sglang 0.5.4.post1__py3-none-any.whl → 0.5.4.post2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +149 -34
 - sglang/bench_serving.py +18 -3
 - sglang/compile_deep_gemm.py +13 -7
 - sglang/srt/batch_invariant_ops/__init__.py +2 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +120 -0
 - sglang/srt/checkpoint_engine/__init__.py +9 -0
 - sglang/srt/checkpoint_engine/update.py +317 -0
 - sglang/srt/configs/__init__.py +2 -0
 - sglang/srt/configs/deepseek_ocr.py +542 -10
 - sglang/srt/configs/deepseekvl2.py +95 -194
 - sglang/srt/configs/kimi_linear.py +160 -0
 - sglang/srt/configs/mamba_utils.py +66 -0
 - sglang/srt/configs/model_config.py +25 -2
 - sglang/srt/constants.py +7 -0
 - sglang/srt/debug_utils/tensor_dump_forward_hook.py +149 -0
 - sglang/srt/disaggregation/decode.py +34 -6
 - sglang/srt/disaggregation/nixl/conn.py +2 -2
 - sglang/srt/disaggregation/prefill.py +25 -3
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +3 -1
 - sglang/srt/distributed/parallel_state.py +9 -5
 - sglang/srt/entrypoints/engine.py +13 -5
 - sglang/srt/entrypoints/http_server.py +22 -3
 - sglang/srt/entrypoints/openai/protocol.py +7 -1
 - sglang/srt/entrypoints/openai/serving_chat.py +42 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +10 -0
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/environ.py +7 -0
 - sglang/srt/eplb/expert_distribution.py +34 -1
 - sglang/srt/eplb/expert_location.py +106 -36
 - sglang/srt/grpc/compile_proto.py +3 -0
 - sglang/srt/layers/attention/ascend_backend.py +233 -5
 - sglang/srt/layers/attention/attention_registry.py +3 -0
 - sglang/srt/layers/attention/fla/chunk_delta_h.py +61 -32
 - sglang/srt/layers/attention/fla/fused_recurrent.py +17 -4
 - sglang/srt/layers/attention/fla/kda.py +1359 -0
 - sglang/srt/layers/attention/fla/layernorm_gated.py +7 -1
 - sglang/srt/layers/attention/flashattention_backend.py +7 -6
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +3 -1
 - sglang/srt/layers/attention/flashmla_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +223 -0
 - sglang/srt/layers/attention/mamba/mamba.py +20 -11
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +138 -6
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +45 -22
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +44 -12
 - sglang/srt/layers/attention/nsa/transform_index.py +1 -1
 - sglang/srt/layers/attention/nsa_backend.py +157 -23
 - sglang/srt/layers/attention/triton_backend.py +4 -1
 - sglang/srt/layers/attention/trtllm_mha_backend.py +10 -4
 - sglang/srt/layers/attention/trtllm_mla_backend.py +10 -2
 - sglang/srt/layers/communicator.py +23 -1
 - sglang/srt/layers/layernorm.py +16 -2
 - sglang/srt/layers/logits_processor.py +4 -20
 - sglang/srt/layers/moe/ep_moe/layer.py +0 -18
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128]_down.json +164 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +68 -22
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +43 -3
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +106 -26
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +53 -33
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +12 -9
 - sglang/srt/layers/moe/topk.py +31 -6
 - sglang/srt/layers/pooler.py +21 -2
 - sglang/srt/layers/quantization/__init__.py +9 -78
 - sglang/srt/layers/quantization/auto_round.py +394 -0
 - sglang/srt/layers/quantization/fp8_kernel.py +1 -1
 - sglang/srt/layers/quantization/fp8_utils.py +2 -2
 - sglang/srt/layers/quantization/modelopt_quant.py +168 -11
 - sglang/srt/layers/rotary_embedding.py +117 -45
 - sglang/srt/lora/lora_registry.py +9 -0
 - sglang/srt/managers/async_mm_data_processor.py +122 -0
 - sglang/srt/managers/data_parallel_controller.py +30 -3
 - sglang/srt/managers/detokenizer_manager.py +3 -0
 - sglang/srt/managers/io_struct.py +26 -4
 - sglang/srt/managers/multi_tokenizer_mixin.py +5 -0
 - sglang/srt/managers/schedule_batch.py +74 -15
 - sglang/srt/managers/scheduler.py +164 -129
 - sglang/srt/managers/scheduler_output_processor_mixin.py +40 -3
 - sglang/srt/managers/scheduler_pp_mixin.py +7 -2
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +45 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +18 -3
 - sglang/srt/managers/session_controller.py +6 -5
 - sglang/srt/managers/tokenizer_manager.py +154 -59
 - sglang/srt/managers/tp_worker.py +24 -1
 - sglang/srt/mem_cache/base_prefix_cache.py +23 -4
 - sglang/srt/mem_cache/common.py +1 -0
 - sglang/srt/mem_cache/memory_pool.py +171 -57
 - sglang/srt/mem_cache/memory_pool_host.py +12 -5
 - sglang/srt/mem_cache/radix_cache.py +4 -0
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +1 -1
 - sglang/srt/metrics/collector.py +46 -3
 - sglang/srt/model_executor/cuda_graph_runner.py +15 -3
 - sglang/srt/model_executor/forward_batch_info.py +11 -11
 - sglang/srt/model_executor/model_runner.py +76 -21
 - sglang/srt/model_executor/npu_graph_runner.py +7 -3
 - sglang/srt/model_loader/weight_utils.py +1 -1
 - sglang/srt/models/bailing_moe.py +9 -2
 - sglang/srt/models/deepseek_nextn.py +11 -2
 - sglang/srt/models/deepseek_v2.py +149 -34
 - sglang/srt/models/glm4.py +391 -77
 - sglang/srt/models/glm4v.py +196 -55
 - sglang/srt/models/glm4v_moe.py +0 -1
 - sglang/srt/models/gpt_oss.py +1 -10
 - sglang/srt/models/kimi_linear.py +678 -0
 - sglang/srt/models/llama4.py +1 -1
 - sglang/srt/models/llama_eagle3.py +11 -1
 - sglang/srt/models/longcat_flash.py +2 -2
 - sglang/srt/models/minimax_m2.py +1 -1
 - sglang/srt/models/qwen2.py +1 -1
 - sglang/srt/models/qwen2_moe.py +30 -15
 - sglang/srt/models/qwen3.py +1 -1
 - sglang/srt/models/qwen3_moe.py +16 -8
 - sglang/srt/models/qwen3_next.py +7 -0
 - sglang/srt/multimodal/customized_mm_processor_utils.py +35 -0
 - sglang/srt/multiplex/multiplexing_mixin.py +209 -0
 - sglang/srt/multiplex/pdmux_context.py +164 -0
 - sglang/srt/parser/conversation.py +7 -1
 - sglang/srt/sampling/custom_logit_processor.py +67 -1
 - sglang/srt/sampling/penaltylib/frequency_penalty.py +6 -8
 - sglang/srt/sampling/penaltylib/min_new_tokens.py +7 -8
 - sglang/srt/sampling/penaltylib/orchestrator.py +43 -3
 - sglang/srt/sampling/penaltylib/presence_penalty.py +6 -8
 - sglang/srt/server_args.py +103 -22
 - sglang/srt/single_batch_overlap.py +4 -1
 - sglang/srt/speculative/draft_utils.py +16 -0
 - sglang/srt/speculative/eagle_info.py +42 -36
 - sglang/srt/speculative/eagle_info_v2.py +68 -25
 - sglang/srt/speculative/eagle_utils.py +261 -16
 - sglang/srt/speculative/eagle_worker.py +11 -3
 - sglang/srt/speculative/eagle_worker_v2.py +15 -9
 - sglang/srt/speculative/spec_info.py +305 -31
 - sglang/srt/speculative/spec_utils.py +44 -8
 - sglang/srt/tracing/trace.py +121 -12
 - sglang/srt/utils/common.py +55 -32
 - sglang/srt/utils/hf_transformers_utils.py +38 -16
 - sglang/srt/utils/torch_memory_saver_adapter.py +20 -0
 - sglang/test/kits/radix_cache_server_kit.py +50 -0
 - sglang/test/runners.py +31 -7
 - sglang/test/simple_eval_common.py +5 -3
 - sglang/test/simple_eval_humaneval.py +1 -0
 - sglang/test/simple_eval_math.py +1 -0
 - sglang/test/simple_eval_mmlu.py +1 -0
 - sglang/test/simple_eval_mmmu_vlm.py +1 -0
 - sglang/test/test_utils.py +7 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/METADATA +10 -24
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/RECORD +150 -136
 - /sglang/test/{kit_matched_stop.py → kits/matched_stop_kit.py} +0 -0
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/WHEEL +0 -0
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/top_level.txt +0 -0
 
| 
         @@ -19,6 +19,7 @@ from sglang.srt.utils import add_prefix 
     | 
|
| 
       19 
19 
     | 
    
         
             
            # https://github.com/SafeAILab/EAGLE/blob/main/eagle/model/cnets.py
         
     | 
| 
       20 
20 
     | 
    
         
             
            """Inference-only LLaMA-EAGLE model compatible with HuggingFace weights."""
         
     | 
| 
       21 
21 
     | 
    
         | 
| 
      
 22 
     | 
    
         
            +
            import copy
         
     | 
| 
       22 
23 
     | 
    
         
             
            from typing import Iterable, Optional, Tuple
         
     | 
| 
       23 
24 
     | 
    
         | 
| 
       24 
25 
     | 
    
         
             
            import torch
         
     | 
| 
         @@ -161,6 +162,10 @@ class LlamaModel(nn.Module): 
     | 
|
| 
       161 
162 
     | 
    
         
             
                    if hidden_states.shape[-1] != embeds.shape[-1]:
         
     | 
| 
       162 
163 
     | 
    
         
             
                        hidden_states = self.fc(hidden_states)
         
     | 
| 
       163 
164 
     | 
    
         | 
| 
      
 165 
     | 
    
         
            +
                    # idle batch
         
     | 
| 
      
 166 
     | 
    
         
            +
                    if hidden_states.shape[0] == 0:
         
     | 
| 
      
 167 
     | 
    
         
            +
                        return hidden_states, [hidden_states]
         
     | 
| 
      
 168 
     | 
    
         
            +
             
     | 
| 
       164 
169 
     | 
    
         
             
                    residual = None
         
     | 
| 
       165 
170 
     | 
    
         
             
                    hidden_states, residual = self.midlayer(
         
     | 
| 
       166 
171 
     | 
    
         
             
                        positions,
         
     | 
| 
         @@ -212,7 +217,12 @@ class LlamaForCausalLMEagle3(LlamaForCausalLM): 
     | 
|
| 
       212 
217 
     | 
    
         
             
                            prefix=add_prefix("lm_head", prefix),
         
     | 
| 
       213 
218 
     | 
    
         
             
                        )
         
     | 
| 
       214 
219 
     | 
    
         | 
| 
       215 
     | 
    
         
            -
                     
     | 
| 
      
 220 
     | 
    
         
            +
                    config_ = copy.deepcopy(config)
         
     | 
| 
      
 221 
     | 
    
         
            +
                    config_.vocab_size = (
         
     | 
| 
      
 222 
     | 
    
         
            +
                        config_.draft_vocab_size
         
     | 
| 
      
 223 
     | 
    
         
            +
                    )  # draft logits processor has it's own vocab size
         
     | 
| 
      
 224 
     | 
    
         
            +
                    self.logits_processor = LogitsProcessor(config_)
         
     | 
| 
      
 225 
     | 
    
         
            +
             
     | 
| 
       216 
226 
     | 
    
         
             
                    self.capture_aux_hidden_states = True
         
     | 
| 
       217 
227 
     | 
    
         
             
                    self.hot_token_id = None
         
     | 
| 
       218 
228 
     | 
    
         | 
| 
         @@ -821,8 +821,8 @@ class LongcatFlashForCausalLM(nn.Module): 
     | 
|
| 
       821 
821 
     | 
    
         
             
                        experts = layer.mlp.experts
         
     | 
| 
       822 
822 
     | 
    
         
             
                        if isinstance(experts, DeepEPMoE):
         
     | 
| 
       823 
823 
     | 
    
         
             
                            for w in [
         
     | 
| 
       824 
     | 
    
         
            -
                                experts. 
     | 
| 
       825 
     | 
    
         
            -
                                experts. 
     | 
| 
      
 824 
     | 
    
         
            +
                                (experts.w13_weight, experts.w13_weight_scale_inv),
         
     | 
| 
      
 825 
     | 
    
         
            +
                                (experts.w2_weight, experts.w2_weight_scale_inv),
         
     | 
| 
       826 
826 
     | 
    
         
             
                            ]:
         
     | 
| 
       827 
827 
     | 
    
         
             
                                requant_weight_ue8m0_inplace(w[0], w[1], weight_block_size)
         
     | 
| 
       828 
828 
     | 
    
         | 
    
        sglang/srt/models/minimax_m2.py
    CHANGED
    
    
    
        sglang/srt/models/qwen2.py
    CHANGED
    
    | 
         @@ -462,7 +462,7 @@ class Qwen2ForCausalLM(nn.Module): 
     | 
|
| 
       462 
462 
     | 
    
         
             
                            self.pp_group.send(
         
     | 
| 
       463 
463 
     | 
    
         
             
                                self.model.embed_tokens.weight, dst=self.pp_group.last_rank
         
     | 
| 
       464 
464 
     | 
    
         
             
                            )
         
     | 
| 
       465 
     | 
    
         
            -
                         
     | 
| 
      
 465 
     | 
    
         
            +
                        elif self.pp_group.is_last_rank:
         
     | 
| 
       466 
466 
     | 
    
         
             
                            emb_token_weight = self.pp_group.recv(
         
     | 
| 
       467 
467 
     | 
    
         
             
                                size=(config.vocab_size, config.hidden_size),
         
     | 
| 
       468 
468 
     | 
    
         
             
                                dtype=next(self.model.parameters()).dtype,
         
     | 
    
        sglang/srt/models/qwen2_moe.py
    CHANGED
    
    | 
         @@ -473,10 +473,16 @@ class Qwen2MoeDecoderLayer(nn.Module): 
     | 
|
| 
       473 
473 
     | 
    
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 
       474 
474 
     | 
    
         
             
                    forward_batch: ForwardBatch,
         
     | 
| 
       475 
475 
     | 
    
         
             
                    residual: Optional[torch.Tensor],
         
     | 
| 
      
 476 
     | 
    
         
            +
                    captured_last_layer_outputs: Optional[List[torch.Tensor]] = None,
         
     | 
| 
       476 
477 
     | 
    
         
             
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       477 
478 
     | 
    
         | 
| 
       478 
     | 
    
         
            -
                    hidden_states, residual =  
     | 
| 
       479 
     | 
    
         
            -
                         
     | 
| 
      
 479 
     | 
    
         
            +
                    hidden_states, residual = (
         
     | 
| 
      
 480 
     | 
    
         
            +
                        self.layer_communicator.prepare_attn_and_capture_last_layer_outputs(
         
     | 
| 
      
 481 
     | 
    
         
            +
                            hidden_states,
         
     | 
| 
      
 482 
     | 
    
         
            +
                            residual,
         
     | 
| 
      
 483 
     | 
    
         
            +
                            forward_batch,
         
     | 
| 
      
 484 
     | 
    
         
            +
                            captured_last_layer_outputs=captured_last_layer_outputs,
         
     | 
| 
      
 485 
     | 
    
         
            +
                        )
         
     | 
| 
       480 
486 
     | 
    
         
             
                    )
         
     | 
| 
       481 
487 
     | 
    
         | 
| 
       482 
488 
     | 
    
         
             
                    if hidden_states.shape[0] != 0:
         
     | 
| 
         @@ -553,6 +559,11 @@ class Qwen2MoeModel(nn.Module): 
     | 
|
| 
       553 
559 
     | 
    
         
             
                    # For EAGLE3 support
         
     | 
| 
       554 
560 
     | 
    
         
             
                    self.layers_to_capture = []
         
     | 
| 
       555 
561 
     | 
    
         | 
| 
      
 562 
     | 
    
         
            +
                def set_eagle3_layers_to_capture(self, layers_to_capture: List[int]):
         
     | 
| 
      
 563 
     | 
    
         
            +
                    self.layers_to_capture = layers_to_capture
         
     | 
| 
      
 564 
     | 
    
         
            +
                    for layer_id in self.layers_to_capture:
         
     | 
| 
      
 565 
     | 
    
         
            +
                        setattr(self.layers[layer_id], "_is_layer_to_capture", True)
         
     | 
| 
      
 566 
     | 
    
         
            +
             
     | 
| 
       556 
567 
     | 
    
         
             
                def forward(
         
     | 
| 
       557 
568 
     | 
    
         
             
                    self,
         
     | 
| 
       558 
569 
     | 
    
         
             
                    input_ids: torch.Tensor,
         
     | 
| 
         @@ -585,12 +596,6 @@ class Qwen2MoeModel(nn.Module): 
     | 
|
| 
       585 
596 
     | 
    
         
             
                        )
         
     | 
| 
       586 
597 
     | 
    
         
             
                    else:
         
     | 
| 
       587 
598 
     | 
    
         
             
                        for i in range(self.start_layer, self.end_layer):
         
     | 
| 
       588 
     | 
    
         
            -
                            if i in self.layers_to_capture:
         
     | 
| 
       589 
     | 
    
         
            -
                                aux_hidden_states.append(
         
     | 
| 
       590 
     | 
    
         
            -
                                    hidden_states + residual
         
     | 
| 
       591 
     | 
    
         
            -
                                    if residual is not None
         
     | 
| 
       592 
     | 
    
         
            -
                                    else hidden_states
         
     | 
| 
       593 
     | 
    
         
            -
                                )
         
     | 
| 
       594 
599 
     | 
    
         
             
                            ctx = (
         
     | 
| 
       595 
600 
     | 
    
         
             
                                nullcontext()
         
     | 
| 
       596 
601 
     | 
    
         
             
                                if get_global_server_args().enable_piecewise_cuda_graph
         
     | 
| 
         @@ -599,7 +604,15 @@ class Qwen2MoeModel(nn.Module): 
     | 
|
| 
       599 
604 
     | 
    
         
             
                            with ctx:
         
     | 
| 
       600 
605 
     | 
    
         
             
                                layer = self.layers[i]
         
     | 
| 
       601 
606 
     | 
    
         
             
                                hidden_states, residual = layer(
         
     | 
| 
       602 
     | 
    
         
            -
                                    positions, 
     | 
| 
      
 607 
     | 
    
         
            +
                                    positions,
         
     | 
| 
      
 608 
     | 
    
         
            +
                                    hidden_states,
         
     | 
| 
      
 609 
     | 
    
         
            +
                                    forward_batch,
         
     | 
| 
      
 610 
     | 
    
         
            +
                                    residual,
         
     | 
| 
      
 611 
     | 
    
         
            +
                                    captured_last_layer_outputs=(
         
     | 
| 
      
 612 
     | 
    
         
            +
                                        aux_hidden_states
         
     | 
| 
      
 613 
     | 
    
         
            +
                                        if getattr(layer, "_is_layer_to_capture", False)
         
     | 
| 
      
 614 
     | 
    
         
            +
                                        else None
         
     | 
| 
      
 615 
     | 
    
         
            +
                                    ),
         
     | 
| 
       603 
616 
     | 
    
         
             
                                )
         
     | 
| 
       604 
617 
     | 
    
         
             
                    if not self.pp_group.is_last_rank:
         
     | 
| 
       605 
618 
     | 
    
         
             
                        return PPProxyTensors(
         
     | 
| 
         @@ -830,13 +843,15 @@ class Qwen2MoeForCausalLM(nn.Module): 
     | 
|
| 
       830 
843 
     | 
    
         
             
                    self.capture_aux_hidden_states = True
         
     | 
| 
       831 
844 
     | 
    
         
             
                    if layer_ids is None:
         
     | 
| 
       832 
845 
     | 
    
         
             
                        num_layers = self.config.num_hidden_layers
         
     | 
| 
       833 
     | 
    
         
            -
                        self.model. 
     | 
| 
       834 
     | 
    
         
            -
                             
     | 
| 
       835 
     | 
    
         
            -
             
     | 
| 
       836 
     | 
    
         
            -
             
     | 
| 
       837 
     | 
    
         
            -
             
     | 
| 
      
 846 
     | 
    
         
            +
                        self.model.set_eagle3_layers_to_capture(
         
     | 
| 
      
 847 
     | 
    
         
            +
                            [
         
     | 
| 
      
 848 
     | 
    
         
            +
                                2,
         
     | 
| 
      
 849 
     | 
    
         
            +
                                num_layers // 2,
         
     | 
| 
      
 850 
     | 
    
         
            +
                                num_layers - 3,
         
     | 
| 
      
 851 
     | 
    
         
            +
                            ]
         
     | 
| 
      
 852 
     | 
    
         
            +
                        )  # Specific layers for EAGLE3 support
         
     | 
| 
       838 
853 
     | 
    
         
             
                    else:
         
     | 
| 
       839 
     | 
    
         
            -
                        self.model. 
     | 
| 
      
 854 
     | 
    
         
            +
                        self.model.set_eagle3_layers_to_capture([val + 1 for val in layer_ids])
         
     | 
| 
       840 
855 
     | 
    
         | 
| 
       841 
856 
     | 
    
         | 
| 
       842 
857 
     | 
    
         
             
            EntryClass = Qwen2MoeForCausalLM
         
     | 
    
        sglang/srt/models/qwen3.py
    CHANGED
    
    | 
         @@ -361,7 +361,7 @@ class Qwen3ForCausalLM(nn.Module): 
     | 
|
| 
       361 
361 
     | 
    
         
             
                            self.pp_group.send(
         
     | 
| 
       362 
362 
     | 
    
         
             
                                self.model.embed_tokens.weight, dst=self.pp_group.last_rank
         
     | 
| 
       363 
363 
     | 
    
         
             
                            )
         
     | 
| 
       364 
     | 
    
         
            -
                         
     | 
| 
      
 364 
     | 
    
         
            +
                        elif self.pp_group.is_last_rank:
         
     | 
| 
       365 
365 
     | 
    
         
             
                            emb_token_weight = self.pp_group.recv(
         
     | 
| 
       366 
366 
     | 
    
         
             
                                size=(config.vocab_size, config.hidden_size),
         
     | 
| 
       367 
367 
     | 
    
         
             
                                dtype=next(self.model.parameters()).dtype,
         
     | 
    
        sglang/srt/models/qwen3_moe.py
    CHANGED
    
    | 
         @@ -537,10 +537,16 @@ class Qwen3MoeDecoderLayer(nn.Module): 
     | 
|
| 
       537 
537 
     | 
    
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 
       538 
538 
     | 
    
         
             
                    forward_batch: ForwardBatch,
         
     | 
| 
       539 
539 
     | 
    
         
             
                    residual: Optional[torch.Tensor],
         
     | 
| 
      
 540 
     | 
    
         
            +
                    captured_last_layer_outputs: Optional[List[torch.Tensor]] = None,
         
     | 
| 
       540 
541 
     | 
    
         
             
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       541 
542 
     | 
    
         | 
| 
       542 
     | 
    
         
            -
                    hidden_states, residual =  
     | 
| 
       543 
     | 
    
         
            -
                         
     | 
| 
      
 543 
     | 
    
         
            +
                    hidden_states, residual = (
         
     | 
| 
      
 544 
     | 
    
         
            +
                        self.layer_communicator.prepare_attn_and_capture_last_layer_outputs(
         
     | 
| 
      
 545 
     | 
    
         
            +
                            hidden_states,
         
     | 
| 
      
 546 
     | 
    
         
            +
                            residual,
         
     | 
| 
      
 547 
     | 
    
         
            +
                            forward_batch,
         
     | 
| 
      
 548 
     | 
    
         
            +
                            captured_last_layer_outputs=captured_last_layer_outputs,
         
     | 
| 
      
 549 
     | 
    
         
            +
                        )
         
     | 
| 
       544 
550 
     | 
    
         
             
                    )
         
     | 
| 
       545 
551 
     | 
    
         | 
| 
       546 
552 
     | 
    
         
             
                    if hidden_states.shape[0] != 0:
         
     | 
| 
         @@ -772,13 +778,15 @@ class Qwen3MoeForCausalLM(nn.Module): 
     | 
|
| 
       772 
778 
     | 
    
         
             
                    self.capture_aux_hidden_states = True
         
     | 
| 
       773 
779 
     | 
    
         
             
                    if layer_ids is None:
         
     | 
| 
       774 
780 
     | 
    
         
             
                        num_layers = self.config.num_hidden_layers
         
     | 
| 
       775 
     | 
    
         
            -
                        self.model. 
     | 
| 
       776 
     | 
    
         
            -
                             
     | 
| 
       777 
     | 
    
         
            -
             
     | 
| 
       778 
     | 
    
         
            -
             
     | 
| 
       779 
     | 
    
         
            -
             
     | 
| 
      
 781 
     | 
    
         
            +
                        self.model.set_eagle3_layers_to_capture(
         
     | 
| 
      
 782 
     | 
    
         
            +
                            [
         
     | 
| 
      
 783 
     | 
    
         
            +
                                2,
         
     | 
| 
      
 784 
     | 
    
         
            +
                                num_layers // 2,
         
     | 
| 
      
 785 
     | 
    
         
            +
                                num_layers - 3,
         
     | 
| 
      
 786 
     | 
    
         
            +
                            ]
         
     | 
| 
      
 787 
     | 
    
         
            +
                        )  # Specific layers for EAGLE3 support
         
     | 
| 
       780 
788 
     | 
    
         
             
                    else:
         
     | 
| 
       781 
     | 
    
         
            -
                        self.model. 
     | 
| 
      
 789 
     | 
    
         
            +
                        self.model.set_eagle3_layers_to_capture([val + 1 for val in layer_ids])
         
     | 
| 
       782 
790 
     | 
    
         | 
| 
       783 
791 
     | 
    
         
             
                def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
         
     | 
| 
       784 
792 
     | 
    
         
             
                    stacked_params_mapping = [
         
     | 
    
        sglang/srt/models/qwen3_next.py
    CHANGED
    
    | 
         @@ -478,6 +478,13 @@ class Qwen3GatedDeltaNet(nn.Module): 
     | 
|
| 
       478 
478 
     | 
    
         
             
                    # reshape input data into 2D tensor
         
     | 
| 
       479 
479 
     | 
    
         
             
                    core_attn_out = core_attn_out.reshape(-1, core_attn_out.shape[-1])
         
     | 
| 
       480 
480 
     | 
    
         
             
                    z = z.reshape(-1, z.shape[-1])
         
     | 
| 
      
 481 
     | 
    
         
            +
             
     | 
| 
      
 482 
     | 
    
         
            +
                    # Add padding for DP-Attn
         
     | 
| 
      
 483 
     | 
    
         
            +
                    if is_dp_attention_enabled():
         
     | 
| 
      
 484 
     | 
    
         
            +
                        core_attn_out_pad = torch.zeros_like(z)
         
     | 
| 
      
 485 
     | 
    
         
            +
                        core_attn_out_pad[: core_attn_out.shape[0], :] = core_attn_out
         
     | 
| 
      
 486 
     | 
    
         
            +
                        core_attn_out = core_attn_out_pad
         
     | 
| 
      
 487 
     | 
    
         
            +
             
     | 
| 
       481 
488 
     | 
    
         
             
                    core_attn_out = self.norm(core_attn_out, z)
         
     | 
| 
       482 
489 
     | 
    
         
             
                    core_attn_out = core_attn_out.reshape(z_shape_og)
         
     | 
| 
       483 
490 
     | 
    
         
             
                    core_attn_out = core_attn_out.reshape(*core_attn_out.shape[:-2], -1)
         
     | 
| 
         @@ -0,0 +1,35 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from typing import Dict, Type
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            from transformers import PretrainedConfig, ProcessorMixin
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
            # Useful for registering a custom processor different from Hugging Face's default.
         
     | 
| 
      
 6 
     | 
    
         
            +
            _CUSTOMIZED_MM_PROCESSOR: Dict[str, Type[ProcessorMixin]] = dict()
         
     | 
| 
      
 7 
     | 
    
         
            +
             
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
            def register_customized_processor(
         
     | 
| 
      
 10 
     | 
    
         
            +
                processor_class: Type[ProcessorMixin],
         
     | 
| 
      
 11 
     | 
    
         
            +
            ):
         
     | 
| 
      
 12 
     | 
    
         
            +
                """Class decorator that maps a config class's model_type field to a customized processor class.
         
     | 
| 
      
 13 
     | 
    
         
            +
             
     | 
| 
      
 14 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 15 
     | 
    
         
            +
                    processor_class: A processor class that inherits from ProcessorMixin
         
     | 
| 
      
 16 
     | 
    
         
            +
             
     | 
| 
      
 17 
     | 
    
         
            +
                Example:
         
     | 
| 
      
 18 
     | 
    
         
            +
                    ```python
         
     | 
| 
      
 19 
     | 
    
         
            +
                    @register_customized_processor(MyCustomProcessor)
         
     | 
| 
      
 20 
     | 
    
         
            +
                    class MyModelConfig(PretrainedConfig):
         
     | 
| 
      
 21 
     | 
    
         
            +
                        model_type = "my_model"
         
     | 
| 
      
 22 
     | 
    
         
            +
             
     | 
| 
      
 23 
     | 
    
         
            +
                    ```
         
     | 
| 
      
 24 
     | 
    
         
            +
                """
         
     | 
| 
      
 25 
     | 
    
         
            +
             
     | 
| 
      
 26 
     | 
    
         
            +
                def decorator(config_class: PretrainedConfig):
         
     | 
| 
      
 27 
     | 
    
         
            +
                    if not hasattr(config_class, "model_type"):
         
     | 
| 
      
 28 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 29 
     | 
    
         
            +
                            f"Class {config_class.__name__} with register_customized_processor should "
         
     | 
| 
      
 30 
     | 
    
         
            +
                            f"have a 'model_type' class attribute."
         
     | 
| 
      
 31 
     | 
    
         
            +
                        )
         
     | 
| 
      
 32 
     | 
    
         
            +
                    _CUSTOMIZED_MM_PROCESSOR[config_class.model_type] = processor_class
         
     | 
| 
      
 33 
     | 
    
         
            +
                    return config_class
         
     | 
| 
      
 34 
     | 
    
         
            +
             
     | 
| 
      
 35 
     | 
    
         
            +
                return decorator
         
     | 
| 
         @@ -0,0 +1,209 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            """
         
     | 
| 
      
 2 
     | 
    
         
            +
            Mixin class providing multiplexing scheduling logic
         
     | 
| 
      
 3 
     | 
    
         
            +
            """
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
            import logging
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 8 
     | 
    
         
            +
            import torch.distributed as dist
         
     | 
| 
      
 9 
     | 
    
         
            +
            from torch.cuda.streams import ExternalStream
         
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
            from sglang.srt.distributed.parallel_state import set_pdmux_status
         
     | 
| 
      
 12 
     | 
    
         
            +
            from sglang.srt.model_executor.forward_batch_info import ForwardMode
         
     | 
| 
      
 13 
     | 
    
         
            +
            from sglang.srt.multiplex.pdmux_context import (
         
     | 
| 
      
 14 
     | 
    
         
            +
                get_current_stream_idx,
         
     | 
| 
      
 15 
     | 
    
         
            +
                get_sm_counts,
         
     | 
| 
      
 16 
     | 
    
         
            +
                get_stream_groups,
         
     | 
| 
      
 17 
     | 
    
         
            +
                initialize_stream_groups,
         
     | 
| 
      
 18 
     | 
    
         
            +
                load_pdmux_config,
         
     | 
| 
      
 19 
     | 
    
         
            +
                set_current_stream_idx,
         
     | 
| 
      
 20 
     | 
    
         
            +
            )
         
     | 
| 
      
 21 
     | 
    
         
            +
             
     | 
| 
      
 22 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 23 
     | 
    
         
            +
             
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
      
 25 
     | 
    
         
            +
            class SchedulerMultiplexMixin:
         
     | 
| 
      
 26 
     | 
    
         
            +
             
     | 
| 
      
 27 
     | 
    
         
            +
                def init_pdmux(self):
         
     | 
| 
      
 28 
     | 
    
         
            +
                    # for pd_multiplexing, Init stream_groups, exclude normal stream for prefill only and decode only
         
     | 
| 
      
 29 
     | 
    
         
            +
                    self.pdmux_config = load_pdmux_config(self.server_args.pdmux_config_path)
         
     | 
| 
      
 30 
     | 
    
         
            +
                    initialize_stream_groups(self.gpu_id, self.pdmux_config)
         
     | 
| 
      
 31 
     | 
    
         
            +
                    self.stream_groups = get_stream_groups()
         
     | 
| 
      
 32 
     | 
    
         
            +
                    self.sm_counts = get_sm_counts()
         
     | 
| 
      
 33 
     | 
    
         
            +
                    self.real_sm_group_num = len(self.stream_groups)
         
     | 
| 
      
 34 
     | 
    
         
            +
                    logger.info(
         
     | 
| 
      
 35 
     | 
    
         
            +
                        f"PD-Multiplexing enabled with {self.real_sm_group_num} stream groups, sm_counts (prefill_sm, decode_sm): {self.sm_counts}"
         
     | 
| 
      
 36 
     | 
    
         
            +
                    )
         
     | 
| 
      
 37 
     | 
    
         
            +
             
     | 
| 
      
 38 
     | 
    
         
            +
                # TODO(jason-fxz): This is a temporary demo
         
     | 
| 
      
 39 
     | 
    
         
            +
                def adjust_stream_groups(self) -> tuple[int, tuple[ExternalStream, ExternalStream]]:
         
     | 
| 
      
 40 
     | 
    
         
            +
                    if not self.running_batch.is_empty() and self.split_prefill_batch:
         
     | 
| 
      
 41 
     | 
    
         
            +
                        decode_bs = self.running_batch.batch_size()
         
     | 
| 
      
 42 
     | 
    
         
            +
                        manual_divisions = self.pdmux_config.manual_divisions
         
     | 
| 
      
 43 
     | 
    
         
            +
                        if manual_divisions:
         
     | 
| 
      
 44 
     | 
    
         
            +
                            for i in range(len(manual_divisions)):
         
     | 
| 
      
 45 
     | 
    
         
            +
                                _, _, threshold = manual_divisions[i]
         
     | 
| 
      
 46 
     | 
    
         
            +
                                if decode_bs >= threshold:
         
     | 
| 
      
 47 
     | 
    
         
            +
                                    stream_idx = i + 1
         
     | 
| 
      
 48 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 49 
     | 
    
         
            +
                            stream_idx = max(
         
     | 
| 
      
 50 
     | 
    
         
            +
                                1,
         
     | 
| 
      
 51 
     | 
    
         
            +
                                min(
         
     | 
| 
      
 52 
     | 
    
         
            +
                                    self.real_sm_group_num - 2,
         
     | 
| 
      
 53 
     | 
    
         
            +
                                    decode_bs
         
     | 
| 
      
 54 
     | 
    
         
            +
                                    * (self.real_sm_group_num - 2)
         
     | 
| 
      
 55 
     | 
    
         
            +
                                    // self.pdmux_config.decode_bs_divisor,
         
     | 
| 
      
 56 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 57 
     | 
    
         
            +
                            )
         
     | 
| 
      
 58 
     | 
    
         
            +
                        set_current_stream_idx(stream_idx)
         
     | 
| 
      
 59 
     | 
    
         
            +
                    elif not self.running_batch.is_empty():
         
     | 
| 
      
 60 
     | 
    
         
            +
                        set_current_stream_idx(self.real_sm_group_num - 1)
         
     | 
| 
      
 61 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 62 
     | 
    
         
            +
                        set_current_stream_idx(0)
         
     | 
| 
      
 63 
     | 
    
         
            +
             
     | 
| 
      
 64 
     | 
    
         
            +
                    stream_idx = get_current_stream_idx()
         
     | 
| 
      
 65 
     | 
    
         
            +
             
     | 
| 
      
 66 
     | 
    
         
            +
                    self.tp_worker.model_runner.update_decode_attn_backend(stream_idx)
         
     | 
| 
      
 67 
     | 
    
         
            +
                    return stream_idx, self.stream_groups[stream_idx]
         
     | 
| 
      
 68 
     | 
    
         
            +
             
     | 
| 
      
 69 
     | 
    
         
            +
                def update_split_prefill_batch(self, sm_count: int) -> bool:
         
     | 
| 
      
 70 
     | 
    
         
            +
                    if self.split_prefill_batch:
         
     | 
| 
      
 71 
     | 
    
         
            +
                        return False
         
     | 
| 
      
 72 
     | 
    
         
            +
             
     | 
| 
      
 73 
     | 
    
         
            +
                    # add new request
         
     | 
| 
      
 74 
     | 
    
         
            +
                    batch = self.get_new_batch_prefill()
         
     | 
| 
      
 75 
     | 
    
         
            +
                    if batch and not batch.is_empty():
         
     | 
| 
      
 76 
     | 
    
         
            +
                        batch.forward_mode = (
         
     | 
| 
      
 77 
     | 
    
         
            +
                            ForwardMode.SPLIT_PREFILL
         
     | 
| 
      
 78 
     | 
    
         
            +
                        )  # Set forward mode for split prefill
         
     | 
| 
      
 79 
     | 
    
         
            +
                        self.split_prefill_batch = batch
         
     | 
| 
      
 80 
     | 
    
         
            +
                        return True
         
     | 
| 
      
 81 
     | 
    
         
            +
                    return False
         
     | 
| 
      
 82 
     | 
    
         
            +
             
     | 
| 
      
 83 
     | 
    
         
            +
                @torch.inference_mode()
         
     | 
| 
      
 84 
     | 
    
         
            +
                def event_loop_pdmux(self):
         
     | 
| 
      
 85 
     | 
    
         
            +
                    """A scheduler loop for pd multiplexing."""
         
     | 
| 
      
 86 
     | 
    
         
            +
                    decode_done = False
         
     | 
| 
      
 87 
     | 
    
         
            +
                    prefill_done = False
         
     | 
| 
      
 88 
     | 
    
         
            +
                    wait_prefill_kernel_done = False
         
     | 
| 
      
 89 
     | 
    
         
            +
                    adjust_stream_group = False
         
     | 
| 
      
 90 
     | 
    
         
            +
                    stream_idx = get_current_stream_idx()
         
     | 
| 
      
 91 
     | 
    
         
            +
                    stream_group = self.stream_groups[stream_idx]
         
     | 
| 
      
 92 
     | 
    
         
            +
                    prefill_stream = stream_group[0]
         
     | 
| 
      
 93 
     | 
    
         
            +
                    decode_stream = stream_group[1]
         
     | 
| 
      
 94 
     | 
    
         
            +
                    torch.cuda.empty_cache()
         
     | 
| 
      
 95 
     | 
    
         
            +
             
     | 
| 
      
 96 
     | 
    
         
            +
                    logger.debug("Starting event loop for pd multiplexing...")
         
     | 
| 
      
 97 
     | 
    
         
            +
             
     | 
| 
      
 98 
     | 
    
         
            +
                    while True:
         
     | 
| 
      
 99 
     | 
    
         
            +
                        with torch.cuda.stream(decode_stream):
         
     | 
| 
      
 100 
     | 
    
         
            +
                            set_pdmux_status(False)
         
     | 
| 
      
 101 
     | 
    
         
            +
                            recv_reqs = self.recv_requests()
         
     | 
| 
      
 102 
     | 
    
         
            +
                            self.process_input_requests(recv_reqs)
         
     | 
| 
      
 103 
     | 
    
         
            +
             
     | 
| 
      
 104 
     | 
    
         
            +
                        with torch.cuda.stream(prefill_stream):
         
     | 
| 
      
 105 
     | 
    
         
            +
                            set_pdmux_status(True)
         
     | 
| 
      
 106 
     | 
    
         
            +
                            sm_count = self.sm_counts[stream_idx][0]
         
     | 
| 
      
 107 
     | 
    
         
            +
                            if not wait_prefill_kernel_done:
         
     | 
| 
      
 108 
     | 
    
         
            +
                                adjust_stream_group = (
         
     | 
| 
      
 109 
     | 
    
         
            +
                                    self.update_split_prefill_batch(sm_count) or adjust_stream_group
         
     | 
| 
      
 110 
     | 
    
         
            +
                                )
         
     | 
| 
      
 111 
     | 
    
         
            +
             
     | 
| 
      
 112 
     | 
    
         
            +
                        with torch.cuda.stream(decode_stream):
         
     | 
| 
      
 113 
     | 
    
         
            +
                            set_pdmux_status(False)
         
     | 
| 
      
 114 
     | 
    
         
            +
                            self.running_batch = self.update_running_batch(self.running_batch)
         
     | 
| 
      
 115 
     | 
    
         
            +
                            adjust_stream_group = adjust_stream_group or (
         
     | 
| 
      
 116 
     | 
    
         
            +
                                stream_idx > 0 and self.running_batch.is_empty()
         
     | 
| 
      
 117 
     | 
    
         
            +
                            )
         
     | 
| 
      
 118 
     | 
    
         
            +
                            if self.running_batch.is_empty() and self.split_prefill_batch is None:
         
     | 
| 
      
 119 
     | 
    
         
            +
                                self.check_memory()
         
     | 
| 
      
 120 
     | 
    
         
            +
                                self.check_tree_cache()
         
     | 
| 
      
 121 
     | 
    
         
            +
                                self.new_token_ratio = self.init_new_token_ratio
         
     | 
| 
      
 122 
     | 
    
         
            +
                                self.maybe_sleep_on_idle()
         
     | 
| 
      
 123 
     | 
    
         
            +
             
     | 
| 
      
 124 
     | 
    
         
            +
                        if adjust_stream_group:
         
     | 
| 
      
 125 
     | 
    
         
            +
                            prefill_stream.synchronize()
         
     | 
| 
      
 126 
     | 
    
         
            +
                            decode_stream.synchronize()
         
     | 
| 
      
 127 
     | 
    
         
            +
                            stream_idx, stream_group = self.adjust_stream_groups()
         
     | 
| 
      
 128 
     | 
    
         
            +
                            prefill_stream = stream_group[0]
         
     | 
| 
      
 129 
     | 
    
         
            +
                            decode_stream = stream_group[1]
         
     | 
| 
      
 130 
     | 
    
         
            +
                            adjust_stream_group = False
         
     | 
| 
      
 131 
     | 
    
         
            +
                            logger.debug(
         
     | 
| 
      
 132 
     | 
    
         
            +
                                f"Adjusting stream groups: {stream_idx}, prefill sm: {self.sm_counts[stream_idx][0]}, decode sm: {self.sm_counts[stream_idx][1]}"
         
     | 
| 
      
 133 
     | 
    
         
            +
                            )
         
     | 
| 
      
 134 
     | 
    
         
            +
             
     | 
| 
      
 135 
     | 
    
         
            +
                        with torch.cuda.stream(decode_stream):
         
     | 
| 
      
 136 
     | 
    
         
            +
                            set_pdmux_status(False)
         
     | 
| 
      
 137 
     | 
    
         
            +
                            # process decode batch
         
     | 
| 
      
 138 
     | 
    
         
            +
                            if self.running_batch and not self.running_batch.is_empty():
         
     | 
| 
      
 139 
     | 
    
         
            +
                                decode_result = self.run_batch(self.running_batch)
         
     | 
| 
      
 140 
     | 
    
         
            +
                                decode_done = True
         
     | 
| 
      
 141 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 142 
     | 
    
         
            +
                                decode_done = False
         
     | 
| 
      
 143 
     | 
    
         
            +
                        with torch.cuda.stream(prefill_stream):
         
     | 
| 
      
 144 
     | 
    
         
            +
                            set_pdmux_status(True)
         
     | 
| 
      
 145 
     | 
    
         
            +
                            if (
         
     | 
| 
      
 146 
     | 
    
         
            +
                                self.split_prefill_batch
         
     | 
| 
      
 147 
     | 
    
         
            +
                                and not self.split_prefill_batch.is_empty()
         
     | 
| 
      
 148 
     | 
    
         
            +
                                and not wait_prefill_kernel_done
         
     | 
| 
      
 149 
     | 
    
         
            +
                            ):
         
     | 
| 
      
 150 
     | 
    
         
            +
                                prefill_done = True
         
     | 
| 
      
 151 
     | 
    
         
            +
                                forward_count = (
         
     | 
| 
      
 152 
     | 
    
         
            +
                                    max(
         
     | 
| 
      
 153 
     | 
    
         
            +
                                        1,
         
     | 
| 
      
 154 
     | 
    
         
            +
                                        self.pdmux_config.split_forward_token_budget
         
     | 
| 
      
 155 
     | 
    
         
            +
                                        // self.split_prefill_batch.extend_num_tokens,
         
     | 
| 
      
 156 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 157 
     | 
    
         
            +
                                    if self.split_prefill_batch.extend_num_tokens > 0
         
     | 
| 
      
 158 
     | 
    
         
            +
                                    else self.model_config.num_hidden_layers
         
     | 
| 
      
 159 
     | 
    
         
            +
                                )
         
     | 
| 
      
 160 
     | 
    
         
            +
                                next_split_index = min(
         
     | 
| 
      
 161 
     | 
    
         
            +
                                    self.split_prefill_batch.split_index + forward_count,
         
     | 
| 
      
 162 
     | 
    
         
            +
                                    self.model_config.num_hidden_layers,
         
     | 
| 
      
 163 
     | 
    
         
            +
                                )
         
     | 
| 
      
 164 
     | 
    
         
            +
                                forward_count = (
         
     | 
| 
      
 165 
     | 
    
         
            +
                                    next_split_index - self.split_prefill_batch.split_index
         
     | 
| 
      
 166 
     | 
    
         
            +
                                )
         
     | 
| 
      
 167 
     | 
    
         
            +
             
     | 
| 
      
 168 
     | 
    
         
            +
                                self.split_prefill_batch.split_forward_count = forward_count
         
     | 
| 
      
 169 
     | 
    
         
            +
                                prefill_result = self.run_batch(self.split_prefill_batch)
         
     | 
| 
      
 170 
     | 
    
         
            +
                                if next_split_index == self.model_config.num_hidden_layers:
         
     | 
| 
      
 171 
     | 
    
         
            +
                                    self.split_prefill_batch.split_prefill_finished = True
         
     | 
| 
      
 172 
     | 
    
         
            +
                                    prefill_exe_done = prefill_stream.record_event()
         
     | 
| 
      
 173 
     | 
    
         
            +
                                self.split_prefill_batch.split_index = next_split_index
         
     | 
| 
      
 174 
     | 
    
         
            +
             
     | 
| 
      
 175 
     | 
    
         
            +
                            elif wait_prefill_kernel_done:
         
     | 
| 
      
 176 
     | 
    
         
            +
                                prefill_done = True
         
     | 
| 
      
 177 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 178 
     | 
    
         
            +
                                prefill_done = False
         
     | 
| 
      
 179 
     | 
    
         
            +
             
     | 
| 
      
 180 
     | 
    
         
            +
                        with torch.cuda.stream(decode_stream):
         
     | 
| 
      
 181 
     | 
    
         
            +
                            set_pdmux_status(False)
         
     | 
| 
      
 182 
     | 
    
         
            +
                            decode_stream.synchronize()
         
     | 
| 
      
 183 
     | 
    
         
            +
                            if decode_done:
         
     | 
| 
      
 184 
     | 
    
         
            +
                                self.process_batch_result(self.running_batch, decode_result)
         
     | 
| 
      
 185 
     | 
    
         
            +
             
     | 
| 
      
 186 
     | 
    
         
            +
                        with torch.cuda.stream(prefill_stream):
         
     | 
| 
      
 187 
     | 
    
         
            +
                            set_pdmux_status(True)
         
     | 
| 
      
 188 
     | 
    
         
            +
                            if prefill_done and self.split_prefill_batch.split_prefill_finished:
         
     | 
| 
      
 189 
     | 
    
         
            +
                                wait_prefill_kernel_done = True
         
     | 
| 
      
 190 
     | 
    
         
            +
                                prefill_exe_done_flag = prefill_exe_done.query()
         
     | 
| 
      
 191 
     | 
    
         
            +
                                flags = (
         
     | 
| 
      
 192 
     | 
    
         
            +
                                    torch.ones(1, device="cpu", dtype=torch.int32)
         
     | 
| 
      
 193 
     | 
    
         
            +
                                    if prefill_exe_done_flag
         
     | 
| 
      
 194 
     | 
    
         
            +
                                    else torch.zeros(1, device="cpu", dtype=torch.int32)
         
     | 
| 
      
 195 
     | 
    
         
            +
                                )
         
     | 
| 
      
 196 
     | 
    
         
            +
             
     | 
| 
      
 197 
     | 
    
         
            +
                                self.tp_cpu_group.allreduce(flags, dist.ReduceOp.SUM).wait()
         
     | 
| 
      
 198 
     | 
    
         
            +
                                if flags.item() == self.tp_size:
         
     | 
| 
      
 199 
     | 
    
         
            +
                                    self.process_batch_result(
         
     | 
| 
      
 200 
     | 
    
         
            +
                                        self.split_prefill_batch, prefill_result
         
     | 
| 
      
 201 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 202 
     | 
    
         
            +
                                    if self.running_batch and not self.running_batch.is_empty():
         
     | 
| 
      
 203 
     | 
    
         
            +
                                        self.running_batch.merge_batch(self.split_prefill_batch)
         
     | 
| 
      
 204 
     | 
    
         
            +
                                    else:
         
     | 
| 
      
 205 
     | 
    
         
            +
                                        self.running_batch = self.split_prefill_batch
         
     | 
| 
      
 206 
     | 
    
         
            +
             
     | 
| 
      
 207 
     | 
    
         
            +
                                    self.split_prefill_batch = None
         
     | 
| 
      
 208 
     | 
    
         
            +
                                    wait_prefill_kernel_done = False
         
     | 
| 
      
 209 
     | 
    
         
            +
                                    adjust_stream_group = True
         
     | 
| 
         @@ -0,0 +1,164 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from dataclasses import dataclass, field
         
     | 
| 
      
 2 
     | 
    
         
            +
            from typing import List
         
     | 
| 
      
 3 
     | 
    
         
            +
             
     | 
| 
      
 4 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 5 
     | 
    
         
            +
            import yaml
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            STREAM_GROUPS = []
         
     | 
| 
      
 8 
     | 
    
         
            +
            SM_COUNTS = []
         
     | 
| 
      
 9 
     | 
    
         
            +
            SM_GROUP_NUM = 8  # Default number of SM groups
         
     | 
| 
      
 10 
     | 
    
         
            +
            CURRENT_STREAM_IDX = 0
         
     | 
| 
      
 11 
     | 
    
         
            +
            CURRENT_STREAM_GROUP = None
         
     | 
| 
      
 12 
     | 
    
         
            +
             
     | 
| 
      
 13 
     | 
    
         
            +
             
     | 
| 
      
 14 
     | 
    
         
            +
            @dataclass
         
     | 
| 
      
 15 
     | 
    
         
            +
            class PDMuxConfig:
         
     | 
| 
      
 16 
     | 
    
         
            +
                sm_group_num: int = 8
         
     | 
| 
      
 17 
     | 
    
         
            +
                manual_divisions: List[List[int]] = field(
         
     | 
| 
      
 18 
     | 
    
         
            +
                    default_factory=list
         
     | 
| 
      
 19 
     | 
    
         
            +
                )  # [prefill_sm, decode_sm, decode_bs_threshold]
         
     | 
| 
      
 20 
     | 
    
         
            +
                split_forward_token_budget: int = 65536
         
     | 
| 
      
 21 
     | 
    
         
            +
                decode_bs_divisor: int = 36
         
     | 
| 
      
 22 
     | 
    
         
            +
             
     | 
| 
      
 23 
     | 
    
         
            +
             
     | 
| 
      
 24 
     | 
    
         
            +
            def load_pdmux_config(config_path: str) -> PDMuxConfig:
         
     | 
| 
      
 25 
     | 
    
         
            +
                """Load pdmux configuration from YAML file into a dataclass."""
         
     | 
| 
      
 26 
     | 
    
         
            +
                if not config_path:
         
     | 
| 
      
 27 
     | 
    
         
            +
                    return PDMuxConfig()
         
     | 
| 
      
 28 
     | 
    
         
            +
             
     | 
| 
      
 29 
     | 
    
         
            +
                with open(config_path, "r") as f:
         
     | 
| 
      
 30 
     | 
    
         
            +
                    raw = yaml.safe_load(f)
         
     | 
| 
      
 31 
     | 
    
         
            +
             
     | 
| 
      
 32 
     | 
    
         
            +
                if "sm_group_num" not in raw:
         
     | 
| 
      
 33 
     | 
    
         
            +
                    raise ValueError("Missing required field: sm_group_num")
         
     | 
| 
      
 34 
     | 
    
         
            +
             
     | 
| 
      
 35 
     | 
    
         
            +
                if raw["sm_group_num"] < 3:
         
     | 
| 
      
 36 
     | 
    
         
            +
                    raise ValueError("sm_group_num must greater than 3")
         
     | 
| 
      
 37 
     | 
    
         
            +
             
     | 
| 
      
 38 
     | 
    
         
            +
                manual_divisions = raw.get("manual_divisions", [])
         
     | 
| 
      
 39 
     | 
    
         
            +
             
     | 
| 
      
 40 
     | 
    
         
            +
                expected = raw["sm_group_num"] - 2
         
     | 
| 
      
 41 
     | 
    
         
            +
                if manual_divisions and len(manual_divisions) != expected:
         
     | 
| 
      
 42 
     | 
    
         
            +
                    raise ValueError(
         
     | 
| 
      
 43 
     | 
    
         
            +
                        f"manual_divisions must have {expected} entries, "
         
     | 
| 
      
 44 
     | 
    
         
            +
                        f"but got {len(manual_divisions)}"
         
     | 
| 
      
 45 
     | 
    
         
            +
                    )
         
     | 
| 
      
 46 
     | 
    
         
            +
             
     | 
| 
      
 47 
     | 
    
         
            +
                return PDMuxConfig(
         
     | 
| 
      
 48 
     | 
    
         
            +
                    sm_group_num=raw["sm_group_num"],
         
     | 
| 
      
 49 
     | 
    
         
            +
                    manual_divisions=manual_divisions,
         
     | 
| 
      
 50 
     | 
    
         
            +
                    split_forward_token_budget=raw.get("split_forward_token_budget", 65536),
         
     | 
| 
      
 51 
     | 
    
         
            +
                    decode_bs_divisor=raw.get("decode_bs_divisor", 36),
         
     | 
| 
      
 52 
     | 
    
         
            +
                )
         
     | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
             
     | 
| 
      
 55 
     | 
    
         
            +
            def get_arch_constraints(compute_capability):
         
     | 
| 
      
 56 
     | 
    
         
            +
                major, minor = compute_capability
         
     | 
| 
      
 57 
     | 
    
         
            +
                # green context constraints for different architectures
         
     | 
| 
      
 58 
     | 
    
         
            +
                if major == 6:
         
     | 
| 
      
 59 
     | 
    
         
            +
                    return 1, 1  # min_per_part, multiple
         
     | 
| 
      
 60 
     | 
    
         
            +
                elif major == 7:
         
     | 
| 
      
 61 
     | 
    
         
            +
                    return 2, 2
         
     | 
| 
      
 62 
     | 
    
         
            +
                elif major == 8:
         
     | 
| 
      
 63 
     | 
    
         
            +
                    return 4, 2
         
     | 
| 
      
 64 
     | 
    
         
            +
                elif major == 9 and minor >= 0:
         
     | 
| 
      
 65 
     | 
    
         
            +
                    return 8, 8
         
     | 
| 
      
 66 
     | 
    
         
            +
                else:
         
     | 
| 
      
 67 
     | 
    
         
            +
                    raise ValueError(f"Unsupported compute capability: {major}.{minor}")
         
     | 
| 
      
 68 
     | 
    
         
            +
             
     | 
| 
      
 69 
     | 
    
         
            +
             
     | 
| 
      
 70 
     | 
    
         
            +
            def divide_sm(total_sms, compute_capability, groups):
         
     | 
| 
      
 71 
     | 
    
         
            +
                """
         
     | 
| 
      
 72 
     | 
    
         
            +
                :param total_sms: total sm count on a single GPU
         
     | 
| 
      
 73 
     | 
    
         
            +
                :param compute_capability: (major, minor)
         
     | 
| 
      
 74 
     | 
    
         
            +
                :return: SM partition group(prefill sm, decode sm)
         
     | 
| 
      
 75 
     | 
    
         
            +
                """
         
     | 
| 
      
 76 
     | 
    
         
            +
                min_per_part, multiple = get_arch_constraints(compute_capability)
         
     | 
| 
      
 77 
     | 
    
         
            +
                possible_values = [
         
     | 
| 
      
 78 
     | 
    
         
            +
                    x
         
     | 
| 
      
 79 
     | 
    
         
            +
                    for x in range(min_per_part, total_sms - min_per_part + 1, multiple)
         
     | 
| 
      
 80 
     | 
    
         
            +
                    if x >= total_sms - x and total_sms - x >= 16
         
     | 
| 
      
 81 
     | 
    
         
            +
                ]
         
     | 
| 
      
 82 
     | 
    
         
            +
                if not possible_values:
         
     | 
| 
      
 83 
     | 
    
         
            +
                    raise ValueError(
         
     | 
| 
      
 84 
     | 
    
         
            +
                        f"No valid partitions found for total SMs {total_sms} "
         
     | 
| 
      
 85 
     | 
    
         
            +
                        f"with constraints (min per part: {min_per_part}, multiple: {multiple})"
         
     | 
| 
      
 86 
     | 
    
         
            +
                    )
         
     | 
| 
      
 87 
     | 
    
         
            +
             
     | 
| 
      
 88 
     | 
    
         
            +
                if len(possible_values) >= groups:
         
     | 
| 
      
 89 
     | 
    
         
            +
                    step = max(1, len(possible_values) // groups)
         
     | 
| 
      
 90 
     | 
    
         
            +
                    selected_values = possible_values[::step][:groups]
         
     | 
| 
      
 91 
     | 
    
         
            +
                else:
         
     | 
| 
      
 92 
     | 
    
         
            +
                    selected_values = possible_values
         
     | 
| 
      
 93 
     | 
    
         
            +
             
     | 
| 
      
 94 
     | 
    
         
            +
                divisions = []
         
     | 
| 
      
 95 
     | 
    
         
            +
                for part1 in selected_values:
         
     | 
| 
      
 96 
     | 
    
         
            +
                    part2 = total_sms - part1
         
     | 
| 
      
 97 
     | 
    
         
            +
                    divisions.append((part1, part2))
         
     | 
| 
      
 98 
     | 
    
         
            +
             
     | 
| 
      
 99 
     | 
    
         
            +
                divisions.reverse()  # Reverse to have larger prefill SM first
         
     | 
| 
      
 100 
     | 
    
         
            +
             
     | 
| 
      
 101 
     | 
    
         
            +
                return divisions
         
     | 
| 
      
 102 
     | 
    
         
            +
             
     | 
| 
      
 103 
     | 
    
         
            +
             
     | 
| 
      
 104 
     | 
    
         
            +
            def initialize_stream_groups(gpu_id: int, config: PDMuxConfig):
         
     | 
| 
      
 105 
     | 
    
         
            +
                from sgl_kernel import spatial
         
     | 
| 
      
 106 
     | 
    
         
            +
             
     | 
| 
      
 107 
     | 
    
         
            +
                global STREAM_GROUPS, SM_COUNTS, SM_GROUP_NUM, CURRENT_STREAM_IDX, CURRENT_STREAM_GROUP
         
     | 
| 
      
 108 
     | 
    
         
            +
                # for pd_multiplexing, Init stream_groups
         
     | 
| 
      
 109 
     | 
    
         
            +
                device = torch.cuda.current_device()
         
     | 
| 
      
 110 
     | 
    
         
            +
                total_sm_count = spatial.get_sm_available(gpu_id)
         
     | 
| 
      
 111 
     | 
    
         
            +
                # (prefill_sm_count, decode_sm_count)
         
     | 
| 
      
 112 
     | 
    
         
            +
                if config.manual_divisions:
         
     | 
| 
      
 113 
     | 
    
         
            +
                    divisions = [
         
     | 
| 
      
 114 
     | 
    
         
            +
                        (prefill_sm, decode_sm)
         
     | 
| 
      
 115 
     | 
    
         
            +
                        for prefill_sm, decode_sm, _ in config.manual_divisions
         
     | 
| 
      
 116 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 117 
     | 
    
         
            +
                else:
         
     | 
| 
      
 118 
     | 
    
         
            +
                    divisions = divide_sm(
         
     | 
| 
      
 119 
     | 
    
         
            +
                        total_sm_count,
         
     | 
| 
      
 120 
     | 
    
         
            +
                        torch.cuda.get_device_capability(device),
         
     | 
| 
      
 121 
     | 
    
         
            +
                        config.sm_group_num - 2,
         
     | 
| 
      
 122 
     | 
    
         
            +
                    )
         
     | 
| 
      
 123 
     | 
    
         
            +
             
     | 
| 
      
 124 
     | 
    
         
            +
                SM_COUNTS = []
         
     | 
| 
      
 125 
     | 
    
         
            +
                SM_COUNTS.append((total_sm_count, 0))  # Normal stream for prefill
         
     | 
| 
      
 126 
     | 
    
         
            +
                SM_COUNTS.extend(divisions)  # Add the divided SM counts
         
     | 
| 
      
 127 
     | 
    
         
            +
                SM_COUNTS.append((0, total_sm_count))  # Normal stream for decode
         
     | 
| 
      
 128 
     | 
    
         
            +
                STREAM_GROUPS = []
         
     | 
| 
      
 129 
     | 
    
         
            +
                STREAM_GROUPS.append(
         
     | 
| 
      
 130 
     | 
    
         
            +
                    (torch.cuda.Stream(gpu_id), torch.cuda.Stream(gpu_id))
         
     | 
| 
      
 131 
     | 
    
         
            +
                )  # Normal stream for prefill
         
     | 
| 
      
 132 
     | 
    
         
            +
                for prefill_sm, decode_sm in divisions:
         
     | 
| 
      
 133 
     | 
    
         
            +
                    STREAM_GROUPS.append(
         
     | 
| 
      
 134 
     | 
    
         
            +
                        (spatial.create_greenctx_stream_by_value(prefill_sm, decode_sm, gpu_id))
         
     | 
| 
      
 135 
     | 
    
         
            +
                    )
         
     | 
| 
      
 136 
     | 
    
         
            +
                STREAM_GROUPS.append(
         
     | 
| 
      
 137 
     | 
    
         
            +
                    (torch.cuda.Stream(gpu_id), torch.cuda.Stream(gpu_id))
         
     | 
| 
      
 138 
     | 
    
         
            +
                )  # Normal stream for decode
         
     | 
| 
      
 139 
     | 
    
         
            +
             
     | 
| 
      
 140 
     | 
    
         
            +
                CURRENT_STREAM_IDX = 0
         
     | 
| 
      
 141 
     | 
    
         
            +
                CURRENT_STREAM_GROUP = STREAM_GROUPS[CURRENT_STREAM_IDX]
         
     | 
| 
      
 142 
     | 
    
         
            +
             
     | 
| 
      
 143 
     | 
    
         
            +
             
     | 
| 
      
 144 
     | 
    
         
            +
            def set_current_stream_idx(idx: int):
         
     | 
| 
      
 145 
     | 
    
         
            +
                global CURRENT_STREAM_IDX, CURRENT_STREAM_GROUP
         
     | 
| 
      
 146 
     | 
    
         
            +
                if idx < 0 or idx >= len(STREAM_GROUPS):
         
     | 
| 
      
 147 
     | 
    
         
            +
                    raise ValueError(f"Invalid stream index: {idx}")
         
     | 
| 
      
 148 
     | 
    
         
            +
                CURRENT_STREAM_IDX = idx
         
     | 
| 
      
 149 
     | 
    
         
            +
                CURRENT_STREAM_GROUP = STREAM_GROUPS[CURRENT_STREAM_IDX]
         
     | 
| 
      
 150 
     | 
    
         
            +
             
     | 
| 
      
 151 
     | 
    
         
            +
             
     | 
| 
      
 152 
     | 
    
         
            +
            def get_stream_groups() -> list[tuple[torch.cuda.Stream, torch.cuda.Stream]]:
         
     | 
| 
      
 153 
     | 
    
         
            +
                """Get the stream groups."""
         
     | 
| 
      
 154 
     | 
    
         
            +
                return STREAM_GROUPS
         
     | 
| 
      
 155 
     | 
    
         
            +
             
     | 
| 
      
 156 
     | 
    
         
            +
             
     | 
| 
      
 157 
     | 
    
         
            +
            def get_sm_counts() -> list[tuple[int, int]]:
         
     | 
| 
      
 158 
     | 
    
         
            +
                """Get the SM counts."""
         
     | 
| 
      
 159 
     | 
    
         
            +
                return SM_COUNTS
         
     | 
| 
      
 160 
     | 
    
         
            +
             
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
            def get_current_stream_idx() -> int:
         
     | 
| 
      
 163 
     | 
    
         
            +
                """Get the current stream index."""
         
     | 
| 
      
 164 
     | 
    
         
            +
                return CURRENT_STREAM_IDX
         
     | 
| 
         @@ -101,6 +101,7 @@ class Conversation: 
     | 
|
| 
       101 
101 
     | 
    
         
             
                stop_token_ids: Optional[int] = None
         
     | 
| 
       102 
102 
     | 
    
         | 
| 
       103 
103 
     | 
    
         
             
                audio_data: Optional[List[str]] = None
         
     | 
| 
      
 104 
     | 
    
         
            +
                image_token_at_prefix: bool = False
         
     | 
| 
       104 
105 
     | 
    
         | 
| 
       105 
106 
     | 
    
         
             
                def get_prompt(self) -> str:
         
     | 
| 
       106 
107 
     | 
    
         
             
                    """Get the prompt for generation."""
         
     | 
| 
         @@ -445,6 +446,7 @@ class Conversation: 
     | 
|
| 
       445 
446 
     | 
    
         
             
                        image_token=self.image_token,
         
     | 
| 
       446 
447 
     | 
    
         
             
                        video_token=self.video_token,
         
     | 
| 
       447 
448 
     | 
    
         
             
                        audio_token=self.audio_token,
         
     | 
| 
      
 449 
     | 
    
         
            +
                        image_token_at_prefix=self.image_token_at_prefix,
         
     | 
| 
       448 
450 
     | 
    
         
             
                    )
         
     | 
| 
       449 
451 
     | 
    
         | 
| 
       450 
452 
     | 
    
         
             
                def dict(self):
         
     | 
| 
         @@ -512,6 +514,7 @@ def generate_embedding_convs( 
     | 
|
| 
       512 
514 
     | 
    
         
             
                        image_token=conv_template.image_token,
         
     | 
| 
       513 
515 
     | 
    
         
             
                        video_token=conv_template.video_token,
         
     | 
| 
       514 
516 
     | 
    
         
             
                        audio_token=conv_template.audio_token,
         
     | 
| 
      
 517 
     | 
    
         
            +
                        image_token_at_prefix=conv_template.image_token_at_prefix,
         
     | 
| 
       515 
518 
     | 
    
         
             
                    )
         
     | 
| 
       516 
519 
     | 
    
         
             
                    real_content = ""
         
     | 
| 
       517 
520 
     | 
    
         | 
| 
         @@ -578,6 +581,7 @@ def generate_chat_conv( 
     | 
|
| 
       578 
581 
     | 
    
         
             
                    image_token=conv.image_token,
         
     | 
| 
       579 
582 
     | 
    
         
             
                    audio_token=conv.audio_token,
         
     | 
| 
       580 
583 
     | 
    
         
             
                    video_token=conv.video_token,
         
     | 
| 
      
 584 
     | 
    
         
            +
                    image_token_at_prefix=conv.image_token_at_prefix,
         
     | 
| 
       581 
585 
     | 
    
         
             
                )
         
     | 
| 
       582 
586 
     | 
    
         | 
| 
       583 
587 
     | 
    
         
             
                if isinstance(request.messages, str):
         
     | 
| 
         @@ -627,7 +631,7 @@ def generate_chat_conv( 
     | 
|
| 
       627 
631 
     | 
    
         
             
                                    real_content += content.text
         
     | 
| 
       628 
632 
     | 
    
         
             
                                elif content.type == "image_url":
         
     | 
| 
       629 
633 
     | 
    
         
             
                                    # NOTE: works for llava and intervl2_5
         
     | 
| 
       630 
     | 
    
         
            -
                                    if conv. 
     | 
| 
      
 634 
     | 
    
         
            +
                                    if conv.image_token_at_prefix:
         
     | 
| 
       631 
635 
     | 
    
         
             
                                        real_content = image_token + real_content
         
     | 
| 
       632 
636 
     | 
    
         
             
                                    else:
         
     | 
| 
       633 
637 
     | 
    
         
             
                                        real_content += image_token
         
     | 
| 
         @@ -820,6 +824,7 @@ register_conv_template( 
     | 
|
| 
       820 
824 
     | 
    
         
             
                    sep="<|im_end|>\n",
         
     | 
| 
       821 
825 
     | 
    
         
             
                    stop_str=["<|im_end|>", "<|action_end|>"],
         
     | 
| 
       822 
826 
     | 
    
         
             
                    image_token="<IMG_CONTEXT>",
         
     | 
| 
      
 827 
     | 
    
         
            +
                    image_token_at_prefix=True,
         
     | 
| 
       823 
828 
     | 
    
         
             
                )
         
     | 
| 
       824 
829 
     | 
    
         
             
            )
         
     | 
| 
       825 
830 
     | 
    
         | 
| 
         @@ -848,6 +853,7 @@ register_conv_template( 
     | 
|
| 
       848 
853 
     | 
    
         
             
                    sep_style=SeparatorStyle.NO_COLON_SINGLE,
         
     | 
| 
       849 
854 
     | 
    
         
             
                    stop_str=["<|end▁of▁sentence|>"],
         
     | 
| 
       850 
855 
     | 
    
         
             
                    image_token="<image>",
         
     | 
| 
      
 856 
     | 
    
         
            +
                    image_token_at_prefix=True,
         
     | 
| 
       851 
857 
     | 
    
         
             
                )
         
     | 
| 
       852 
858 
     | 
    
         
             
            )
         
     | 
| 
       853 
859 
     | 
    
         |