sglang 0.5.4.post1__py3-none-any.whl → 0.5.4.post2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +149 -34
 - sglang/bench_serving.py +18 -3
 - sglang/compile_deep_gemm.py +13 -7
 - sglang/srt/batch_invariant_ops/__init__.py +2 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +120 -0
 - sglang/srt/checkpoint_engine/__init__.py +9 -0
 - sglang/srt/checkpoint_engine/update.py +317 -0
 - sglang/srt/configs/__init__.py +2 -0
 - sglang/srt/configs/deepseek_ocr.py +542 -10
 - sglang/srt/configs/deepseekvl2.py +95 -194
 - sglang/srt/configs/kimi_linear.py +160 -0
 - sglang/srt/configs/mamba_utils.py +66 -0
 - sglang/srt/configs/model_config.py +25 -2
 - sglang/srt/constants.py +7 -0
 - sglang/srt/debug_utils/tensor_dump_forward_hook.py +149 -0
 - sglang/srt/disaggregation/decode.py +34 -6
 - sglang/srt/disaggregation/nixl/conn.py +2 -2
 - sglang/srt/disaggregation/prefill.py +25 -3
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +3 -1
 - sglang/srt/distributed/parallel_state.py +9 -5
 - sglang/srt/entrypoints/engine.py +13 -5
 - sglang/srt/entrypoints/http_server.py +22 -3
 - sglang/srt/entrypoints/openai/protocol.py +7 -1
 - sglang/srt/entrypoints/openai/serving_chat.py +42 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +10 -0
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/environ.py +7 -0
 - sglang/srt/eplb/expert_distribution.py +34 -1
 - sglang/srt/eplb/expert_location.py +106 -36
 - sglang/srt/grpc/compile_proto.py +3 -0
 - sglang/srt/layers/attention/ascend_backend.py +233 -5
 - sglang/srt/layers/attention/attention_registry.py +3 -0
 - sglang/srt/layers/attention/fla/chunk_delta_h.py +61 -32
 - sglang/srt/layers/attention/fla/fused_recurrent.py +17 -4
 - sglang/srt/layers/attention/fla/kda.py +1359 -0
 - sglang/srt/layers/attention/fla/layernorm_gated.py +7 -1
 - sglang/srt/layers/attention/flashattention_backend.py +7 -6
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +3 -1
 - sglang/srt/layers/attention/flashmla_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +223 -0
 - sglang/srt/layers/attention/mamba/mamba.py +20 -11
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +138 -6
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +45 -22
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +44 -12
 - sglang/srt/layers/attention/nsa/transform_index.py +1 -1
 - sglang/srt/layers/attention/nsa_backend.py +157 -23
 - sglang/srt/layers/attention/triton_backend.py +4 -1
 - sglang/srt/layers/attention/trtllm_mha_backend.py +10 -4
 - sglang/srt/layers/attention/trtllm_mla_backend.py +10 -2
 - sglang/srt/layers/communicator.py +23 -1
 - sglang/srt/layers/layernorm.py +16 -2
 - sglang/srt/layers/logits_processor.py +4 -20
 - sglang/srt/layers/moe/ep_moe/layer.py +0 -18
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128]_down.json +164 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +68 -22
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +43 -3
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +106 -26
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +53 -33
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +12 -9
 - sglang/srt/layers/moe/topk.py +31 -6
 - sglang/srt/layers/pooler.py +21 -2
 - sglang/srt/layers/quantization/__init__.py +9 -78
 - sglang/srt/layers/quantization/auto_round.py +394 -0
 - sglang/srt/layers/quantization/fp8_kernel.py +1 -1
 - sglang/srt/layers/quantization/fp8_utils.py +2 -2
 - sglang/srt/layers/quantization/modelopt_quant.py +168 -11
 - sglang/srt/layers/rotary_embedding.py +117 -45
 - sglang/srt/lora/lora_registry.py +9 -0
 - sglang/srt/managers/async_mm_data_processor.py +122 -0
 - sglang/srt/managers/data_parallel_controller.py +30 -3
 - sglang/srt/managers/detokenizer_manager.py +3 -0
 - sglang/srt/managers/io_struct.py +26 -4
 - sglang/srt/managers/multi_tokenizer_mixin.py +5 -0
 - sglang/srt/managers/schedule_batch.py +74 -15
 - sglang/srt/managers/scheduler.py +164 -129
 - sglang/srt/managers/scheduler_output_processor_mixin.py +40 -3
 - sglang/srt/managers/scheduler_pp_mixin.py +7 -2
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +45 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +18 -3
 - sglang/srt/managers/session_controller.py +6 -5
 - sglang/srt/managers/tokenizer_manager.py +154 -59
 - sglang/srt/managers/tp_worker.py +24 -1
 - sglang/srt/mem_cache/base_prefix_cache.py +23 -4
 - sglang/srt/mem_cache/common.py +1 -0
 - sglang/srt/mem_cache/memory_pool.py +171 -57
 - sglang/srt/mem_cache/memory_pool_host.py +12 -5
 - sglang/srt/mem_cache/radix_cache.py +4 -0
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +1 -1
 - sglang/srt/metrics/collector.py +46 -3
 - sglang/srt/model_executor/cuda_graph_runner.py +15 -3
 - sglang/srt/model_executor/forward_batch_info.py +11 -11
 - sglang/srt/model_executor/model_runner.py +76 -21
 - sglang/srt/model_executor/npu_graph_runner.py +7 -3
 - sglang/srt/model_loader/weight_utils.py +1 -1
 - sglang/srt/models/bailing_moe.py +9 -2
 - sglang/srt/models/deepseek_nextn.py +11 -2
 - sglang/srt/models/deepseek_v2.py +149 -34
 - sglang/srt/models/glm4.py +391 -77
 - sglang/srt/models/glm4v.py +196 -55
 - sglang/srt/models/glm4v_moe.py +0 -1
 - sglang/srt/models/gpt_oss.py +1 -10
 - sglang/srt/models/kimi_linear.py +678 -0
 - sglang/srt/models/llama4.py +1 -1
 - sglang/srt/models/llama_eagle3.py +11 -1
 - sglang/srt/models/longcat_flash.py +2 -2
 - sglang/srt/models/minimax_m2.py +1 -1
 - sglang/srt/models/qwen2.py +1 -1
 - sglang/srt/models/qwen2_moe.py +30 -15
 - sglang/srt/models/qwen3.py +1 -1
 - sglang/srt/models/qwen3_moe.py +16 -8
 - sglang/srt/models/qwen3_next.py +7 -0
 - sglang/srt/multimodal/customized_mm_processor_utils.py +35 -0
 - sglang/srt/multiplex/multiplexing_mixin.py +209 -0
 - sglang/srt/multiplex/pdmux_context.py +164 -0
 - sglang/srt/parser/conversation.py +7 -1
 - sglang/srt/sampling/custom_logit_processor.py +67 -1
 - sglang/srt/sampling/penaltylib/frequency_penalty.py +6 -8
 - sglang/srt/sampling/penaltylib/min_new_tokens.py +7 -8
 - sglang/srt/sampling/penaltylib/orchestrator.py +43 -3
 - sglang/srt/sampling/penaltylib/presence_penalty.py +6 -8
 - sglang/srt/server_args.py +103 -22
 - sglang/srt/single_batch_overlap.py +4 -1
 - sglang/srt/speculative/draft_utils.py +16 -0
 - sglang/srt/speculative/eagle_info.py +42 -36
 - sglang/srt/speculative/eagle_info_v2.py +68 -25
 - sglang/srt/speculative/eagle_utils.py +261 -16
 - sglang/srt/speculative/eagle_worker.py +11 -3
 - sglang/srt/speculative/eagle_worker_v2.py +15 -9
 - sglang/srt/speculative/spec_info.py +305 -31
 - sglang/srt/speculative/spec_utils.py +44 -8
 - sglang/srt/tracing/trace.py +121 -12
 - sglang/srt/utils/common.py +55 -32
 - sglang/srt/utils/hf_transformers_utils.py +38 -16
 - sglang/srt/utils/torch_memory_saver_adapter.py +20 -0
 - sglang/test/kits/radix_cache_server_kit.py +50 -0
 - sglang/test/runners.py +31 -7
 - sglang/test/simple_eval_common.py +5 -3
 - sglang/test/simple_eval_humaneval.py +1 -0
 - sglang/test/simple_eval_math.py +1 -0
 - sglang/test/simple_eval_mmlu.py +1 -0
 - sglang/test/simple_eval_mmmu_vlm.py +1 -0
 - sglang/test/test_utils.py +7 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/METADATA +10 -24
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/RECORD +150 -136
 - /sglang/test/{kit_matched_stop.py → kits/matched_stop_kit.py} +0 -0
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/WHEEL +0 -0
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,678 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Adapted from: https://github.com/vllm-project/vllm/blob/0384aa7150c4c9778efca041ffd1beb3ad2bd694/vllm/model_executor/models/kimi_linear.py
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            from collections.abc import Iterable
         
     | 
| 
      
 4 
     | 
    
         
            +
            from typing import Optional
         
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 7 
     | 
    
         
            +
            from einops import rearrange
         
     | 
| 
      
 8 
     | 
    
         
            +
            from torch import nn
         
     | 
| 
      
 9 
     | 
    
         
            +
             
     | 
| 
      
 10 
     | 
    
         
            +
            from sglang.srt.configs.kimi_linear import KimiLinearConfig
         
     | 
| 
      
 11 
     | 
    
         
            +
            from sglang.srt.distributed import (
         
     | 
| 
      
 12 
     | 
    
         
            +
                divide,
         
     | 
| 
      
 13 
     | 
    
         
            +
                get_pp_group,
         
     | 
| 
      
 14 
     | 
    
         
            +
                get_tensor_model_parallel_world_size,
         
     | 
| 
      
 15 
     | 
    
         
            +
                tensor_model_parallel_all_reduce,
         
     | 
| 
      
 16 
     | 
    
         
            +
            )
         
     | 
| 
      
 17 
     | 
    
         
            +
            from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
         
     | 
| 
      
 18 
     | 
    
         
            +
            from sglang.srt.layers.attention.fla.kda import FusedRMSNormGated
         
     | 
| 
      
 19 
     | 
    
         
            +
            from sglang.srt.layers.layernorm import RMSNorm
         
     | 
| 
      
 20 
     | 
    
         
            +
            from sglang.srt.layers.linear import (
         
     | 
| 
      
 21 
     | 
    
         
            +
                ColumnParallelLinear,
         
     | 
| 
      
 22 
     | 
    
         
            +
                ReplicatedLinear,
         
     | 
| 
      
 23 
     | 
    
         
            +
                RowParallelLinear,
         
     | 
| 
      
 24 
     | 
    
         
            +
            )
         
     | 
| 
      
 25 
     | 
    
         
            +
            from sglang.srt.layers.logits_processor import LogitsProcessor
         
     | 
| 
      
 26 
     | 
    
         
            +
            from sglang.srt.layers.moe.ep_moe.layer import get_moe_impl_class
         
     | 
| 
      
 27 
     | 
    
         
            +
            from sglang.srt.layers.moe.fused_moe_triton.layer import FusedMoE
         
     | 
| 
      
 28 
     | 
    
         
            +
            from sglang.srt.layers.moe.topk import TopK, TopKOutputFormat
         
     | 
| 
      
 29 
     | 
    
         
            +
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
      
 30 
     | 
    
         
            +
            from sglang.srt.layers.utils import PPMissingLayer
         
     | 
| 
      
 31 
     | 
    
         
            +
            from sglang.srt.layers.vocab_parallel_embedding import (
         
     | 
| 
      
 32 
     | 
    
         
            +
                ParallelLMHead,
         
     | 
| 
      
 33 
     | 
    
         
            +
                VocabParallelEmbedding,
         
     | 
| 
      
 34 
     | 
    
         
            +
            )
         
     | 
| 
      
 35 
     | 
    
         
            +
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
         
     | 
| 
      
 36 
     | 
    
         
            +
            from sglang.srt.model_loader.weight_utils import (
         
     | 
| 
      
 37 
     | 
    
         
            +
                default_weight_loader,
         
     | 
| 
      
 38 
     | 
    
         
            +
                maybe_remap_kv_scale_name,
         
     | 
| 
      
 39 
     | 
    
         
            +
                sharded_weight_loader,
         
     | 
| 
      
 40 
     | 
    
         
            +
            )
         
     | 
| 
      
 41 
     | 
    
         
            +
            from sglang.srt.models.deepseek_v2 import DeepseekV2AttentionMLA as KimiMLAAttention
         
     | 
| 
      
 42 
     | 
    
         
            +
            from sglang.srt.models.llama import LlamaMLP as KimiMLP
         
     | 
| 
      
 43 
     | 
    
         
            +
            from sglang.srt.models.transformers import maybe_prefix
         
     | 
| 
      
 44 
     | 
    
         
            +
            from sglang.srt.utils import make_layers
         
     | 
| 
      
 45 
     | 
    
         
            +
            from sglang.srt.utils.common import BumpAllocator, add_prefix, set_weight_attrs
         
     | 
| 
      
 46 
     | 
    
         
            +
             
     | 
| 
      
 47 
     | 
    
         
            +
             
     | 
| 
      
 48 
     | 
    
         
            +
            class KimiMoE(nn.Module):
         
     | 
| 
      
 49 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 50 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 51 
     | 
    
         
            +
                    config: KimiLinearConfig,
         
     | 
| 
      
 52 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 53 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 54 
     | 
    
         
            +
                    layer_idx: int = 0,
         
     | 
| 
      
 55 
     | 
    
         
            +
                ):
         
     | 
| 
      
 56 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 57 
     | 
    
         
            +
                    hidden_size = config.hidden_size
         
     | 
| 
      
 58 
     | 
    
         
            +
                    intermediate_size = config.intermediate_size
         
     | 
| 
      
 59 
     | 
    
         
            +
                    moe_intermediate_size = config.moe_intermediate_size
         
     | 
| 
      
 60 
     | 
    
         
            +
                    num_experts = config.num_experts
         
     | 
| 
      
 61 
     | 
    
         
            +
                    moe_renormalize = config.moe_renormalize
         
     | 
| 
      
 62 
     | 
    
         
            +
                    self.tp_size = get_tensor_model_parallel_world_size()
         
     | 
| 
      
 63 
     | 
    
         
            +
                    self.routed_scaling_factor = config.routed_scaling_factor
         
     | 
| 
      
 64 
     | 
    
         
            +
                    self.num_shared_experts = config.num_shared_experts
         
     | 
| 
      
 65 
     | 
    
         
            +
                    self.layer_idx = layer_idx
         
     | 
| 
      
 66 
     | 
    
         
            +
             
     | 
| 
      
 67 
     | 
    
         
            +
                    if config.hidden_act != "silu":
         
     | 
| 
      
 68 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 69 
     | 
    
         
            +
                            f"Unsupported activation: {config.hidden_act}. "
         
     | 
| 
      
 70 
     | 
    
         
            +
                            "Only silu is supported for now."
         
     | 
| 
      
 71 
     | 
    
         
            +
                        )
         
     | 
| 
      
 72 
     | 
    
         
            +
             
     | 
| 
      
 73 
     | 
    
         
            +
                    # Gate always runs at half / full precision for now.
         
     | 
| 
      
 74 
     | 
    
         
            +
                    self.gate = ReplicatedLinear(
         
     | 
| 
      
 75 
     | 
    
         
            +
                        hidden_size,
         
     | 
| 
      
 76 
     | 
    
         
            +
                        num_experts,
         
     | 
| 
      
 77 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 78 
     | 
    
         
            +
                        quant_config=None,
         
     | 
| 
      
 79 
     | 
    
         
            +
                        prefix=f"{prefix}.gate",
         
     | 
| 
      
 80 
     | 
    
         
            +
                    )
         
     | 
| 
      
 81 
     | 
    
         
            +
             
     | 
| 
      
 82 
     | 
    
         
            +
                    self.gate.e_score_correction_bias = nn.Parameter(torch.empty(num_experts))
         
     | 
| 
      
 83 
     | 
    
         
            +
             
     | 
| 
      
 84 
     | 
    
         
            +
                    self.experts = get_moe_impl_class(quant_config)(
         
     | 
| 
      
 85 
     | 
    
         
            +
                        num_experts=config.n_routed_experts,
         
     | 
| 
      
 86 
     | 
    
         
            +
                        top_k=config.num_experts_per_token,
         
     | 
| 
      
 87 
     | 
    
         
            +
                        hidden_size=config.hidden_size,
         
     | 
| 
      
 88 
     | 
    
         
            +
                        intermediate_size=config.moe_intermediate_size,
         
     | 
| 
      
 89 
     | 
    
         
            +
                        layer_id=self.layer_idx,
         
     | 
| 
      
 90 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 91 
     | 
    
         
            +
                        routed_scaling_factor=self.routed_scaling_factor,
         
     | 
| 
      
 92 
     | 
    
         
            +
                        prefix=add_prefix("experts", prefix),
         
     | 
| 
      
 93 
     | 
    
         
            +
                    )
         
     | 
| 
      
 94 
     | 
    
         
            +
             
     | 
| 
      
 95 
     | 
    
         
            +
                    self.topk = TopK(
         
     | 
| 
      
 96 
     | 
    
         
            +
                        top_k=config.num_experts_per_token,
         
     | 
| 
      
 97 
     | 
    
         
            +
                        renormalize=moe_renormalize,
         
     | 
| 
      
 98 
     | 
    
         
            +
                        use_grouped_topk=True,
         
     | 
| 
      
 99 
     | 
    
         
            +
                        num_expert_group=config.num_expert_group,
         
     | 
| 
      
 100 
     | 
    
         
            +
                        topk_group=config.topk_group,
         
     | 
| 
      
 101 
     | 
    
         
            +
                        correction_bias=self.gate.e_score_correction_bias,
         
     | 
| 
      
 102 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 103 
     | 
    
         
            +
                        routed_scaling_factor=self.routed_scaling_factor,
         
     | 
| 
      
 104 
     | 
    
         
            +
                        apply_routed_scaling_factor_on_output=self.experts.should_fuse_routed_scaling_factor_in_topk,
         
     | 
| 
      
 105 
     | 
    
         
            +
                        # Some Fp4 MoE backends require the output format to be bypassed but the MTP layers are unquantized
         
     | 
| 
      
 106 
     | 
    
         
            +
                        # and requires the output format to be standard. We use quant_config to determine the output format.
         
     | 
| 
      
 107 
     | 
    
         
            +
                        output_format=TopKOutputFormat.STANDARD if quant_config is None else None,
         
     | 
| 
      
 108 
     | 
    
         
            +
                    )
         
     | 
| 
      
 109 
     | 
    
         
            +
             
     | 
| 
      
 110 
     | 
    
         
            +
                    if self.num_shared_experts is not None:
         
     | 
| 
      
 111 
     | 
    
         
            +
                        intermediate_size = moe_intermediate_size * self.num_shared_experts
         
     | 
| 
      
 112 
     | 
    
         
            +
                        self.shared_experts = KimiMLP(
         
     | 
| 
      
 113 
     | 
    
         
            +
                            hidden_size=config.hidden_size,
         
     | 
| 
      
 114 
     | 
    
         
            +
                            intermediate_size=intermediate_size,
         
     | 
| 
      
 115 
     | 
    
         
            +
                            hidden_act=config.hidden_act,
         
     | 
| 
      
 116 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 117 
     | 
    
         
            +
                            reduce_results=False,
         
     | 
| 
      
 118 
     | 
    
         
            +
                        )
         
     | 
| 
      
 119 
     | 
    
         
            +
             
     | 
| 
      
 120 
     | 
    
         
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         
     | 
| 
      
 121 
     | 
    
         
            +
                    num_tokens, hidden_size = hidden_states.shape
         
     | 
| 
      
 122 
     | 
    
         
            +
                    hidden_states = hidden_states.view(-1, hidden_size)
         
     | 
| 
      
 123 
     | 
    
         
            +
                    if self.num_shared_experts is not None:
         
     | 
| 
      
 124 
     | 
    
         
            +
                        shared_output = self.shared_experts(hidden_states)
         
     | 
| 
      
 125 
     | 
    
         
            +
                    router_logits, _ = self.gate(hidden_states)
         
     | 
| 
      
 126 
     | 
    
         
            +
                    topk_output = self.topk(hidden_states, router_logits)
         
     | 
| 
      
 127 
     | 
    
         
            +
                    final_hidden_states = self.experts(hidden_states, topk_output)
         
     | 
| 
      
 128 
     | 
    
         
            +
             
     | 
| 
      
 129 
     | 
    
         
            +
                    if shared_output is not None:
         
     | 
| 
      
 130 
     | 
    
         
            +
                        final_hidden_states = final_hidden_states + shared_output
         
     | 
| 
      
 131 
     | 
    
         
            +
             
     | 
| 
      
 132 
     | 
    
         
            +
                    if self.tp_size > 1:
         
     | 
| 
      
 133 
     | 
    
         
            +
                        final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
         
     | 
| 
      
 134 
     | 
    
         
            +
                    return final_hidden_states.view(num_tokens, hidden_size)
         
     | 
| 
      
 135 
     | 
    
         
            +
             
     | 
| 
      
 136 
     | 
    
         
            +
             
     | 
| 
      
 137 
     | 
    
         
            +
            class KimiDeltaAttention(nn.Module):
         
     | 
| 
      
 138 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 139 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 140 
     | 
    
         
            +
                    layer_idx: int,
         
     | 
| 
      
 141 
     | 
    
         
            +
                    hidden_size: int,
         
     | 
| 
      
 142 
     | 
    
         
            +
                    config: KimiLinearConfig,
         
     | 
| 
      
 143 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 144 
     | 
    
         
            +
                    rms_norm_eps: float = 1e-5,
         
     | 
| 
      
 145 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 146 
     | 
    
         
            +
                    **kwargs,
         
     | 
| 
      
 147 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 148 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 149 
     | 
    
         
            +
                    self.tp_size = get_tensor_model_parallel_world_size()
         
     | 
| 
      
 150 
     | 
    
         
            +
                    self.hidden_size = hidden_size
         
     | 
| 
      
 151 
     | 
    
         
            +
                    self.config = config
         
     | 
| 
      
 152 
     | 
    
         
            +
                    self.head_dim = config.linear_attn_config["head_dim"]
         
     | 
| 
      
 153 
     | 
    
         
            +
                    self.num_heads = config.linear_attn_config["num_heads"]
         
     | 
| 
      
 154 
     | 
    
         
            +
                    self.layer_idx = layer_idx
         
     | 
| 
      
 155 
     | 
    
         
            +
                    self.prefix = prefix
         
     | 
| 
      
 156 
     | 
    
         
            +
                    assert self.num_heads % self.tp_size == 0
         
     | 
| 
      
 157 
     | 
    
         
            +
                    self.local_num_heads = divide(self.num_heads, self.tp_size)
         
     | 
| 
      
 158 
     | 
    
         
            +
             
     | 
| 
      
 159 
     | 
    
         
            +
                    projection_size = self.head_dim * self.num_heads
         
     | 
| 
      
 160 
     | 
    
         
            +
                    self.conv_size = config.linear_attn_config["short_conv_kernel_size"]
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
                    self.q_proj = ColumnParallelLinear(
         
     | 
| 
      
 163 
     | 
    
         
            +
                        self.hidden_size,
         
     | 
| 
      
 164 
     | 
    
         
            +
                        projection_size,
         
     | 
| 
      
 165 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 166 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 167 
     | 
    
         
            +
                        prefix=f"{prefix}.q_proj",
         
     | 
| 
      
 168 
     | 
    
         
            +
                    )
         
     | 
| 
      
 169 
     | 
    
         
            +
                    self.k_proj = ColumnParallelLinear(
         
     | 
| 
      
 170 
     | 
    
         
            +
                        self.hidden_size,
         
     | 
| 
      
 171 
     | 
    
         
            +
                        projection_size,
         
     | 
| 
      
 172 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 173 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 174 
     | 
    
         
            +
                        prefix=f"{prefix}.k_proj",
         
     | 
| 
      
 175 
     | 
    
         
            +
                    )
         
     | 
| 
      
 176 
     | 
    
         
            +
                    self.v_proj = ColumnParallelLinear(
         
     | 
| 
      
 177 
     | 
    
         
            +
                        self.hidden_size,
         
     | 
| 
      
 178 
     | 
    
         
            +
                        projection_size,
         
     | 
| 
      
 179 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 180 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 181 
     | 
    
         
            +
                        prefix=f"{prefix}.v_proj",
         
     | 
| 
      
 182 
     | 
    
         
            +
                    )
         
     | 
| 
      
 183 
     | 
    
         
            +
             
     | 
| 
      
 184 
     | 
    
         
            +
                    self.f_a_proj = ReplicatedLinear(
         
     | 
| 
      
 185 
     | 
    
         
            +
                        self.hidden_size,
         
     | 
| 
      
 186 
     | 
    
         
            +
                        self.head_dim,
         
     | 
| 
      
 187 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 188 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 189 
     | 
    
         
            +
                        prefix=f"{prefix}.f_a_proj",
         
     | 
| 
      
 190 
     | 
    
         
            +
                    )
         
     | 
| 
      
 191 
     | 
    
         
            +
             
     | 
| 
      
 192 
     | 
    
         
            +
                    self.f_b_proj = ColumnParallelLinear(
         
     | 
| 
      
 193 
     | 
    
         
            +
                        self.head_dim,
         
     | 
| 
      
 194 
     | 
    
         
            +
                        projection_size,
         
     | 
| 
      
 195 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 196 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 197 
     | 
    
         
            +
                        prefix=f"{prefix}.f_b_proj",
         
     | 
| 
      
 198 
     | 
    
         
            +
                    )
         
     | 
| 
      
 199 
     | 
    
         
            +
                    self.dt_bias = nn.Parameter(
         
     | 
| 
      
 200 
     | 
    
         
            +
                        torch.empty(divide(projection_size, self.tp_size), dtype=torch.float32)
         
     | 
| 
      
 201 
     | 
    
         
            +
                    )
         
     | 
| 
      
 202 
     | 
    
         
            +
             
     | 
| 
      
 203 
     | 
    
         
            +
                    set_weight_attrs(self.dt_bias, {"weight_loader": sharded_weight_loader(0)})
         
     | 
| 
      
 204 
     | 
    
         
            +
             
     | 
| 
      
 205 
     | 
    
         
            +
                    self.b_proj = ColumnParallelLinear(
         
     | 
| 
      
 206 
     | 
    
         
            +
                        self.hidden_size,
         
     | 
| 
      
 207 
     | 
    
         
            +
                        self.num_heads,
         
     | 
| 
      
 208 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 209 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 210 
     | 
    
         
            +
                        prefix=f"{prefix}.b_proj",
         
     | 
| 
      
 211 
     | 
    
         
            +
                    )
         
     | 
| 
      
 212 
     | 
    
         
            +
             
     | 
| 
      
 213 
     | 
    
         
            +
                    self.q_conv1d = ColumnParallelLinear(
         
     | 
| 
      
 214 
     | 
    
         
            +
                        input_size=self.conv_size,
         
     | 
| 
      
 215 
     | 
    
         
            +
                        output_size=projection_size,
         
     | 
| 
      
 216 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 217 
     | 
    
         
            +
                        params_dtype=torch.float32,
         
     | 
| 
      
 218 
     | 
    
         
            +
                        prefix=f"{prefix}.q_conv1d",
         
     | 
| 
      
 219 
     | 
    
         
            +
                    )
         
     | 
| 
      
 220 
     | 
    
         
            +
                    self.k_conv1d = ColumnParallelLinear(
         
     | 
| 
      
 221 
     | 
    
         
            +
                        input_size=self.conv_size,
         
     | 
| 
      
 222 
     | 
    
         
            +
                        output_size=projection_size,
         
     | 
| 
      
 223 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 224 
     | 
    
         
            +
                        params_dtype=torch.float32,
         
     | 
| 
      
 225 
     | 
    
         
            +
                        prefix=f"{prefix}.k_conv1d",
         
     | 
| 
      
 226 
     | 
    
         
            +
                    )
         
     | 
| 
      
 227 
     | 
    
         
            +
                    self.v_conv1d = ColumnParallelLinear(
         
     | 
| 
      
 228 
     | 
    
         
            +
                        input_size=self.conv_size,
         
     | 
| 
      
 229 
     | 
    
         
            +
                        output_size=projection_size,
         
     | 
| 
      
 230 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 231 
     | 
    
         
            +
                        params_dtype=torch.float32,
         
     | 
| 
      
 232 
     | 
    
         
            +
                        prefix=f"{prefix}.v_conv1d",
         
     | 
| 
      
 233 
     | 
    
         
            +
                    )
         
     | 
| 
      
 234 
     | 
    
         
            +
                    # unsqueeze to fit conv1d weights shape into the linear weights shape.
         
     | 
| 
      
 235 
     | 
    
         
            +
                    # Can't do this in `weight_loader` since it already exists in
         
     | 
| 
      
 236 
     | 
    
         
            +
                    # `ColumnParallelLinear` and `set_weight_attrs`
         
     | 
| 
      
 237 
     | 
    
         
            +
                    # doesn't allow to override it
         
     | 
| 
      
 238 
     | 
    
         
            +
                    self.q_conv1d.weight.data = self.q_conv1d.weight.data.unsqueeze(1)
         
     | 
| 
      
 239 
     | 
    
         
            +
                    self.k_conv1d.weight.data = self.k_conv1d.weight.data.unsqueeze(1)
         
     | 
| 
      
 240 
     | 
    
         
            +
                    self.v_conv1d.weight.data = self.v_conv1d.weight.data.unsqueeze(1)
         
     | 
| 
      
 241 
     | 
    
         
            +
             
     | 
| 
      
 242 
     | 
    
         
            +
                    self.A_log = nn.Parameter(
         
     | 
| 
      
 243 
     | 
    
         
            +
                        torch.empty(1, 1, self.local_num_heads, 1, dtype=torch.float32)
         
     | 
| 
      
 244 
     | 
    
         
            +
                    )
         
     | 
| 
      
 245 
     | 
    
         
            +
                    set_weight_attrs(self.A_log, {"weight_loader": sharded_weight_loader(2)})
         
     | 
| 
      
 246 
     | 
    
         
            +
             
     | 
| 
      
 247 
     | 
    
         
            +
                    self.g_a_proj = ReplicatedLinear(
         
     | 
| 
      
 248 
     | 
    
         
            +
                        self.hidden_size,
         
     | 
| 
      
 249 
     | 
    
         
            +
                        self.head_dim,
         
     | 
| 
      
 250 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 251 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 252 
     | 
    
         
            +
                        prefix=f"{prefix}.g_a_proj",
         
     | 
| 
      
 253 
     | 
    
         
            +
                    )
         
     | 
| 
      
 254 
     | 
    
         
            +
                    self.g_b_proj = ColumnParallelLinear(
         
     | 
| 
      
 255 
     | 
    
         
            +
                        self.head_dim,
         
     | 
| 
      
 256 
     | 
    
         
            +
                        projection_size,
         
     | 
| 
      
 257 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 258 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 259 
     | 
    
         
            +
                        prefix=f"{prefix}.g_b_proj",
         
     | 
| 
      
 260 
     | 
    
         
            +
                    )
         
     | 
| 
      
 261 
     | 
    
         
            +
                    self.o_norm = FusedRMSNormGated(
         
     | 
| 
      
 262 
     | 
    
         
            +
                        self.head_dim, eps=rms_norm_eps, activation="sigmoid"
         
     | 
| 
      
 263 
     | 
    
         
            +
                    )
         
     | 
| 
      
 264 
     | 
    
         
            +
                    self.o_proj = RowParallelLinear(
         
     | 
| 
      
 265 
     | 
    
         
            +
                        projection_size,
         
     | 
| 
      
 266 
     | 
    
         
            +
                        self.hidden_size,
         
     | 
| 
      
 267 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 268 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 269 
     | 
    
         
            +
                        prefix=f"{prefix}.o_proj",
         
     | 
| 
      
 270 
     | 
    
         
            +
                    )
         
     | 
| 
      
 271 
     | 
    
         
            +
             
     | 
| 
      
 272 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 273 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 274 
     | 
    
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 
      
 275 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 276 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 277 
     | 
    
         
            +
                    zero_allocator: BumpAllocator,
         
     | 
| 
      
 278 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 279 
     | 
    
         
            +
                    q_proj_states = self.q_proj(hidden_states)[0]
         
     | 
| 
      
 280 
     | 
    
         
            +
                    k_proj_states = self.k_proj(hidden_states)[0]
         
     | 
| 
      
 281 
     | 
    
         
            +
                    v_proj_states = self.v_proj(hidden_states)[0]
         
     | 
| 
      
 282 
     | 
    
         
            +
             
     | 
| 
      
 283 
     | 
    
         
            +
                    q_conv_weights = self.q_conv1d.weight.view(
         
     | 
| 
      
 284 
     | 
    
         
            +
                        self.q_conv1d.weight.size(0), self.q_conv1d.weight.size(2)
         
     | 
| 
      
 285 
     | 
    
         
            +
                    )
         
     | 
| 
      
 286 
     | 
    
         
            +
                    k_conv_weights = self.k_conv1d.weight.view(
         
     | 
| 
      
 287 
     | 
    
         
            +
                        self.k_conv1d.weight.size(0), self.k_conv1d.weight.size(2)
         
     | 
| 
      
 288 
     | 
    
         
            +
                    )
         
     | 
| 
      
 289 
     | 
    
         
            +
                    v_conv_weights = self.v_conv1d.weight.view(
         
     | 
| 
      
 290 
     | 
    
         
            +
                        self.v_conv1d.weight.size(0), self.v_conv1d.weight.size(2)
         
     | 
| 
      
 291 
     | 
    
         
            +
                    )
         
     | 
| 
      
 292 
     | 
    
         
            +
             
     | 
| 
      
 293 
     | 
    
         
            +
                    kwargs = {
         
     | 
| 
      
 294 
     | 
    
         
            +
                        "q_proj_states": q_proj_states,
         
     | 
| 
      
 295 
     | 
    
         
            +
                        "k_proj_states": k_proj_states,
         
     | 
| 
      
 296 
     | 
    
         
            +
                        "v_proj_states": v_proj_states,
         
     | 
| 
      
 297 
     | 
    
         
            +
                        "q_conv_weights": q_conv_weights,
         
     | 
| 
      
 298 
     | 
    
         
            +
                        "k_conv_weights": k_conv_weights,
         
     | 
| 
      
 299 
     | 
    
         
            +
                        "v_conv_weights": v_conv_weights,
         
     | 
| 
      
 300 
     | 
    
         
            +
                        "q_conv_bias": self.q_conv1d.bias,
         
     | 
| 
      
 301 
     | 
    
         
            +
                        "k_conv_bias": self.k_conv1d.bias,
         
     | 
| 
      
 302 
     | 
    
         
            +
                        "v_conv_bias": self.v_conv1d.bias,
         
     | 
| 
      
 303 
     | 
    
         
            +
                        "dt_bias": self.dt_bias,
         
     | 
| 
      
 304 
     | 
    
         
            +
                        "b_proj": self.b_proj,
         
     | 
| 
      
 305 
     | 
    
         
            +
                        "f_a_proj": self.f_a_proj,
         
     | 
| 
      
 306 
     | 
    
         
            +
                        "f_b_proj": self.f_b_proj,
         
     | 
| 
      
 307 
     | 
    
         
            +
                        "A_log": self.A_log,
         
     | 
| 
      
 308 
     | 
    
         
            +
                        "head_dim": self.head_dim,
         
     | 
| 
      
 309 
     | 
    
         
            +
                        "hidden_states": hidden_states,
         
     | 
| 
      
 310 
     | 
    
         
            +
                        "layer_id": self.layer_idx,
         
     | 
| 
      
 311 
     | 
    
         
            +
                    }
         
     | 
| 
      
 312 
     | 
    
         
            +
             
     | 
| 
      
 313 
     | 
    
         
            +
                    core_attn_out = forward_batch.attn_backend.forward(
         
     | 
| 
      
 314 
     | 
    
         
            +
                        q=None,
         
     | 
| 
      
 315 
     | 
    
         
            +
                        k=None,
         
     | 
| 
      
 316 
     | 
    
         
            +
                        v=None,
         
     | 
| 
      
 317 
     | 
    
         
            +
                        layer=None,
         
     | 
| 
      
 318 
     | 
    
         
            +
                        forward_batch=forward_batch,
         
     | 
| 
      
 319 
     | 
    
         
            +
                        **kwargs,
         
     | 
| 
      
 320 
     | 
    
         
            +
                    )
         
     | 
| 
      
 321 
     | 
    
         
            +
             
     | 
| 
      
 322 
     | 
    
         
            +
                    g_proj_states = self.g_b_proj(self.g_a_proj(hidden_states)[0])[0]
         
     | 
| 
      
 323 
     | 
    
         
            +
                    g = rearrange(g_proj_states, "... (h d) -> ... h d", d=self.head_dim)
         
     | 
| 
      
 324 
     | 
    
         
            +
                    core_attn_out = self.o_norm(core_attn_out, g)
         
     | 
| 
      
 325 
     | 
    
         
            +
                    core_attn_out = rearrange(core_attn_out, "1 n h d -> n (h d)")
         
     | 
| 
      
 326 
     | 
    
         
            +
             
     | 
| 
      
 327 
     | 
    
         
            +
                    return self.o_proj(core_attn_out)[0]
         
     | 
| 
      
 328 
     | 
    
         
            +
             
     | 
| 
      
 329 
     | 
    
         
            +
             
     | 
| 
      
 330 
     | 
    
         
            +
            class KimiDecoderLayer(nn.Module):
         
     | 
| 
      
 331 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 332 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 333 
     | 
    
         
            +
                    config: KimiLinearConfig,
         
     | 
| 
      
 334 
     | 
    
         
            +
                    layer_idx: int,
         
     | 
| 
      
 335 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 336 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 337 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 338 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 339 
     | 
    
         
            +
                    self.hidden_size = config.hidden_size
         
     | 
| 
      
 340 
     | 
    
         
            +
             
     | 
| 
      
 341 
     | 
    
         
            +
                    self.is_moe = config.is_moe
         
     | 
| 
      
 342 
     | 
    
         
            +
             
     | 
| 
      
 343 
     | 
    
         
            +
                    if config.is_kda_layer(layer_idx):
         
     | 
| 
      
 344 
     | 
    
         
            +
                        self.self_attn = KimiDeltaAttention(
         
     | 
| 
      
 345 
     | 
    
         
            +
                            layer_idx=layer_idx,
         
     | 
| 
      
 346 
     | 
    
         
            +
                            hidden_size=config.hidden_size,
         
     | 
| 
      
 347 
     | 
    
         
            +
                            config=config,
         
     | 
| 
      
 348 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 349 
     | 
    
         
            +
                            prefix=f"{prefix}.self_attn",
         
     | 
| 
      
 350 
     | 
    
         
            +
                        )
         
     | 
| 
      
 351 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 352 
     | 
    
         
            +
                        self.self_attn = KimiMLAAttention(
         
     | 
| 
      
 353 
     | 
    
         
            +
                            layer_id=layer_idx,
         
     | 
| 
      
 354 
     | 
    
         
            +
                            hidden_size=self.hidden_size,
         
     | 
| 
      
 355 
     | 
    
         
            +
                            num_heads=config.num_attention_heads,
         
     | 
| 
      
 356 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 357 
     | 
    
         
            +
                            prefix=f"{prefix}.self_attn",
         
     | 
| 
      
 358 
     | 
    
         
            +
                            config=config,
         
     | 
| 
      
 359 
     | 
    
         
            +
                            qk_nope_head_dim=config.qk_nope_head_dim,
         
     | 
| 
      
 360 
     | 
    
         
            +
                            qk_rope_head_dim=config.qk_rope_head_dim,
         
     | 
| 
      
 361 
     | 
    
         
            +
                            v_head_dim=config.v_head_dim,
         
     | 
| 
      
 362 
     | 
    
         
            +
                            q_lora_rank=config.q_lora_rank,
         
     | 
| 
      
 363 
     | 
    
         
            +
                            kv_lora_rank=config.kv_lora_rank,
         
     | 
| 
      
 364 
     | 
    
         
            +
                            skip_rope=True,
         
     | 
| 
      
 365 
     | 
    
         
            +
                        )
         
     | 
| 
      
 366 
     | 
    
         
            +
             
     | 
| 
      
 367 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 368 
     | 
    
         
            +
                        self.is_moe
         
     | 
| 
      
 369 
     | 
    
         
            +
                        and config.num_experts is not None
         
     | 
| 
      
 370 
     | 
    
         
            +
                        and layer_idx >= config.first_k_dense_replace
         
     | 
| 
      
 371 
     | 
    
         
            +
                        and layer_idx % config.moe_layer_freq == 0
         
     | 
| 
      
 372 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 373 
     | 
    
         
            +
                        self.block_sparse_moe = KimiMoE(
         
     | 
| 
      
 374 
     | 
    
         
            +
                            config=config,
         
     | 
| 
      
 375 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 376 
     | 
    
         
            +
                            layer_idx=layer_idx,
         
     | 
| 
      
 377 
     | 
    
         
            +
                            prefix=f"{prefix}.mlp",
         
     | 
| 
      
 378 
     | 
    
         
            +
                        )
         
     | 
| 
      
 379 
     | 
    
         
            +
                        self.mlp = self.block_sparse_moe
         
     | 
| 
      
 380 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 381 
     | 
    
         
            +
                        self.mlp = KimiMLP(
         
     | 
| 
      
 382 
     | 
    
         
            +
                            hidden_size=self.hidden_size,
         
     | 
| 
      
 383 
     | 
    
         
            +
                            intermediate_size=config.intermediate_size,
         
     | 
| 
      
 384 
     | 
    
         
            +
                            hidden_act=config.hidden_act,
         
     | 
| 
      
 385 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 386 
     | 
    
         
            +
                            prefix=f"{prefix}.mlp",
         
     | 
| 
      
 387 
     | 
    
         
            +
                        )
         
     | 
| 
      
 388 
     | 
    
         
            +
                    self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         
     | 
| 
      
 389 
     | 
    
         
            +
                    self.post_attention_layernorm = RMSNorm(
         
     | 
| 
      
 390 
     | 
    
         
            +
                        config.hidden_size, eps=config.rms_norm_eps
         
     | 
| 
      
 391 
     | 
    
         
            +
                    )
         
     | 
| 
      
 392 
     | 
    
         
            +
             
     | 
| 
      
 393 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 394 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 395 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 396 
     | 
    
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 
      
 397 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 398 
     | 
    
         
            +
                    residual: Optional[torch.Tensor],
         
     | 
| 
      
 399 
     | 
    
         
            +
                    zero_allocator: BumpAllocator,
         
     | 
| 
      
 400 
     | 
    
         
            +
                ) -> tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
      
 401 
     | 
    
         
            +
                    # Self Attention
         
     | 
| 
      
 402 
     | 
    
         
            +
                    if residual is None:
         
     | 
| 
      
 403 
     | 
    
         
            +
                        residual = hidden_states
         
     | 
| 
      
 404 
     | 
    
         
            +
                        hidden_states = self.input_layernorm(hidden_states)
         
     | 
| 
      
 405 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 406 
     | 
    
         
            +
                        hidden_states, residual = self.input_layernorm(hidden_states, residual)
         
     | 
| 
      
 407 
     | 
    
         
            +
             
     | 
| 
      
 408 
     | 
    
         
            +
                    hidden_states = self.self_attn(
         
     | 
| 
      
 409 
     | 
    
         
            +
                        hidden_states=hidden_states,
         
     | 
| 
      
 410 
     | 
    
         
            +
                        positions=positions,
         
     | 
| 
      
 411 
     | 
    
         
            +
                        forward_batch=forward_batch,
         
     | 
| 
      
 412 
     | 
    
         
            +
                        zero_allocator=zero_allocator,
         
     | 
| 
      
 413 
     | 
    
         
            +
                    )
         
     | 
| 
      
 414 
     | 
    
         
            +
             
     | 
| 
      
 415 
     | 
    
         
            +
                    # Fully Connected
         
     | 
| 
      
 416 
     | 
    
         
            +
                    hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
         
     | 
| 
      
 417 
     | 
    
         
            +
                    hidden_states = self.mlp(hidden_states)
         
     | 
| 
      
 418 
     | 
    
         
            +
                    return hidden_states, residual
         
     | 
| 
      
 419 
     | 
    
         
            +
             
     | 
| 
      
 420 
     | 
    
         
            +
             
     | 
| 
      
 421 
     | 
    
         
            +
            class KimiLinearModel(nn.Module):
         
     | 
| 
      
 422 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 423 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 424 
     | 
    
         
            +
                    config: KimiLinearConfig,
         
     | 
| 
      
 425 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 426 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 427 
     | 
    
         
            +
                ):
         
     | 
| 
      
 428 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 429 
     | 
    
         
            +
             
     | 
| 
      
 430 
     | 
    
         
            +
                    self.config = config
         
     | 
| 
      
 431 
     | 
    
         
            +
             
     | 
| 
      
 432 
     | 
    
         
            +
                    self.padding_idx = config.pad_token_id
         
     | 
| 
      
 433 
     | 
    
         
            +
                    self.vocab_size = config.vocab_size
         
     | 
| 
      
 434 
     | 
    
         
            +
                    self.pp_group = get_pp_group()
         
     | 
| 
      
 435 
     | 
    
         
            +
             
     | 
| 
      
 436 
     | 
    
         
            +
                    if self.pp_group.is_first_rank:
         
     | 
| 
      
 437 
     | 
    
         
            +
                        self.embed_tokens = VocabParallelEmbedding(
         
     | 
| 
      
 438 
     | 
    
         
            +
                            config.vocab_size,
         
     | 
| 
      
 439 
     | 
    
         
            +
                            config.hidden_size,
         
     | 
| 
      
 440 
     | 
    
         
            +
                            prefix=f"{prefix}.embed_tokens",
         
     | 
| 
      
 441 
     | 
    
         
            +
                        )
         
     | 
| 
      
 442 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 443 
     | 
    
         
            +
                        self.embed_tokens = PPMissingLayer()
         
     | 
| 
      
 444 
     | 
    
         
            +
             
     | 
| 
      
 445 
     | 
    
         
            +
                    self.layers, self.start_layer, self.end_layer = make_layers(
         
     | 
| 
      
 446 
     | 
    
         
            +
                        config.num_hidden_layers,
         
     | 
| 
      
 447 
     | 
    
         
            +
                        lambda idx, prefix: KimiDecoderLayer(
         
     | 
| 
      
 448 
     | 
    
         
            +
                            layer_idx=idx,
         
     | 
| 
      
 449 
     | 
    
         
            +
                            config=config,
         
     | 
| 
      
 450 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 451 
     | 
    
         
            +
                            prefix=prefix,
         
     | 
| 
      
 452 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 453 
     | 
    
         
            +
                        pp_rank=self.pp_group.rank_in_group,
         
     | 
| 
      
 454 
     | 
    
         
            +
                        pp_size=self.pp_group.world_size,
         
     | 
| 
      
 455 
     | 
    
         
            +
                        prefix=f"{prefix}.layers",
         
     | 
| 
      
 456 
     | 
    
         
            +
                    )
         
     | 
| 
      
 457 
     | 
    
         
            +
             
     | 
| 
      
 458 
     | 
    
         
            +
                    if self.pp_group.is_last_rank:
         
     | 
| 
      
 459 
     | 
    
         
            +
                        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         
     | 
| 
      
 460 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 461 
     | 
    
         
            +
                        self.norm = PPMissingLayer()
         
     | 
| 
      
 462 
     | 
    
         
            +
             
     | 
| 
      
 463 
     | 
    
         
            +
                    world_size = get_tensor_model_parallel_world_size()
         
     | 
| 
      
 464 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 465 
     | 
    
         
            +
                        config.num_attention_heads % world_size == 0
         
     | 
| 
      
 466 
     | 
    
         
            +
                    ), "num_attention_heads must be divisible by world_size"
         
     | 
| 
      
 467 
     | 
    
         
            +
             
     | 
| 
      
 468 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 469 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 470 
     | 
    
         
            +
                    input_ids: torch.Tensor | None,
         
     | 
| 
      
 471 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 472 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 473 
     | 
    
         
            +
                    inputs_embeds: torch.Tensor | None = None,
         
     | 
| 
      
 474 
     | 
    
         
            +
                    pp_proxy_tensors: Optional[PPProxyTensors] = None,
         
     | 
| 
      
 475 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 476 
     | 
    
         
            +
                    if get_pp_group().is_first_rank:
         
     | 
| 
      
 477 
     | 
    
         
            +
                        if inputs_embeds is not None:
         
     | 
| 
      
 478 
     | 
    
         
            +
                            hidden_states = inputs_embeds
         
     | 
| 
      
 479 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 480 
     | 
    
         
            +
                            hidden_states = self.embed_tokens(input_ids)
         
     | 
| 
      
 481 
     | 
    
         
            +
                        residual = None
         
     | 
| 
      
 482 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 483 
     | 
    
         
            +
                        assert pp_proxy_tensors is not None
         
     | 
| 
      
 484 
     | 
    
         
            +
                        hidden_states = pp_proxy_tensors["hidden_states"]
         
     | 
| 
      
 485 
     | 
    
         
            +
                        residual = pp_proxy_tensors["residual"]
         
     | 
| 
      
 486 
     | 
    
         
            +
             
     | 
| 
      
 487 
     | 
    
         
            +
                    total_num_layers = self.end_layer - self.start_layer
         
     | 
| 
      
 488 
     | 
    
         
            +
                    device = hidden_states.device
         
     | 
| 
      
 489 
     | 
    
         
            +
                    zero_allocator = BumpAllocator(
         
     | 
| 
      
 490 
     | 
    
         
            +
                        buffer_size=total_num_layers * 2,
         
     | 
| 
      
 491 
     | 
    
         
            +
                        dtype=torch.float32,
         
     | 
| 
      
 492 
     | 
    
         
            +
                        device=device,
         
     | 
| 
      
 493 
     | 
    
         
            +
                    )
         
     | 
| 
      
 494 
     | 
    
         
            +
                    # TODO: capture aux hidden states
         
     | 
| 
      
 495 
     | 
    
         
            +
                    aux_hidden_states = []
         
     | 
| 
      
 496 
     | 
    
         
            +
                    for i in range(self.start_layer, self.end_layer):
         
     | 
| 
      
 497 
     | 
    
         
            +
                        ctx = get_global_expert_distribution_recorder().with_current_layer(i)
         
     | 
| 
      
 498 
     | 
    
         
            +
                        with ctx:
         
     | 
| 
      
 499 
     | 
    
         
            +
                            layer = self.layers[i]
         
     | 
| 
      
 500 
     | 
    
         
            +
                            hidden_states, residual = layer(
         
     | 
| 
      
 501 
     | 
    
         
            +
                                positions=positions,
         
     | 
| 
      
 502 
     | 
    
         
            +
                                hidden_states=hidden_states,
         
     | 
| 
      
 503 
     | 
    
         
            +
                                forward_batch=forward_batch,
         
     | 
| 
      
 504 
     | 
    
         
            +
                                residual=residual,
         
     | 
| 
      
 505 
     | 
    
         
            +
                                zero_allocator=zero_allocator,
         
     | 
| 
      
 506 
     | 
    
         
            +
                            )
         
     | 
| 
      
 507 
     | 
    
         
            +
             
     | 
| 
      
 508 
     | 
    
         
            +
                    if not self.pp_group.is_last_rank:
         
     | 
| 
      
 509 
     | 
    
         
            +
                        return PPProxyTensors(
         
     | 
| 
      
 510 
     | 
    
         
            +
                            {
         
     | 
| 
      
 511 
     | 
    
         
            +
                                "hidden_states": hidden_states,
         
     | 
| 
      
 512 
     | 
    
         
            +
                                "residual": residual,
         
     | 
| 
      
 513 
     | 
    
         
            +
                            }
         
     | 
| 
      
 514 
     | 
    
         
            +
                        )
         
     | 
| 
      
 515 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 516 
     | 
    
         
            +
                        if hidden_states.shape[0] != 0:
         
     | 
| 
      
 517 
     | 
    
         
            +
                            if residual is None:
         
     | 
| 
      
 518 
     | 
    
         
            +
                                hidden_states = self.norm(hidden_states)
         
     | 
| 
      
 519 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 520 
     | 
    
         
            +
                                hidden_states, _ = self.norm(hidden_states, residual)
         
     | 
| 
      
 521 
     | 
    
         
            +
             
     | 
| 
      
 522 
     | 
    
         
            +
                    if len(aux_hidden_states) == 0:
         
     | 
| 
      
 523 
     | 
    
         
            +
                        return hidden_states
         
     | 
| 
      
 524 
     | 
    
         
            +
             
     | 
| 
      
 525 
     | 
    
         
            +
                    return hidden_states, aux_hidden_states
         
     | 
| 
      
 526 
     | 
    
         
            +
             
     | 
| 
      
 527 
     | 
    
         
            +
             
     | 
| 
      
 528 
     | 
    
         
            +
            class KimiLinearForCausalLM(nn.Module):
         
     | 
| 
      
 529 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 530 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 531 
     | 
    
         
            +
                    config: KimiLinearConfig,
         
     | 
| 
      
 532 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 533 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 534 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 535 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 536 
     | 
    
         
            +
                    self.config = config
         
     | 
| 
      
 537 
     | 
    
         
            +
                    self.quant_config = quant_config
         
     | 
| 
      
 538 
     | 
    
         
            +
                    self.model = KimiLinearModel(
         
     | 
| 
      
 539 
     | 
    
         
            +
                        config, quant_config, prefix=maybe_prefix(prefix, "model")
         
     | 
| 
      
 540 
     | 
    
         
            +
                    )
         
     | 
| 
      
 541 
     | 
    
         
            +
                    self.pp_group = get_pp_group()
         
     | 
| 
      
 542 
     | 
    
         
            +
                    if self.pp_group.is_last_rank:
         
     | 
| 
      
 543 
     | 
    
         
            +
                        self.lm_head = ParallelLMHead(
         
     | 
| 
      
 544 
     | 
    
         
            +
                            self.config.vocab_size,
         
     | 
| 
      
 545 
     | 
    
         
            +
                            self.config.hidden_size,
         
     | 
| 
      
 546 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 547 
     | 
    
         
            +
                            prefix=maybe_prefix(prefix, "lm_head"),
         
     | 
| 
      
 548 
     | 
    
         
            +
                        )
         
     | 
| 
      
 549 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 550 
     | 
    
         
            +
                        self.lm_head = PPMissingLayer()
         
     | 
| 
      
 551 
     | 
    
         
            +
                    logit_scale = getattr(self.config, "logit_scale", 1.0)
         
     | 
| 
      
 552 
     | 
    
         
            +
                    self.logits_processor = LogitsProcessor(config=config, logit_scale=logit_scale)
         
     | 
| 
      
 553 
     | 
    
         
            +
             
     | 
| 
      
 554 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 555 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 556 
     | 
    
         
            +
                    input_ids: torch.Tensor,
         
     | 
| 
      
 557 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 558 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 559 
     | 
    
         
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         
     | 
| 
      
 560 
     | 
    
         
            +
                    pp_proxy_tensors: Optional[PPProxyTensors] = None,
         
     | 
| 
      
 561 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 562 
     | 
    
         
            +
                    hidden_states = self.model(
         
     | 
| 
      
 563 
     | 
    
         
            +
                        input_ids,
         
     | 
| 
      
 564 
     | 
    
         
            +
                        positions,
         
     | 
| 
      
 565 
     | 
    
         
            +
                        forward_batch,
         
     | 
| 
      
 566 
     | 
    
         
            +
                        inputs_embeds,
         
     | 
| 
      
 567 
     | 
    
         
            +
                        pp_proxy_tensors,
         
     | 
| 
      
 568 
     | 
    
         
            +
                    )
         
     | 
| 
      
 569 
     | 
    
         
            +
                    if self.pp_group.is_last_rank:
         
     | 
| 
      
 570 
     | 
    
         
            +
                        return self.logits_processor(
         
     | 
| 
      
 571 
     | 
    
         
            +
                            input_ids, hidden_states, self.lm_head, forward_batch
         
     | 
| 
      
 572 
     | 
    
         
            +
                        )
         
     | 
| 
      
 573 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 574 
     | 
    
         
            +
                        return hidden_states
         
     | 
| 
      
 575 
     | 
    
         
            +
             
     | 
| 
      
 576 
     | 
    
         
            +
                def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
         
     | 
| 
      
 577 
     | 
    
         
            +
                    stacked_params_mapping = [
         
     | 
| 
      
 578 
     | 
    
         
            +
                        # (param_name, shard_name, shard_id)
         
     | 
| 
      
 579 
     | 
    
         
            +
                        (".gate_up_proj", ".gate_proj", 0),
         
     | 
| 
      
 580 
     | 
    
         
            +
                        (".gate_up_proj", ".up_proj", 1),
         
     | 
| 
      
 581 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 582 
     | 
    
         
            +
                    if self.config.is_moe:
         
     | 
| 
      
 583 
     | 
    
         
            +
                        # Params for weights, fp8 weight scales, fp8 activation scales
         
     | 
| 
      
 584 
     | 
    
         
            +
                        # (param_name, weight_name, expert_id, shard_id)
         
     | 
| 
      
 585 
     | 
    
         
            +
                        expert_params_mapping = FusedMoE.make_expert_params_mapping(
         
     | 
| 
      
 586 
     | 
    
         
            +
                            ckpt_gate_proj_name="w1",
         
     | 
| 
      
 587 
     | 
    
         
            +
                            ckpt_down_proj_name="w2",
         
     | 
| 
      
 588 
     | 
    
         
            +
                            ckpt_up_proj_name="w3",
         
     | 
| 
      
 589 
     | 
    
         
            +
                            num_experts=self.config.num_experts,
         
     | 
| 
      
 590 
     | 
    
         
            +
                        )
         
     | 
| 
      
 591 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 592 
     | 
    
         
            +
                        expert_params_mapping = []
         
     | 
| 
      
 593 
     | 
    
         
            +
                    params_dict = dict(self.named_parameters())
         
     | 
| 
      
 594 
     | 
    
         
            +
                    loaded_params: set[str] = set()
         
     | 
| 
      
 595 
     | 
    
         
            +
                    for args in weights:
         
     | 
| 
      
 596 
     | 
    
         
            +
                        name, loaded_weight = args[:2]
         
     | 
| 
      
 597 
     | 
    
         
            +
                        kwargs = args[2] if len(args) > 2 else {}
         
     | 
| 
      
 598 
     | 
    
         
            +
                        if "rotary_emb.inv_freq" in name:
         
     | 
| 
      
 599 
     | 
    
         
            +
                            continue
         
     | 
| 
      
 600 
     | 
    
         
            +
             
     | 
| 
      
 601 
     | 
    
         
            +
                        if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
         
     | 
| 
      
 602 
     | 
    
         
            +
                            # Models trained using ColossalAI may include these tensors in
         
     | 
| 
      
 603 
     | 
    
         
            +
                            # the checkpoint. Skip them.
         
     | 
| 
      
 604 
     | 
    
         
            +
                            continue
         
     | 
| 
      
 605 
     | 
    
         
            +
                        for param_name, weight_name, shard_id in stacked_params_mapping:
         
     | 
| 
      
 606 
     | 
    
         
            +
                            if weight_name not in name:
         
     | 
| 
      
 607 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 608 
     | 
    
         
            +
                            # We have mlp.experts[0].gate_proj in the checkpoint.
         
     | 
| 
      
 609 
     | 
    
         
            +
                            # Since we handle the experts below in expert_params_mapping,
         
     | 
| 
      
 610 
     | 
    
         
            +
                            # we need to skip here BEFORE we update the name, otherwise
         
     | 
| 
      
 611 
     | 
    
         
            +
                            # name will be updated to mlp.experts[0].gate_up_proj, which
         
     | 
| 
      
 612 
     | 
    
         
            +
                            # will then be updated below in expert_params_mapping
         
     | 
| 
      
 613 
     | 
    
         
            +
                            # for mlp.experts[0].gate_gate_up_proj, which breaks load.
         
     | 
| 
      
 614 
     | 
    
         
            +
                            if ("mlp.experts." in name) and name not in params_dict:
         
     | 
| 
      
 615 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 616 
     | 
    
         
            +
                            name = name.replace(weight_name, param_name)
         
     | 
| 
      
 617 
     | 
    
         
            +
                            # Skip loading extra bias for GPTQ models.
         
     | 
| 
      
 618 
     | 
    
         
            +
                            if name.endswith(".bias") and name not in params_dict:
         
     | 
| 
      
 619 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 620 
     | 
    
         
            +
                            # if is_pp_missing_parameter(name, self):
         
     | 
| 
      
 621 
     | 
    
         
            +
                            #     continue
         
     | 
| 
      
 622 
     | 
    
         
            +
                            param = params_dict[name]
         
     | 
| 
      
 623 
     | 
    
         
            +
                            weight_loader = param.weight_loader
         
     | 
| 
      
 624 
     | 
    
         
            +
                            weight_loader(param, loaded_weight, shard_id)
         
     | 
| 
      
 625 
     | 
    
         
            +
                            break
         
     | 
| 
      
 626 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 627 
     | 
    
         
            +
                            for idx, (param_name, weight_name, expert_id, shard_id) in enumerate(
         
     | 
| 
      
 628 
     | 
    
         
            +
                                expert_params_mapping
         
     | 
| 
      
 629 
     | 
    
         
            +
                            ):
         
     | 
| 
      
 630 
     | 
    
         
            +
                                if weight_name not in name:
         
     | 
| 
      
 631 
     | 
    
         
            +
                                    continue
         
     | 
| 
      
 632 
     | 
    
         
            +
                                name = name.replace(weight_name, param_name)
         
     | 
| 
      
 633 
     | 
    
         
            +
                                # if is_pp_missing_parameter(name, self):
         
     | 
| 
      
 634 
     | 
    
         
            +
                                #     continue
         
     | 
| 
      
 635 
     | 
    
         
            +
                                param = params_dict[name]
         
     | 
| 
      
 636 
     | 
    
         
            +
                                weight_loader = param.weight_loader
         
     | 
| 
      
 637 
     | 
    
         
            +
                                weight_loader(
         
     | 
| 
      
 638 
     | 
    
         
            +
                                    param,
         
     | 
| 
      
 639 
     | 
    
         
            +
                                    loaded_weight,
         
     | 
| 
      
 640 
     | 
    
         
            +
                                    name,
         
     | 
| 
      
 641 
     | 
    
         
            +
                                    expert_id=expert_id,
         
     | 
| 
      
 642 
     | 
    
         
            +
                                    shard_id=shard_id,
         
     | 
| 
      
 643 
     | 
    
         
            +
                                )
         
     | 
| 
      
 644 
     | 
    
         
            +
                                break
         
     | 
| 
      
 645 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 646 
     | 
    
         
            +
                                # Skip loading extra bias for GPTQ models.
         
     | 
| 
      
 647 
     | 
    
         
            +
                                if (
         
     | 
| 
      
 648 
     | 
    
         
            +
                                    name.endswith(".bias")
         
     | 
| 
      
 649 
     | 
    
         
            +
                                    and name not in params_dict
         
     | 
| 
      
 650 
     | 
    
         
            +
                                    and not self.config.is_linear_attn
         
     | 
| 
      
 651 
     | 
    
         
            +
                                ):  # noqa: E501
         
     | 
| 
      
 652 
     | 
    
         
            +
                                    continue
         
     | 
| 
      
 653 
     | 
    
         
            +
                                # Remapping the name of FP8 kv-scale.
         
     | 
| 
      
 654 
     | 
    
         
            +
                                name = maybe_remap_kv_scale_name(name, params_dict)
         
     | 
| 
      
 655 
     | 
    
         
            +
                                if name is None:
         
     | 
| 
      
 656 
     | 
    
         
            +
                                    continue
         
     | 
| 
      
 657 
     | 
    
         
            +
                                # if is_pp_missing_parameter(name, self):
         
     | 
| 
      
 658 
     | 
    
         
            +
                                #     continue
         
     | 
| 
      
 659 
     | 
    
         
            +
             
     | 
| 
      
 660 
     | 
    
         
            +
                                param = params_dict[name]
         
     | 
| 
      
 661 
     | 
    
         
            +
                                weight_loader = getattr(
         
     | 
| 
      
 662 
     | 
    
         
            +
                                    param, "weight_loader", default_weight_loader
         
     | 
| 
      
 663 
     | 
    
         
            +
                                )
         
     | 
| 
      
 664 
     | 
    
         
            +
                                weight_loader(param, loaded_weight, **kwargs)
         
     | 
| 
      
 665 
     | 
    
         
            +
                        loaded_params.add(name)
         
     | 
| 
      
 666 
     | 
    
         
            +
             
     | 
| 
      
 667 
     | 
    
         
            +
                    for layer_id in self.config.full_attention_layer_ids:
         
     | 
| 
      
 668 
     | 
    
         
            +
                        self_attn = self.model.layers[layer_id].self_attn
         
     | 
| 
      
 669 
     | 
    
         
            +
                        w_kc, w_vc = self_attn.kv_b_proj.weight.unflatten(
         
     | 
| 
      
 670 
     | 
    
         
            +
                            0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
         
     | 
| 
      
 671 
     | 
    
         
            +
                        ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
         
     | 
| 
      
 672 
     | 
    
         
            +
                        self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
         
     | 
| 
      
 673 
     | 
    
         
            +
                        self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
         
     | 
| 
      
 674 
     | 
    
         
            +
                        if hasattr(self_attn.kv_b_proj, "weight_scale"):
         
     | 
| 
      
 675 
     | 
    
         
            +
                            self_attn.w_scale = self_attn.kv_b_proj.weight_scale
         
     | 
| 
      
 676 
     | 
    
         
            +
             
     | 
| 
      
 677 
     | 
    
         
            +
             
     | 
| 
      
 678 
     | 
    
         
            +
            EntryClass = KimiLinearForCausalLM
         
     | 
    
        sglang/srt/models/llama4.py
    CHANGED
    
    | 
         @@ -148,7 +148,7 @@ class Llama4MoE(nn.Module): 
     | 
|
| 
       148 
148 
     | 
    
         
             
                    return out_aD
         
     | 
| 
       149 
149 
     | 
    
         | 
| 
       150 
150 
     | 
    
         
             
                def _forward_core(self, hidden_states, forward_mode: ForwardMode):
         
     | 
| 
       151 
     | 
    
         
            -
                    if  
     | 
| 
      
 151 
     | 
    
         
            +
                    if _is_cuda:
         
     | 
| 
       152 
152 
     | 
    
         
             
                        return self._forward_core_shared_routed_overlap(hidden_states)
         
     | 
| 
       153 
153 
     | 
    
         
             
                    else:
         
     | 
| 
       154 
154 
     | 
    
         
             
                        return self._forward_core_normal(hidden_states)
         
     |