBool] = Field(default=False, description="If true, return the corresponding metadata for the ranked items.")
35
- config: Optional[InferenceConfig] = None
36
- __properties: ClassVar[List[str]] = ["user_id_query", "text_query", "filter_predicate", "flush_paginations", "return_metadata", "config"]
37
-
38
- model_config = ConfigDict(
39
- populate_by_name=True,
40
- validate_assignment=True,
41
- protected_namespaces=(),
42
- )
43
-
44
-
45
- def to_str(self) -> str:
46
- """Returns the string representation of the model using alias"""
47
- return pprint.pformat(self.model_dump(by_alias=True))
48
-
49
- def to_json(self) -> str:
50
- """Returns the JSON representation of the model using alias"""
51
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
52
- return json.dumps(self.to_dict())
53
-
54
- @classmethod
55
- def from_json(cls, json_str: str) -> Optional[Self]:
56
- """Create an instance of RetrieveRequest from a JSON string"""
57
- return cls.from_dict(json.loads(json_str))
58
-
59
- def to_dict(self) -> Dict[str, Any]:
60
- """Return the dictionary representation of the model using alias.
61
-
62
- This has the following differences from calling pydantic's
63
- `self.model_dump(by_alias=True)`:
64
-
65
- * `None` is only added to the output dict for nullable fields that
66
- were set at model initialization. Other fields with value `None`
67
- are ignored.
68
- """
69
- excluded_fields: Set[str] = set([
70
- ])
71
-
72
- _dict = self.model_dump(
73
- by_alias=True,
74
- exclude=excluded_fields,
75
- exclude_none=True,
76
- )
77
- # override the default output from pydantic by calling `to_dict()` of config
78
- if self.config:
79
- _dict['config'] = self.config.to_dict()
80
- return _dict
81
-
82
- @classmethod
83
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
84
- """Create an instance of RetrieveRequest from a dict"""
85
- if obj is None:
86
- return None
87
-
88
- if not isinstance(obj, dict):
89
- return cls.model_validate(obj)
90
-
91
- _obj = cls.model_validate({
92
- "user_id_query": obj.get("user_id_query"),
93
- "text_query": obj.get("text_query"),
94
- "filter_predicate": obj.get("filter_predicate"),
95
- "flush_paginations": obj.get("flush_paginations") if obj.get("flush_paginations") is not None else False,
96
- "return_metadata": obj.get("return_metadata") if obj.get("return_metadata") is not None else False,
97
- "config": InferenceConfig.from_dict(obj["config"]) if obj.get("config") is not None else None
98
- })
99
- return _obj
100
-
101
-
@@ -1,91 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictFloat, StrictInt, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional, Union
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class RetrieveResponse(BaseModel):
26
- """
27
- RetrieveResponse
28
- """ # noqa: E501
29
- ids: List[StrictStr]
30
- scores: Optional[List[Union[StrictFloat, StrictInt]]] = None
31
- metadata: Optional[List[Dict[str, Any]]] = None
32
- __properties: ClassVar[List[str]] = ["ids", "scores", "metadata"]
33
-
34
- model_config = ConfigDict(
35
- populate_by_name=True,
36
- validate_assignment=True,
37
- protected_namespaces=(),
38
- )
39
-
40
-
41
- def to_str(self) -> str:
42
- """Returns the string representation of the model using alias"""
43
- return pprint.pformat(self.model_dump(by_alias=True))
44
-
45
- def to_json(self) -> str:
46
- """Returns the JSON representation of the model using alias"""
47
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
48
- return json.dumps(self.to_dict())
49
-
50
- @classmethod
51
- def from_json(cls, json_str: str) -> Optional[Self]:
52
- """Create an instance of RetrieveResponse from a JSON string"""
53
- return cls.from_dict(json.loads(json_str))
54
-
55
- def to_dict(self) -> Dict[str, Any]:
56
- """Return the dictionary representation of the model using alias.
57
-
58
- This has the following differences from calling pydantic's
59
- `self.model_dump(by_alias=True)`:
60
-
61
- * `None` is only added to the output dict for nullable fields that
62
- were set at model initialization. Other fields with value `None`
63
- are ignored.
64
- """
65
- excluded_fields: Set[str] = set([
66
- ])
67
-
68
- _dict = self.model_dump(
69
- by_alias=True,
70
- exclude=excluded_fields,
71
- exclude_none=True,
72
- )
73
- return _dict
74
-
75
- @classmethod
76
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
77
- """Create an instance of RetrieveResponse from a dict"""
78
- if obj is None:
79
- return None
80
-
81
- if not isinstance(obj, dict):
82
- return cls.model_validate(obj)
83
-
84
- _obj = cls.model_validate({
85
- "ids": obj.get("ids"),
86
- "scores": obj.get("scores"),
87
- "metadata": obj.get("metadata")
88
- })
89
- return _obj
90
-
91
-
@@ -1,97 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, Field, StrictFloat, StrictInt
21
- from typing import Any, ClassVar, Dict, List, Optional, Union
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class RetrieverTopKOverride(BaseModel):
26
- """
27
- RetrieverTopKOverride
28
- """ # noqa: E501
29
- knn: Optional[Union[StrictFloat, StrictInt]] = Field(default=None, description="The number of items to retrieve from the knn retriever. This retriever makes a vector store lookup to find the most relevant items for the given query. If not set, 300 will be retrieved. Note, when a filter predicate or text query all other retrievers are disabled. ")
30
- chronological: Optional[Union[StrictFloat, StrictInt]] = Field(default=None, description="The number of items to retrieve from the chronological retriever. If not set, 300 will be retrieved. ")
31
- popular: Optional[Union[StrictFloat, StrictInt]] = Field(default=None, description="The number of items to retrieve from the Popular retriever. Popular refers to the most popular items historically. If not set, 300 will be retrieved. ")
32
- trending: Optional[Union[StrictFloat, StrictInt]] = Field(default=None, description="The number of items to retrieve from the trending retriever. Trending refers to recently popular items. If not set, 300 will be retrieved ")
33
- random: Optional[Union[StrictFloat, StrictInt]] = Field(default=None, description="The number of items to retrieve from the random retriever. If not set, 0 will be retrieved. ")
34
- cold_start: Optional[Union[StrictFloat, StrictInt]] = Field(default=None, description="The number of items to retrieve from the cold-start retriever. This retriever pulls from the set of items with the lowest number of interactions. If not set, 50 will be retrieved. ")
35
- __properties: ClassVar[List[str]] = ["knn", "chronological", "popular", "trending", "random", "cold_start"]
36
-
37
- model_config = ConfigDict(
38
- populate_by_name=True,
39
- validate_assignment=True,
40
- protected_namespaces=(),
41
- )
42
-
43
-
44
- def to_str(self) -> str:
45
- """Returns the string representation of the model using alias"""
46
- return pprint.pformat(self.model_dump(by_alias=True))
47
-
48
- def to_json(self) -> str:
49
- """Returns the JSON representation of the model using alias"""
50
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
51
- return json.dumps(self.to_dict())
52
-
53
- @classmethod
54
- def from_json(cls, json_str: str) -> Optional[Self]:
55
- """Create an instance of RetrieverTopKOverride from a JSON string"""
56
- return cls.from_dict(json.loads(json_str))
57
-
58
- def to_dict(self) -> Dict[str, Any]:
59
- """Return the dictionary representation of the model using alias.
60
-
61
- This has the following differences from calling pydantic's
62
- `self.model_dump(by_alias=True)`:
63
-
64
- * `None` is only added to the output dict for nullable fields that
65
- were set at model initialization. Other fields with value `None`
66
- are ignored.
67
- """
68
- excluded_fields: Set[str] = set([
69
- ])
70
-
71
- _dict = self.model_dump(
72
- by_alias=True,
73
- exclude=excluded_fields,
74
- exclude_none=True,
75
- )
76
- return _dict
77
-
78
- @classmethod
79
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
80
- """Create an instance of RetrieverTopKOverride from a dict"""
81
- if obj is None:
82
- return None
83
-
84
- if not isinstance(obj, dict):
85
- return cls.model_validate(obj)
86
-
87
- _obj = cls.model_validate({
88
- "knn": obj.get("knn"),
89
- "chronological": obj.get("chronological"),
90
- "popular": obj.get("popular"),
91
- "trending": obj.get("trending"),
92
- "random": obj.get("random"),
93
- "cold_start": obj.get("cold_start")
94
- })
95
- return _obj
96
-
97
-