sglang 0.5.4.post1__py3-none-any.whl → 0.5.4.post2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +149 -34
 - sglang/bench_serving.py +18 -3
 - sglang/compile_deep_gemm.py +13 -7
 - sglang/srt/batch_invariant_ops/__init__.py +2 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +120 -0
 - sglang/srt/checkpoint_engine/__init__.py +9 -0
 - sglang/srt/checkpoint_engine/update.py +317 -0
 - sglang/srt/configs/__init__.py +2 -0
 - sglang/srt/configs/deepseek_ocr.py +542 -10
 - sglang/srt/configs/deepseekvl2.py +95 -194
 - sglang/srt/configs/kimi_linear.py +160 -0
 - sglang/srt/configs/mamba_utils.py +66 -0
 - sglang/srt/configs/model_config.py +25 -2
 - sglang/srt/constants.py +7 -0
 - sglang/srt/debug_utils/tensor_dump_forward_hook.py +149 -0
 - sglang/srt/disaggregation/decode.py +34 -6
 - sglang/srt/disaggregation/nixl/conn.py +2 -2
 - sglang/srt/disaggregation/prefill.py +25 -3
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +3 -1
 - sglang/srt/distributed/parallel_state.py +9 -5
 - sglang/srt/entrypoints/engine.py +13 -5
 - sglang/srt/entrypoints/http_server.py +22 -3
 - sglang/srt/entrypoints/openai/protocol.py +7 -1
 - sglang/srt/entrypoints/openai/serving_chat.py +42 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +10 -0
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/environ.py +7 -0
 - sglang/srt/eplb/expert_distribution.py +34 -1
 - sglang/srt/eplb/expert_location.py +106 -36
 - sglang/srt/grpc/compile_proto.py +3 -0
 - sglang/srt/layers/attention/ascend_backend.py +233 -5
 - sglang/srt/layers/attention/attention_registry.py +3 -0
 - sglang/srt/layers/attention/fla/chunk_delta_h.py +61 -32
 - sglang/srt/layers/attention/fla/fused_recurrent.py +17 -4
 - sglang/srt/layers/attention/fla/kda.py +1359 -0
 - sglang/srt/layers/attention/fla/layernorm_gated.py +7 -1
 - sglang/srt/layers/attention/flashattention_backend.py +7 -6
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +3 -1
 - sglang/srt/layers/attention/flashmla_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +223 -0
 - sglang/srt/layers/attention/mamba/mamba.py +20 -11
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +138 -6
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +45 -22
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +44 -12
 - sglang/srt/layers/attention/nsa/transform_index.py +1 -1
 - sglang/srt/layers/attention/nsa_backend.py +157 -23
 - sglang/srt/layers/attention/triton_backend.py +4 -1
 - sglang/srt/layers/attention/trtllm_mha_backend.py +10 -4
 - sglang/srt/layers/attention/trtllm_mla_backend.py +10 -2
 - sglang/srt/layers/communicator.py +23 -1
 - sglang/srt/layers/layernorm.py +16 -2
 - sglang/srt/layers/logits_processor.py +4 -20
 - sglang/srt/layers/moe/ep_moe/layer.py +0 -18
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128]_down.json +164 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +68 -22
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +43 -3
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +106 -26
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +53 -33
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +12 -9
 - sglang/srt/layers/moe/topk.py +31 -6
 - sglang/srt/layers/pooler.py +21 -2
 - sglang/srt/layers/quantization/__init__.py +9 -78
 - sglang/srt/layers/quantization/auto_round.py +394 -0
 - sglang/srt/layers/quantization/fp8_kernel.py +1 -1
 - sglang/srt/layers/quantization/fp8_utils.py +2 -2
 - sglang/srt/layers/quantization/modelopt_quant.py +168 -11
 - sglang/srt/layers/rotary_embedding.py +117 -45
 - sglang/srt/lora/lora_registry.py +9 -0
 - sglang/srt/managers/async_mm_data_processor.py +122 -0
 - sglang/srt/managers/data_parallel_controller.py +30 -3
 - sglang/srt/managers/detokenizer_manager.py +3 -0
 - sglang/srt/managers/io_struct.py +26 -4
 - sglang/srt/managers/multi_tokenizer_mixin.py +5 -0
 - sglang/srt/managers/schedule_batch.py +74 -15
 - sglang/srt/managers/scheduler.py +164 -129
 - sglang/srt/managers/scheduler_output_processor_mixin.py +40 -3
 - sglang/srt/managers/scheduler_pp_mixin.py +7 -2
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +45 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +18 -3
 - sglang/srt/managers/session_controller.py +6 -5
 - sglang/srt/managers/tokenizer_manager.py +154 -59
 - sglang/srt/managers/tp_worker.py +24 -1
 - sglang/srt/mem_cache/base_prefix_cache.py +23 -4
 - sglang/srt/mem_cache/common.py +1 -0
 - sglang/srt/mem_cache/memory_pool.py +171 -57
 - sglang/srt/mem_cache/memory_pool_host.py +12 -5
 - sglang/srt/mem_cache/radix_cache.py +4 -0
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +1 -1
 - sglang/srt/metrics/collector.py +46 -3
 - sglang/srt/model_executor/cuda_graph_runner.py +15 -3
 - sglang/srt/model_executor/forward_batch_info.py +11 -11
 - sglang/srt/model_executor/model_runner.py +76 -21
 - sglang/srt/model_executor/npu_graph_runner.py +7 -3
 - sglang/srt/model_loader/weight_utils.py +1 -1
 - sglang/srt/models/bailing_moe.py +9 -2
 - sglang/srt/models/deepseek_nextn.py +11 -2
 - sglang/srt/models/deepseek_v2.py +149 -34
 - sglang/srt/models/glm4.py +391 -77
 - sglang/srt/models/glm4v.py +196 -55
 - sglang/srt/models/glm4v_moe.py +0 -1
 - sglang/srt/models/gpt_oss.py +1 -10
 - sglang/srt/models/kimi_linear.py +678 -0
 - sglang/srt/models/llama4.py +1 -1
 - sglang/srt/models/llama_eagle3.py +11 -1
 - sglang/srt/models/longcat_flash.py +2 -2
 - sglang/srt/models/minimax_m2.py +1 -1
 - sglang/srt/models/qwen2.py +1 -1
 - sglang/srt/models/qwen2_moe.py +30 -15
 - sglang/srt/models/qwen3.py +1 -1
 - sglang/srt/models/qwen3_moe.py +16 -8
 - sglang/srt/models/qwen3_next.py +7 -0
 - sglang/srt/multimodal/customized_mm_processor_utils.py +35 -0
 - sglang/srt/multiplex/multiplexing_mixin.py +209 -0
 - sglang/srt/multiplex/pdmux_context.py +164 -0
 - sglang/srt/parser/conversation.py +7 -1
 - sglang/srt/sampling/custom_logit_processor.py +67 -1
 - sglang/srt/sampling/penaltylib/frequency_penalty.py +6 -8
 - sglang/srt/sampling/penaltylib/min_new_tokens.py +7 -8
 - sglang/srt/sampling/penaltylib/orchestrator.py +43 -3
 - sglang/srt/sampling/penaltylib/presence_penalty.py +6 -8
 - sglang/srt/server_args.py +103 -22
 - sglang/srt/single_batch_overlap.py +4 -1
 - sglang/srt/speculative/draft_utils.py +16 -0
 - sglang/srt/speculative/eagle_info.py +42 -36
 - sglang/srt/speculative/eagle_info_v2.py +68 -25
 - sglang/srt/speculative/eagle_utils.py +261 -16
 - sglang/srt/speculative/eagle_worker.py +11 -3
 - sglang/srt/speculative/eagle_worker_v2.py +15 -9
 - sglang/srt/speculative/spec_info.py +305 -31
 - sglang/srt/speculative/spec_utils.py +44 -8
 - sglang/srt/tracing/trace.py +121 -12
 - sglang/srt/utils/common.py +55 -32
 - sglang/srt/utils/hf_transformers_utils.py +38 -16
 - sglang/srt/utils/torch_memory_saver_adapter.py +20 -0
 - sglang/test/kits/radix_cache_server_kit.py +50 -0
 - sglang/test/runners.py +31 -7
 - sglang/test/simple_eval_common.py +5 -3
 - sglang/test/simple_eval_humaneval.py +1 -0
 - sglang/test/simple_eval_math.py +1 -0
 - sglang/test/simple_eval_mmlu.py +1 -0
 - sglang/test/simple_eval_mmmu_vlm.py +1 -0
 - sglang/test/test_utils.py +7 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/METADATA +10 -24
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/RECORD +150 -136
 - /sglang/test/{kit_matched_stop.py → kits/matched_stop_kit.py} +0 -0
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/WHEEL +0 -0
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.4.post1.dist-info → sglang-0.5.4.post2.dist-info}/top_level.txt +0 -0
 
| 
         @@ -25,10 +25,11 @@ from sglang.srt.layers.quantization.base_config import ( 
     | 
|
| 
       25 
25 
     | 
    
         
             
                QuantizationConfig,
         
     | 
| 
       26 
26 
     | 
    
         
             
                QuantizeMethodBase,
         
     | 
| 
       27 
27 
     | 
    
         
             
            )
         
     | 
| 
      
 28 
     | 
    
         
            +
            from sglang.srt.layers.quantization.fp8_kernel import scaled_fp8_quant
         
     | 
| 
       28 
29 
     | 
    
         
             
            from sglang.srt.layers.quantization.fp8_utils import (
         
     | 
| 
       29 
30 
     | 
    
         
             
                apply_fp8_linear,
         
     | 
| 
       30 
31 
     | 
    
         
             
                cutlass_fp8_supported,
         
     | 
| 
       31 
     | 
    
         
            -
                 
     | 
| 
      
 32 
     | 
    
         
            +
                is_blackwell_supported,
         
     | 
| 
       32 
33 
     | 
    
         
             
            )
         
     | 
| 
       33 
34 
     | 
    
         
             
            from sglang.srt.layers.quantization.kv_cache import BaseKVCacheMethod
         
     | 
| 
       34 
35 
     | 
    
         
             
            from sglang.srt.layers.quantization.unquant import UnquantizedLinearMethod
         
     | 
| 
         @@ -49,8 +50,10 @@ if TYPE_CHECKING: 
     | 
|
| 
       49 
50 
     | 
    
         
             
                )
         
     | 
| 
       50 
51 
     | 
    
         
             
                from sglang.srt.single_batch_overlap import DownGemmOverlapArgs
         
     | 
| 
       51 
52 
     | 
    
         | 
| 
       52 
     | 
    
         
            -
             
     | 
| 
       53 
     | 
    
         
            -
                from  
     | 
| 
      
 53 
     | 
    
         
            +
            try:
         
     | 
| 
      
 54 
     | 
    
         
            +
                from flashinfer import fp4_quantize
         
     | 
| 
      
 55 
     | 
    
         
            +
            except ImportError:
         
     | 
| 
      
 56 
     | 
    
         
            +
                fp4_quantize = None
         
     | 
| 
       54 
57 
     | 
    
         | 
| 
       55 
58 
     | 
    
         
             
            try:
         
     | 
| 
       56 
59 
     | 
    
         
             
                from flashinfer import mm_fp4 as fp4_gemm
         
     | 
| 
         @@ -466,8 +469,6 @@ class ModelOptFp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       466 
469 
     | 
    
         
             
                        # Fp8 moe kernel needs single weight scale for w13 per expert.
         
     | 
| 
       467 
470 
     | 
    
         
             
                        # We take the max of the w1 and w3 scales then dequant and requant each expert.
         
     | 
| 
       468 
471 
     | 
    
         
             
                        if layer.w13_weight_scale.dim() == 2:  # Shape: (num_experts, 2)
         
     | 
| 
       469 
     | 
    
         
            -
                            from sglang.srt.layers.quantization.fp8_kernel import scaled_fp8_quant
         
     | 
| 
       470 
     | 
    
         
            -
             
     | 
| 
       471 
472 
     | 
    
         
             
                            # Get the maximum scale across w1 and w3 for each expert
         
     | 
| 
       472 
473 
     | 
    
         
             
                            max_w13_scales = layer.w13_weight_scale.max(dim=1).values
         
     | 
| 
       473 
474 
     | 
    
         | 
| 
         @@ -515,6 +516,84 @@ class ModelOptFp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       515 
516 
     | 
    
         
             
                            layer.w2_input_scale.max(), requires_grad=False
         
     | 
| 
       516 
517 
     | 
    
         
             
                        )
         
     | 
| 
       517 
518 
     | 
    
         | 
| 
      
 519 
     | 
    
         
            +
                    # Align FP8 weights to FlashInfer per-tensor kernel layout if enabled
         
     | 
| 
      
 520 
     | 
    
         
            +
                    if should_use_flashinfer_trtllm_moe():
         
     | 
| 
      
 521 
     | 
    
         
            +
                        from flashinfer import reorder_rows_for_gated_act_gemm, shuffle_matrix_a
         
     | 
| 
      
 522 
     | 
    
         
            +
             
     | 
| 
      
 523 
     | 
    
         
            +
                        # 1) Swap W13 halves: [Up, Gate] -> [Gate, Up] expected by FI
         
     | 
| 
      
 524 
     | 
    
         
            +
                        num_experts, two_n, hidden = layer.w13_weight.shape
         
     | 
| 
      
 525 
     | 
    
         
            +
                        inter = two_n // 2
         
     | 
| 
      
 526 
     | 
    
         
            +
                        w13_swapped = (
         
     | 
| 
      
 527 
     | 
    
         
            +
                            layer.w13_weight.reshape(num_experts, 2, inter, hidden)
         
     | 
| 
      
 528 
     | 
    
         
            +
                            .flip(dims=[1])
         
     | 
| 
      
 529 
     | 
    
         
            +
                            .reshape(num_experts, two_n, hidden)
         
     | 
| 
      
 530 
     | 
    
         
            +
                        )
         
     | 
| 
      
 531 
     | 
    
         
            +
             
     | 
| 
      
 532 
     | 
    
         
            +
                        # 2) Reorder rows for fused gated activation (W13)
         
     | 
| 
      
 533 
     | 
    
         
            +
                        w13_interleaved = [
         
     | 
| 
      
 534 
     | 
    
         
            +
                            reorder_rows_for_gated_act_gemm(w13_swapped[i])
         
     | 
| 
      
 535 
     | 
    
         
            +
                            for i in range(num_experts)
         
     | 
| 
      
 536 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 537 
     | 
    
         
            +
                        w13_interleaved = torch.stack(w13_interleaved).reshape(
         
     | 
| 
      
 538 
     | 
    
         
            +
                            num_experts, two_n, hidden
         
     | 
| 
      
 539 
     | 
    
         
            +
                        )
         
     | 
| 
      
 540 
     | 
    
         
            +
             
     | 
| 
      
 541 
     | 
    
         
            +
                        # 3) Shuffle weights for transposed MMA output (both W13, W2)
         
     | 
| 
      
 542 
     | 
    
         
            +
                        epilogue_tile_m = 128
         
     | 
| 
      
 543 
     | 
    
         
            +
                        w13_shuffled = [
         
     | 
| 
      
 544 
     | 
    
         
            +
                            shuffle_matrix_a(w13_interleaved[i].view(torch.uint8), epilogue_tile_m)
         
     | 
| 
      
 545 
     | 
    
         
            +
                            for i in range(num_experts)
         
     | 
| 
      
 546 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 547 
     | 
    
         
            +
                        w2_shuffled = [
         
     | 
| 
      
 548 
     | 
    
         
            +
                            shuffle_matrix_a(layer.w2_weight[i].view(torch.uint8), epilogue_tile_m)
         
     | 
| 
      
 549 
     | 
    
         
            +
                            for i in range(num_experts)
         
     | 
| 
      
 550 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 551 
     | 
    
         
            +
             
     | 
| 
      
 552 
     | 
    
         
            +
                        layer.w13_weight = Parameter(
         
     | 
| 
      
 553 
     | 
    
         
            +
                            torch.stack(w13_shuffled).view(torch.float8_e4m3fn),
         
     | 
| 
      
 554 
     | 
    
         
            +
                            requires_grad=False,
         
     | 
| 
      
 555 
     | 
    
         
            +
                        )
         
     | 
| 
      
 556 
     | 
    
         
            +
                        layer.w2_weight = Parameter(
         
     | 
| 
      
 557 
     | 
    
         
            +
                            torch.stack(w2_shuffled).view(torch.float8_e4m3fn),
         
     | 
| 
      
 558 
     | 
    
         
            +
                            requires_grad=False,
         
     | 
| 
      
 559 
     | 
    
         
            +
                        )
         
     | 
| 
      
 560 
     | 
    
         
            +
             
     | 
| 
      
 561 
     | 
    
         
            +
                    # Precompute and register per-expert output scaling factors for FI MoE
         
     | 
| 
      
 562 
     | 
    
         
            +
                    if should_use_flashinfer_trtllm_moe():
         
     | 
| 
      
 563 
     | 
    
         
            +
                        # Note: w13_input_scale and w2_input_scale are scalar Parameters post-reduction
         
     | 
| 
      
 564 
     | 
    
         
            +
                        assert (
         
     | 
| 
      
 565 
     | 
    
         
            +
                            hasattr(layer, "w13_input_scale") and layer.w13_input_scale is not None
         
     | 
| 
      
 566 
     | 
    
         
            +
                        )
         
     | 
| 
      
 567 
     | 
    
         
            +
                        assert hasattr(layer, "w2_input_scale") and layer.w2_input_scale is not None
         
     | 
| 
      
 568 
     | 
    
         
            +
                        assert (
         
     | 
| 
      
 569 
     | 
    
         
            +
                            hasattr(layer, "w13_weight_scale")
         
     | 
| 
      
 570 
     | 
    
         
            +
                            and layer.w13_weight_scale is not None
         
     | 
| 
      
 571 
     | 
    
         
            +
                        )
         
     | 
| 
      
 572 
     | 
    
         
            +
                        assert (
         
     | 
| 
      
 573 
     | 
    
         
            +
                            hasattr(layer, "w2_weight_scale") and layer.w2_weight_scale is not None
         
     | 
| 
      
 574 
     | 
    
         
            +
                        )
         
     | 
| 
      
 575 
     | 
    
         
            +
             
     | 
| 
      
 576 
     | 
    
         
            +
                        input_scale = layer.w13_input_scale.to(torch.float32)
         
     | 
| 
      
 577 
     | 
    
         
            +
                        activation_scale = layer.w2_input_scale.to(torch.float32)
         
     | 
| 
      
 578 
     | 
    
         
            +
                        w13_weight_scale = layer.w13_weight_scale.to(torch.float32)
         
     | 
| 
      
 579 
     | 
    
         
            +
                        w2_weight_scale = layer.w2_weight_scale.to(torch.float32)
         
     | 
| 
      
 580 
     | 
    
         
            +
             
     | 
| 
      
 581 
     | 
    
         
            +
                        output1_scales_scalar = (
         
     | 
| 
      
 582 
     | 
    
         
            +
                            w13_weight_scale * input_scale * (1.0 / activation_scale)
         
     | 
| 
      
 583 
     | 
    
         
            +
                        )
         
     | 
| 
      
 584 
     | 
    
         
            +
                        output1_scales_gate_scalar = w13_weight_scale * input_scale
         
     | 
| 
      
 585 
     | 
    
         
            +
                        output2_scales_scalar = activation_scale * w2_weight_scale
         
     | 
| 
      
 586 
     | 
    
         
            +
             
     | 
| 
      
 587 
     | 
    
         
            +
                        layer.output1_scales_scalar = Parameter(
         
     | 
| 
      
 588 
     | 
    
         
            +
                            output1_scales_scalar, requires_grad=False
         
     | 
| 
      
 589 
     | 
    
         
            +
                        )
         
     | 
| 
      
 590 
     | 
    
         
            +
                        layer.output1_scales_gate_scalar = Parameter(
         
     | 
| 
      
 591 
     | 
    
         
            +
                            output1_scales_gate_scalar, requires_grad=False
         
     | 
| 
      
 592 
     | 
    
         
            +
                        )
         
     | 
| 
      
 593 
     | 
    
         
            +
                        layer.output2_scales_scalar = Parameter(
         
     | 
| 
      
 594 
     | 
    
         
            +
                            output2_scales_scalar, requires_grad=False
         
     | 
| 
      
 595 
     | 
    
         
            +
                        )
         
     | 
| 
      
 596 
     | 
    
         
            +
             
     | 
| 
       518 
597 
     | 
    
         
             
                def create_moe_runner(
         
     | 
| 
       519 
598 
     | 
    
         
             
                    self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
         
     | 
| 
       520 
599 
     | 
    
         
             
                ):
         
     | 
| 
         @@ -526,6 +605,81 @@ class ModelOptFp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       526 
605 
     | 
    
         
             
                    layer: torch.nn.Module,
         
     | 
| 
       527 
606 
     | 
    
         
             
                    dispatch_output: StandardDispatchOutput,
         
     | 
| 
       528 
607 
     | 
    
         
             
                ) -> CombineInput:
         
     | 
| 
      
 608 
     | 
    
         
            +
                    x = dispatch_output.hidden_states
         
     | 
| 
      
 609 
     | 
    
         
            +
                    topk_output = dispatch_output.topk_output
         
     | 
| 
      
 610 
     | 
    
         
            +
             
     | 
| 
      
 611 
     | 
    
         
            +
                    # Fast path: TRT-LLM FP8 per-tensor MoE using BYPASSED TopK routing
         
     | 
| 
      
 612 
     | 
    
         
            +
                    from sglang.srt.layers.moe.topk import TopKOutputChecker
         
     | 
| 
      
 613 
     | 
    
         
            +
             
     | 
| 
      
 614 
     | 
    
         
            +
                    if should_use_flashinfer_trtllm_moe() and TopKOutputChecker.format_is_bypassed(
         
     | 
| 
      
 615 
     | 
    
         
            +
                        topk_output
         
     | 
| 
      
 616 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 617 
     | 
    
         
            +
                        router_logits = topk_output.router_logits
         
     | 
| 
      
 618 
     | 
    
         
            +
                        topk_config = topk_output.topk_config
         
     | 
| 
      
 619 
     | 
    
         
            +
             
     | 
| 
      
 620 
     | 
    
         
            +
                        # Constraints
         
     | 
| 
      
 621 
     | 
    
         
            +
                        assert (
         
     | 
| 
      
 622 
     | 
    
         
            +
                            self.moe_runner_config.activation == "silu"
         
     | 
| 
      
 623 
     | 
    
         
            +
                        ), "Only silu is supported for flashinfer fp8 moe"
         
     | 
| 
      
 624 
     | 
    
         
            +
             
     | 
| 
      
 625 
     | 
    
         
            +
                        from flashinfer import RoutingMethodType
         
     | 
| 
      
 626 
     | 
    
         
            +
                        from flashinfer.fused_moe import trtllm_fp8_per_tensor_scale_moe
         
     | 
| 
      
 627 
     | 
    
         
            +
             
     | 
| 
      
 628 
     | 
    
         
            +
                        correction_bias = (
         
     | 
| 
      
 629 
     | 
    
         
            +
                            None
         
     | 
| 
      
 630 
     | 
    
         
            +
                            if topk_config.correction_bias is None
         
     | 
| 
      
 631 
     | 
    
         
            +
                            else topk_config.correction_bias
         
     | 
| 
      
 632 
     | 
    
         
            +
                        )
         
     | 
| 
      
 633 
     | 
    
         
            +
                        # Pre-quantize activations to FP8 per-tensor using provided input scale
         
     | 
| 
      
 634 
     | 
    
         
            +
                        x_fp8, _ = scaled_fp8_quant(x, layer.w13_input_scale)
         
     | 
| 
      
 635 
     | 
    
         
            +
             
     | 
| 
      
 636 
     | 
    
         
            +
                        use_routing_scales_on_input = True
         
     | 
| 
      
 637 
     | 
    
         
            +
                        routed_scaling_factor = self.moe_runner_config.routed_scaling_factor
         
     | 
| 
      
 638 
     | 
    
         
            +
             
     | 
| 
      
 639 
     | 
    
         
            +
                        # Enforce Llama4 routing for ModelOpt FP8 MoE for now.
         
     | 
| 
      
 640 
     | 
    
         
            +
                        # TODO(brayden): support other routing methods
         
     | 
| 
      
 641 
     | 
    
         
            +
                        assert topk_config.top_k == 1, "ModelOpt FP8 MoE requires top_k==1"
         
     | 
| 
      
 642 
     | 
    
         
            +
                        assert (
         
     | 
| 
      
 643 
     | 
    
         
            +
                            not topk_config.num_expert_group
         
     | 
| 
      
 644 
     | 
    
         
            +
                        ), "ModelOpt FP8 MoE does not support expert grouping"
         
     | 
| 
      
 645 
     | 
    
         
            +
                        assert (
         
     | 
| 
      
 646 
     | 
    
         
            +
                            not topk_config.topk_group
         
     | 
| 
      
 647 
     | 
    
         
            +
                        ), "ModelOpt FP8 MoE does not support grouped top-k"
         
     | 
| 
      
 648 
     | 
    
         
            +
                        routing_method_type = RoutingMethodType.Llama4
         
     | 
| 
      
 649 
     | 
    
         
            +
             
     | 
| 
      
 650 
     | 
    
         
            +
                        # FlashInfer TRTLLM requires routing_logits (and bias) to be bfloat16
         
     | 
| 
      
 651 
     | 
    
         
            +
                        routing_logits_cast = router_logits.to(torch.bfloat16)
         
     | 
| 
      
 652 
     | 
    
         
            +
                        routing_bias_cast = (
         
     | 
| 
      
 653 
     | 
    
         
            +
                            None if correction_bias is None else correction_bias.to(torch.bfloat16)
         
     | 
| 
      
 654 
     | 
    
         
            +
                        )
         
     | 
| 
      
 655 
     | 
    
         
            +
             
     | 
| 
      
 656 
     | 
    
         
            +
                        output = trtllm_fp8_per_tensor_scale_moe(
         
     | 
| 
      
 657 
     | 
    
         
            +
                            routing_logits=routing_logits_cast,
         
     | 
| 
      
 658 
     | 
    
         
            +
                            routing_bias=routing_bias_cast,
         
     | 
| 
      
 659 
     | 
    
         
            +
                            hidden_states=x_fp8,
         
     | 
| 
      
 660 
     | 
    
         
            +
                            gemm1_weights=layer.w13_weight,
         
     | 
| 
      
 661 
     | 
    
         
            +
                            output1_scales_scalar=layer.output1_scales_scalar,
         
     | 
| 
      
 662 
     | 
    
         
            +
                            output1_scales_gate_scalar=layer.output1_scales_gate_scalar,
         
     | 
| 
      
 663 
     | 
    
         
            +
                            gemm2_weights=layer.w2_weight,
         
     | 
| 
      
 664 
     | 
    
         
            +
                            output2_scales_scalar=layer.output2_scales_scalar,
         
     | 
| 
      
 665 
     | 
    
         
            +
                            num_experts=layer.num_experts,
         
     | 
| 
      
 666 
     | 
    
         
            +
                            top_k=topk_config.top_k,
         
     | 
| 
      
 667 
     | 
    
         
            +
                            n_group=0,
         
     | 
| 
      
 668 
     | 
    
         
            +
                            topk_group=0,
         
     | 
| 
      
 669 
     | 
    
         
            +
                            intermediate_size=layer.w2_weight.shape[2],
         
     | 
| 
      
 670 
     | 
    
         
            +
                            local_expert_offset=layer.moe_ep_rank * layer.num_local_experts,
         
     | 
| 
      
 671 
     | 
    
         
            +
                            local_num_experts=layer.num_local_experts,
         
     | 
| 
      
 672 
     | 
    
         
            +
                            routed_scaling_factor=(
         
     | 
| 
      
 673 
     | 
    
         
            +
                                routed_scaling_factor if routed_scaling_factor is not None else 1.0
         
     | 
| 
      
 674 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 675 
     | 
    
         
            +
                            use_routing_scales_on_input=use_routing_scales_on_input,
         
     | 
| 
      
 676 
     | 
    
         
            +
                            tile_tokens_dim=8,  # TODO(brayden): use the FI tile calculation
         
     | 
| 
      
 677 
     | 
    
         
            +
                            routing_method_type=routing_method_type,
         
     | 
| 
      
 678 
     | 
    
         
            +
                        )
         
     | 
| 
      
 679 
     | 
    
         
            +
             
     | 
| 
      
 680 
     | 
    
         
            +
                        from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
         
     | 
| 
      
 681 
     | 
    
         
            +
             
     | 
| 
      
 682 
     | 
    
         
            +
                        return StandardCombineInput(hidden_states=output)
         
     | 
| 
       529 
683 
     | 
    
         | 
| 
       530 
684 
     | 
    
         
             
                    quant_info = TritonMoeQuantInfo(
         
     | 
| 
       531 
685 
     | 
    
         
             
                        w13_weight=layer.w13_weight,
         
     | 
| 
         @@ -867,10 +1021,9 @@ class ModelOptFp4LinearMethod(LinearMethodBase): 
     | 
|
| 
       867 
1021 
     | 
    
         
             
                    output_shape = [x_m, w_n]
         
     | 
| 
       868 
1022 
     | 
    
         | 
| 
       869 
1023 
     | 
    
         
             
                    # Quantize BF16 or FP16 to (FP4 and interleaved block scale)
         
     | 
| 
       870 
     | 
    
         
            -
                    x_fp4, x_scale_interleaved =  
     | 
| 
      
 1024 
     | 
    
         
            +
                    x_fp4, x_scale_interleaved = fp4_quantize(x, layer.input_scale_inv)
         
     | 
| 
       871 
1025 
     | 
    
         | 
| 
       872 
1026 
     | 
    
         
             
                    assert x_fp4.dtype == torch.uint8
         
     | 
| 
       873 
     | 
    
         
            -
                    assert x_scale_interleaved.dtype == torch.float8_e4m3fn
         
     | 
| 
       874 
1027 
     | 
    
         
             
                    assert layer.weight.dtype == torch.uint8
         
     | 
| 
       875 
1028 
     | 
    
         
             
                    assert layer.weight_scale_interleaved.dtype == torch.float8_e4m3fn
         
     | 
| 
       876 
1029 
     | 
    
         
             
                    assert layer.alpha.dtype == torch.float32
         
     | 
| 
         @@ -903,7 +1056,7 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       903 
1056 
     | 
    
         | 
| 
       904 
1057 
     | 
    
         
             
                def __init__(self, quant_config: ModelOptFp4Config):
         
     | 
| 
       905 
1058 
     | 
    
         
             
                    self.quant_config = quant_config
         
     | 
| 
       906 
     | 
    
         
            -
                    if not  
     | 
| 
      
 1059 
     | 
    
         
            +
                    if not is_blackwell_supported():
         
     | 
| 
       907 
1060 
     | 
    
         
             
                        raise ValueError(
         
     | 
| 
       908 
1061 
     | 
    
         
             
                            "Current platform does not support NVFP4"
         
     | 
| 
       909 
1062 
     | 
    
         
             
                            " quantization. Please use Blackwell and"
         
     | 
| 
         @@ -1383,8 +1536,6 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1383 
1536 
     | 
    
         
             
                    alt_stream=None,
         
     | 
| 
       1384 
1537 
     | 
    
         
             
                ) -> CombineInput:
         
     | 
| 
       1385 
1538 
     | 
    
         | 
| 
       1386 
     | 
    
         
            -
                    from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
         
     | 
| 
       1387 
     | 
    
         
            -
             
     | 
| 
       1388 
1539 
     | 
    
         
             
                    x = dispatch_output.hidden_states
         
     | 
| 
       1389 
1540 
     | 
    
         
             
                    topk_output = dispatch_output.topk_output
         
     | 
| 
       1390 
1541 
     | 
    
         | 
| 
         @@ -1397,6 +1548,8 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1397 
1548 
     | 
    
         
             
                    # Check if this is a FlashInferFP4MoE layer that should handle its own forward
         
     | 
| 
       1398 
1549 
     | 
    
         
             
                    if hasattr(layer, "gemm1_weights_fp4_shuffled"):
         
     | 
| 
       1399 
1550 
     | 
    
         
             
                        # This layer was processed with flashinfer TRTLLM - delegate to its own forward
         
     | 
| 
      
 1551 
     | 
    
         
            +
                        from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
         
     | 
| 
      
 1552 
     | 
    
         
            +
             
     | 
| 
       1400 
1553 
     | 
    
         
             
                        return StandardCombineInput(hidden_states=layer.forward(x, topk_output))
         
     | 
| 
       1401 
1554 
     | 
    
         | 
| 
       1402 
1555 
     | 
    
         
             
                    if self.enable_flashinfer_cutlass_moe:
         
     | 
| 
         @@ -1410,7 +1563,7 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1410 
1563 
     | 
    
         
             
                        output_dtype = x.dtype
         
     | 
| 
       1411 
1564 
     | 
    
         
             
                        x_sf = None
         
     | 
| 
       1412 
1565 
     | 
    
         
             
                        if should_use_flashinfer_cutlass_moe_fp4_allgather():
         
     | 
| 
       1413 
     | 
    
         
            -
                            from flashinfer import  
     | 
| 
      
 1566 
     | 
    
         
            +
                            from flashinfer import nvfp4_block_scale_interleave
         
     | 
| 
       1414 
1567 
     | 
    
         | 
| 
       1415 
1568 
     | 
    
         
             
                            # Quantize before comm, swizzle after.
         
     | 
| 
       1416 
1569 
     | 
    
         
             
                            if x.shape[0] > 0:
         
     | 
| 
         @@ -1465,6 +1618,8 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1465 
1618 
     | 
    
         
             
                            if forward_shared_experts is not None:
         
     | 
| 
       1466 
1619 
     | 
    
         
             
                                torch.cuda.current_stream().wait_stream(alt_stream)
         
     | 
| 
       1467 
1620 
     | 
    
         | 
| 
      
 1621 
     | 
    
         
            +
                        from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
         
     | 
| 
      
 1622 
     | 
    
         
            +
             
     | 
| 
       1468 
1623 
     | 
    
         
             
                        return StandardCombineInput(hidden_states=output)
         
     | 
| 
       1469 
1624 
     | 
    
         | 
| 
       1470 
1625 
     | 
    
         
             
                    from sglang.srt.layers.moe.cutlass_moe import cutlass_moe_fp4
         
     | 
| 
         @@ -1486,6 +1641,8 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1486 
1641 
     | 
    
         
             
                        apply_router_weight_on_input=moe_runner_config.apply_router_weight_on_input,
         
     | 
| 
       1487 
1642 
     | 
    
         
             
                    ).to(x.dtype)
         
     | 
| 
       1488 
1643 
     | 
    
         
             
                    # Scale by routed_scaling_factor is fused into select_experts.
         
     | 
| 
      
 1644 
     | 
    
         
            +
                    from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
         
     | 
| 
      
 1645 
     | 
    
         
            +
             
     | 
| 
       1489 
1646 
     | 
    
         
             
                    return StandardCombineInput(hidden_states=output)
         
     | 
| 
       1490 
1647 
     | 
    
         | 
| 
       1491 
1648 
     | 
    
         
             
                def apply_without_routing_weights(
         
     | 
| 
         @@ -125,8 +125,13 @@ class RotaryEmbedding(CustomOp): 
     | 
|
| 
       125 
125 
     | 
    
         
             
                    self.cos_sin_cache: torch.Tensor
         
     | 
| 
       126 
126 
     | 
    
         
             
                    self.register_buffer("cos_sin_cache", cache, persistent=False)
         
     | 
| 
       127 
127 
     | 
    
         | 
| 
      
 128 
     | 
    
         
            +
                    self._apply_rotary_emb_wrapped = _apply_rotary_emb
         
     | 
| 
      
 129 
     | 
    
         
            +
             
     | 
| 
       128 
130 
     | 
    
         
             
                    if get_global_server_args().rl_on_policy_target == "fsdp":
         
     | 
| 
       129 
131 
     | 
    
         
             
                        self._forward_method = self.forward_native
         
     | 
| 
      
 132 
     | 
    
         
            +
                        self._apply_rotary_emb_wrapped = torch.compile(dynamic=True)(
         
     | 
| 
      
 133 
     | 
    
         
            +
                            self._apply_rotary_emb_wrapped
         
     | 
| 
      
 134 
     | 
    
         
            +
                        )
         
     | 
| 
       130 
135 
     | 
    
         | 
| 
       131 
136 
     | 
    
         
             
                def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
         
     | 
| 
       132 
137 
     | 
    
         
             
                    """Compute the inverse frequency."""
         
     | 
| 
         @@ -185,14 +190,16 @@ class RotaryEmbedding(CustomOp): 
     | 
|
| 
       185 
190 
     | 
    
         
             
                    query = query.view(num_tokens, -1, self.head_size)
         
     | 
| 
       186 
191 
     | 
    
         
             
                    query_rot = query[..., : self.rotary_dim]
         
     | 
| 
       187 
192 
     | 
    
         
             
                    query_pass = query[..., self.rotary_dim :]
         
     | 
| 
       188 
     | 
    
         
            -
                    query_rot =  
     | 
| 
      
 193 
     | 
    
         
            +
                    query_rot = self._apply_rotary_emb_wrapped(
         
     | 
| 
      
 194 
     | 
    
         
            +
                        query_rot, cos, sin, self.is_neox_style
         
     | 
| 
      
 195 
     | 
    
         
            +
                    )
         
     | 
| 
       189 
196 
     | 
    
         
             
                    query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
         
     | 
| 
       190 
197 
     | 
    
         | 
| 
       191 
198 
     | 
    
         
             
                    key_shape = key.shape
         
     | 
| 
       192 
199 
     | 
    
         
             
                    key = key.view(num_tokens, -1, self.head_size)
         
     | 
| 
       193 
200 
     | 
    
         
             
                    key_rot = key[..., : self.rotary_dim]
         
     | 
| 
       194 
201 
     | 
    
         
             
                    key_pass = key[..., self.rotary_dim :]
         
     | 
| 
       195 
     | 
    
         
            -
                    key_rot =  
     | 
| 
      
 202 
     | 
    
         
            +
                    key_rot = self._apply_rotary_emb_wrapped(key_rot, cos, sin, self.is_neox_style)
         
     | 
| 
       196 
203 
     | 
    
         
             
                    key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
         
     | 
| 
       197 
204 
     | 
    
         
             
                    return query, key
         
     | 
| 
       198 
205 
     | 
    
         | 
| 
         @@ -312,10 +319,20 @@ class RotaryEmbedding(CustomOp): 
     | 
|
| 
       312 
319 
     | 
    
         
             
                    query: torch.Tensor,
         
     | 
| 
       313 
320 
     | 
    
         
             
                    key: torch.Tensor,
         
     | 
| 
       314 
321 
     | 
    
         
             
                    offsets: Optional[torch.Tensor] = None,
         
     | 
| 
      
 322 
     | 
    
         
            +
                    fused_set_kv_buffer_arg: Optional[FusedSetKVBufferArg] = None,
         
     | 
| 
       315 
323 
     | 
    
         
             
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       316 
     | 
    
         
            -
                     
     | 
| 
       317 
     | 
    
         
            -
             
     | 
| 
       318 
     | 
    
         
            -
                     
     | 
| 
      
 324 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 325 
     | 
    
         
            +
                        fused_set_kv_buffer_arg is None
         
     | 
| 
      
 326 
     | 
    
         
            +
                    ), "fused_set_kv_buffer_arg is not supported for xpu implementation"
         
     | 
| 
      
 327 
     | 
    
         
            +
                    positions = torch.add(positions, offsets) if offsets is not None else positions
         
     | 
| 
      
 328 
     | 
    
         
            +
                    return torch.ops.sgl_kernel.rotary_embedding(
         
     | 
| 
      
 329 
     | 
    
         
            +
                        positions,
         
     | 
| 
      
 330 
     | 
    
         
            +
                        query,
         
     | 
| 
      
 331 
     | 
    
         
            +
                        key,
         
     | 
| 
      
 332 
     | 
    
         
            +
                        self.head_size,
         
     | 
| 
      
 333 
     | 
    
         
            +
                        self.cos_sin_cache,
         
     | 
| 
      
 334 
     | 
    
         
            +
                        self.is_neox_style,
         
     | 
| 
      
 335 
     | 
    
         
            +
                    )
         
     | 
| 
       319 
336 
     | 
    
         | 
| 
       320 
337 
     | 
    
         | 
| 
       321 
338 
     | 
    
         
             
            class LinearScalingRotaryEmbedding(RotaryEmbedding):
         
     | 
| 
         @@ -1070,6 +1087,7 @@ def _triton_mrope_forward( 
     | 
|
| 
       1070 
1087 
     | 
    
         
             
                mrope_section_h: tl.constexpr,
         
     | 
| 
       1071 
1088 
     | 
    
         
             
                mrope_section_w: tl.constexpr,
         
     | 
| 
       1072 
1089 
     | 
    
         
             
                is_interleaved: tl.constexpr,
         
     | 
| 
      
 1090 
     | 
    
         
            +
                is_neox_style: tl.constexpr,
         
     | 
| 
       1073 
1091 
     | 
    
         
             
            ):
         
     | 
| 
       1074 
1092 
     | 
    
         
             
                # Adapted from
         
     | 
| 
       1075 
1093 
     | 
    
         
             
                # https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/qwen2vl_mrope.py
         
     | 
| 
         @@ -1124,51 +1142,99 @@ def _triton_mrope_forward( 
     | 
|
| 
       1124 
1142 
     | 
    
         
             
                # program instance (i.e. for the current token) separately
         
     | 
| 
       1125 
1143 
     | 
    
         
             
                # ####################################################################
         
     | 
| 
       1126 
1144 
     | 
    
         
             
                # left half of the head
         
     | 
| 
       1127 
     | 
    
         
            -
                 
     | 
| 
       1128 
     | 
    
         
            -
                     
     | 
| 
       1129 
     | 
    
         
            -
             
     | 
| 
       1130 
     | 
    
         
            -
             
     | 
| 
       1131 
     | 
    
         
            -
                     
     | 
| 
       1132 
     | 
    
         
            -
             
     | 
| 
       1133 
     | 
    
         
            -
             
     | 
| 
       1134 
     | 
    
         
            -
                    tl.arange(0,  
     | 
| 
       1135 
     | 
    
         
            -
             
     | 
| 
       1136 
     | 
    
         
            -
             
     | 
| 
       1137 
     | 
    
         
            -
                    tl.arange(0,  
     | 
| 
       1138 
     | 
    
         
            -
             
     | 
| 
      
 1145 
     | 
    
         
            +
                if is_neox_style:
         
     | 
| 
      
 1146 
     | 
    
         
            +
                    first_half_q_offsets = (
         
     | 
| 
      
 1147 
     | 
    
         
            +
                        tl.arange(0, pad_n_qh)[:, None] * hd + tl.arange(0, pad_hd // 2)[None, :]
         
     | 
| 
      
 1148 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1149 
     | 
    
         
            +
                    first_half_k_offsets = (
         
     | 
| 
      
 1150 
     | 
    
         
            +
                        tl.arange(0, pad_n_kh)[:, None] * hd + tl.arange(0, pad_hd // 2)[None, :]
         
     | 
| 
      
 1151 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1152 
     | 
    
         
            +
                    first_q_mask = (tl.arange(0, pad_n_qh)[:, None] < n_qh) & (
         
     | 
| 
      
 1153 
     | 
    
         
            +
                        tl.arange(0, pad_hd // 2)[None, :] < rd // 2
         
     | 
| 
      
 1154 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1155 
     | 
    
         
            +
                    first_k_mask = (tl.arange(0, pad_n_kh)[:, None] < n_kh) & (
         
     | 
| 
      
 1156 
     | 
    
         
            +
                        tl.arange(0, pad_hd // 2)[None, :] < rd // 2
         
     | 
| 
      
 1157 
     | 
    
         
            +
                    )
         
     | 
| 
       1139 
1158 
     | 
    
         | 
| 
       1140 
     | 
    
         
            -
             
     | 
| 
       1141 
     | 
    
         
            -
             
     | 
| 
       1142 
     | 
    
         
            -
             
     | 
| 
       1143 
     | 
    
         
            -
             
     | 
| 
       1144 
     | 
    
         
            -
             
     | 
| 
       1145 
     | 
    
         
            -
             
     | 
| 
      
 1159 
     | 
    
         
            +
                    q_tile_1 = tl.load(q_ptr + first_half_q_offsets, mask=first_q_mask, other=0).to(
         
     | 
| 
      
 1160 
     | 
    
         
            +
                        sin_row.dtype
         
     | 
| 
      
 1161 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1162 
     | 
    
         
            +
                    k_tile_1 = tl.load(k_ptr + first_half_k_offsets, mask=first_k_mask, other=0).to(
         
     | 
| 
      
 1163 
     | 
    
         
            +
                        sin_row.dtype
         
     | 
| 
      
 1164 
     | 
    
         
            +
                    )
         
     | 
| 
       1146 
1165 
     | 
    
         | 
| 
       1147 
     | 
    
         
            -
             
     | 
| 
       1148 
     | 
    
         
            -
             
     | 
| 
       1149 
     | 
    
         
            -
             
     | 
| 
       1150 
     | 
    
         
            -
             
     | 
| 
       1151 
     | 
    
         
            -
             
     | 
| 
      
 1166 
     | 
    
         
            +
                    # right half of the head
         
     | 
| 
      
 1167 
     | 
    
         
            +
                    second_half_q_offsets = first_half_q_offsets + (rd // 2)
         
     | 
| 
      
 1168 
     | 
    
         
            +
                    second_half_k_offsets = first_half_k_offsets + (rd // 2)
         
     | 
| 
      
 1169 
     | 
    
         
            +
                    second_q_mask = first_q_mask
         
     | 
| 
      
 1170 
     | 
    
         
            +
                    second_k_mask = first_k_mask
         
     | 
| 
      
 1171 
     | 
    
         
            +
             
     | 
| 
      
 1172 
     | 
    
         
            +
                    q_tile_2 = tl.load(
         
     | 
| 
      
 1173 
     | 
    
         
            +
                        q_ptr + second_half_q_offsets, mask=second_q_mask, other=0
         
     | 
| 
      
 1174 
     | 
    
         
            +
                    ).to(sin_row.dtype)
         
     | 
| 
      
 1175 
     | 
    
         
            +
                    k_tile_2 = tl.load(
         
     | 
| 
      
 1176 
     | 
    
         
            +
                        k_ptr + second_half_k_offsets, mask=second_k_mask, other=0
         
     | 
| 
      
 1177 
     | 
    
         
            +
                    ).to(sin_row.dtype)
         
     | 
| 
      
 1178 
     | 
    
         
            +
             
     | 
| 
      
 1179 
     | 
    
         
            +
                    # y = [x1, x2] * [cos, cos] + [-x2, x1] * [sin, sin]
         
     | 
| 
      
 1180 
     | 
    
         
            +
                    # Since cos and sin are now half-size,
         
     | 
| 
      
 1181 
     | 
    
         
            +
                    # we use the same cos_row and sin_row for both halves
         
     | 
| 
      
 1182 
     | 
    
         
            +
                    new_q_tile_1 = q_tile_1 * cos_row - q_tile_2 * sin_row
         
     | 
| 
      
 1183 
     | 
    
         
            +
                    tl.store(q_ptr + first_half_q_offsets, new_q_tile_1, mask=first_q_mask)
         
     | 
| 
      
 1184 
     | 
    
         
            +
                    new_q_tile_2 = q_tile_2 * cos_row + q_tile_1 * sin_row
         
     | 
| 
      
 1185 
     | 
    
         
            +
                    tl.store(q_ptr + second_half_q_offsets, new_q_tile_2, mask=second_q_mask)
         
     | 
| 
      
 1186 
     | 
    
         
            +
             
     | 
| 
      
 1187 
     | 
    
         
            +
                    new_k_tile_1 = k_tile_1 * cos_row - k_tile_2 * sin_row
         
     | 
| 
      
 1188 
     | 
    
         
            +
                    tl.store(k_ptr + first_half_k_offsets, new_k_tile_1, mask=first_k_mask)
         
     | 
| 
      
 1189 
     | 
    
         
            +
                    new_k_tile_2 = k_tile_2 * cos_row + k_tile_1 * sin_row
         
     | 
| 
      
 1190 
     | 
    
         
            +
                    tl.store(k_ptr + second_half_k_offsets, new_k_tile_2, mask=second_k_mask)
         
     | 
| 
      
 1191 
     | 
    
         
            +
                else:
         
     | 
| 
      
 1192 
     | 
    
         
            +
                    base_q = tl.arange(0, pad_n_qh)[:, None] * hd
         
     | 
| 
      
 1193 
     | 
    
         
            +
                    base_k = tl.arange(0, pad_n_kh)[:, None] * hd
         
     | 
| 
      
 1194 
     | 
    
         
            +
                    even_idx = 2 * tl.arange(0, pad_hd // 2)[None, :]
         
     | 
| 
      
 1195 
     | 
    
         
            +
                    odd_idx = even_idx + 1
         
     | 
| 
      
 1196 
     | 
    
         
            +
             
     | 
| 
      
 1197 
     | 
    
         
            +
                    even_q_offsets = base_q + even_idx
         
     | 
| 
      
 1198 
     | 
    
         
            +
                    odd_q_offsets = base_q + odd_idx
         
     | 
| 
      
 1199 
     | 
    
         
            +
                    even_k_offsets = base_k + even_idx
         
     | 
| 
      
 1200 
     | 
    
         
            +
                    odd_k_offsets = base_k + odd_idx
         
     | 
| 
      
 1201 
     | 
    
         
            +
             
     | 
| 
      
 1202 
     | 
    
         
            +
                    idx_mask = tl.arange(0, pad_hd // 2)[None, :] < (rd // 2)
         
     | 
| 
      
 1203 
     | 
    
         
            +
                    qn_mask = tl.arange(0, pad_n_qh)[:, None] < n_qh
         
     | 
| 
      
 1204 
     | 
    
         
            +
                    kn_mask = tl.arange(0, pad_n_kh)[:, None] < n_kh
         
     | 
| 
      
 1205 
     | 
    
         
            +
             
     | 
| 
      
 1206 
     | 
    
         
            +
                    even_q_mask = qn_mask & idx_mask
         
     | 
| 
      
 1207 
     | 
    
         
            +
                    odd_q_mask = qn_mask & idx_mask
         
     | 
| 
      
 1208 
     | 
    
         
            +
                    even_k_mask = kn_mask & idx_mask
         
     | 
| 
      
 1209 
     | 
    
         
            +
                    odd_k_mask = kn_mask & idx_mask
         
     | 
| 
      
 1210 
     | 
    
         
            +
             
     | 
| 
      
 1211 
     | 
    
         
            +
                    q_tile_1 = tl.load(q_ptr + even_q_offsets, mask=even_q_mask, other=0).to(
         
     | 
| 
      
 1212 
     | 
    
         
            +
                        sin_row.dtype
         
     | 
| 
      
 1213 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1214 
     | 
    
         
            +
                    k_tile_1 = tl.load(k_ptr + even_k_offsets, mask=even_k_mask, other=0).to(
         
     | 
| 
      
 1215 
     | 
    
         
            +
                        sin_row.dtype
         
     | 
| 
      
 1216 
     | 
    
         
            +
                    )
         
     | 
| 
       1152 
1217 
     | 
    
         | 
| 
       1153 
     | 
    
         
            -
             
     | 
| 
       1154 
     | 
    
         
            -
             
     | 
| 
       1155 
     | 
    
         
            -
             
     | 
| 
       1156 
     | 
    
         
            -
             
     | 
| 
       1157 
     | 
    
         
            -
             
     | 
| 
       1158 
     | 
    
         
            -
             
     | 
| 
      
 1218 
     | 
    
         
            +
                    q_tile_2 = tl.load(q_ptr + odd_q_offsets, mask=odd_q_mask, other=0).to(
         
     | 
| 
      
 1219 
     | 
    
         
            +
                        sin_row.dtype
         
     | 
| 
      
 1220 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1221 
     | 
    
         
            +
                    k_tile_2 = tl.load(k_ptr + odd_k_offsets, mask=odd_k_mask, other=0).to(
         
     | 
| 
      
 1222 
     | 
    
         
            +
                        sin_row.dtype
         
     | 
| 
      
 1223 
     | 
    
         
            +
                    )
         
     | 
| 
       1159 
1224 
     | 
    
         | 
| 
       1160 
     | 
    
         
            -
             
     | 
| 
       1161 
     | 
    
         
            -
             
     | 
| 
       1162 
     | 
    
         
            -
             
     | 
| 
       1163 
     | 
    
         
            -
             
     | 
| 
       1164 
     | 
    
         
            -
             
     | 
| 
       1165 
     | 
    
         
            -
             
     | 
| 
       1166 
     | 
    
         
            -
             
     | 
| 
      
 1225 
     | 
    
         
            +
                    # y = [x_even, x_odd] * [cos, cos] + [-x_odd, x_even] * [sin, sin]
         
     | 
| 
      
 1226 
     | 
    
         
            +
                    # NeoX-style rotary embedding:
         
     | 
| 
      
 1227 
     | 
    
         
            +
                    # Each (even, odd) channel pair forms one rotation arm.
         
     | 
| 
      
 1228 
     | 
    
         
            +
                    # cos_row and sin_row each have length rd//2, shared across all (even, odd) pairs.
         
     | 
| 
      
 1229 
     | 
    
         
            +
                    new_q_tile_1 = q_tile_1 * cos_row - q_tile_2 * sin_row
         
     | 
| 
      
 1230 
     | 
    
         
            +
                    tl.store(q_ptr + even_q_offsets, new_q_tile_1, mask=even_q_mask)
         
     | 
| 
      
 1231 
     | 
    
         
            +
                    new_q_tile_2 = q_tile_2 * cos_row + q_tile_1 * sin_row
         
     | 
| 
      
 1232 
     | 
    
         
            +
                    tl.store(q_ptr + odd_q_offsets, new_q_tile_2, mask=odd_q_mask)
         
     | 
| 
       1167 
1233 
     | 
    
         | 
| 
       1168 
     | 
    
         
            -
             
     | 
| 
       1169 
     | 
    
         
            -
             
     | 
| 
       1170 
     | 
    
         
            -
             
     | 
| 
       1171 
     | 
    
         
            -
             
     | 
| 
      
 1234 
     | 
    
         
            +
                    new_k_tile_1 = k_tile_1 * cos_row - k_tile_2 * sin_row
         
     | 
| 
      
 1235 
     | 
    
         
            +
                    tl.store(k_ptr + even_k_offsets, new_k_tile_1, mask=even_k_mask)
         
     | 
| 
      
 1236 
     | 
    
         
            +
                    new_k_tile_2 = k_tile_2 * cos_row + k_tile_1 * sin_row
         
     | 
| 
      
 1237 
     | 
    
         
            +
                    tl.store(k_ptr + odd_k_offsets, new_k_tile_2, mask=odd_k_mask)
         
     | 
| 
       1172 
1238 
     | 
    
         | 
| 
       1173 
1239 
     | 
    
         | 
| 
       1174 
1240 
     | 
    
         
             
            def triton_mrope(
         
     | 
| 
         @@ -1180,6 +1246,7 @@ def triton_mrope( 
     | 
|
| 
       1180 
1246 
     | 
    
         
             
                head_size: int,
         
     | 
| 
       1181 
1247 
     | 
    
         
             
                rotary_dim: int,
         
     | 
| 
       1182 
1248 
     | 
    
         
             
                mrope_interleaved: bool,
         
     | 
| 
      
 1249 
     | 
    
         
            +
                is_neox_style: bool,
         
     | 
| 
       1183 
1250 
     | 
    
         
             
            ) -> tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       1184 
1251 
     | 
    
         
             
                """The mrope triton kernel.
         
     | 
| 
       1185 
1252 
     | 
    
         | 
| 
         @@ -1230,6 +1297,7 @@ def triton_mrope( 
     | 
|
| 
       1230 
1297 
     | 
    
         
             
                    mrope_section[1],
         
     | 
| 
       1231 
1298 
     | 
    
         
             
                    mrope_section[2],
         
     | 
| 
       1232 
1299 
     | 
    
         
             
                    mrope_interleaved,
         
     | 
| 
      
 1300 
     | 
    
         
            +
                    is_neox_style,
         
     | 
| 
       1233 
1301 
     | 
    
         
             
                )
         
     | 
| 
       1234 
1302 
     | 
    
         
             
                return q, k
         
     | 
| 
       1235 
1303 
     | 
    
         | 
| 
         @@ -1373,6 +1441,7 @@ class MRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       1373 
1441 
     | 
    
         
             
                    else:
         
     | 
| 
       1374 
1442 
     | 
    
         
             
                        return self._forward_native(positions, query, key)
         
     | 
| 
       1375 
1443 
     | 
    
         | 
| 
      
 1444 
     | 
    
         
            +
                @torch.compile(dynamic=True, backend=get_compiler_backend())
         
     | 
| 
       1376 
1445 
     | 
    
         
             
                def _forward_triton(
         
     | 
| 
       1377 
1446 
     | 
    
         
             
                    self,
         
     | 
| 
       1378 
1447 
     | 
    
         
             
                    positions: torch.Tensor,
         
     | 
| 
         @@ -1391,6 +1460,7 @@ class MRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       1391 
1460 
     | 
    
         
             
                    if positions.ndim == 2:
         
     | 
| 
       1392 
1461 
     | 
    
         
             
                        assert self.mrope_section
         
     | 
| 
       1393 
1462 
     | 
    
         | 
| 
      
 1463 
     | 
    
         
            +
                        torch._dynamo.graph_break()
         
     | 
| 
       1394 
1464 
     | 
    
         
             
                        q, k = triton_mrope(
         
     | 
| 
       1395 
1465 
     | 
    
         
             
                            query,
         
     | 
| 
       1396 
1466 
     | 
    
         
             
                            key,
         
     | 
| 
         @@ -1400,7 +1470,9 @@ class MRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       1400 
1470 
     | 
    
         
             
                            self.head_size,
         
     | 
| 
       1401 
1471 
     | 
    
         
             
                            self.rotary_dim,
         
     | 
| 
       1402 
1472 
     | 
    
         
             
                            self.mrope_interleaved,
         
     | 
| 
      
 1473 
     | 
    
         
            +
                            self.is_neox_style,
         
     | 
| 
       1403 
1474 
     | 
    
         
             
                        )
         
     | 
| 
      
 1475 
     | 
    
         
            +
                        torch._dynamo.graph_break()
         
     | 
| 
       1404 
1476 
     | 
    
         | 
| 
       1405 
1477 
     | 
    
         
             
                        return q.reshape(query_shape), k.reshape(key_shape)
         
     | 
| 
       1406 
1478 
     | 
    
         | 
    
        sglang/srt/lora/lora_registry.py
    CHANGED
    
    | 
         @@ -205,3 +205,12 @@ class LoRARegistry: 
     | 
|
| 
       205 
205 
     | 
    
         
             
                    Returns the total number of LoRA adapters currently registered.
         
     | 
| 
       206 
206 
     | 
    
         
             
                    """
         
     | 
| 
       207 
207 
     | 
    
         
             
                    return len(self._registry)
         
     | 
| 
      
 208 
     | 
    
         
            +
             
     | 
| 
      
 209 
     | 
    
         
            +
                def get_all_adapters(self) -> Dict[str, LoRARef]:
         
     | 
| 
      
 210 
     | 
    
         
            +
                    """
         
     | 
| 
      
 211 
     | 
    
         
            +
                    Returns a dictionary of all registered LoRA adapters.
         
     | 
| 
      
 212 
     | 
    
         
            +
             
     | 
| 
      
 213 
     | 
    
         
            +
                    Returns:
         
     | 
| 
      
 214 
     | 
    
         
            +
                        Dict[str, LoRARef]: A dictionary mapping LoRA names to LoRARef objects.
         
     | 
| 
      
 215 
     | 
    
         
            +
                    """
         
     | 
| 
      
 216 
     | 
    
         
            +
                    return dict(self._registry)
         
     | 
| 
         @@ -0,0 +1,122 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            import asyncio
         
     | 
| 
      
 2 
     | 
    
         
            +
            import logging
         
     | 
| 
      
 3 
     | 
    
         
            +
            from concurrent.futures import ThreadPoolExecutor
         
     | 
| 
      
 4 
     | 
    
         
            +
            from functools import partial
         
     | 
| 
      
 5 
     | 
    
         
            +
            from typing import Any, Dict, List, Optional, Union
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
             
     | 
| 
      
 10 
     | 
    
         
            +
            class AsyncMMDataProcessor:
         
     | 
| 
      
 11 
     | 
    
         
            +
                """
         
     | 
| 
      
 12 
     | 
    
         
            +
                Async wrapper for a multimodal processor.
         
     | 
| 
      
 13 
     | 
    
         
            +
             
     | 
| 
      
 14 
     | 
    
         
            +
                Behavior:
         
     | 
| 
      
 15 
     | 
    
         
            +
                  - If the underlying processor exposes `process_mm_data_async`, call/await it directly.
         
     | 
| 
      
 16 
     | 
    
         
            +
                  - Otherwise, fall back to running a synchronous `process_mm_data` in a thread pool.
         
     | 
| 
      
 17 
     | 
    
         
            +
                  - Optionally guard per-call concurrency via an asyncio.Semaphore.
         
     | 
| 
      
 18 
     | 
    
         
            +
                  - Optionally enforce per-call timeout via asyncio.wait_for.
         
     | 
| 
      
 19 
     | 
    
         
            +
                """
         
     | 
| 
      
 20 
     | 
    
         
            +
             
     | 
| 
      
 21 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 22 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 23 
     | 
    
         
            +
                    mm_processor: Any,
         
     | 
| 
      
 24 
     | 
    
         
            +
                    *,
         
     | 
| 
      
 25 
     | 
    
         
            +
                    max_concurrent_calls: Optional[int] = None,
         
     | 
| 
      
 26 
     | 
    
         
            +
                    timeout_s: Optional[float] = None,
         
     | 
| 
      
 27 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 28 
     | 
    
         
            +
                    """
         
     | 
| 
      
 29 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 30 
     | 
    
         
            +
                        mm_processor: An object exposing either
         
     | 
| 
      
 31 
     | 
    
         
            +
                            - async def process_mm_data_async(...): -> Dict[str, Any]
         
     | 
| 
      
 32 
     | 
    
         
            +
                          or
         
     | 
| 
      
 33 
     | 
    
         
            +
                            - def process_mm_data(...): -> Dict[str, Any]
         
     | 
| 
      
 34 
     | 
    
         
            +
                        max_concurrent_calls: Optional concurrency cap for per-call execution.
         
     | 
| 
      
 35 
     | 
    
         
            +
                        timeout_s: Optional timeout (seconds) for each `process()` call.
         
     | 
| 
      
 36 
     | 
    
         
            +
                    """
         
     | 
| 
      
 37 
     | 
    
         
            +
                    self.mm_processor = mm_processor
         
     | 
| 
      
 38 
     | 
    
         
            +
                    self.timeout_s = timeout_s
         
     | 
| 
      
 39 
     | 
    
         
            +
             
     | 
| 
      
 40 
     | 
    
         
            +
                    # Concurrency guard (None -> unlimited)
         
     | 
| 
      
 41 
     | 
    
         
            +
                    self.semaphore = (
         
     | 
| 
      
 42 
     | 
    
         
            +
                        asyncio.Semaphore(max_concurrent_calls) if max_concurrent_calls else None
         
     | 
| 
      
 43 
     | 
    
         
            +
                    )
         
     | 
| 
      
 44 
     | 
    
         
            +
             
     | 
| 
      
 45 
     | 
    
         
            +
                    # Detect async path; if missing, prepare a fallback executor for sync path
         
     | 
| 
      
 46 
     | 
    
         
            +
                    self._proc_async = getattr(mm_processor, "process_mm_data_async", None)
         
     | 
| 
      
 47 
     | 
    
         
            +
                    self.is_async = asyncio.iscoroutinefunction(self._proc_async)
         
     | 
| 
      
 48 
     | 
    
         
            +
                    self.fallback_exec: Optional[ThreadPoolExecutor] = (
         
     | 
| 
      
 49 
     | 
    
         
            +
                        ThreadPoolExecutor(max_workers=max_concurrent_calls)
         
     | 
| 
      
 50 
     | 
    
         
            +
                        if not self.is_async
         
     | 
| 
      
 51 
     | 
    
         
            +
                        else None
         
     | 
| 
      
 52 
     | 
    
         
            +
                    )
         
     | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
                async def process(
         
     | 
| 
      
 55 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 56 
     | 
    
         
            +
                    *,
         
     | 
| 
      
 57 
     | 
    
         
            +
                    image_data: Optional[List[Union[str, bytes]]] = None,
         
     | 
| 
      
 58 
     | 
    
         
            +
                    audio_data: Optional[List[Union[str, bytes]]] = None,
         
     | 
| 
      
 59 
     | 
    
         
            +
                    input_text_or_ids: Union[str, List[int], None] = None,
         
     | 
| 
      
 60 
     | 
    
         
            +
                    request_obj: Any,
         
     | 
| 
      
 61 
     | 
    
         
            +
                    **kwargs: Any,
         
     | 
| 
      
 62 
     | 
    
         
            +
                ) -> Dict[str, Any]:
         
     | 
| 
      
 63 
     | 
    
         
            +
                    """
         
     | 
| 
      
 64 
     | 
    
         
            +
                    Public entrypoint: process a single multimodal request without blocking the event loop.
         
     | 
| 
      
 65 
     | 
    
         
            +
                    """
         
     | 
| 
      
 66 
     | 
    
         
            +
             
     | 
| 
      
 67 
     | 
    
         
            +
                    async def _invoke() -> Dict[str, Any]:
         
     | 
| 
      
 68 
     | 
    
         
            +
                        if self.is_async:
         
     | 
| 
      
 69 
     | 
    
         
            +
                            # Native async implementation
         
     | 
| 
      
 70 
     | 
    
         
            +
                            return await self._proc_async(
         
     | 
| 
      
 71 
     | 
    
         
            +
                                image_data=image_data,
         
     | 
| 
      
 72 
     | 
    
         
            +
                                audio_data=audio_data,
         
     | 
| 
      
 73 
     | 
    
         
            +
                                input_text=input_text_or_ids,
         
     | 
| 
      
 74 
     | 
    
         
            +
                                request_obj=request_obj,
         
     | 
| 
      
 75 
     | 
    
         
            +
                                **kwargs,
         
     | 
| 
      
 76 
     | 
    
         
            +
                            )
         
     | 
| 
      
 77 
     | 
    
         
            +
             
     | 
| 
      
 78 
     | 
    
         
            +
                        # Synchronous fallback
         
     | 
| 
      
 79 
     | 
    
         
            +
                        sync_fn = getattr(self.mm_processor, "process_mm_data", None)
         
     | 
| 
      
 80 
     | 
    
         
            +
                        if not callable(sync_fn):
         
     | 
| 
      
 81 
     | 
    
         
            +
                            raise RuntimeError(
         
     | 
| 
      
 82 
     | 
    
         
            +
                                "mm_processor has neither 'process_mm_data_async' nor 'process_mm_data'."
         
     | 
| 
      
 83 
     | 
    
         
            +
                            )
         
     | 
| 
      
 84 
     | 
    
         
            +
                        loop = asyncio.get_running_loop()
         
     | 
| 
      
 85 
     | 
    
         
            +
                        fn = partial(
         
     | 
| 
      
 86 
     | 
    
         
            +
                            sync_fn,
         
     | 
| 
      
 87 
     | 
    
         
            +
                            image_data=image_data,
         
     | 
| 
      
 88 
     | 
    
         
            +
                            audio_data=audio_data,
         
     | 
| 
      
 89 
     | 
    
         
            +
                            input_text=input_text_or_ids,
         
     | 
| 
      
 90 
     | 
    
         
            +
                            request_obj=request_obj,
         
     | 
| 
      
 91 
     | 
    
         
            +
                            **kwargs,
         
     | 
| 
      
 92 
     | 
    
         
            +
                        )
         
     | 
| 
      
 93 
     | 
    
         
            +
                        return await loop.run_in_executor(self.fallback_exec, fn)
         
     | 
| 
      
 94 
     | 
    
         
            +
             
     | 
| 
      
 95 
     | 
    
         
            +
                    # Apply optional concurrency guard
         
     | 
| 
      
 96 
     | 
    
         
            +
                    if self.semaphore is not None:
         
     | 
| 
      
 97 
     | 
    
         
            +
                        async with self.semaphore:
         
     | 
| 
      
 98 
     | 
    
         
            +
                            if self.timeout_s is not None:
         
     | 
| 
      
 99 
     | 
    
         
            +
                                return await asyncio.wait_for(_invoke(), timeout=self.timeout_s)
         
     | 
| 
      
 100 
     | 
    
         
            +
                            return await _invoke()
         
     | 
| 
      
 101 
     | 
    
         
            +
             
     | 
| 
      
 102 
     | 
    
         
            +
                    # No concurrency guard
         
     | 
| 
      
 103 
     | 
    
         
            +
                    if self.timeout_s is not None:
         
     | 
| 
      
 104 
     | 
    
         
            +
                        return await asyncio.wait_for(_invoke(), timeout=self.timeout_s)
         
     | 
| 
      
 105 
     | 
    
         
            +
                    return await _invoke()
         
     | 
| 
      
 106 
     | 
    
         
            +
             
     | 
| 
      
 107 
     | 
    
         
            +
                def shutdown(self) -> None:
         
     | 
| 
      
 108 
     | 
    
         
            +
                    """Gracefully shutdown resources owned by this wrapper."""
         
     | 
| 
      
 109 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 110 
     | 
    
         
            +
                        if self.fallback_exec:
         
     | 
| 
      
 111 
     | 
    
         
            +
                            self.fallback_exec.shutdown(wait=False)
         
     | 
| 
      
 112 
     | 
    
         
            +
                    except Exception:
         
     | 
| 
      
 113 
     | 
    
         
            +
                        logger.exception(
         
     | 
| 
      
 114 
     | 
    
         
            +
                            "Error while shutting down fallback executor in AsyncMMDataProcessor"
         
     | 
| 
      
 115 
     | 
    
         
            +
                        )
         
     | 
| 
      
 116 
     | 
    
         
            +
             
     | 
| 
      
 117 
     | 
    
         
            +
                def __del__(self):
         
     | 
| 
      
 118 
     | 
    
         
            +
                    # Best-effort shutdown
         
     | 
| 
      
 119 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 120 
     | 
    
         
            +
                        self.shutdown()
         
     | 
| 
      
 121 
     | 
    
         
            +
                    except Exception:
         
     | 
| 
      
 122 
     | 
    
         
            +
                        pass
         
     |