sglang 0.5.2rc2__py3-none-any.whl → 0.5.3.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +7 -11
- sglang/bench_one_batch_server.py +330 -31
- sglang/bench_serving.py +474 -142
- sglang/compile_deep_gemm.py +3 -0
- sglang/global_config.py +2 -2
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/profiler.py +2 -2
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
- sglang/srt/configs/__init__.py +10 -0
- sglang/srt/configs/device_config.py +3 -1
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +139 -0
- sglang/srt/configs/falcon_h1.py +314 -0
- sglang/srt/configs/load_config.py +9 -0
- sglang/srt/configs/mamba_utils.py +117 -0
- sglang/srt/configs/model_config.py +228 -92
- sglang/srt/configs/nemotron_h.py +286 -0
- sglang/srt/configs/qwen3_next.py +294 -0
- sglang/srt/configs/qwen3_vl.py +586 -0
- sglang/srt/connector/__init__.py +8 -1
- sglang/srt/connector/remote_instance.py +82 -0
- sglang/srt/constrained/base_grammar_backend.py +49 -12
- sglang/srt/constrained/llguidance_backend.py +0 -1
- sglang/srt/constrained/outlines_backend.py +0 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/xgrammar_backend.py +30 -9
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +21 -6
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +279 -108
- sglang/srt/disaggregation/decode.py +78 -37
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -445
- sglang/srt/disaggregation/mooncake/conn.py +55 -537
- sglang/srt/disaggregation/nixl/conn.py +373 -68
- sglang/srt/disaggregation/prefill.py +53 -49
- sglang/srt/disaggregation/utils.py +40 -54
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/parallel_state.py +156 -80
- sglang/srt/entrypoints/engine.py +59 -18
- sglang/srt/entrypoints/grpc_request_manager.py +842 -0
- sglang/srt/entrypoints/grpc_server.py +950 -0
- sglang/srt/entrypoints/http_server.py +179 -60
- sglang/srt/entrypoints/openai/protocol.py +265 -29
- sglang/srt/entrypoints/openai/serving_base.py +65 -3
- sglang/srt/entrypoints/openai/serving_chat.py +213 -122
- sglang/srt/entrypoints/openai/serving_completions.py +14 -3
- sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
- sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
- sglang/srt/entrypoints/openai/serving_responses.py +48 -3
- sglang/srt/entrypoints/openai/serving_score.py +1 -0
- sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
- sglang/srt/environ.py +289 -0
- sglang/srt/eplb/eplb_manager.py +2 -2
- sglang/srt/eplb/expert_distribution.py +26 -13
- sglang/srt/eplb/expert_location.py +38 -8
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/base_format_detector.py +3 -6
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/function_call_parser.py +17 -8
- sglang/srt/function_call/glm4_moe_detector.py +4 -4
- sglang/srt/function_call/gpt_oss_detector.py +23 -0
- sglang/srt/function_call/json_array_parser.py +63 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/function_call/utils.py +96 -5
- sglang/srt/grpc/__init__.py +1 -0
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +119 -0
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +492 -0
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +327 -0
- sglang/srt/layers/activation.py +143 -9
- sglang/srt/layers/attention/aiter_backend.py +14 -15
- sglang/srt/layers/attention/ascend_backend.py +115 -9
- sglang/srt/layers/attention/attention_registry.py +215 -0
- sglang/srt/layers/attention/base_attn_backend.py +12 -3
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +343 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashattention_backend.py +40 -8
- sglang/srt/layers/attention/flashinfer_backend.py +341 -204
- sglang/srt/layers/attention/flashinfer_mla_backend.py +28 -28
- sglang/srt/layers/attention/flashmla_backend.py +7 -5
- sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +708 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +974 -0
- sglang/srt/layers/attention/mamba/mamba.py +577 -0
- sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
- sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/utils.py +24 -0
- sglang/srt/layers/attention/nsa_backend.py +887 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/triton_backend.py +57 -7
- sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
- sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
- sglang/srt/layers/attention/vision.py +58 -0
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +8 -0
- sglang/srt/layers/dp_attention.py +41 -2
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +34 -15
- sglang/srt/layers/linear.py +55 -7
- sglang/srt/layers/logits_processor.py +180 -18
- sglang/srt/layers/modelopt_utils.py +11 -0
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +21 -24
- sglang/srt/layers/moe/ep_moe/kernels.py +33 -454
- sglang/srt/layers/moe/ep_moe/layer.py +248 -333
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
- sglang/srt/layers/moe/fused_moe_triton/layer.py +68 -72
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
- sglang/srt/layers/moe/moe_runner/runner.py +83 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +30 -9
- sglang/srt/layers/moe/utils.py +29 -7
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/__init__.py +1 -1
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +155 -60
- sglang/srt/layers/quantization/fp8_utils.py +51 -32
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +191 -56
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +74 -42
- sglang/srt/layers/quantization/quark/quark.py +3 -1
- sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/w4afp8.py +28 -33
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +91 -41
- sglang/srt/layers/rotary_embedding.py +78 -31
- sglang/srt/layers/sampler.py +213 -21
- sglang/srt/layers/utils.py +23 -0
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +99 -5
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +8 -3
- sglang/srt/lora/lora_manager.py +44 -118
- sglang/srt/lora/mem_pool.py +25 -11
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
- sglang/srt/lora/utils.py +22 -11
- sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
- sglang/srt/managers/cache_controller.py +199 -301
- sglang/srt/managers/data_parallel_controller.py +115 -80
- sglang/srt/managers/detokenizer_manager.py +19 -15
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +340 -109
- sglang/srt/managers/mm_utils.py +44 -6
- sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +55 -0
- sglang/srt/managers/schedule_batch.py +343 -212
- sglang/srt/managers/schedule_policy.py +145 -18
- sglang/srt/managers/scheduler.py +653 -273
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
- sglang/srt/managers/scheduler_output_processor_mixin.py +255 -108
- sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
- sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
- sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
- sglang/srt/managers/tokenizer_manager.py +579 -674
- sglang/srt/managers/tp_worker.py +96 -26
- sglang/srt/managers/utils.py +1 -45
- sglang/srt/mem_cache/allocator.py +21 -22
- sglang/srt/mem_cache/allocator_ascend.py +41 -27
- sglang/srt/mem_cache/base_prefix_cache.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +9 -2
- sglang/srt/mem_cache/evict_policy.py +23 -0
- sglang/srt/mem_cache/hicache_storage.py +43 -24
- sglang/srt/mem_cache/hiradix_cache.py +222 -75
- sglang/srt/mem_cache/memory_pool.py +651 -80
- sglang/srt/mem_cache/memory_pool_host.py +239 -228
- sglang/srt/mem_cache/radix_cache.py +227 -73
- sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
- sglang/srt/mem_cache/swa_radix_cache.py +93 -48
- sglang/srt/metrics/collector.py +511 -132
- sglang/srt/metrics/func_timer.py +2 -7
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +52 -37
- sglang/srt/model_executor/forward_batch_info.py +74 -46
- sglang/srt/model_executor/model_runner.py +455 -176
- sglang/srt/model_executor/npu_graph_runner.py +12 -5
- sglang/srt/model_loader/__init__.py +10 -4
- sglang/srt/model_loader/loader.py +319 -10
- sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
- sglang/srt/model_loader/weight_utils.py +161 -3
- sglang/srt/models/apertus.py +686 -0
- sglang/srt/models/bailing_moe.py +820 -217
- sglang/srt/models/bailing_moe_nextn.py +168 -0
- sglang/srt/models/deepseek_nextn.py +6 -1
- sglang/srt/models/deepseek_v2.py +607 -130
- sglang/srt/models/dots_ocr.py +173 -0
- sglang/srt/models/dots_vlm.py +174 -0
- sglang/srt/models/dots_vlm_vit.py +337 -0
- sglang/srt/models/ernie4.py +1 -1
- sglang/srt/models/falcon_h1.py +578 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +17 -1
- sglang/srt/models/gemma3n_mm.py +2 -2
- sglang/srt/models/glm4_moe.py +4 -4
- sglang/srt/models/glm4_moe_nextn.py +2 -2
- sglang/srt/models/glm4v.py +5 -3
- sglang/srt/models/glm4v_moe.py +4 -1
- sglang/srt/models/gpt_oss.py +8 -31
- sglang/srt/models/grok.py +5 -13
- sglang/srt/models/kimi_vl_moonvit.py +2 -2
- sglang/srt/models/llama.py +4 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +13 -0
- sglang/srt/models/longcat_flash.py +3 -3
- sglang/srt/models/longcat_flash_nextn.py +1 -1
- sglang/srt/models/mixtral.py +1 -3
- sglang/srt/models/mllama4.py +50 -4
- sglang/srt/models/nemotron_h.py +514 -0
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2_5_vl.py +29 -5
- sglang/srt/models/qwen2_audio.py +1 -1
- sglang/srt/models/qwen2_moe.py +120 -13
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +32 -4
- sglang/srt/models/qwen3_next.py +1069 -0
- sglang/srt/models/qwen3_next_mtp.py +112 -0
- sglang/srt/models/qwen3_vl.py +787 -0
- sglang/srt/models/qwen3_vl_moe.py +471 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/sarashina2_vision.py +269 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +1 -1
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +55 -0
- sglang/srt/multimodal/processors/base_processor.py +15 -7
- sglang/srt/multimodal/processors/dots_vlm.py +98 -0
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +153 -129
- sglang/srt/multimodal/processors/qwen_vl.py +23 -6
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/offloader.py +27 -3
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/sampling/sampling_batch_info.py +49 -26
- sglang/srt/sampling/sampling_params.py +7 -0
- sglang/srt/server_args.py +1051 -285
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +151 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
- sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
- sglang/srt/speculative/eagle_worker.py +98 -29
- sglang/srt/speculative/ngram_info.py +428 -0
- sglang/srt/speculative/ngram_worker.py +246 -0
- sglang/srt/speculative/spec_info.py +52 -0
- sglang/srt/speculative/spec_utils.py +605 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/torch_memory_saver_adapter.py +5 -7
- sglang/srt/tracing/trace.py +578 -0
- sglang/srt/two_batch_overlap.py +9 -5
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{utils.py → utils/common.py} +451 -77
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +55 -5
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +2 -2
- sglang/test/attention/test_trtllm_mla_backend.py +169 -5
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/longbench_v2/__init__.py +1 -0
- sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
- sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
- sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
- sglang/test/run_eval.py +119 -11
- sglang/test/runners.py +5 -1
- sglang/test/simple_eval_common.py +5 -2
- sglang/test/simple_eval_longbench_v2.py +332 -0
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +2 -2
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_cutlass_w4a8_moe.py +9 -19
- sglang/test/test_deterministic.py +313 -0
- sglang/test/test_deterministic_utils.py +81 -0
- sglang/test/test_disaggregation_utils.py +140 -0
- sglang/test/test_fp4_moe.py +370 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +407 -8
- sglang/utils.py +21 -1
- sglang/version.py +1 -1
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/METADATA +69 -124
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/RECORD +392 -251
- sglang/srt/disaggregation/launch_lb.py +0 -118
- sglang/srt/managers/tp_worker_overlap_thread.py +0 -296
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- sglang/test/test_block_fp8_ep.py +0 -358
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/WHEEL +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/top_level.txt +0 -0
@@ -130,28 +130,30 @@ def deepep_run_moe_deep_preprocess(topk_ids: torch.Tensor, num_experts: int):
|
|
130
130
|
|
131
131
|
@triton.jit
|
132
132
|
def compute_seg_indptr_triton_kernel(reorder_topk_ids, seg_indptr, num_toks):
|
133
|
-
|
133
|
+
expert_id_minus_1 = tl.program_id(0) - 1
|
134
134
|
low = 0
|
135
135
|
high = num_toks - 1
|
136
136
|
target_location = -1
|
137
137
|
while low <= high:
|
138
138
|
mid = (low + high) // 2
|
139
139
|
|
140
|
-
if tl.load(reorder_topk_ids + mid) >
|
140
|
+
if tl.load(reorder_topk_ids + mid) > expert_id_minus_1:
|
141
141
|
high = mid - 1
|
142
142
|
else:
|
143
143
|
low = mid + 1
|
144
144
|
target_location = mid
|
145
|
-
tl.store(seg_indptr +
|
145
|
+
tl.store(seg_indptr + expert_id_minus_1 + 1, target_location + 1)
|
146
146
|
|
147
147
|
|
148
|
-
def run_moe_ep_preproess(topk_ids: torch.Tensor,
|
148
|
+
def run_moe_ep_preproess(topk_ids: torch.Tensor, num_local_experts: int):
|
149
149
|
reorder_topk_ids, reorder_ids = torch.sort(topk_ids.view(-1), stable=True)
|
150
150
|
|
151
|
-
seg_indptr = torch.zeros(
|
151
|
+
seg_indptr = torch.zeros(
|
152
|
+
num_local_experts + 1, device=topk_ids.device, dtype=torch.int64
|
153
|
+
)
|
152
154
|
src2dst = torch.empty(topk_ids.numel(), device=topk_ids.device, dtype=torch.int32)
|
153
155
|
|
154
|
-
compute_seg_indptr_triton_kernel[(
|
156
|
+
compute_seg_indptr_triton_kernel[(num_local_experts,)](
|
155
157
|
reorder_topk_ids, seg_indptr, topk_ids.numel()
|
156
158
|
)
|
157
159
|
|
@@ -164,25 +166,6 @@ def run_moe_ep_preproess(topk_ids: torch.Tensor, num_experts: int):
|
|
164
166
|
return reorder_topk_ids, src2dst, seg_indptr
|
165
167
|
|
166
168
|
|
167
|
-
def run_cutlass_moe_ep_preproess(local_topk_ids: torch.Tensor, local_num_experts: int):
|
168
|
-
reorder_topk_ids, reorder_ids = torch.sort(local_topk_ids.view(-1), stable=True)
|
169
|
-
|
170
|
-
seg_indptr = torch.zeros(
|
171
|
-
local_num_experts + 1, device=local_topk_ids.device, dtype=torch.int64
|
172
|
-
)
|
173
|
-
src2dst = torch.empty(
|
174
|
-
local_topk_ids.numel(), device=local_topk_ids.device, dtype=torch.int32
|
175
|
-
)
|
176
|
-
|
177
|
-
BLOCK_SIZE = 512
|
178
|
-
grid = (triton.cdiv(local_topk_ids.numel(), BLOCK_SIZE),)
|
179
|
-
compute_src2dst_triton_kernel[grid](
|
180
|
-
reorder_ids, src2dst, local_topk_ids.numel(), BLOCK_SIZE
|
181
|
-
)
|
182
|
-
|
183
|
-
return reorder_topk_ids, src2dst, seg_indptr
|
184
|
-
|
185
|
-
|
186
169
|
@triton.jit
|
187
170
|
def pre_reorder_triton_kernel_for_cutlass_moe(
|
188
171
|
input_ptr,
|
@@ -190,52 +173,13 @@ def pre_reorder_triton_kernel_for_cutlass_moe(
|
|
190
173
|
src2dst_ptr,
|
191
174
|
topk_ids_ptr,
|
192
175
|
a1_scales_ptr,
|
193
|
-
|
176
|
+
num_local_experts,
|
194
177
|
topk,
|
195
178
|
hidden_size,
|
196
179
|
BLOCK_SIZE: tl.constexpr,
|
197
180
|
):
|
198
181
|
OutDtype = gateup_input_ptr.dtype.element_ty
|
199
182
|
|
200
|
-
src_idx = tl.program_id(0)
|
201
|
-
src2dst_ptr = src2dst_ptr + src_idx * topk
|
202
|
-
topk_ids_ptr = topk_ids_ptr + src_idx * topk
|
203
|
-
|
204
|
-
src_ptr = input_ptr + src_idx * hidden_size
|
205
|
-
for idx in range(topk):
|
206
|
-
expert_id = tl.load(topk_ids_ptr + idx)
|
207
|
-
if expert_id != num_experts:
|
208
|
-
if a1_scales_ptr is not None:
|
209
|
-
scale = 1.0 / tl.load(a1_scales_ptr)
|
210
|
-
else:
|
211
|
-
scale = 1.0
|
212
|
-
|
213
|
-
dst_idx = tl.load(src2dst_ptr + idx)
|
214
|
-
dst_ptr = gateup_input_ptr + dst_idx * hidden_size
|
215
|
-
for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
|
216
|
-
offset = start_offset + tl.arange(0, BLOCK_SIZE)
|
217
|
-
mask = offset < hidden_size
|
218
|
-
in_data = tl.load(src_ptr + offset, mask=mask).to(tl.float32)
|
219
|
-
out_data = (in_data * scale).to(OutDtype)
|
220
|
-
tl.store(dst_ptr + offset, out_data, mask=mask)
|
221
|
-
|
222
|
-
|
223
|
-
@triton.jit
|
224
|
-
def pre_reorder_triton_kernel(
|
225
|
-
input_ptr,
|
226
|
-
gateup_input_ptr,
|
227
|
-
src2dst_ptr,
|
228
|
-
topk_ids_ptr,
|
229
|
-
a1_scales_ptr,
|
230
|
-
start_expert_id,
|
231
|
-
end_expert_id,
|
232
|
-
topk,
|
233
|
-
hidden_size,
|
234
|
-
BLOCK_SIZE: tl.constexpr,
|
235
|
-
use_per_token_if_dynamic: tl.constexpr,
|
236
|
-
):
|
237
|
-
OutDtype = gateup_input_ptr.dtype.element_ty
|
238
|
-
|
239
183
|
src_idx_int32 = tl.program_id(0)
|
240
184
|
src_idx = src_idx_int32.to(tl.int64)
|
241
185
|
src2dst_ptr = src2dst_ptr + src_idx * topk
|
@@ -244,15 +188,11 @@ def pre_reorder_triton_kernel(
|
|
244
188
|
|
245
189
|
vec = tl.arange(0, BLOCK_SIZE)
|
246
190
|
|
247
|
-
if a1_scales_ptr is not None and use_per_token_if_dynamic:
|
248
|
-
scale = 1.0 / tl.load(a1_scales_ptr + src_idx)
|
249
|
-
|
250
191
|
for idx in range(topk):
|
251
192
|
expert_id = tl.load(topk_ids_ptr + idx)
|
252
|
-
if expert_id
|
193
|
+
if expert_id != num_local_experts:
|
253
194
|
if a1_scales_ptr is not None:
|
254
|
-
|
255
|
-
scale = 1.0 / tl.load(a1_scales_ptr + expert_id - start_expert_id)
|
195
|
+
scale = 1.0 / tl.load(a1_scales_ptr)
|
256
196
|
else:
|
257
197
|
scale = 1.0
|
258
198
|
|
@@ -267,52 +207,6 @@ def pre_reorder_triton_kernel(
|
|
267
207
|
tl.store(dst_ptr + offset, out_data, mask=mask)
|
268
208
|
|
269
209
|
|
270
|
-
@triton.jit
|
271
|
-
def silu_and_mul_triton_kernel(
|
272
|
-
gateup_output,
|
273
|
-
down_input,
|
274
|
-
hidden_size,
|
275
|
-
reorder_topk_ids,
|
276
|
-
scales,
|
277
|
-
start_expert_id,
|
278
|
-
end_expert_id,
|
279
|
-
BLOCK_SIZE: tl.constexpr,
|
280
|
-
):
|
281
|
-
InDtype = gateup_output.dtype.element_ty
|
282
|
-
OutDtype = down_input.dtype.element_ty
|
283
|
-
|
284
|
-
half_hidden_size = hidden_size // 2
|
285
|
-
|
286
|
-
pid = tl.program_id(0)
|
287
|
-
expert_id = tl.load(reorder_topk_ids + pid)
|
288
|
-
if expert_id >= start_expert_id and expert_id <= end_expert_id:
|
289
|
-
gateup_output_ptr = gateup_output + pid * hidden_size
|
290
|
-
gate_output_ptr = gateup_output_ptr
|
291
|
-
up_output_ptr = gateup_output_ptr + half_hidden_size
|
292
|
-
down_input_ptr = down_input + pid * half_hidden_size
|
293
|
-
|
294
|
-
if scales is not None:
|
295
|
-
scale = tl.load(scales + expert_id - start_expert_id)
|
296
|
-
scale = (1 / scale).to(InDtype)
|
297
|
-
else:
|
298
|
-
scale = 1
|
299
|
-
|
300
|
-
for start_offset in tl.range(0, half_hidden_size, BLOCK_SIZE):
|
301
|
-
offset = start_offset + tl.arange(0, BLOCK_SIZE)
|
302
|
-
mask = offset < half_hidden_size
|
303
|
-
|
304
|
-
gate_output = tl.load(gate_output_ptr + offset, mask=mask).to(tl.float32)
|
305
|
-
up_output = tl.load(up_output_ptr + offset, mask=mask)
|
306
|
-
|
307
|
-
# silu & mul & quantize
|
308
|
-
gate_output = gate_output * tl.sigmoid(gate_output)
|
309
|
-
gate_output = gate_output.to(InDtype)
|
310
|
-
|
311
|
-
silu_mul_output = gate_output * up_output * scale
|
312
|
-
silu_mul_output = silu_mul_output.to(OutDtype)
|
313
|
-
tl.store(down_input_ptr + offset, silu_mul_output, mask=mask)
|
314
|
-
|
315
|
-
|
316
210
|
# copy from https://github.com/ModelTC/lightllm/blob/a000ab69098654df4731f5b12587dd4e7f0a4f41/lightllm/common/fused_moe/moe_silu_and_mul_mix_quant_ep.py
|
317
211
|
@triton.jit
|
318
212
|
def _silu_and_mul_post_quant_kernel(
|
@@ -461,84 +355,15 @@ def silu_and_mul_masked_post_quant_fwd(
|
|
461
355
|
|
462
356
|
|
463
357
|
@triton.jit
|
464
|
-
def
|
465
|
-
return 2 * tl.sigmoid(2 * x) - 1
|
466
|
-
|
467
|
-
|
468
|
-
@triton.jit
|
469
|
-
def gelu_and_mul_triton_kernel(
|
470
|
-
gateup_output,
|
471
|
-
down_input,
|
472
|
-
hidden_size,
|
473
|
-
reorder_topk_ids,
|
474
|
-
scales,
|
475
|
-
start_expert_id,
|
476
|
-
end_expert_id,
|
477
|
-
BLOCK_SIZE: tl.constexpr,
|
478
|
-
):
|
479
|
-
InDtype = gateup_output.dtype.element_ty
|
480
|
-
OutDtype = down_input.dtype.element_ty
|
481
|
-
|
482
|
-
half_hidden_size = hidden_size // 2
|
483
|
-
|
484
|
-
pid = tl.program_id(0)
|
485
|
-
expert_id = tl.load(reorder_topk_ids + pid)
|
486
|
-
if expert_id >= start_expert_id and expert_id <= end_expert_id:
|
487
|
-
gateup_output_ptr = gateup_output + pid * hidden_size
|
488
|
-
gate_output_ptr = gateup_output_ptr
|
489
|
-
up_output_ptr = gateup_output_ptr + half_hidden_size
|
490
|
-
down_input_ptr = down_input + pid * half_hidden_size
|
491
|
-
|
492
|
-
if scales is not None:
|
493
|
-
scale = tl.load(scales + expert_id - start_expert_id)
|
494
|
-
scale = (1 / scale).to(InDtype)
|
495
|
-
else:
|
496
|
-
scale = 1
|
497
|
-
|
498
|
-
for start_offset in tl.range(0, half_hidden_size, BLOCK_SIZE):
|
499
|
-
offset = start_offset + tl.arange(0, BLOCK_SIZE)
|
500
|
-
mask = offset < half_hidden_size
|
501
|
-
|
502
|
-
gate_output = tl.load(gate_output_ptr + offset, mask=mask).to(tl.float32)
|
503
|
-
up_output = tl.load(up_output_ptr + offset, mask=mask)
|
504
|
-
|
505
|
-
# gelu & mul & quantize
|
506
|
-
# https://pytorch.org/docs/stable/generated/torch.nn.GELU.html
|
507
|
-
# sqrt(2/pi)
|
508
|
-
kAlpha = 0.7978845608028654
|
509
|
-
gate_output = (
|
510
|
-
0.5
|
511
|
-
* gate_output
|
512
|
-
* (
|
513
|
-
1
|
514
|
-
+ tanh(
|
515
|
-
kAlpha
|
516
|
-
* (
|
517
|
-
gate_output
|
518
|
-
+ 0.044715 * gate_output * gate_output * gate_output
|
519
|
-
)
|
520
|
-
)
|
521
|
-
)
|
522
|
-
)
|
523
|
-
gate_output = gate_output.to(InDtype)
|
524
|
-
|
525
|
-
gelu_mul_output = gate_output * up_output * scale
|
526
|
-
gelu_mul_output = gelu_mul_output.to(OutDtype)
|
527
|
-
tl.store(down_input_ptr + offset, gelu_mul_output, mask=mask)
|
528
|
-
|
529
|
-
|
530
|
-
@triton.jit
|
531
|
-
def post_reorder_triton_kernel(
|
358
|
+
def post_reorder_triton_kernel_for_cutlass_moe(
|
532
359
|
down_output_ptr,
|
533
360
|
output_ptr,
|
534
361
|
src2dst_ptr,
|
535
362
|
topk_ids_ptr,
|
536
363
|
topk_weights_ptr,
|
537
|
-
start_expert_id,
|
538
|
-
end_expert_id,
|
539
364
|
topk,
|
365
|
+
num_local_experts,
|
540
366
|
hidden_size,
|
541
|
-
dst_start,
|
542
367
|
BLOCK_SIZE: tl.constexpr,
|
543
368
|
):
|
544
369
|
InDtype = down_output_ptr.dtype.element_ty
|
@@ -549,7 +374,6 @@ def post_reorder_triton_kernel(
|
|
549
374
|
topk_ids_ptr = topk_ids_ptr + src_idx * topk
|
550
375
|
topk_weights_ptr = topk_weights_ptr + src_idx * topk
|
551
376
|
|
552
|
-
computed = False
|
553
377
|
store_ptr = output_ptr + src_idx * hidden_size
|
554
378
|
|
555
379
|
vec = tl.arange(0, BLOCK_SIZE)
|
@@ -561,37 +385,25 @@ def post_reorder_triton_kernel(
|
|
561
385
|
sum_vec = tl.zeros([BLOCK_SIZE], dtype=InDtype)
|
562
386
|
for idx in range(topk):
|
563
387
|
expert_id = tl.load(topk_ids_ptr + idx)
|
564
|
-
if expert_id
|
565
|
-
computed = True
|
388
|
+
if expert_id != num_local_experts:
|
566
389
|
dst_idx_int32 = tl.load(src2dst_ptr + idx)
|
567
390
|
dst_idx = dst_idx_int32.to(tl.int64)
|
568
|
-
dst_idx = dst_idx - dst_start
|
569
391
|
weigh_scale = tl.load(topk_weights_ptr + idx).to(InDtype)
|
570
392
|
load_ptr = down_output_ptr + dst_idx * hidden_size
|
571
393
|
in_data = tl.load(load_ptr + offset, mask=mask)
|
572
394
|
sum_vec += in_data * weigh_scale
|
573
395
|
tl.store(store_ptr + offset, sum_vec, mask=mask)
|
574
396
|
|
575
|
-
if computed == False:
|
576
|
-
for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
|
577
|
-
offset = start_offset + vec
|
578
|
-
mask = offset < hidden_size
|
579
|
-
tl.store(
|
580
|
-
store_ptr + offset, tl.zeros([BLOCK_SIZE], dtype=InDtype), mask=mask
|
581
|
-
)
|
582
|
-
|
583
397
|
|
584
398
|
@triton.jit
|
585
|
-
def
|
399
|
+
def post_reorder_triton_kernel(
|
586
400
|
down_output_ptr,
|
587
401
|
output_ptr,
|
588
402
|
src2dst_ptr,
|
589
403
|
topk_ids_ptr,
|
590
404
|
topk_weights_ptr,
|
591
|
-
num_experts,
|
592
405
|
topk,
|
593
406
|
hidden_size,
|
594
|
-
dst_start,
|
595
407
|
BLOCK_SIZE: tl.constexpr,
|
596
408
|
):
|
597
409
|
InDtype = down_output_ptr.dtype.element_ty
|
@@ -613,10 +425,9 @@ def post_reorder_triton_kernel_for_cutlass_moe(
|
|
613
425
|
sum_vec = tl.zeros([BLOCK_SIZE], dtype=InDtype)
|
614
426
|
for idx in range(topk):
|
615
427
|
expert_id = tl.load(topk_ids_ptr + idx)
|
616
|
-
if expert_id
|
428
|
+
if expert_id > 0:
|
617
429
|
dst_idx_int32 = tl.load(src2dst_ptr + idx)
|
618
430
|
dst_idx = dst_idx_int32.to(tl.int64)
|
619
|
-
dst_idx = dst_idx - dst_start
|
620
431
|
weigh_scale = tl.load(topk_weights_ptr + idx).to(InDtype)
|
621
432
|
load_ptr = down_output_ptr + dst_idx * hidden_size
|
622
433
|
in_data = tl.load(load_ptr + offset, mask=mask)
|
@@ -624,232 +435,6 @@ def post_reorder_triton_kernel_for_cutlass_moe(
|
|
624
435
|
tl.store(store_ptr + offset, sum_vec, mask=mask)
|
625
436
|
|
626
437
|
|
627
|
-
@triton.jit
|
628
|
-
def compute_m_range(
|
629
|
-
pid,
|
630
|
-
batch_size,
|
631
|
-
seg_indptr,
|
632
|
-
weight_indices,
|
633
|
-
m_num_tiles_indptr,
|
634
|
-
BLOCK_SIZE_M: tl.constexpr,
|
635
|
-
):
|
636
|
-
idx = 0
|
637
|
-
for bs in range(batch_size):
|
638
|
-
tiles = tl.load(m_num_tiles_indptr + bs)
|
639
|
-
if pid >= tiles:
|
640
|
-
idx = bs
|
641
|
-
|
642
|
-
idx_start = tl.load(m_num_tiles_indptr + idx)
|
643
|
-
|
644
|
-
m_range_start = tl.load(seg_indptr + idx) + (pid - idx_start) * BLOCK_SIZE_M
|
645
|
-
m_range_end = min(tl.load(seg_indptr + idx + 1), m_range_start + BLOCK_SIZE_M)
|
646
|
-
expert_id = tl.load(weight_indices + idx)
|
647
|
-
return m_range_start, m_range_end, expert_id
|
648
|
-
|
649
|
-
|
650
|
-
@triton.jit
|
651
|
-
def grouped_gemm_triton_kernel(
|
652
|
-
a,
|
653
|
-
b,
|
654
|
-
c,
|
655
|
-
batch_size,
|
656
|
-
N,
|
657
|
-
K,
|
658
|
-
seg_indptr,
|
659
|
-
weight_indices,
|
660
|
-
m_num_tiles_indptr,
|
661
|
-
scale_a,
|
662
|
-
scale_b,
|
663
|
-
use_fp8_w8a8: tl.constexpr,
|
664
|
-
group_n: tl.constexpr,
|
665
|
-
group_k: tl.constexpr,
|
666
|
-
a_stride_0: tl.constexpr,
|
667
|
-
b_stride_0: tl.constexpr,
|
668
|
-
b_stride_1: tl.constexpr,
|
669
|
-
as_stride_0: tl.constexpr,
|
670
|
-
as_stride_1: tl.constexpr,
|
671
|
-
bs_stride_0: tl.constexpr,
|
672
|
-
bs_stride_2: tl.constexpr,
|
673
|
-
bs_stride_1: tl.constexpr,
|
674
|
-
use_per_token_if_dynamic: tl.constexpr,
|
675
|
-
BLOCK_SIZE_M: tl.constexpr,
|
676
|
-
BLOCK_SIZE_N: tl.constexpr,
|
677
|
-
BLOCK_SIZE_K: tl.constexpr,
|
678
|
-
):
|
679
|
-
c_dtype = c.dtype.element_ty
|
680
|
-
|
681
|
-
pid_m = tl.program_id(0)
|
682
|
-
pid_n = tl.program_id(1)
|
683
|
-
total_m_block = tl.load(m_num_tiles_indptr + batch_size)
|
684
|
-
if pid_m >= total_m_block:
|
685
|
-
return
|
686
|
-
|
687
|
-
m_range_start, m_range_end, expert_id = compute_m_range(
|
688
|
-
pid_m, batch_size, seg_indptr, weight_indices, m_num_tiles_indptr, BLOCK_SIZE_M
|
689
|
-
)
|
690
|
-
if m_range_end - m_range_start == 0:
|
691
|
-
return
|
692
|
-
|
693
|
-
n_range_start = pid_n * BLOCK_SIZE_N
|
694
|
-
n_range_end = min(n_range_start + BLOCK_SIZE_N, N)
|
695
|
-
|
696
|
-
offs_am = tl.arange(0, BLOCK_SIZE_M)
|
697
|
-
offs_bn = tl.arange(0, BLOCK_SIZE_N)
|
698
|
-
|
699
|
-
offs_am = tl.where(offs_am < m_range_end - m_range_start, offs_am, 0)
|
700
|
-
offs_bn = tl.where(offs_bn < n_range_end - n_range_start, offs_bn, 0)
|
701
|
-
offs_am = tl.max_contiguous(tl.multiple_of(offs_am, BLOCK_SIZE_M), BLOCK_SIZE_M)
|
702
|
-
offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn, BLOCK_SIZE_N), BLOCK_SIZE_N)
|
703
|
-
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
704
|
-
|
705
|
-
a_ptr = a + (m_range_start + offs_am[:, None]) * a_stride_0 + offs_k[None, :]
|
706
|
-
b_ptr = b + (
|
707
|
-
(expert_id * b_stride_0)
|
708
|
-
+ (n_range_start + offs_bn[:, None]) * b_stride_1
|
709
|
-
+ offs_k[None, :]
|
710
|
-
)
|
711
|
-
|
712
|
-
if group_k > 0 and group_n > 0:
|
713
|
-
a_scale_ptrs = scale_a + (m_range_start + offs_am[:, None]) * as_stride_0
|
714
|
-
offs_bsn = (n_range_start + offs_bn) // group_n
|
715
|
-
b_scale_ptrs = scale_b + (expert_id * bs_stride_0) + offs_bsn * bs_stride_1
|
716
|
-
|
717
|
-
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
718
|
-
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
|
719
|
-
a_tile = tl.load(
|
720
|
-
a_ptr, mask=offs_k[None, :] < (K - k * BLOCK_SIZE_K), other=0.0
|
721
|
-
)
|
722
|
-
b_tile = tl.load(
|
723
|
-
b_ptr, mask=offs_k[None, :] < (K - k * BLOCK_SIZE_K), other=0.0
|
724
|
-
)
|
725
|
-
|
726
|
-
if group_k > 0 and group_n > 0:
|
727
|
-
k_start = k * BLOCK_SIZE_K
|
728
|
-
offs_ks = k_start // group_k
|
729
|
-
a_scale = tl.load(a_scale_ptrs + offs_ks * as_stride_1)
|
730
|
-
b_scale = tl.load(b_scale_ptrs + offs_ks * bs_stride_2)
|
731
|
-
accumulator += tl.dot(a_tile, b_tile.T) * a_scale * b_scale[None, :]
|
732
|
-
else:
|
733
|
-
accumulator = tl.dot(a_tile, b_tile.T, accumulator)
|
734
|
-
a_ptr += BLOCK_SIZE_K
|
735
|
-
b_ptr += BLOCK_SIZE_K
|
736
|
-
|
737
|
-
if use_fp8_w8a8 and not (group_k > 0 and group_n > 0):
|
738
|
-
if use_per_token_if_dynamic:
|
739
|
-
scale_a_value = tl.load(scale_a + (m_range_start + offs_am[:, None]))
|
740
|
-
else:
|
741
|
-
scale_a_value = tl.load(scale_a + expert_id)
|
742
|
-
scale_b_value = tl.load(scale_b + expert_id)
|
743
|
-
accumulator *= scale_a_value * scale_b_value
|
744
|
-
|
745
|
-
c_tile = accumulator.to(c_dtype)
|
746
|
-
|
747
|
-
offs_cm = m_range_start + tl.arange(0, BLOCK_SIZE_M)
|
748
|
-
offs_cn = n_range_start + tl.arange(0, BLOCK_SIZE_N)
|
749
|
-
c_ptr = c + offs_cm[:, None] * N + offs_cn[None, :]
|
750
|
-
c_mask = (offs_cm[:, None] < m_range_end) & (offs_cn[None, :] < n_range_end)
|
751
|
-
tl.store(c_ptr, c_tile, mask=c_mask)
|
752
|
-
|
753
|
-
|
754
|
-
@triton.jit
|
755
|
-
def compute_m_num_tiles_indptr(
|
756
|
-
m_num_tiles_indptr, seg_indptr, batch_size: tl.constexpr, BLOCK_SIZE_M: tl.constexpr
|
757
|
-
):
|
758
|
-
for bs in range(batch_size):
|
759
|
-
m = tl.load(seg_indptr + bs + 1) - tl.load(seg_indptr + bs)
|
760
|
-
cur_num_tiles = tl.cdiv(m, BLOCK_SIZE_M)
|
761
|
-
pre_num_tiles = tl.load(m_num_tiles_indptr + bs)
|
762
|
-
tl.store(m_num_tiles_indptr + bs + 1, pre_num_tiles + cur_num_tiles)
|
763
|
-
|
764
|
-
|
765
|
-
def grouped_gemm_triton(
|
766
|
-
a: torch.Tensor,
|
767
|
-
b: torch.Tensor,
|
768
|
-
c: torch.Tensor,
|
769
|
-
batch_size: int,
|
770
|
-
weight_column_major: bool,
|
771
|
-
seg_indptr: Optional[torch.Tensor] = None,
|
772
|
-
weight_indices: Optional[torch.Tensor] = None,
|
773
|
-
use_fp8_w8a8: bool = False,
|
774
|
-
scale_a: torch.Tensor = None,
|
775
|
-
scale_b: torch.Tensor = None,
|
776
|
-
block_shape: Optional[List[int]] = None,
|
777
|
-
c_dtype=None,
|
778
|
-
use_per_token_if_dynamic: bool = True,
|
779
|
-
):
|
780
|
-
assert weight_column_major == True # TODO: more
|
781
|
-
if use_fp8_w8a8 and block_shape is None:
|
782
|
-
assert scale_a is not None and scale_b is not None
|
783
|
-
|
784
|
-
if block_shape is not None:
|
785
|
-
a_original = a
|
786
|
-
|
787
|
-
assert len(block_shape) == 2
|
788
|
-
block_n, block_k = block_shape[0], block_shape[1]
|
789
|
-
a, scale_a = per_token_group_quant_fp8(a, block_k)
|
790
|
-
|
791
|
-
assert triton.cdiv(a.shape[-1], block_k) == scale_a.shape[-1]
|
792
|
-
assert triton.cdiv(b.shape[-2], block_n) == scale_b.shape[-2]
|
793
|
-
assert triton.cdiv(b.shape[-1], block_k) == scale_b.shape[-1]
|
794
|
-
|
795
|
-
dispose_tensor(a_original)
|
796
|
-
|
797
|
-
# TODO: adjust config or tune kernel
|
798
|
-
# Reduce block size to prevent L40 shared memory overflow.
|
799
|
-
config = {
|
800
|
-
"BLOCK_SIZE_M": 64,
|
801
|
-
"BLOCK_SIZE_N": 32,
|
802
|
-
"BLOCK_SIZE_K": 128,
|
803
|
-
}
|
804
|
-
|
805
|
-
m_num_tiles_indptr = torch.zeros(batch_size + 1, device=a.device, dtype=torch.int64)
|
806
|
-
compute_m_num_tiles_indptr[(1,)](
|
807
|
-
m_num_tiles_indptr, seg_indptr, batch_size, config["BLOCK_SIZE_M"]
|
808
|
-
)
|
809
|
-
|
810
|
-
if c is None:
|
811
|
-
assert c_dtype is not None
|
812
|
-
c = torch.empty(a.shape[0], b.shape[1], device=a.device, dtype=c_dtype)
|
813
|
-
|
814
|
-
grid = lambda META: (
|
815
|
-
triton.cdiv(a.size(0), META["BLOCK_SIZE_M"]) + batch_size,
|
816
|
-
triton.cdiv(b.size(1), META["BLOCK_SIZE_N"]),
|
817
|
-
)
|
818
|
-
|
819
|
-
if use_fp8_w8a8 and block_shape is None and use_per_token_if_dynamic:
|
820
|
-
assert (
|
821
|
-
scale_a.shape[0] == a.shape[0]
|
822
|
-
), f"scale_a.shape: {scale_a.shape}, a.shape: {a.shape}"
|
823
|
-
|
824
|
-
grouped_gemm_triton_kernel[grid](
|
825
|
-
a,
|
826
|
-
b,
|
827
|
-
c,
|
828
|
-
batch_size,
|
829
|
-
b.size(1),
|
830
|
-
b.size(2),
|
831
|
-
seg_indptr,
|
832
|
-
weight_indices,
|
833
|
-
m_num_tiles_indptr,
|
834
|
-
scale_a,
|
835
|
-
scale_b,
|
836
|
-
use_fp8_w8a8,
|
837
|
-
0 if block_shape is None else block_shape[0],
|
838
|
-
0 if block_shape is None else block_shape[1],
|
839
|
-
a.stride(0),
|
840
|
-
b.stride(0),
|
841
|
-
b.stride(1),
|
842
|
-
scale_a.stride(0) if scale_a is not None and scale_a.ndim == 2 else 0,
|
843
|
-
scale_a.stride(1) if scale_a is not None and scale_a.ndim == 2 else 0,
|
844
|
-
scale_b.stride(0) if scale_b is not None and scale_b.ndim >= 2 else 0,
|
845
|
-
scale_b.stride(2) if scale_b is not None and scale_b.ndim == 3 else 0,
|
846
|
-
scale_b.stride(1) if scale_b is not None and scale_b.ndim >= 2 else 0,
|
847
|
-
use_per_token_if_dynamic,
|
848
|
-
**config,
|
849
|
-
)
|
850
|
-
return c
|
851
|
-
|
852
|
-
|
853
438
|
@triton.jit
|
854
439
|
def _fwd_kernel_ep_scatter_1(
|
855
440
|
num_recv_tokens_per_expert,
|
@@ -1104,10 +689,10 @@ def ep_gather(
|
|
1104
689
|
input_index: torch.Tensor,
|
1105
690
|
output_tensor: torch.Tensor,
|
1106
691
|
):
|
1107
|
-
BLOCK_D = 1024 if not is_in_ci() else 128 # block size of quantization
|
1108
692
|
num_warps = 2
|
1109
693
|
num_tokens = output_tensor.shape[0]
|
1110
694
|
hidden_size = input_tensor.shape[1]
|
695
|
+
BLOCK_D = 128 if hidden_size % 1024 != 0 else 1024 # block size of quantization
|
1111
696
|
assert hidden_size % BLOCK_D == 0
|
1112
697
|
grid = (triton.cdiv(hidden_size, BLOCK_D), min(num_tokens, 1024))
|
1113
698
|
_fwd_kernel_ep_gather[grid](
|
@@ -1234,7 +819,7 @@ def deepgemm_compute_src2dst_triton_kernel(
|
|
1234
819
|
mask = dst_id < num_toks
|
1235
820
|
src_id = tl.load(reorder_ids + dst_id, mask=mask)
|
1236
821
|
expert_id = tl.load(topk_ids + src_id, mask=(src_id < num_toks))
|
1237
|
-
expert_dst_start = tl.load(seg_indptr + expert_id)
|
822
|
+
expert_dst_start = tl.load(seg_indptr + expert_id, mask=(expert_id >= 0))
|
1238
823
|
expert_dst_offset = dst_id - expert_dst_start
|
1239
824
|
dst_id = expert_id * m_max + expert_dst_offset
|
1240
825
|
tl.store(src2dst + src_id, dst_id, mask=mask)
|
@@ -1248,10 +833,7 @@ def fill_gateup_input_triton_kernel(
|
|
1248
833
|
gateup_input_scale_ptr,
|
1249
834
|
src2dst_ptr,
|
1250
835
|
topk_ids_ptr,
|
1251
|
-
start_expert_id,
|
1252
|
-
end_expert_id,
|
1253
836
|
topk,
|
1254
|
-
m_max,
|
1255
837
|
hidden_size,
|
1256
838
|
scale_size,
|
1257
839
|
BLOCK_SIZE: tl.constexpr,
|
@@ -1267,10 +849,9 @@ def fill_gateup_input_triton_kernel(
|
|
1267
849
|
vec = tl.arange(0, BLOCK_SIZE)
|
1268
850
|
for idx in range(topk):
|
1269
851
|
expert_id = tl.load(topk_ids_ptr + idx)
|
1270
|
-
if expert_id >=
|
852
|
+
if expert_id >= 0:
|
1271
853
|
dst_idx_int32 = tl.load(src2dst_ptr + idx)
|
1272
854
|
dst_idx = dst_idx_int32.to(tl.int64)
|
1273
|
-
dst_idx = dst_idx - start_expert_id * m_max
|
1274
855
|
dst_ptr = gateup_input_ptr + dst_idx * hidden_size
|
1275
856
|
for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
|
1276
857
|
offset = start_offset + vec
|
@@ -1287,31 +868,31 @@ def fill_gateup_input_triton_kernel(
|
|
1287
868
|
|
1288
869
|
def moe_ep_deepgemm_preprocess(
|
1289
870
|
topk_ids: torch.Tensor,
|
1290
|
-
|
871
|
+
num_local_experts: int,
|
1291
872
|
hidden_states: torch.Tensor,
|
1292
873
|
top_k: int,
|
1293
|
-
start_expert_id,
|
1294
|
-
end_expert_id,
|
1295
874
|
block_shape,
|
1296
875
|
output_dtype: torch.dtype = torch.float8_e4m3fn,
|
1297
876
|
):
|
1298
877
|
reorder_topk_ids, reorder_ids = torch.sort(topk_ids.view(-1), stable=True)
|
1299
|
-
seg_indptr = torch.zeros(
|
878
|
+
seg_indptr = torch.zeros(
|
879
|
+
num_local_experts + 1, device=topk_ids.device, dtype=torch.int64
|
880
|
+
)
|
1300
881
|
src2dst = torch.empty(topk_ids.numel(), device=topk_ids.device, dtype=torch.int32)
|
1301
|
-
masked_m = torch.
|
882
|
+
masked_m = torch.empty(num_local_experts, device=topk_ids.device, dtype=torch.int32)
|
1302
883
|
|
1303
|
-
compute_seg_indptr_triton_kernel[(
|
884
|
+
compute_seg_indptr_triton_kernel[(num_local_experts + 1,)](
|
1304
885
|
reorder_topk_ids, seg_indptr, topk_ids.numel()
|
1305
886
|
)
|
1306
887
|
|
1307
888
|
grid = lambda meta: (triton.cdiv(topk_ids.numel(), meta["BLOCK_SIZE"]),)
|
1308
|
-
compute_masked_m_triton_kernel[(
|
889
|
+
compute_masked_m_triton_kernel[(num_local_experts,)](seg_indptr, masked_m)
|
1309
890
|
|
1310
891
|
# For masked grouped GEMM, shape M should be multiple of the block M (current block M: {block_m}) https://github.com/deepseek-ai/DeepGEMM/blob/main/deep_gemm/jit_kernels/m_grouped_gemm.py#L165
|
1311
|
-
m_max = (hidden_states.size(0) +
|
1312
|
-
expected_m = (topk_ids.numel()
|
892
|
+
m_max = (hidden_states.size(0) // 256 + 1) * 256
|
893
|
+
expected_m = (topk_ids.numel() - 1) // num_local_experts + 1
|
1313
894
|
gateup_input = torch.empty(
|
1314
|
-
(
|
895
|
+
(num_local_experts, m_max, hidden_states.size(1)),
|
1315
896
|
device=hidden_states.device,
|
1316
897
|
dtype=output_dtype,
|
1317
898
|
)
|
@@ -1330,6 +911,8 @@ def moe_ep_deepgemm_preprocess(
|
|
1330
911
|
block_shape = [128, 128]
|
1331
912
|
assert len(block_shape) == 2
|
1332
913
|
block_n, block_k = block_shape[0], block_shape[1]
|
914
|
+
|
915
|
+
# TODO: fuse this with the preprocess
|
1333
916
|
hidden_states, scale = per_token_group_quant_fp8(hidden_states, block_k)
|
1334
917
|
|
1335
918
|
gateup_input_scale = torch.empty(
|
@@ -1345,18 +928,14 @@ def moe_ep_deepgemm_preprocess(
|
|
1345
928
|
gateup_input_scale,
|
1346
929
|
src2dst,
|
1347
930
|
topk_ids,
|
1348
|
-
start_expert_id,
|
1349
|
-
end_expert_id,
|
1350
931
|
top_k,
|
1351
|
-
m_max,
|
1352
932
|
hidden_states.size(1),
|
1353
933
|
scale.size(1),
|
1354
934
|
BLOCK_SIZE=1024,
|
1355
935
|
)
|
1356
936
|
|
1357
937
|
return (
|
1358
|
-
|
1359
|
-
masked_m[start_expert_id : (end_expert_id + 1)],
|
938
|
+
masked_m,
|
1360
939
|
expected_m,
|
1361
940
|
src2dst,
|
1362
941
|
gateup_input,
|
@@ -1416,7 +995,7 @@ def zero_experts_compute_triton(
|
|
1416
995
|
zero_expert_scales[zero_expert_mask] = 0.0
|
1417
996
|
|
1418
997
|
normal_expert_mask = expert_indices >= num_experts
|
1419
|
-
expert_indices[normal_expert_mask] =
|
998
|
+
expert_indices[normal_expert_mask] = -1
|
1420
999
|
expert_scales[normal_expert_mask] = 0.0
|
1421
1000
|
|
1422
1001
|
output = torch.zeros_like(hidden_states).to(hidden_states.device)
|