sglang 0.5.4.post1__py3-none-any.whl → 0.5.4.post2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +149 -34
 - sglang/bench_serving.py +18 -3
 - sglang/compile_deep_gemm.py +13 -7
 - sglang/srt/batch_invariant_ops/__init__.py +2 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +120 -0
 - sglang/srt/checkpoint_engine/__init__.py +9 -0
 - sglang/srt/checkpoint_engine/update.py +317 -0
 - sglang/srt/configs/__init__.py +2 -0
 - sglang/srt/configs/deepseek_ocr.py +542 -10
 - sglang/srt/configs/deepseekvl2.py +95 -194
 - sglang/srt/configs/kimi_linear.py +160 -0
 - sglang/srt/configs/mamba_utils.py +66 -0
 - sglang/srt/configs/model_config.py +25 -2
 - sglang/srt/constants.py +7 -0
 - sglang/srt/debug_utils/tensor_dump_forward_hook.py +149 -0
 - sglang/srt/disaggregation/decode.py +34 -6
 - sglang/srt/disaggregation/nixl/conn.py +2 -2
 - sglang/srt/disaggregation/prefill.py +25 -3
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +3 -1
 - sglang/srt/distributed/parallel_state.py +9 -5
 - sglang/srt/entrypoints/engine.py +13 -5
 - sglang/srt/entrypoints/http_server.py +22 -3
 - sglang/srt/entrypoints/openai/protocol.py +7 -1
 - sglang/srt/entrypoints/openai/serving_chat.py +42 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +10 -0
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/environ.py +7 -0
 - sglang/srt/eplb/expert_distribution.py +34 -1
 - sglang/srt/eplb/expert_location.py +106 -36
 - sglang/srt/grpc/compile_proto.py +3 -0
 - sglang/srt/layers/attention/ascend_backend.py +233 -5
 - sglang/srt/layers/attention/attention_registry.py +3 -0
 - sglang/srt/layers/attention/fla/chunk_delta_h.py +61 -32
 - sglang/srt/layers/attention/fla/fused_recurrent.py +17 -4
 - sglang/srt/layers/attention/fla/kda.py +1359 -0
 - sglang/srt/layers/attention/fla/layernorm_gated.py +7 -1
 - sglang/srt/layers/attention/flashattention_backend.py +7 -6
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +3 -1
 - sglang/srt/layers/attention/flashmla_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +223 -0
 - sglang/srt/layers/attention/mamba/mamba.py +20 -11
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +138 -6
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +45 -22
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +44 -12
 - sglang/srt/layers/attention/nsa/transform_index.py +1 -1
 - sglang/srt/layers/attention/nsa_backend.py +157 -23
 - sglang/srt/layers/attention/triton_backend.py +4 -1
 - sglang/srt/layers/attention/trtllm_mha_backend.py +10 -4
 - sglang/srt/layers/attention/trtllm_mla_backend.py +10 -2
 - sglang/srt/layers/communicator.py +23 -1
 - sglang/srt/layers/layernorm.py +16 -2
 - sglang/srt/layers/logits_processor.py +4 -20
 - sglang/srt/layers/moe/ep_moe/layer.py +0 -18
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128]_down.json +164 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +68 -22
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +43 -3
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +106 -26
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +53 -33
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +12 -9
 - sglang/srt/layers/moe/topk.py +31 -6
 - sglang/srt/layers/pooler.py +21 -2
 - sglang/srt/layers/quantization/__init__.py +9 -78
 - sglang/srt/layers/quantization/auto_round.py +394 -0
 - sglang/srt/layers/quantization/fp8_kernel.py +1 -1
 - sglang/srt/layers/quantization/fp8_utils.py +2 -2
 - sglang/srt/layers/quantization/modelopt_quant.py +168 -11
 - sglang/srt/layers/rotary_embedding.py +117 -45
 - sglang/srt/lora/lora_registry.py +9 -0
 - sglang/srt/managers/async_mm_data_processor.py +122 -0
 - sglang/srt/managers/data_parallel_controller.py +30 -3
 - sglang/srt/managers/detokenizer_manager.py +3 -0
 - sglang/srt/managers/io_struct.py +26 -4
 - sglang/srt/managers/multi_tokenizer_mixin.py +5 -0
 - sglang/srt/managers/schedule_batch.py +74 -15
 - sglang/srt/managers/scheduler.py +164 -129
 - sglang/srt/managers/scheduler_output_processor_mixin.py +40 -3
 - sglang/srt/managers/scheduler_pp_mixin.py +7 -2
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +45 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +18 -3
 - sglang/srt/managers/session_controller.py +6 -5
 - sglang/srt/managers/tokenizer_manager.py +154 -59
 - sglang/srt/managers/tp_worker.py +24 -1
 - sglang/srt/mem_cache/base_prefix_cache.py +23 -4
 - sglang/srt/mem_cache/common.py +1 -0
 - sglang/srt/mem_cache/memory_pool.py +171 -57
 - sglang/srt/mem_cache/memory_pool_host.py +12 -5
 - sglang/srt/mem_cache/radix_cache.py +4 -0
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +1 -1
 - sglang/srt/metrics/collector.py +46 -3
 - sglang/srt/model_executor/cuda_graph_runner.py +15 -3
 - sglang/srt/model_executor/forward_batch_info.py +11 -11
 - sglang/srt/model_executor/model_runner.py +76 -21
 - sglang/srt/model_executor/npu_graph_runner.py +7 -3
 - sglang/srt/model_loader/weight_utils.py +1 -1
 - sglang/srt/models/bailing_moe.py +9 -2
 - sglang/srt/models/deepseek_nextn.py +11 -2
 - sglang/srt/models/deepseek_v2.py +149 -34
 - sglang/srt/models/glm4.py +391 -77
 - sglang/srt/models/glm4v.py +196 -55
 - sglang/srt/models/glm4v_moe.py +0 -1
 - sglang/srt/models/gpt_oss.py +1 -10
 - sglang/srt/models/kimi_linear.py +678 -0
 - sglang/srt/models/llama4.py +1 -1
 - sglang/srt/models/llama_eagle3.py +11 -1
 - sglang/srt/models/longcat_flash.py +2 -2
 - sglang/srt/models/minimax_m2.py +1 -1
 - sglang/srt/models/qwen2.py +1 -1
 - sglang/srt/models/qwen2_moe.py +30 -15
 - sglang/srt/models/qwen3.py +1 -1
 - sglang/srt/models/qwen3_moe.py +16 -8
 - sglang/srt/models/qwen3_next.py +7 -0
 - sglang/srt/multimodal/customized_mm_processor_utils.py +35 -0
 - sglang/srt/multiplex/multiplexing_mixin.py +209 -0
 - sglang/srt/multiplex/pdmux_context.py +164 -0
 - sglang/srt/parser/conversation.py +7 -1
 - sglang/srt/sampling/custom_logit_processor.py +67 -1
 - sglang/srt/sampling/penaltylib/frequency_penalty.py +6 -8
 - sglang/srt/sampling/penaltylib/min_new_tokens.py +7 -8
 - sglang/srt/sampling/penaltylib/orchestrator.py +43 -3
 - sglang/srt/sampling/penaltylib/presence_penalty.py +6 -8
 - sglang/srt/server_args.py +103 -22
 - sglang/srt/single_batch_overlap.py +4 -1
 - sglang/srt/speculative/draft_utils.py +16 -0
 - sglang/srt/speculative/eagle_info.py +42 -36
 - sglang/srt/speculative/eagle_info_v2.py +68 -25
 - sglang/srt/speculative/eagle_utils.py +261 -16
 - sglang/srt/speculative/eagle_worker.py +11 -3
 - sglang/srt/speculative/eagle_worker_v2.py +15 -9
 - sglang/srt/speculative/spec_info.py +305 -31
 - sglang/srt/speculative/spec_utils.py +44 -8
 - sglang/srt/tracing/trace.py +121 -12
 - sglang/srt/utils/common.py +55 -32
 - sglang/srt/utils/hf_transformers_utils.py +38 -16
 - sglang/srt/utils/torch_memory_saver_adapter.py +20 -0
 - sglang/test/kits/radix_cache_server_kit.py +50 -0
 - sglang/test/runners.py +31 -7
 - sglang/test/simple_eval_common.py +5 -3
 - sglang/test/simple_eval_humaneval.py +1 -0
 - sglang/test/simple_eval_math.py +1 -0
 - sglang/test/simple_eval_mmlu.py +1 -0
 - sglang/test/simple_eval_mmmu_vlm.py +1 -0
 - sglang/test/test_utils.py +7 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/METADATA +10 -24
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/RECORD +150 -136
 - /sglang/test/{kit_matched_stop.py → kits/matched_stop_kit.py} +0 -0
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/WHEEL +0 -0
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/top_level.txt +0 -0
 
| 
         @@ -59,6 +59,19 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       59 
59 
     | 
    
         
             
                    )
         
     | 
| 
       60 
60 
     | 
    
         
             
                    self.mask_len = max_seq_len
         
     | 
| 
       61 
61 
     | 
    
         | 
| 
      
 62 
     | 
    
         
            +
                def get_verify_buffers_to_fill_after_draft(self):
         
     | 
| 
      
 63 
     | 
    
         
            +
                    """
         
     | 
| 
      
 64 
     | 
    
         
            +
                    Return buffers for verify attention kernels that needs to be filled after draft.
         
     | 
| 
      
 65 
     | 
    
         
            +
             
     | 
| 
      
 66 
     | 
    
         
            +
                    Typically, these are tree mask and position buffers.
         
     | 
| 
      
 67 
     | 
    
         
            +
                    """
         
     | 
| 
      
 68 
     | 
    
         
            +
                    return [None, None]
         
     | 
| 
      
 69 
     | 
    
         
            +
             
     | 
| 
      
 70 
     | 
    
         
            +
                def update_verify_buffers_to_fill_after_draft(
         
     | 
| 
      
 71 
     | 
    
         
            +
                    self, spec_info: SpecInput, cuda_graph_bs: Optional[int]
         
     | 
| 
      
 72 
     | 
    
         
            +
                ):
         
     | 
| 
      
 73 
     | 
    
         
            +
                    pass
         
     | 
| 
      
 74 
     | 
    
         
            +
             
     | 
| 
       62 
75 
     | 
    
         
             
                def __init__(self, model_runner: ModelRunner):
         
     | 
| 
       63 
76 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
       64 
77 
     | 
    
         
             
                    self.forward_metadata = None
         
     | 
| 
         @@ -87,15 +100,22 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       87 
100 
     | 
    
         
             
                            device=model_runner.device,
         
     | 
| 
       88 
101 
     | 
    
         
             
                        )
         
     | 
| 
       89 
102 
     | 
    
         
             
                    )
         
     | 
| 
      
 103 
     | 
    
         
            +
                    self.speculative_num_draft_tokens = (
         
     | 
| 
      
 104 
     | 
    
         
            +
                        model_runner.server_args.speculative_num_draft_tokens
         
     | 
| 
      
 105 
     | 
    
         
            +
                    )
         
     | 
| 
      
 106 
     | 
    
         
            +
                    self.mtp_mask = torch.tril(torch.ones(2048, 2048, dtype=torch.bool)).npu()
         
     | 
| 
      
 107 
     | 
    
         
            +
                    self.mtp_mask = ~self.mtp_mask
         
     | 
| 
       90 
108 
     | 
    
         | 
| 
       91 
109 
     | 
    
         
             
                def init_forward_metadata(self, forward_batch: ForwardBatch):
         
     | 
| 
       92 
110 
     | 
    
         
             
                    """Init the metadata for a forward pass."""
         
     | 
| 
       93 
111 
     | 
    
         
             
                    tp_size = get_attention_tp_size()
         
     | 
| 
       94 
112 
     | 
    
         
             
                    self.forward_metadata = ForwardMetadata()
         
     | 
| 
       95 
     | 
    
         
            -
             
     | 
| 
      
 113 
     | 
    
         
            +
                    seq_lens_max = forward_batch.seq_lens.max()
         
     | 
| 
      
 114 
     | 
    
         
            +
                    if forward_batch.forward_mode.is_target_verify():
         
     | 
| 
      
 115 
     | 
    
         
            +
                        seq_lens_max += self.speculative_num_draft_tokens
         
     | 
| 
       96 
116 
     | 
    
         
             
                    self.forward_metadata.block_tables = (
         
     | 
| 
       97 
117 
     | 
    
         
             
                        forward_batch.req_to_token_pool.req_to_token[
         
     | 
| 
       98 
     | 
    
         
            -
                            forward_batch.req_pool_indices, : 
     | 
| 
      
 118 
     | 
    
         
            +
                            forward_batch.req_pool_indices, :seq_lens_max
         
     | 
| 
       99 
119 
     | 
    
         
             
                        ][:, :: self.page_size]
         
     | 
| 
       100 
120 
     | 
    
         
             
                        // self.page_size
         
     | 
| 
       101 
121 
     | 
    
         
             
                    )
         
     | 
| 
         @@ -104,16 +124,23 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       104 
124 
     | 
    
         
             
                            forward_batch.extend_seq_lens.cpu().int()
         
     | 
| 
       105 
125 
     | 
    
         
             
                        )
         
     | 
| 
       106 
126 
     | 
    
         
             
                    self.forward_metadata.seq_lens_cpu_int = forward_batch.seq_lens_cpu.int()
         
     | 
| 
      
 127 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 128 
     | 
    
         
            +
                        not forward_batch.forward_mode.is_draft_extend_v2()
         
     | 
| 
      
 129 
     | 
    
         
            +
                        and not forward_batch.forward_mode.is_draft_extend()
         
     | 
| 
      
 130 
     | 
    
         
            +
                        and not forward_batch.forward_mode.is_target_verify()
         
     | 
| 
      
 131 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 132 
     | 
    
         
            +
                        seq_lens_list_cumsum = np.cumsum(forward_batch.extend_seq_lens_cpu)
         
     | 
| 
      
 133 
     | 
    
         
            +
                        self.forward_metadata.seq_lens_list_cumsum = seq_lens_list_cumsum
         
     | 
| 
       107 
134 
     | 
    
         | 
| 
       108 
     | 
    
         
            -
                     
     | 
| 
       109 
     | 
    
         
            -
             
     | 
| 
      
 135 
     | 
    
         
            +
                    if forward_batch.forward_mode.is_target_verify():
         
     | 
| 
      
 136 
     | 
    
         
            +
                        self.forward_metadata.seq_lens_cpu_int += self.speculative_num_draft_tokens
         
     | 
| 
       110 
137 
     | 
    
         | 
| 
       111 
138 
     | 
    
         
             
                    self.graph_mode = False
         
     | 
| 
       112 
139 
     | 
    
         | 
| 
       113 
140 
     | 
    
         
             
                def init_cuda_graph_state(self, max_bs: int, max_num_tokens: int):
         
     | 
| 
       114 
141 
     | 
    
         
             
                    self.graph_metadata = {
         
     | 
| 
       115 
142 
     | 
    
         
             
                        "block_tables": torch.empty(
         
     | 
| 
       116 
     | 
    
         
            -
                            (max_bs, self.max_context_len // self.page_size),
         
     | 
| 
      
 143 
     | 
    
         
            +
                            (max_bs, (self.max_context_len + self.page_size - 1) // self.page_size),
         
     | 
| 
       117 
144 
     | 
    
         
             
                            dtype=torch.int32,
         
     | 
| 
       118 
145 
     | 
    
         
             
                            device=self.device,
         
     | 
| 
       119 
146 
     | 
    
         
             
                        ),
         
     | 
| 
         @@ -156,6 +183,8 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       156 
183 
     | 
    
         
             
                ):
         
     | 
| 
       157 
184 
     | 
    
         
             
                    metadata = self.graph_metadata[bs]
         
     | 
| 
       158 
185 
     | 
    
         
             
                    max_len = seq_lens_cpu[:bs].max().item()
         
     | 
| 
      
 186 
     | 
    
         
            +
                    if forward_mode.is_target_verify():
         
     | 
| 
      
 187 
     | 
    
         
            +
                        max_len += self.speculative_num_draft_tokens
         
     | 
| 
       159 
188 
     | 
    
         
             
                    max_seq_pages = (max_len + self.page_size - 1) // self.page_size
         
     | 
| 
       160 
189 
     | 
    
         | 
| 
       161 
190 
     | 
    
         
             
                    metadata.block_tables[:bs, :max_seq_pages].copy_(
         
     | 
| 
         @@ -257,6 +286,25 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       257 
286 
     | 
    
         
             
                            k_rope,
         
     | 
| 
       258 
287 
     | 
    
         
             
                            topk_indices,
         
     | 
| 
       259 
288 
     | 
    
         
             
                        )
         
     | 
| 
      
 289 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 290 
     | 
    
         
            +
                        forward_batch.forward_mode.is_target_verify()
         
     | 
| 
      
 291 
     | 
    
         
            +
                        or forward_batch.forward_mode.is_draft_extend()
         
     | 
| 
      
 292 
     | 
    
         
            +
                        or forward_batch.forward_mode.is_draft_extend_v2()
         
     | 
| 
      
 293 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 294 
     | 
    
         
            +
             
     | 
| 
      
 295 
     | 
    
         
            +
                        if is_mla_preprocess_enabled():
         
     | 
| 
      
 296 
     | 
    
         
            +
                            save_kv_cache = False
         
     | 
| 
      
 297 
     | 
    
         
            +
                        return self.forward_mtp(
         
     | 
| 
      
 298 
     | 
    
         
            +
                            q,
         
     | 
| 
      
 299 
     | 
    
         
            +
                            k,
         
     | 
| 
      
 300 
     | 
    
         
            +
                            v,
         
     | 
| 
      
 301 
     | 
    
         
            +
                            layer,
         
     | 
| 
      
 302 
     | 
    
         
            +
                            forward_batch,
         
     | 
| 
      
 303 
     | 
    
         
            +
                            save_kv_cache,
         
     | 
| 
      
 304 
     | 
    
         
            +
                            q_rope=q_rope,
         
     | 
| 
      
 305 
     | 
    
         
            +
                            k_rope=k_rope,
         
     | 
| 
      
 306 
     | 
    
         
            +
                        )
         
     | 
| 
      
 307 
     | 
    
         
            +
             
     | 
| 
       260 
308 
     | 
    
         
             
                    if not self.use_mla:
         
     | 
| 
       261 
309 
     | 
    
         
             
                        if save_kv_cache:
         
     | 
| 
       262 
310 
     | 
    
         
             
                            forward_batch.token_to_kv_pool.set_kv_buffer(
         
     | 
| 
         @@ -393,6 +441,118 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       393 
441 
     | 
    
         
             
                            )
         
     | 
| 
       394 
442 
     | 
    
         
             
                    return attn_output
         
     | 
| 
       395 
443 
     | 
    
         | 
| 
      
 444 
     | 
    
         
            +
                def forward_mtp(
         
     | 
| 
      
 445 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 446 
     | 
    
         
            +
                    q,
         
     | 
| 
      
 447 
     | 
    
         
            +
                    k,
         
     | 
| 
      
 448 
     | 
    
         
            +
                    v,
         
     | 
| 
      
 449 
     | 
    
         
            +
                    layer: RadixAttention,
         
     | 
| 
      
 450 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 451 
     | 
    
         
            +
                    save_kv_cache: bool,
         
     | 
| 
      
 452 
     | 
    
         
            +
                    q_rope: Optional[torch.Tensor] = None,
         
     | 
| 
      
 453 
     | 
    
         
            +
                    k_rope: Optional[torch.Tensor] = None,
         
     | 
| 
      
 454 
     | 
    
         
            +
                ):
         
     | 
| 
      
 455 
     | 
    
         
            +
                    if save_kv_cache:
         
     | 
| 
      
 456 
     | 
    
         
            +
                        if self.use_mla:
         
     | 
| 
      
 457 
     | 
    
         
            +
                            k = k.view(-1, layer.tp_k_head_num, self.kv_lora_rank)
         
     | 
| 
      
 458 
     | 
    
         
            +
                            k_rope = k_rope.view(-1, layer.tp_k_head_num, self.qk_rope_head_dim)
         
     | 
| 
      
 459 
     | 
    
         
            +
                            forward_batch.token_to_kv_pool.set_kv_buffer(
         
     | 
| 
      
 460 
     | 
    
         
            +
                                layer, forward_batch.out_cache_loc, k, k_rope
         
     | 
| 
      
 461 
     | 
    
         
            +
                            )
         
     | 
| 
      
 462 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 463 
     | 
    
         
            +
                            forward_batch.token_to_kv_pool.set_kv_buffer(
         
     | 
| 
      
 464 
     | 
    
         
            +
                                layer, forward_batch.out_cache_loc, k, v
         
     | 
| 
      
 465 
     | 
    
         
            +
                            )
         
     | 
| 
      
 466 
     | 
    
         
            +
             
     | 
| 
      
 467 
     | 
    
         
            +
                    c_kv, k_rope = forward_batch.token_to_kv_pool.get_kv_buffer(layer.layer_id)
         
     | 
| 
      
 468 
     | 
    
         
            +
                    k_rope_cache = k_rope.view(
         
     | 
| 
      
 469 
     | 
    
         
            +
                        -1, layer.tp_k_head_num, self.page_size, self.qk_rope_head_dim
         
     | 
| 
      
 470 
     | 
    
         
            +
                    )
         
     | 
| 
      
 471 
     | 
    
         
            +
                    c_kv_cache = c_kv.view(
         
     | 
| 
      
 472 
     | 
    
         
            +
                        -1, layer.tp_v_head_num, self.page_size, self.kv_lora_rank
         
     | 
| 
      
 473 
     | 
    
         
            +
                    )
         
     | 
| 
      
 474 
     | 
    
         
            +
             
     | 
| 
      
 475 
     | 
    
         
            +
                    q_nope = q.view(-1, layer.tp_q_head_num, self.kv_lora_rank)
         
     | 
| 
      
 476 
     | 
    
         
            +
                    q_rope = q_rope.view(-1, layer.tp_q_head_num, self.qk_rope_head_dim)
         
     | 
| 
      
 477 
     | 
    
         
            +
                    if not self.graph_mode:
         
     | 
| 
      
 478 
     | 
    
         
            +
                        num_token_padding = q.shape[0]
         
     | 
| 
      
 479 
     | 
    
         
            +
                        q_nope = q_nope[: forward_batch.num_token_non_padded_cpu]
         
     | 
| 
      
 480 
     | 
    
         
            +
                        q_rope = q_rope[: forward_batch.num_token_non_padded_cpu]
         
     | 
| 
      
 481 
     | 
    
         
            +
                    if self.forward_metadata.seq_lens_cpu_int is None:
         
     | 
| 
      
 482 
     | 
    
         
            +
                        actual_seq_lengths_kv = self.forward_metadata.seq_lens_cpu_list
         
     | 
| 
      
 483 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 484 
     | 
    
         
            +
                        actual_seq_lengths_kv = (
         
     | 
| 
      
 485 
     | 
    
         
            +
                            self.forward_metadata.seq_lens_cpu_int.cpu().int().tolist()
         
     | 
| 
      
 486 
     | 
    
         
            +
                        )
         
     | 
| 
      
 487 
     | 
    
         
            +
                    if forward_batch.forward_mode.is_draft_extend():
         
     | 
| 
      
 488 
     | 
    
         
            +
                        actual_seq_lengths = (
         
     | 
| 
      
 489 
     | 
    
         
            +
                            np.array(forward_batch.extend_seq_lens_cpu).cumsum().tolist()
         
     | 
| 
      
 490 
     | 
    
         
            +
                        )
         
     | 
| 
      
 491 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 492 
     | 
    
         
            +
                        actual_seq_lengths = np.arange(
         
     | 
| 
      
 493 
     | 
    
         
            +
                            self.speculative_num_draft_tokens,
         
     | 
| 
      
 494 
     | 
    
         
            +
                            self.speculative_num_draft_tokens + q_nope.shape[0],
         
     | 
| 
      
 495 
     | 
    
         
            +
                            self.speculative_num_draft_tokens,
         
     | 
| 
      
 496 
     | 
    
         
            +
                        )
         
     | 
| 
      
 497 
     | 
    
         
            +
             
     | 
| 
      
 498 
     | 
    
         
            +
                    workspace = torch_npu._npu_fused_infer_attention_score_get_max_workspace(
         
     | 
| 
      
 499 
     | 
    
         
            +
                        q_nope,
         
     | 
| 
      
 500 
     | 
    
         
            +
                        c_kv_cache,
         
     | 
| 
      
 501 
     | 
    
         
            +
                        c_kv_cache,
         
     | 
| 
      
 502 
     | 
    
         
            +
                        query_rope=q_rope,
         
     | 
| 
      
 503 
     | 
    
         
            +
                        key_rope=k_rope_cache,
         
     | 
| 
      
 504 
     | 
    
         
            +
                        num_heads=layer.tp_q_head_num,
         
     | 
| 
      
 505 
     | 
    
         
            +
                        num_key_value_heads=layer.tp_k_head_num,
         
     | 
| 
      
 506 
     | 
    
         
            +
                        input_layout="TND",
         
     | 
| 
      
 507 
     | 
    
         
            +
                        scale=layer.scaling,
         
     | 
| 
      
 508 
     | 
    
         
            +
                        antiquant_mode=0,
         
     | 
| 
      
 509 
     | 
    
         
            +
                        antiquant_scale=None,
         
     | 
| 
      
 510 
     | 
    
         
            +
                        block_table=self.forward_metadata.block_tables,
         
     | 
| 
      
 511 
     | 
    
         
            +
                        block_size=self.page_size,
         
     | 
| 
      
 512 
     | 
    
         
            +
                        sparse_mode=3,
         
     | 
| 
      
 513 
     | 
    
         
            +
                        atten_mask=self.mtp_mask,
         
     | 
| 
      
 514 
     | 
    
         
            +
                        actual_seq_lengths=actual_seq_lengths,
         
     | 
| 
      
 515 
     | 
    
         
            +
                        actual_seq_lengths_kv=actual_seq_lengths_kv,
         
     | 
| 
      
 516 
     | 
    
         
            +
                    )
         
     | 
| 
      
 517 
     | 
    
         
            +
                    attn_output = torch.empty_like(q_nope, dtype=q.dtype, device=q.device)
         
     | 
| 
      
 518 
     | 
    
         
            +
                    softmax_lse = torch.empty(1, dtype=q.dtype, device=q.device)
         
     | 
| 
      
 519 
     | 
    
         
            +
                    torch_npu.npu_fused_infer_attention_score.out(
         
     | 
| 
      
 520 
     | 
    
         
            +
                        q_nope,
         
     | 
| 
      
 521 
     | 
    
         
            +
                        c_kv_cache,
         
     | 
| 
      
 522 
     | 
    
         
            +
                        c_kv_cache,
         
     | 
| 
      
 523 
     | 
    
         
            +
                        query_rope=q_rope,
         
     | 
| 
      
 524 
     | 
    
         
            +
                        key_rope=k_rope_cache,
         
     | 
| 
      
 525 
     | 
    
         
            +
                        num_heads=layer.tp_q_head_num,
         
     | 
| 
      
 526 
     | 
    
         
            +
                        num_key_value_heads=layer.tp_k_head_num,
         
     | 
| 
      
 527 
     | 
    
         
            +
                        input_layout="TND",
         
     | 
| 
      
 528 
     | 
    
         
            +
                        scale=layer.scaling,
         
     | 
| 
      
 529 
     | 
    
         
            +
                        antiquant_mode=0,
         
     | 
| 
      
 530 
     | 
    
         
            +
                        antiquant_scale=None,
         
     | 
| 
      
 531 
     | 
    
         
            +
                        block_table=self.forward_metadata.block_tables,
         
     | 
| 
      
 532 
     | 
    
         
            +
                        block_size=self.page_size,
         
     | 
| 
      
 533 
     | 
    
         
            +
                        sparse_mode=3,
         
     | 
| 
      
 534 
     | 
    
         
            +
                        atten_mask=self.mtp_mask,
         
     | 
| 
      
 535 
     | 
    
         
            +
                        actual_seq_lengths=actual_seq_lengths,
         
     | 
| 
      
 536 
     | 
    
         
            +
                        actual_seq_lengths_kv=actual_seq_lengths_kv,
         
     | 
| 
      
 537 
     | 
    
         
            +
                        workspace=workspace,
         
     | 
| 
      
 538 
     | 
    
         
            +
                        out=[attn_output, softmax_lse],
         
     | 
| 
      
 539 
     | 
    
         
            +
                    )
         
     | 
| 
      
 540 
     | 
    
         
            +
                    attn_output = attn_output.view(-1, layer.tp_q_head_num * layer.v_head_dim)
         
     | 
| 
      
 541 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 542 
     | 
    
         
            +
                        not self.graph_mode
         
     | 
| 
      
 543 
     | 
    
         
            +
                        and forward_batch.num_token_non_padded_cpu != num_token_padding
         
     | 
| 
      
 544 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 545 
     | 
    
         
            +
                        attn_output = torch.cat(
         
     | 
| 
      
 546 
     | 
    
         
            +
                            [
         
     | 
| 
      
 547 
     | 
    
         
            +
                                attn_output,
         
     | 
| 
      
 548 
     | 
    
         
            +
                                attn_output.new_zeros(
         
     | 
| 
      
 549 
     | 
    
         
            +
                                    num_token_padding - attn_output.shape[0], *attn_output.shape[1:]
         
     | 
| 
      
 550 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 551 
     | 
    
         
            +
                            ],
         
     | 
| 
      
 552 
     | 
    
         
            +
                            dim=0,
         
     | 
| 
      
 553 
     | 
    
         
            +
                        )
         
     | 
| 
      
 554 
     | 
    
         
            +
                    return attn_output
         
     | 
| 
      
 555 
     | 
    
         
            +
             
     | 
| 
       396 
556 
     | 
    
         
             
                def forward_decode_graph(
         
     | 
| 
       397 
557 
     | 
    
         
             
                    self,
         
     | 
| 
       398 
558 
     | 
    
         
             
                    q: torch.Tensor,
         
     | 
| 
         @@ -690,3 +850,71 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       690 
850 
     | 
    
         
             
                                out=attn_output,
         
     | 
| 
       691 
851 
     | 
    
         
             
                            )
         
     | 
| 
       692 
852 
     | 
    
         
             
                        return attn_output.view(num_tokens, layer.tp_q_head_num * self.kv_lora_rank)
         
     | 
| 
      
 853 
     | 
    
         
            +
             
     | 
| 
      
 854 
     | 
    
         
            +
             
     | 
| 
      
 855 
     | 
    
         
            +
            class AscendAttnMultiStepDraftBackend:
         
     | 
| 
      
 856 
     | 
    
         
            +
                """
         
     | 
| 
      
 857 
     | 
    
         
            +
                Wrap multiple Ascend attention backends as one for multiple consecutive
         
     | 
| 
      
 858 
     | 
    
         
            +
                draft decoding steps
         
     | 
| 
      
 859 
     | 
    
         
            +
                """
         
     | 
| 
      
 860 
     | 
    
         
            +
             
     | 
| 
      
 861 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 862 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 863 
     | 
    
         
            +
                    model_runner: ModelRunner,
         
     | 
| 
      
 864 
     | 
    
         
            +
                    topk: int,
         
     | 
| 
      
 865 
     | 
    
         
            +
                    speculative_num_steps: int,
         
     | 
| 
      
 866 
     | 
    
         
            +
                ):
         
     | 
| 
      
 867 
     | 
    
         
            +
                    self.topk = topk
         
     | 
| 
      
 868 
     | 
    
         
            +
                    self.speculative_num_steps = speculative_num_steps
         
     | 
| 
      
 869 
     | 
    
         
            +
             
     | 
| 
      
 870 
     | 
    
         
            +
                    self.attn_backends = []
         
     | 
| 
      
 871 
     | 
    
         
            +
                    for _ in range(self.speculative_num_steps):
         
     | 
| 
      
 872 
     | 
    
         
            +
                        self.attn_backends.append(AscendAttnBackend(model_runner))
         
     | 
| 
      
 873 
     | 
    
         
            +
             
     | 
| 
      
 874 
     | 
    
         
            +
                def common_template(self, forward_batch: ForwardBatch, call_fn: int):
         
     | 
| 
      
 875 
     | 
    
         
            +
                    assert forward_batch.spec_info is not None
         
     | 
| 
      
 876 
     | 
    
         
            +
             
     | 
| 
      
 877 
     | 
    
         
            +
                    for i in range(self.speculative_num_steps - 1):
         
     | 
| 
      
 878 
     | 
    
         
            +
                        call_fn(i, forward_batch)
         
     | 
| 
      
 879 
     | 
    
         
            +
             
     | 
| 
      
 880 
     | 
    
         
            +
                def init_forward_metadata(self, forward_batch: ForwardBatch):
         
     | 
| 
      
 881 
     | 
    
         
            +
                    def call_fn(i, forward_batch):
         
     | 
| 
      
 882 
     | 
    
         
            +
                        assert forward_batch.spec_info is not None
         
     | 
| 
      
 883 
     | 
    
         
            +
                        self.attn_backends[i].init_forward_metadata(forward_batch)
         
     | 
| 
      
 884 
     | 
    
         
            +
             
     | 
| 
      
 885 
     | 
    
         
            +
                    self.common_template(forward_batch, call_fn)
         
     | 
| 
      
 886 
     | 
    
         
            +
             
     | 
| 
      
 887 
     | 
    
         
            +
                def init_cuda_graph_state(self, max_bs, max_num_tokens):
         
     | 
| 
      
 888 
     | 
    
         
            +
                    for i in range(self.speculative_num_steps):
         
     | 
| 
      
 889 
     | 
    
         
            +
                        self.attn_backends[i].init_cuda_graph_state(max_bs, max_num_tokens)
         
     | 
| 
      
 890 
     | 
    
         
            +
             
     | 
| 
      
 891 
     | 
    
         
            +
                def init_forward_metadata_capture_cuda_graph(self, forward_batch: ForwardBatch):
         
     | 
| 
      
 892 
     | 
    
         
            +
                    def call_fn(i, forward_batch):
         
     | 
| 
      
 893 
     | 
    
         
            +
                        self.attn_backends[i].init_forward_metadata_capture_cuda_graph(
         
     | 
| 
      
 894 
     | 
    
         
            +
                            forward_batch.batch_size,
         
     | 
| 
      
 895 
     | 
    
         
            +
                            forward_batch.batch_size * self.topk,
         
     | 
| 
      
 896 
     | 
    
         
            +
                            forward_batch.req_pool_indices,
         
     | 
| 
      
 897 
     | 
    
         
            +
                            forward_batch.seq_lens,
         
     | 
| 
      
 898 
     | 
    
         
            +
                            encoder_lens=None,
         
     | 
| 
      
 899 
     | 
    
         
            +
                            forward_mode=ForwardMode.DECODE,
         
     | 
| 
      
 900 
     | 
    
         
            +
                            spec_info=forward_batch.spec_info,
         
     | 
| 
      
 901 
     | 
    
         
            +
                        )
         
     | 
| 
      
 902 
     | 
    
         
            +
             
     | 
| 
      
 903 
     | 
    
         
            +
                    self.common_template(forward_batch, call_fn)
         
     | 
| 
      
 904 
     | 
    
         
            +
             
     | 
| 
      
 905 
     | 
    
         
            +
                def init_forward_metadata_replay_cuda_graph(
         
     | 
| 
      
 906 
     | 
    
         
            +
                    self, forward_batch: ForwardBatch, bs: int
         
     | 
| 
      
 907 
     | 
    
         
            +
                ):
         
     | 
| 
      
 908 
     | 
    
         
            +
                    def call_fn(i, forward_batch):
         
     | 
| 
      
 909 
     | 
    
         
            +
                        self.attn_backends[i].init_forward_metadata_replay_cuda_graph(
         
     | 
| 
      
 910 
     | 
    
         
            +
                            bs,
         
     | 
| 
      
 911 
     | 
    
         
            +
                            forward_batch.req_pool_indices,
         
     | 
| 
      
 912 
     | 
    
         
            +
                            forward_batch.seq_lens,
         
     | 
| 
      
 913 
     | 
    
         
            +
                            seq_lens_sum=-1,
         
     | 
| 
      
 914 
     | 
    
         
            +
                            encoder_lens=None,
         
     | 
| 
      
 915 
     | 
    
         
            +
                            forward_mode=ForwardMode.DECODE,
         
     | 
| 
      
 916 
     | 
    
         
            +
                            spec_info=forward_batch.spec_info,
         
     | 
| 
      
 917 
     | 
    
         
            +
                            seq_lens_cpu=None,
         
     | 
| 
      
 918 
     | 
    
         
            +
                        )
         
     | 
| 
      
 919 
     | 
    
         
            +
             
     | 
| 
      
 920 
     | 
    
         
            +
                    self.common_template(forward_batch, call_fn)
         
     | 
| 
         @@ -189,6 +189,7 @@ def attn_backend_wrapper(runner: "ModelRunner", full_attn_backend: "AttentionBac 
     | 
|
| 
       189 
189 
     | 
    
         
             
                    from sglang.srt.layers.attention.hybrid_linear_attn_backend import (
         
     | 
| 
       190 
190 
     | 
    
         
             
                        GDNAttnBackend,
         
     | 
| 
       191 
191 
     | 
    
         
             
                        HybridLinearAttnBackend,
         
     | 
| 
      
 192 
     | 
    
         
            +
                        KimiLinearAttnBackend,
         
     | 
| 
       192 
193 
     | 
    
         
             
                        Mamba2AttnBackend,
         
     | 
| 
       193 
194 
     | 
    
         
             
                    )
         
     | 
| 
       194 
195 
     | 
    
         
             
                    from sglang.srt.utils import is_blackwell, is_npu
         
     | 
| 
         @@ -207,6 +208,8 @@ def attn_backend_wrapper(runner: "ModelRunner", full_attn_backend: "AttentionBac 
     | 
|
| 
       207 
208 
     | 
    
         
             
                        linear_attn_backend = GDNAttnBackend(runner)
         
     | 
| 
       208 
209 
     | 
    
         
             
                    elif runner.mamba2_config is not None:
         
     | 
| 
       209 
210 
     | 
    
         
             
                        linear_attn_backend = Mamba2AttnBackend(runner)
         
     | 
| 
      
 211 
     | 
    
         
            +
                    elif runner.kimi_linear_config is not None:
         
     | 
| 
      
 212 
     | 
    
         
            +
                        linear_attn_backend = KimiLinearAttnBackend(runner)
         
     | 
| 
       210 
213 
     | 
    
         
             
                    else:
         
     | 
| 
       211 
214 
     | 
    
         
             
                        raise ValueError(
         
     | 
| 
       212 
215 
     | 
    
         
             
                            "Expected hybrid GDN or NemotronH models, but got unknown model."
         
     | 
| 
         @@ -21,6 +21,7 @@ NUM_WARPS = [2, 4] if is_nvidia_hopper else [2, 4, 8, 16] 
     | 
|
| 
       21 
21 
     | 
    
         
             
            @triton.heuristics(
         
     | 
| 
       22 
22 
     | 
    
         
             
                {
         
     | 
| 
       23 
23 
     | 
    
         
             
                    "USE_G": lambda args: args["g"] is not None,
         
     | 
| 
      
 24 
     | 
    
         
            +
                    "USE_GK": lambda args: args["gk"] is not None,
         
     | 
| 
       24 
25 
     | 
    
         
             
                    "USE_INITIAL_STATE": lambda args: args["h0"] is not None,
         
     | 
| 
       25 
26 
     | 
    
         
             
                    "STORE_FINAL_STATE": lambda args: args["ht"] is not None,
         
     | 
| 
       26 
27 
     | 
    
         
             
                    "SAVE_NEW_VALUE": lambda args: args["v_new"] is not None,
         
     | 
| 
         @@ -44,6 +45,7 @@ def chunk_gated_delta_rule_fwd_kernel_h_blockdim64( 
     | 
|
| 
       44 
45 
     | 
    
         
             
                w,
         
     | 
| 
       45 
46 
     | 
    
         
             
                v_new,
         
     | 
| 
       46 
47 
     | 
    
         
             
                g,
         
     | 
| 
      
 48 
     | 
    
         
            +
                gk,
         
     | 
| 
       47 
49 
     | 
    
         
             
                h,
         
     | 
| 
       48 
50 
     | 
    
         
             
                h0,
         
     | 
| 
       49 
51 
     | 
    
         
             
                ht,
         
     | 
| 
         @@ -57,6 +59,7 @@ def chunk_gated_delta_rule_fwd_kernel_h_blockdim64( 
     | 
|
| 
       57 
59 
     | 
    
         
             
                BT: tl.constexpr,
         
     | 
| 
       58 
60 
     | 
    
         
             
                BV: tl.constexpr,
         
     | 
| 
       59 
61 
     | 
    
         
             
                USE_G: tl.constexpr,
         
     | 
| 
      
 62 
     | 
    
         
            +
                USE_GK: tl.constexpr,
         
     | 
| 
       60 
63 
     | 
    
         
             
                USE_INITIAL_STATE: tl.constexpr,
         
     | 
| 
       61 
64 
     | 
    
         
             
                STORE_FINAL_STATE: tl.constexpr,
         
     | 
| 
       62 
65 
     | 
    
         
             
                SAVE_NEW_VALUE: tl.constexpr,
         
     | 
| 
         @@ -86,12 +89,12 @@ def chunk_gated_delta_rule_fwd_kernel_h_blockdim64( 
     | 
|
| 
       86 
89 
     | 
    
         
             
                    b_h4 = tl.zeros([64, BV], dtype=tl.float32)
         
     | 
| 
       87 
90 
     | 
    
         | 
| 
       88 
91 
     | 
    
         
             
                # calculate offset
         
     | 
| 
       89 
     | 
    
         
            -
                h += (boh * H + i_h) * K * V
         
     | 
| 
       90 
     | 
    
         
            -
                v += (bos * H + i_h) * V
         
     | 
| 
       91 
     | 
    
         
            -
                k += (bos * Hg + i_h // (H // Hg)) * K
         
     | 
| 
       92 
     | 
    
         
            -
                w += (bos * H + i_h) * K
         
     | 
| 
      
 92 
     | 
    
         
            +
                h += ((boh * H + i_h) * K * V).to(tl.int64)
         
     | 
| 
      
 93 
     | 
    
         
            +
                v += ((bos * H + i_h) * V).to(tl.int64)
         
     | 
| 
      
 94 
     | 
    
         
            +
                k += ((bos * Hg + i_h // (H // Hg)) * K).to(tl.int64)
         
     | 
| 
      
 95 
     | 
    
         
            +
                w += ((bos * H + i_h) * K).to(tl.int64)
         
     | 
| 
       93 
96 
     | 
    
         
             
                if SAVE_NEW_VALUE:
         
     | 
| 
       94 
     | 
    
         
            -
                    v_new += (bos * H + i_h) * V
         
     | 
| 
      
 97 
     | 
    
         
            +
                    v_new += ((bos * H + i_h) * V).to(tl.int64)
         
     | 
| 
       95 
98 
     | 
    
         
             
                stride_v = H * V
         
     | 
| 
       96 
99 
     | 
    
         
             
                stride_h = H * K * V
         
     | 
| 
       97 
100 
     | 
    
         
             
                stride_k = Hg * K
         
     | 
| 
         @@ -143,58 +146,48 @@ def chunk_gated_delta_rule_fwd_kernel_h_blockdim64( 
     | 
|
| 
       143 
146 
     | 
    
         
             
                        )
         
     | 
| 
       144 
147 
     | 
    
         
             
                        tl.store(p_h4, b_h4.to(p_h4.dtype.element_ty), boundary_check=(0, 1))
         
     | 
| 
       145 
148 
     | 
    
         | 
| 
       146 
     | 
    
         
            -
                    p_v = tl.make_block_ptr(
         
     | 
| 
       147 
     | 
    
         
            -
                        v, (T, V), (stride_v, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)
         
     | 
| 
       148 
     | 
    
         
            -
                    )
         
     | 
| 
       149 
     | 
    
         
            -
                    p_v_new = (
         
     | 
| 
       150 
     | 
    
         
            -
                        tl.make_block_ptr(
         
     | 
| 
       151 
     | 
    
         
            -
                            v_new, (T, V), (stride_v, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)
         
     | 
| 
       152 
     | 
    
         
            -
                        )
         
     | 
| 
       153 
     | 
    
         
            -
                        if SAVE_NEW_VALUE
         
     | 
| 
       154 
     | 
    
         
            -
                        else None
         
     | 
| 
       155 
     | 
    
         
            -
                    )
         
     | 
| 
       156 
     | 
    
         
            -
                    b_v_new = tl.zeros([BT, BV], dtype=tl.float32)
         
     | 
| 
       157 
149 
     | 
    
         
             
                    p_w = tl.make_block_ptr(
         
     | 
| 
       158 
150 
     | 
    
         
             
                        w, (T, K), (stride_w, 1), (i_t * BT, 0), (BT, 64), (1, 0)
         
     | 
| 
       159 
151 
     | 
    
         
             
                    )
         
     | 
| 
       160 
152 
     | 
    
         
             
                    b_w = tl.load(p_w, boundary_check=(0, 1))
         
     | 
| 
       161 
     | 
    
         
            -
                     
     | 
| 
      
 153 
     | 
    
         
            +
                    b_v = tl.dot(b_w, b_h1.to(b_w.dtype))
         
     | 
| 
       162 
154 
     | 
    
         
             
                    if K > 64:
         
     | 
| 
       163 
155 
     | 
    
         
             
                        p_w = tl.make_block_ptr(
         
     | 
| 
       164 
156 
     | 
    
         
             
                            w, (T, K), (stride_w, 1), (i_t * BT, 64), (BT, 64), (1, 0)
         
     | 
| 
       165 
157 
     | 
    
         
             
                        )
         
     | 
| 
       166 
158 
     | 
    
         
             
                        b_w = tl.load(p_w, boundary_check=(0, 1))
         
     | 
| 
       167 
     | 
    
         
            -
                         
     | 
| 
      
 159 
     | 
    
         
            +
                        b_v += tl.dot(b_w, b_h2.to(b_w.dtype))
         
     | 
| 
       168 
160 
     | 
    
         
             
                    if K > 128:
         
     | 
| 
       169 
161 
     | 
    
         
             
                        p_w = tl.make_block_ptr(
         
     | 
| 
       170 
162 
     | 
    
         
             
                            w, (T, K), (stride_w, 1), (i_t * BT, 128), (BT, 64), (1, 0)
         
     | 
| 
       171 
163 
     | 
    
         
             
                        )
         
     | 
| 
       172 
164 
     | 
    
         
             
                        b_w = tl.load(p_w, boundary_check=(0, 1))
         
     | 
| 
       173 
     | 
    
         
            -
                         
     | 
| 
      
 165 
     | 
    
         
            +
                        b_v += tl.dot(b_w, b_h3.to(b_w.dtype))
         
     | 
| 
       174 
166 
     | 
    
         
             
                    if K > 192:
         
     | 
| 
       175 
167 
     | 
    
         
             
                        p_w = tl.make_block_ptr(
         
     | 
| 
       176 
168 
     | 
    
         
             
                            w, (T, K), (stride_w, 1), (i_t * BT, 192), (BT, 64), (1, 0)
         
     | 
| 
       177 
169 
     | 
    
         
             
                        )
         
     | 
| 
       178 
170 
     | 
    
         
             
                        b_w = tl.load(p_w, boundary_check=(0, 1))
         
     | 
| 
       179 
     | 
    
         
            -
                         
     | 
| 
       180 
     | 
    
         
            -
                     
     | 
| 
      
 171 
     | 
    
         
            +
                        b_v += tl.dot(b_w, b_h4.to(b_w.dtype))
         
     | 
| 
      
 172 
     | 
    
         
            +
                    p_v = tl.make_block_ptr(
         
     | 
| 
      
 173 
     | 
    
         
            +
                        v, (T, V), (stride_v, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)
         
     | 
| 
      
 174 
     | 
    
         
            +
                    )
         
     | 
| 
      
 175 
     | 
    
         
            +
                    b_v = tl.load(p_v, boundary_check=(0, 1)) - b_v
         
     | 
| 
       181 
176 
     | 
    
         | 
| 
       182 
177 
     | 
    
         
             
                    if SAVE_NEW_VALUE:
         
     | 
| 
       183 
     | 
    
         
            -
                         
     | 
| 
      
 178 
     | 
    
         
            +
                        p_v = tl.make_block_ptr(
         
     | 
| 
       184 
179 
     | 
    
         
             
                            v_new, (T, V), (stride_v, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)
         
     | 
| 
       185 
180 
     | 
    
         
             
                        )
         
     | 
| 
       186 
     | 
    
         
            -
                        tl.store(
         
     | 
| 
       187 
     | 
    
         
            -
                            p_v_new, b_v_new.to(p_v_new.dtype.element_ty), boundary_check=(0, 1)
         
     | 
| 
       188 
     | 
    
         
            -
                        )
         
     | 
| 
      
 181 
     | 
    
         
            +
                        tl.store(p_v, b_v.to(p_v.dtype.element_ty), boundary_check=(0, 1))
         
     | 
| 
       189 
182 
     | 
    
         | 
| 
      
 183 
     | 
    
         
            +
                    last_idx = min((i_t + 1) * BT, T) - 1
         
     | 
| 
       190 
184 
     | 
    
         
             
                    if USE_G:
         
     | 
| 
       191 
     | 
    
         
            -
                        last_idx = min((i_t + 1) * BT, T) - 1
         
     | 
| 
       192 
185 
     | 
    
         
             
                        b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
         
     | 
| 
       193 
186 
     | 
    
         
             
                        p_g = tl.make_block_ptr(
         
     | 
| 
       194 
187 
     | 
    
         
             
                            g + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)
         
     | 
| 
       195 
188 
     | 
    
         
             
                        )
         
     | 
| 
       196 
189 
     | 
    
         
             
                        b_g = tl.load(p_g, boundary_check=(0,))
         
     | 
| 
       197 
     | 
    
         
            -
                         
     | 
| 
      
 190 
     | 
    
         
            +
                        b_v = b_v * safe_exp(b_g_last - b_g)[:, None]
         
     | 
| 
       198 
191 
     | 
    
         
             
                        b_g_last = exp(b_g_last)
         
     | 
| 
       199 
192 
     | 
    
         
             
                        b_h1 = b_h1 * b_g_last
         
     | 
| 
       200 
193 
     | 
    
         
             
                        if K > 64:
         
     | 
| 
         @@ -203,30 +196,64 @@ def chunk_gated_delta_rule_fwd_kernel_h_blockdim64( 
     | 
|
| 
       203 
196 
     | 
    
         
             
                            b_h3 = b_h3 * b_g_last
         
     | 
| 
       204 
197 
     | 
    
         
             
                        if K > 192:
         
     | 
| 
       205 
198 
     | 
    
         
             
                            b_h4 = b_h4 * b_g_last
         
     | 
| 
       206 
     | 
    
         
            -
             
     | 
| 
      
 199 
     | 
    
         
            +
             
     | 
| 
      
 200 
     | 
    
         
            +
                    if USE_GK:
         
     | 
| 
      
 201 
     | 
    
         
            +
                        o_k1 = tl.arange(0, 64)
         
     | 
| 
      
 202 
     | 
    
         
            +
                        b_gk_last1 = tl.load(
         
     | 
| 
      
 203 
     | 
    
         
            +
                            gk + (bos + last_idx) * H * K + i_h * K + o_k1,
         
     | 
| 
      
 204 
     | 
    
         
            +
                            mask=(o_k1 < K),
         
     | 
| 
      
 205 
     | 
    
         
            +
                            other=0.0,
         
     | 
| 
      
 206 
     | 
    
         
            +
                        )
         
     | 
| 
      
 207 
     | 
    
         
            +
                        b_h1 *= exp(b_gk_last1)[:, None]
         
     | 
| 
      
 208 
     | 
    
         
            +
                        if K > 64:
         
     | 
| 
      
 209 
     | 
    
         
            +
                            o_k2 = 64 + o_k1
         
     | 
| 
      
 210 
     | 
    
         
            +
                            b_gk_last2 = tl.load(
         
     | 
| 
      
 211 
     | 
    
         
            +
                                gk + (bos + last_idx) * H * K + i_h * K + o_k2,
         
     | 
| 
      
 212 
     | 
    
         
            +
                                mask=(o_k2 < K),
         
     | 
| 
      
 213 
     | 
    
         
            +
                                other=0.0,
         
     | 
| 
      
 214 
     | 
    
         
            +
                            )
         
     | 
| 
      
 215 
     | 
    
         
            +
                            b_h2 *= exp(b_gk_last2)[:, None]
         
     | 
| 
      
 216 
     | 
    
         
            +
                        if K > 128:
         
     | 
| 
      
 217 
     | 
    
         
            +
                            o_k3 = 128 + o_k1
         
     | 
| 
      
 218 
     | 
    
         
            +
                            b_gk_last3 = tl.load(
         
     | 
| 
      
 219 
     | 
    
         
            +
                                gk + (bos + last_idx) * H * K + i_h * K + o_k3,
         
     | 
| 
      
 220 
     | 
    
         
            +
                                mask=(o_k3 < K),
         
     | 
| 
      
 221 
     | 
    
         
            +
                                other=0.0,
         
     | 
| 
      
 222 
     | 
    
         
            +
                            )
         
     | 
| 
      
 223 
     | 
    
         
            +
                            b_h3 *= exp(b_gk_last3)[:, None]
         
     | 
| 
      
 224 
     | 
    
         
            +
                        if K > 192:
         
     | 
| 
      
 225 
     | 
    
         
            +
                            o_k4 = 192 + o_k1
         
     | 
| 
      
 226 
     | 
    
         
            +
                            b_gk_last4 = tl.load(
         
     | 
| 
      
 227 
     | 
    
         
            +
                                gk + (bos + last_idx) * H * K + i_h * K + o_k4,
         
     | 
| 
      
 228 
     | 
    
         
            +
                                mask=(o_k4 < K),
         
     | 
| 
      
 229 
     | 
    
         
            +
                                other=0.0,
         
     | 
| 
      
 230 
     | 
    
         
            +
                            )
         
     | 
| 
      
 231 
     | 
    
         
            +
                            b_h4 *= exp(b_gk_last4)[:, None]
         
     | 
| 
      
 232 
     | 
    
         
            +
                    b_v = b_v.to(k.dtype.element_ty)
         
     | 
| 
      
 233 
     | 
    
         
            +
             
     | 
| 
       207 
234 
     | 
    
         
             
                    p_k = tl.make_block_ptr(
         
     | 
| 
       208 
235 
     | 
    
         
             
                        k, (K, T), (1, stride_k), (0, i_t * BT), (64, BT), (0, 1)
         
     | 
| 
       209 
236 
     | 
    
         
             
                    )
         
     | 
| 
       210 
237 
     | 
    
         
             
                    b_k = tl.load(p_k, boundary_check=(0, 1))
         
     | 
| 
       211 
     | 
    
         
            -
                    b_h1 += tl.dot(b_k,  
     | 
| 
      
 238 
     | 
    
         
            +
                    b_h1 += tl.dot(b_k, b_v)
         
     | 
| 
       212 
239 
     | 
    
         
             
                    if K > 64:
         
     | 
| 
       213 
240 
     | 
    
         
             
                        p_k = tl.make_block_ptr(
         
     | 
| 
       214 
241 
     | 
    
         
             
                            k, (K, T), (1, stride_k), (64, i_t * BT), (64, BT), (0, 1)
         
     | 
| 
       215 
242 
     | 
    
         
             
                        )
         
     | 
| 
       216 
243 
     | 
    
         
             
                        b_k = tl.load(p_k, boundary_check=(0, 1))
         
     | 
| 
       217 
     | 
    
         
            -
                        b_h2 += tl.dot(b_k,  
     | 
| 
      
 244 
     | 
    
         
            +
                        b_h2 += tl.dot(b_k, b_v)
         
     | 
| 
       218 
245 
     | 
    
         
             
                    if K > 128:
         
     | 
| 
       219 
246 
     | 
    
         
             
                        p_k = tl.make_block_ptr(
         
     | 
| 
       220 
247 
     | 
    
         
             
                            k, (K, T), (1, stride_k), (128, i_t * BT), (64, BT), (0, 1)
         
     | 
| 
       221 
248 
     | 
    
         
             
                        )
         
     | 
| 
       222 
249 
     | 
    
         
             
                        b_k = tl.load(p_k, boundary_check=(0, 1))
         
     | 
| 
       223 
     | 
    
         
            -
                        b_h3 += tl.dot(b_k,  
     | 
| 
      
 250 
     | 
    
         
            +
                        b_h3 += tl.dot(b_k, b_v)
         
     | 
| 
       224 
251 
     | 
    
         
             
                    if K > 192:
         
     | 
| 
       225 
252 
     | 
    
         
             
                        p_k = tl.make_block_ptr(
         
     | 
| 
       226 
253 
     | 
    
         
             
                            k, (K, T), (1, stride_k), (192, i_t * BT), (64, BT), (0, 1)
         
     | 
| 
       227 
254 
     | 
    
         
             
                        )
         
     | 
| 
       228 
255 
     | 
    
         
             
                        b_k = tl.load(p_k, boundary_check=(0, 1))
         
     | 
| 
       229 
     | 
    
         
            -
                        b_h4 += tl.dot(b_k,  
     | 
| 
      
 256 
     | 
    
         
            +
                        b_h4 += tl.dot(b_k, b_v)
         
     | 
| 
       230 
257 
     | 
    
         | 
| 
       231 
258 
     | 
    
         
             
                # epilogue
         
     | 
| 
       232 
259 
     | 
    
         
             
                if STORE_FINAL_STATE:
         
     | 
| 
         @@ -254,6 +281,7 @@ def chunk_gated_delta_rule_fwd_h( 
     | 
|
| 
       254 
281 
     | 
    
         
             
                w: torch.Tensor,
         
     | 
| 
       255 
282 
     | 
    
         
             
                u: torch.Tensor,
         
     | 
| 
       256 
283 
     | 
    
         
             
                g: Optional[torch.Tensor] = None,
         
     | 
| 
      
 284 
     | 
    
         
            +
                gk: Optional[torch.Tensor] = None,
         
     | 
| 
       257 
285 
     | 
    
         
             
                initial_state: Optional[torch.Tensor] = None,
         
     | 
| 
       258 
286 
     | 
    
         
             
                output_final_state: bool = False,
         
     | 
| 
       259 
287 
     | 
    
         
             
                chunk_size: int = 64,  # SY: remove this argument and force chunk size 64?
         
     | 
| 
         @@ -296,6 +324,7 @@ def chunk_gated_delta_rule_fwd_h( 
     | 
|
| 
       296 
324 
     | 
    
         
             
                    w=w,
         
     | 
| 
       297 
325 
     | 
    
         
             
                    v_new=v_new,
         
     | 
| 
       298 
326 
     | 
    
         
             
                    g=g,
         
     | 
| 
      
 327 
     | 
    
         
            +
                    gk=gk,
         
     | 
| 
       299 
328 
     | 
    
         
             
                    h=h,
         
     | 
| 
       300 
329 
     | 
    
         
             
                    h0=initial_state,
         
     | 
| 
       301 
330 
     | 
    
         
             
                    ht=final_state,
         
     | 
| 
         @@ -44,6 +44,7 @@ def fused_recurrent_gated_delta_rule_fwd_kernel( 
     | 
|
| 
       44 
44 
     | 
    
         
             
                IS_BETA_HEADWISE: tl.constexpr,  # whether beta is headwise vector or scalar,
         
     | 
| 
       45 
45 
     | 
    
         
             
                USE_QK_L2NORM_IN_KERNEL: tl.constexpr,
         
     | 
| 
       46 
46 
     | 
    
         
             
                IS_VARLEN: tl.constexpr,
         
     | 
| 
      
 47 
     | 
    
         
            +
                IS_KDA: tl.constexpr,
         
     | 
| 
       47 
48 
     | 
    
         
             
            ):
         
     | 
| 
       48 
49 
     | 
    
         
             
                i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
         
     | 
| 
       49 
50 
     | 
    
         
             
                i_n, i_hv = i_nh // HV, i_nh % HV
         
     | 
| 
         @@ -67,7 +68,11 @@ def fused_recurrent_gated_delta_rule_fwd_kernel( 
     | 
|
| 
       67 
68 
     | 
    
         
             
                    p_beta = beta + (bos * HV + i_hv) * V + o_v
         
     | 
| 
       68 
69 
     | 
    
         
             
                else:
         
     | 
| 
       69 
70 
     | 
    
         
             
                    p_beta = beta + bos * HV + i_hv
         
     | 
| 
       70 
     | 
    
         
            -
                 
     | 
| 
      
 71 
     | 
    
         
            +
                if not IS_KDA:
         
     | 
| 
      
 72 
     | 
    
         
            +
                    p_g = g + bos * HV + i_hv
         
     | 
| 
      
 73 
     | 
    
         
            +
                else:
         
     | 
| 
      
 74 
     | 
    
         
            +
                    p_gk = g + (bos * HV + i_hv) * K + o_k
         
     | 
| 
      
 75 
     | 
    
         
            +
             
     | 
| 
       71 
76 
     | 
    
         
             
                p_o = o + ((i_k * all + bos) * HV + i_hv) * V + o_v
         
     | 
| 
       72 
77 
     | 
    
         | 
| 
       73 
78 
     | 
    
         
             
                mask_k = o_k < K
         
     | 
| 
         @@ -83,14 +88,18 @@ def fused_recurrent_gated_delta_rule_fwd_kernel( 
     | 
|
| 
       83 
88 
     | 
    
         
             
                    b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32)
         
     | 
| 
       84 
89 
     | 
    
         
             
                    b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
         
     | 
| 
       85 
90 
     | 
    
         
             
                    b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
         
     | 
| 
       86 
     | 
    
         
            -
                    b_g = tl.load(p_g).to(tl.float32)
         
     | 
| 
       87 
91 
     | 
    
         | 
| 
       88 
92 
     | 
    
         
             
                    if USE_QK_L2NORM_IN_KERNEL:
         
     | 
| 
       89 
93 
     | 
    
         
             
                        b_q = b_q / (tl.sqrt(tl.sum(b_q * b_q) + 1e-6))
         
     | 
| 
       90 
94 
     | 
    
         
             
                        b_k = b_k / (tl.sqrt(tl.sum(b_k * b_k) + 1e-6))
         
     | 
| 
       91 
95 
     | 
    
         
             
                    b_q = b_q * scale
         
     | 
| 
       92 
96 
     | 
    
         
             
                    # [BK, BV]
         
     | 
| 
       93 
     | 
    
         
            -
                     
     | 
| 
      
 97 
     | 
    
         
            +
                    if not IS_KDA:
         
     | 
| 
      
 98 
     | 
    
         
            +
                        b_g = tl.load(p_g).to(tl.float32)
         
     | 
| 
      
 99 
     | 
    
         
            +
                        b_h *= exp(b_g)
         
     | 
| 
      
 100 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 101 
     | 
    
         
            +
                        b_gk = tl.load(p_gk).to(tl.float32)
         
     | 
| 
      
 102 
     | 
    
         
            +
                        b_h *= exp(b_gk[:, None])
         
     | 
| 
       94 
103 
     | 
    
         
             
                    # [BV]
         
     | 
| 
       95 
104 
     | 
    
         
             
                    b_v -= tl.sum(b_h * b_k[:, None], 0)
         
     | 
| 
       96 
105 
     | 
    
         
             
                    if IS_BETA_HEADWISE:
         
     | 
| 
         @@ -108,7 +117,10 @@ def fused_recurrent_gated_delta_rule_fwd_kernel( 
     | 
|
| 
       108 
117 
     | 
    
         
             
                    p_k += H * K
         
     | 
| 
       109 
118 
     | 
    
         
             
                    p_o += HV * V
         
     | 
| 
       110 
119 
     | 
    
         
             
                    p_v += HV * V
         
     | 
| 
       111 
     | 
    
         
            -
                     
     | 
| 
      
 120 
     | 
    
         
            +
                    if not IS_KDA:
         
     | 
| 
      
 121 
     | 
    
         
            +
                        p_g += HV
         
     | 
| 
      
 122 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 123 
     | 
    
         
            +
                        p_gk += HV * K
         
     | 
| 
       112 
124 
     | 
    
         
             
                    p_beta += HV * (V if IS_BETA_HEADWISE else 1)
         
     | 
| 
       113 
125 
     | 
    
         | 
| 
       114 
126 
     | 
    
         
             
                if STORE_FINAL_STATE:
         
     | 
| 
         @@ -165,6 +177,7 @@ def fused_recurrent_gated_delta_rule_fwd( 
     | 
|
| 
       165 
177 
     | 
    
         
             
                    BV=BV,
         
     | 
| 
       166 
178 
     | 
    
         
             
                    IS_BETA_HEADWISE=beta.ndim == v.ndim,
         
     | 
| 
       167 
179 
     | 
    
         
             
                    USE_QK_L2NORM_IN_KERNEL=use_qk_l2norm_in_kernel,
         
     | 
| 
      
 180 
     | 
    
         
            +
                    IS_KDA=False,
         
     | 
| 
       168 
181 
     | 
    
         
             
                    num_warps=num_warps,
         
     | 
| 
       169 
182 
     | 
    
         
             
                    num_stages=num_stages,
         
     | 
| 
       170 
183 
     | 
    
         
             
                )
         
     |