sglang 0.5.2rc2__py3-none-any.whl → 0.5.3.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +7 -11
- sglang/bench_one_batch_server.py +330 -31
- sglang/bench_serving.py +474 -142
- sglang/compile_deep_gemm.py +3 -0
- sglang/global_config.py +2 -2
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/profiler.py +2 -2
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
- sglang/srt/configs/__init__.py +10 -0
- sglang/srt/configs/device_config.py +3 -1
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +139 -0
- sglang/srt/configs/falcon_h1.py +314 -0
- sglang/srt/configs/load_config.py +9 -0
- sglang/srt/configs/mamba_utils.py +117 -0
- sglang/srt/configs/model_config.py +228 -92
- sglang/srt/configs/nemotron_h.py +286 -0
- sglang/srt/configs/qwen3_next.py +294 -0
- sglang/srt/configs/qwen3_vl.py +586 -0
- sglang/srt/connector/__init__.py +8 -1
- sglang/srt/connector/remote_instance.py +82 -0
- sglang/srt/constrained/base_grammar_backend.py +49 -12
- sglang/srt/constrained/llguidance_backend.py +0 -1
- sglang/srt/constrained/outlines_backend.py +0 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/xgrammar_backend.py +30 -9
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +21 -6
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +279 -108
- sglang/srt/disaggregation/decode.py +78 -37
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -445
- sglang/srt/disaggregation/mooncake/conn.py +55 -537
- sglang/srt/disaggregation/nixl/conn.py +373 -68
- sglang/srt/disaggregation/prefill.py +53 -49
- sglang/srt/disaggregation/utils.py +40 -54
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/parallel_state.py +156 -80
- sglang/srt/entrypoints/engine.py +59 -18
- sglang/srt/entrypoints/grpc_request_manager.py +842 -0
- sglang/srt/entrypoints/grpc_server.py +950 -0
- sglang/srt/entrypoints/http_server.py +179 -60
- sglang/srt/entrypoints/openai/protocol.py +265 -29
- sglang/srt/entrypoints/openai/serving_base.py +65 -3
- sglang/srt/entrypoints/openai/serving_chat.py +213 -122
- sglang/srt/entrypoints/openai/serving_completions.py +14 -3
- sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
- sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
- sglang/srt/entrypoints/openai/serving_responses.py +48 -3
- sglang/srt/entrypoints/openai/serving_score.py +1 -0
- sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
- sglang/srt/environ.py +289 -0
- sglang/srt/eplb/eplb_manager.py +2 -2
- sglang/srt/eplb/expert_distribution.py +26 -13
- sglang/srt/eplb/expert_location.py +38 -8
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/base_format_detector.py +3 -6
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/function_call_parser.py +17 -8
- sglang/srt/function_call/glm4_moe_detector.py +4 -4
- sglang/srt/function_call/gpt_oss_detector.py +23 -0
- sglang/srt/function_call/json_array_parser.py +63 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/function_call/utils.py +96 -5
- sglang/srt/grpc/__init__.py +1 -0
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +119 -0
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +492 -0
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +327 -0
- sglang/srt/layers/activation.py +143 -9
- sglang/srt/layers/attention/aiter_backend.py +14 -15
- sglang/srt/layers/attention/ascend_backend.py +115 -9
- sglang/srt/layers/attention/attention_registry.py +215 -0
- sglang/srt/layers/attention/base_attn_backend.py +12 -3
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +343 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashattention_backend.py +40 -8
- sglang/srt/layers/attention/flashinfer_backend.py +341 -204
- sglang/srt/layers/attention/flashinfer_mla_backend.py +28 -28
- sglang/srt/layers/attention/flashmla_backend.py +7 -5
- sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +708 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +974 -0
- sglang/srt/layers/attention/mamba/mamba.py +577 -0
- sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
- sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/utils.py +24 -0
- sglang/srt/layers/attention/nsa_backend.py +887 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/triton_backend.py +57 -7
- sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
- sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
- sglang/srt/layers/attention/vision.py +58 -0
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +8 -0
- sglang/srt/layers/dp_attention.py +41 -2
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +34 -15
- sglang/srt/layers/linear.py +55 -7
- sglang/srt/layers/logits_processor.py +180 -18
- sglang/srt/layers/modelopt_utils.py +11 -0
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +21 -24
- sglang/srt/layers/moe/ep_moe/kernels.py +33 -454
- sglang/srt/layers/moe/ep_moe/layer.py +248 -333
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
- sglang/srt/layers/moe/fused_moe_triton/layer.py +68 -72
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
- sglang/srt/layers/moe/moe_runner/runner.py +83 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +30 -9
- sglang/srt/layers/moe/utils.py +29 -7
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/__init__.py +1 -1
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +155 -60
- sglang/srt/layers/quantization/fp8_utils.py +51 -32
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +191 -56
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +74 -42
- sglang/srt/layers/quantization/quark/quark.py +3 -1
- sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/w4afp8.py +28 -33
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +91 -41
- sglang/srt/layers/rotary_embedding.py +78 -31
- sglang/srt/layers/sampler.py +213 -21
- sglang/srt/layers/utils.py +23 -0
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +99 -5
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +8 -3
- sglang/srt/lora/lora_manager.py +44 -118
- sglang/srt/lora/mem_pool.py +25 -11
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
- sglang/srt/lora/utils.py +22 -11
- sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
- sglang/srt/managers/cache_controller.py +199 -301
- sglang/srt/managers/data_parallel_controller.py +115 -80
- sglang/srt/managers/detokenizer_manager.py +19 -15
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +340 -109
- sglang/srt/managers/mm_utils.py +44 -6
- sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +55 -0
- sglang/srt/managers/schedule_batch.py +343 -212
- sglang/srt/managers/schedule_policy.py +145 -18
- sglang/srt/managers/scheduler.py +653 -273
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
- sglang/srt/managers/scheduler_output_processor_mixin.py +255 -108
- sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
- sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
- sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
- sglang/srt/managers/tokenizer_manager.py +579 -674
- sglang/srt/managers/tp_worker.py +96 -26
- sglang/srt/managers/utils.py +1 -45
- sglang/srt/mem_cache/allocator.py +21 -22
- sglang/srt/mem_cache/allocator_ascend.py +41 -27
- sglang/srt/mem_cache/base_prefix_cache.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +9 -2
- sglang/srt/mem_cache/evict_policy.py +23 -0
- sglang/srt/mem_cache/hicache_storage.py +43 -24
- sglang/srt/mem_cache/hiradix_cache.py +222 -75
- sglang/srt/mem_cache/memory_pool.py +651 -80
- sglang/srt/mem_cache/memory_pool_host.py +239 -228
- sglang/srt/mem_cache/radix_cache.py +227 -73
- sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
- sglang/srt/mem_cache/swa_radix_cache.py +93 -48
- sglang/srt/metrics/collector.py +511 -132
- sglang/srt/metrics/func_timer.py +2 -7
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +52 -37
- sglang/srt/model_executor/forward_batch_info.py +74 -46
- sglang/srt/model_executor/model_runner.py +455 -176
- sglang/srt/model_executor/npu_graph_runner.py +12 -5
- sglang/srt/model_loader/__init__.py +10 -4
- sglang/srt/model_loader/loader.py +319 -10
- sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
- sglang/srt/model_loader/weight_utils.py +161 -3
- sglang/srt/models/apertus.py +686 -0
- sglang/srt/models/bailing_moe.py +820 -217
- sglang/srt/models/bailing_moe_nextn.py +168 -0
- sglang/srt/models/deepseek_nextn.py +6 -1
- sglang/srt/models/deepseek_v2.py +607 -130
- sglang/srt/models/dots_ocr.py +173 -0
- sglang/srt/models/dots_vlm.py +174 -0
- sglang/srt/models/dots_vlm_vit.py +337 -0
- sglang/srt/models/ernie4.py +1 -1
- sglang/srt/models/falcon_h1.py +578 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +17 -1
- sglang/srt/models/gemma3n_mm.py +2 -2
- sglang/srt/models/glm4_moe.py +4 -4
- sglang/srt/models/glm4_moe_nextn.py +2 -2
- sglang/srt/models/glm4v.py +5 -3
- sglang/srt/models/glm4v_moe.py +4 -1
- sglang/srt/models/gpt_oss.py +8 -31
- sglang/srt/models/grok.py +5 -13
- sglang/srt/models/kimi_vl_moonvit.py +2 -2
- sglang/srt/models/llama.py +4 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +13 -0
- sglang/srt/models/longcat_flash.py +3 -3
- sglang/srt/models/longcat_flash_nextn.py +1 -1
- sglang/srt/models/mixtral.py +1 -3
- sglang/srt/models/mllama4.py +50 -4
- sglang/srt/models/nemotron_h.py +514 -0
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2_5_vl.py +29 -5
- sglang/srt/models/qwen2_audio.py +1 -1
- sglang/srt/models/qwen2_moe.py +120 -13
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +32 -4
- sglang/srt/models/qwen3_next.py +1069 -0
- sglang/srt/models/qwen3_next_mtp.py +112 -0
- sglang/srt/models/qwen3_vl.py +787 -0
- sglang/srt/models/qwen3_vl_moe.py +471 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/sarashina2_vision.py +269 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +1 -1
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +55 -0
- sglang/srt/multimodal/processors/base_processor.py +15 -7
- sglang/srt/multimodal/processors/dots_vlm.py +98 -0
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +153 -129
- sglang/srt/multimodal/processors/qwen_vl.py +23 -6
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/offloader.py +27 -3
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/sampling/sampling_batch_info.py +49 -26
- sglang/srt/sampling/sampling_params.py +7 -0
- sglang/srt/server_args.py +1051 -285
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +151 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
- sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
- sglang/srt/speculative/eagle_worker.py +98 -29
- sglang/srt/speculative/ngram_info.py +428 -0
- sglang/srt/speculative/ngram_worker.py +246 -0
- sglang/srt/speculative/spec_info.py +52 -0
- sglang/srt/speculative/spec_utils.py +605 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/torch_memory_saver_adapter.py +5 -7
- sglang/srt/tracing/trace.py +578 -0
- sglang/srt/two_batch_overlap.py +9 -5
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{utils.py → utils/common.py} +451 -77
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +55 -5
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +2 -2
- sglang/test/attention/test_trtllm_mla_backend.py +169 -5
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/longbench_v2/__init__.py +1 -0
- sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
- sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
- sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
- sglang/test/run_eval.py +119 -11
- sglang/test/runners.py +5 -1
- sglang/test/simple_eval_common.py +5 -2
- sglang/test/simple_eval_longbench_v2.py +332 -0
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +2 -2
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_cutlass_w4a8_moe.py +9 -19
- sglang/test/test_deterministic.py +313 -0
- sglang/test/test_deterministic_utils.py +81 -0
- sglang/test/test_disaggregation_utils.py +140 -0
- sglang/test/test_fp4_moe.py +370 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +407 -8
- sglang/utils.py +21 -1
- sglang/version.py +1 -1
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/METADATA +69 -124
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/RECORD +392 -251
- sglang/srt/disaggregation/launch_lb.py +0 -118
- sglang/srt/managers/tp_worker_overlap_thread.py +0 -296
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- sglang/test/test_block_fp8_ep.py +0 -358
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/WHEEL +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,708 @@
|
|
1
|
+
from dataclasses import astuple, dataclass
|
2
|
+
from functools import lru_cache
|
3
|
+
from typing import Optional, Union
|
4
|
+
|
5
|
+
import torch
|
6
|
+
import torch.nn.functional as F
|
7
|
+
|
8
|
+
from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
|
9
|
+
from sglang.srt.layers.attention.fla.chunk import chunk_gated_delta_rule
|
10
|
+
from sglang.srt.layers.attention.fla.fused_recurrent import (
|
11
|
+
fused_recurrent_gated_delta_rule_update,
|
12
|
+
)
|
13
|
+
from sglang.srt.layers.attention.fla.fused_sigmoid_gating_recurrent import (
|
14
|
+
fused_sigmoid_gating_delta_rule_update,
|
15
|
+
)
|
16
|
+
from sglang.srt.layers.attention.mamba.causal_conv1d_triton import (
|
17
|
+
PAD_SLOT_ID,
|
18
|
+
causal_conv1d_fn,
|
19
|
+
causal_conv1d_update,
|
20
|
+
)
|
21
|
+
from sglang.srt.layers.attention.mamba.mamba import MambaMixer2
|
22
|
+
from sglang.srt.layers.attention.mamba.mamba2_metadata import (
|
23
|
+
ForwardMetadata,
|
24
|
+
Mamba2Metadata,
|
25
|
+
)
|
26
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
27
|
+
from sglang.srt.mem_cache.memory_pool import HybridReqToTokenPool, MambaPool
|
28
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
|
29
|
+
from sglang.srt.model_executor.model_runner import ModelRunner
|
30
|
+
from sglang.srt.models.qwen3_next import fused_gdn_gating
|
31
|
+
from sglang.srt.speculative.eagle_info import EagleDraftInput, EagleVerifyInput
|
32
|
+
from sglang.srt.speculative.spec_info import SpecInput
|
33
|
+
from sglang.srt.utils import is_cuda, is_npu
|
34
|
+
|
35
|
+
if is_cuda():
|
36
|
+
from sglang.srt.layers.attention.mamba.causal_conv1d import (
|
37
|
+
causal_conv1d_fn as causal_conv1d_fn_cuda,
|
38
|
+
)
|
39
|
+
|
40
|
+
causal_conv1d_fn = causal_conv1d_fn_cuda
|
41
|
+
elif is_npu():
|
42
|
+
from sgl_kernel_npu.fla.chunk import chunk_gated_delta_rule_npu
|
43
|
+
from sgl_kernel_npu.fla.fused_sigmoid_gating_recurrent import (
|
44
|
+
fused_sigmoid_gating_delta_rule_update_npu,
|
45
|
+
)
|
46
|
+
from sgl_kernel_npu.mamba.causal_conv1d import (
|
47
|
+
causal_conv1d_fn_npu,
|
48
|
+
causal_conv1d_update_npu,
|
49
|
+
)
|
50
|
+
|
51
|
+
chunk_gated_delta_rule = chunk_gated_delta_rule_npu
|
52
|
+
fused_sigmoid_gating_delta_rule_update = fused_sigmoid_gating_delta_rule_update_npu
|
53
|
+
causal_conv1d_fn = causal_conv1d_fn_npu
|
54
|
+
causal_conv1d_update = causal_conv1d_update_npu
|
55
|
+
|
56
|
+
|
57
|
+
class MambaAttnBackendBase(AttentionBackend):
|
58
|
+
def __init__(self, model_runner: ModelRunner):
|
59
|
+
super().__init__()
|
60
|
+
self.pad_slot_id = PAD_SLOT_ID
|
61
|
+
self.device = model_runner.device
|
62
|
+
self.req_to_token_pool: HybridReqToTokenPool = model_runner.req_to_token_pool
|
63
|
+
self.forward_metadata: ForwardMetadata = None
|
64
|
+
self.state_indices_list = []
|
65
|
+
self.query_start_loc_list = []
|
66
|
+
self.cached_cuda_graph_decode_query_start_loc: torch.Tensor = None
|
67
|
+
self.cached_cuda_graph_verify_query_start_loc: torch.Tensor = None
|
68
|
+
|
69
|
+
def _forward_metadata(self, forward_batch: ForwardBatch):
|
70
|
+
bs = forward_batch.batch_size
|
71
|
+
|
72
|
+
if forward_batch.forward_mode.is_decode_or_idle():
|
73
|
+
query_start_loc = torch.arange(
|
74
|
+
0, bs + 1, dtype=torch.int32, device=self.device
|
75
|
+
)
|
76
|
+
elif forward_batch.forward_mode.is_extend():
|
77
|
+
if forward_batch.forward_mode.is_target_verify():
|
78
|
+
query_start_loc = torch.arange(
|
79
|
+
0,
|
80
|
+
forward_batch.input_ids.shape[0] + 1,
|
81
|
+
step=forward_batch.spec_info.draft_token_num,
|
82
|
+
dtype=torch.int32,
|
83
|
+
device=forward_batch.input_ids.device,
|
84
|
+
)
|
85
|
+
else:
|
86
|
+
query_start_loc = torch.empty(
|
87
|
+
(bs + 1,), dtype=torch.int32, device=self.device
|
88
|
+
)
|
89
|
+
query_start_loc[:bs] = forward_batch.extend_start_loc
|
90
|
+
query_start_loc[bs] = (
|
91
|
+
forward_batch.extend_start_loc[-1]
|
92
|
+
+ forward_batch.extend_seq_lens[-1]
|
93
|
+
)
|
94
|
+
else:
|
95
|
+
raise ValueError(f"Invalid forward mode: {forward_batch.forward_mode=}")
|
96
|
+
mamba_cache_indices = self.req_to_token_pool.get_mamba_indices(
|
97
|
+
forward_batch.req_pool_indices
|
98
|
+
)
|
99
|
+
return ForwardMetadata(
|
100
|
+
query_start_loc=query_start_loc,
|
101
|
+
mamba_cache_indices=mamba_cache_indices,
|
102
|
+
)
|
103
|
+
|
104
|
+
def init_forward_metadata(self, forward_batch: ForwardBatch):
|
105
|
+
self.forward_metadata = self._forward_metadata(forward_batch)
|
106
|
+
|
107
|
+
def init_forward_metadata_capture_cuda_graph(
|
108
|
+
self,
|
109
|
+
bs: int,
|
110
|
+
num_tokens: int,
|
111
|
+
req_pool_indices: torch.Tensor,
|
112
|
+
seq_lens: torch.Tensor,
|
113
|
+
encoder_lens: Optional[torch.Tensor],
|
114
|
+
forward_mode: ForwardMode,
|
115
|
+
spec_info: Optional[Union[EagleDraftInput, EagleVerifyInput]],
|
116
|
+
):
|
117
|
+
self.forward_metadata = self._capture_metadata(
|
118
|
+
bs, req_pool_indices, forward_mode
|
119
|
+
)
|
120
|
+
|
121
|
+
def init_forward_metadata_replay_cuda_graph(
|
122
|
+
self,
|
123
|
+
bs: int,
|
124
|
+
req_pool_indices: torch.Tensor,
|
125
|
+
seq_lens: torch.Tensor,
|
126
|
+
seq_lens_sum: int,
|
127
|
+
encoder_lens: Optional[torch.Tensor],
|
128
|
+
forward_mode: ForwardMode,
|
129
|
+
spec_info: Optional[Union[EagleDraftInput, EagleVerifyInput]],
|
130
|
+
seq_lens_cpu: Optional[torch.Tensor],
|
131
|
+
):
|
132
|
+
self.forward_metadata = self._replay_metadata(
|
133
|
+
bs, req_pool_indices, forward_mode, spec_info, seq_lens_cpu
|
134
|
+
)
|
135
|
+
|
136
|
+
def init_cuda_graph_state(self, max_bs: int, max_num_tokens: int):
|
137
|
+
assert (
|
138
|
+
max_num_tokens % max_bs == 0
|
139
|
+
), f"max_num_tokens={max_num_tokens} must be divisible by max_bs={max_bs}"
|
140
|
+
verify_step = max_num_tokens / max_bs
|
141
|
+
for i in range(max_bs):
|
142
|
+
self.state_indices_list.append(
|
143
|
+
torch.full(
|
144
|
+
(i + 1,), self.pad_slot_id, dtype=torch.int32, device=self.device
|
145
|
+
)
|
146
|
+
)
|
147
|
+
self.query_start_loc_list.append(
|
148
|
+
torch.empty((i + 2,), dtype=torch.int32, device=self.device)
|
149
|
+
)
|
150
|
+
self.cached_cuda_graph_decode_query_start_loc = torch.arange(
|
151
|
+
0, max_bs + 1, dtype=torch.int32, device=self.device
|
152
|
+
)
|
153
|
+
self.cached_cuda_graph_verify_query_start_loc = torch.arange(
|
154
|
+
0,
|
155
|
+
max_bs * verify_step + 1,
|
156
|
+
step=verify_step,
|
157
|
+
dtype=torch.int32,
|
158
|
+
device=self.device,
|
159
|
+
)
|
160
|
+
|
161
|
+
def _capture_metadata(
|
162
|
+
self, bs: int, req_pool_indices: torch.Tensor, forward_mode: ForwardMode
|
163
|
+
):
|
164
|
+
if forward_mode.is_decode_or_idle():
|
165
|
+
self.query_start_loc_list[bs - 1].copy_(
|
166
|
+
self.cached_cuda_graph_decode_query_start_loc[: bs + 1]
|
167
|
+
)
|
168
|
+
elif forward_mode.is_target_verify():
|
169
|
+
self.query_start_loc_list[bs - 1].copy_(
|
170
|
+
self.cached_cuda_graph_verify_query_start_loc[: bs + 1]
|
171
|
+
)
|
172
|
+
else:
|
173
|
+
raise ValueError(f"Invalid forward mode: {forward_mode=}")
|
174
|
+
mamba_indices = self.req_to_token_pool.get_mamba_indices(req_pool_indices)
|
175
|
+
self.state_indices_list[bs - 1][: len(mamba_indices)].copy_(mamba_indices)
|
176
|
+
return ForwardMetadata(
|
177
|
+
query_start_loc=self.query_start_loc_list[bs - 1],
|
178
|
+
mamba_cache_indices=self.state_indices_list[bs - 1],
|
179
|
+
)
|
180
|
+
|
181
|
+
def _replay_metadata(
|
182
|
+
self,
|
183
|
+
bs: int,
|
184
|
+
req_pool_indices: torch.Tensor,
|
185
|
+
forward_mode: ForwardMode,
|
186
|
+
spec_info: Optional[SpecInput],
|
187
|
+
seq_lens_cpu: Optional[torch.Tensor],
|
188
|
+
):
|
189
|
+
num_padding = torch.count_nonzero(
|
190
|
+
seq_lens_cpu == self.get_cuda_graph_seq_len_fill_value()
|
191
|
+
)
|
192
|
+
# Make sure forward metadata is correctly handled for padding reqs
|
193
|
+
req_pool_indices[bs - num_padding :] = 0
|
194
|
+
mamba_indices = self.req_to_token_pool.get_mamba_indices(req_pool_indices)
|
195
|
+
mamba_indices[bs - num_padding :] = -1
|
196
|
+
self.state_indices_list[bs - 1][: len(mamba_indices)].copy_(mamba_indices)
|
197
|
+
if forward_mode.is_decode_or_idle():
|
198
|
+
if num_padding == 0:
|
199
|
+
self.query_start_loc_list[bs - 1].copy_(
|
200
|
+
self.cached_cuda_graph_decode_query_start_loc[: bs + 1]
|
201
|
+
)
|
202
|
+
else:
|
203
|
+
self.query_start_loc_list[bs - 1][: bs - num_padding].copy_(
|
204
|
+
self.cached_cuda_graph_decode_query_start_loc[: bs - num_padding]
|
205
|
+
)
|
206
|
+
self.query_start_loc_list[bs - 1][bs - num_padding :].copy_(
|
207
|
+
bs - num_padding
|
208
|
+
)
|
209
|
+
elif forward_mode.is_target_verify():
|
210
|
+
if num_padding == 0:
|
211
|
+
self.query_start_loc_list[bs - 1].copy_(
|
212
|
+
self.cached_cuda_graph_verify_query_start_loc[: bs + 1]
|
213
|
+
)
|
214
|
+
else:
|
215
|
+
self.query_start_loc_list[bs - 1][: bs - num_padding].copy_(
|
216
|
+
self.cached_cuda_graph_verify_query_start_loc[: bs - num_padding]
|
217
|
+
)
|
218
|
+
self.query_start_loc_list[bs - 1][bs - num_padding :].copy_(
|
219
|
+
(bs - num_padding) * spec_info.draft_token_num
|
220
|
+
)
|
221
|
+
else:
|
222
|
+
raise ValueError(f"Invalid forward mode: {forward_mode=}")
|
223
|
+
|
224
|
+
return ForwardMetadata(
|
225
|
+
query_start_loc=self.query_start_loc_list[bs - 1],
|
226
|
+
mamba_cache_indices=self.state_indices_list[bs - 1],
|
227
|
+
)
|
228
|
+
|
229
|
+
def get_cuda_graph_seq_len_fill_value(self):
|
230
|
+
return 1 # Mamba attn does not use seq lens to index kv cache
|
231
|
+
|
232
|
+
|
233
|
+
class GDNAttnBackend(MambaAttnBackendBase):
|
234
|
+
"""Attention backend using Mamba kernel."""
|
235
|
+
|
236
|
+
def forward_decode(
|
237
|
+
self,
|
238
|
+
q: torch.Tensor,
|
239
|
+
k: torch.Tensor,
|
240
|
+
v: torch.Tensor,
|
241
|
+
layer: RadixAttention,
|
242
|
+
forward_batch: ForwardBatch,
|
243
|
+
save_kv_cache: bool = True,
|
244
|
+
**kwargs,
|
245
|
+
):
|
246
|
+
mixed_qkv = kwargs["mixed_qkv"]
|
247
|
+
conv_weights = kwargs["conv_weights"]
|
248
|
+
bias = kwargs["bias"]
|
249
|
+
activation = kwargs["activation"]
|
250
|
+
key_dim = kwargs["key_dim"]
|
251
|
+
value_dim = kwargs["value_dim"]
|
252
|
+
attn_tp_size = kwargs["attention_tp_size"]
|
253
|
+
head_k_dim = kwargs["head_k_dim"]
|
254
|
+
head_v_dim = kwargs["head_v_dim"]
|
255
|
+
a = kwargs["a"]
|
256
|
+
b = kwargs["b"]
|
257
|
+
A_log = kwargs["A_log"]
|
258
|
+
dt_bias = kwargs["dt_bias"]
|
259
|
+
layer_id = kwargs["layer_id"]
|
260
|
+
|
261
|
+
layer_cache = self.req_to_token_pool.mamba2_layer_cache(layer_id)
|
262
|
+
conv_states = layer_cache.conv
|
263
|
+
ssm_states = layer_cache.temporal
|
264
|
+
query_start_loc = self.forward_metadata.query_start_loc
|
265
|
+
cache_indices = self.forward_metadata.mamba_cache_indices
|
266
|
+
|
267
|
+
mixed_qkv = causal_conv1d_update(
|
268
|
+
mixed_qkv,
|
269
|
+
conv_states,
|
270
|
+
conv_weights,
|
271
|
+
bias,
|
272
|
+
activation,
|
273
|
+
conv_state_indices=cache_indices,
|
274
|
+
)
|
275
|
+
|
276
|
+
query, key, value = torch.split(
|
277
|
+
mixed_qkv,
|
278
|
+
[
|
279
|
+
key_dim // attn_tp_size,
|
280
|
+
key_dim // attn_tp_size,
|
281
|
+
value_dim // attn_tp_size,
|
282
|
+
],
|
283
|
+
dim=-1,
|
284
|
+
)
|
285
|
+
# Reshape from [l, h*d] to [1, l, h, d]
|
286
|
+
seq_len = query.shape[0]
|
287
|
+
num_heads = query.shape[1] // head_k_dim
|
288
|
+
query = query.view(1, seq_len, num_heads, head_k_dim)
|
289
|
+
key = key.view(1, seq_len, num_heads, head_k_dim)
|
290
|
+
value = value.view(1, seq_len, value.shape[1] // head_v_dim, head_v_dim)
|
291
|
+
|
292
|
+
core_attn_out = fused_sigmoid_gating_delta_rule_update(
|
293
|
+
A_log=A_log,
|
294
|
+
dt_bias=dt_bias,
|
295
|
+
q=query,
|
296
|
+
k=key,
|
297
|
+
v=value,
|
298
|
+
a=a,
|
299
|
+
b=b,
|
300
|
+
initial_state_source=ssm_states,
|
301
|
+
initial_state_indices=cache_indices,
|
302
|
+
cu_seqlens=query_start_loc,
|
303
|
+
use_qk_l2norm_in_kernel=True,
|
304
|
+
softplus_beta=1.0,
|
305
|
+
softplus_threshold=20.0,
|
306
|
+
)
|
307
|
+
|
308
|
+
return core_attn_out
|
309
|
+
|
310
|
+
def forward_extend(
|
311
|
+
self,
|
312
|
+
q: torch.Tensor,
|
313
|
+
k: torch.Tensor,
|
314
|
+
v: torch.Tensor,
|
315
|
+
layer: RadixAttention,
|
316
|
+
forward_batch: ForwardBatch,
|
317
|
+
save_kv_cache: bool = True,
|
318
|
+
**kwargs,
|
319
|
+
):
|
320
|
+
mixed_qkv = kwargs["mixed_qkv"]
|
321
|
+
conv_weights = kwargs["conv_weights"]
|
322
|
+
bias = kwargs["bias"]
|
323
|
+
activation = kwargs["activation"]
|
324
|
+
key_dim = kwargs["key_dim"]
|
325
|
+
value_dim = kwargs["value_dim"]
|
326
|
+
attn_tp_size = kwargs["attention_tp_size"]
|
327
|
+
head_k_dim = kwargs["head_k_dim"]
|
328
|
+
head_v_dim = kwargs["head_v_dim"]
|
329
|
+
a = kwargs["a"]
|
330
|
+
b = kwargs["b"]
|
331
|
+
A_log = kwargs["A_log"]
|
332
|
+
dt_bias = kwargs["dt_bias"]
|
333
|
+
layer_id = kwargs["layer_id"]
|
334
|
+
seq_len = kwargs["seq_len"]
|
335
|
+
|
336
|
+
is_target_verify = forward_batch.forward_mode.is_target_verify()
|
337
|
+
|
338
|
+
query_start_loc = self.forward_metadata.query_start_loc
|
339
|
+
cache_indices = self.forward_metadata.mamba_cache_indices
|
340
|
+
|
341
|
+
mamba_cache_params = self.req_to_token_pool.mamba2_layer_cache(layer_id)
|
342
|
+
conv_states = mamba_cache_params.conv
|
343
|
+
ssm_states = mamba_cache_params.temporal
|
344
|
+
if is_target_verify:
|
345
|
+
assert isinstance(mamba_cache_params, MambaPool.SpeculativeState)
|
346
|
+
intermediate_state_cache = mamba_cache_params.intermediate_ssm
|
347
|
+
intermediate_conv_window_cache = mamba_cache_params.intermediate_conv_window
|
348
|
+
has_initial_states = torch.ones(
|
349
|
+
seq_len // forward_batch.spec_info.draft_token_num,
|
350
|
+
dtype=torch.bool,
|
351
|
+
device=forward_batch.input_ids.device,
|
352
|
+
)
|
353
|
+
conv_states_to_use = conv_states.clone()
|
354
|
+
else:
|
355
|
+
has_initial_states = forward_batch.extend_prefix_lens > 0
|
356
|
+
conv_states_to_use = conv_states
|
357
|
+
|
358
|
+
if is_target_verify:
|
359
|
+
batch_size = seq_len // forward_batch.spec_info.draft_token_num
|
360
|
+
draft_token_num = forward_batch.spec_info.draft_token_num
|
361
|
+
mixed_qkv_reshaped = (
|
362
|
+
mixed_qkv.view(batch_size, draft_token_num, -1)
|
363
|
+
.transpose(1, 2)
|
364
|
+
.contiguous()
|
365
|
+
)
|
366
|
+
mixed_qkv_processed = causal_conv1d_update(
|
367
|
+
mixed_qkv_reshaped,
|
368
|
+
conv_states_to_use,
|
369
|
+
conv_weights,
|
370
|
+
bias,
|
371
|
+
activation,
|
372
|
+
conv_state_indices=cache_indices[:batch_size],
|
373
|
+
intermediate_conv_window=intermediate_conv_window_cache,
|
374
|
+
)
|
375
|
+
mixed_qkv = (
|
376
|
+
mixed_qkv_processed.transpose(1, 2).contiguous().view(seq_len, -1)
|
377
|
+
)
|
378
|
+
else:
|
379
|
+
mixed_qkv = causal_conv1d_fn(
|
380
|
+
mixed_qkv.transpose(0, 1),
|
381
|
+
conv_weights,
|
382
|
+
bias,
|
383
|
+
activation=activation,
|
384
|
+
conv_states=conv_states_to_use,
|
385
|
+
has_initial_state=has_initial_states,
|
386
|
+
cache_indices=cache_indices,
|
387
|
+
query_start_loc=query_start_loc,
|
388
|
+
seq_lens_cpu=forward_batch.extend_seq_lens_cpu,
|
389
|
+
).transpose(0, 1)[:seq_len]
|
390
|
+
|
391
|
+
key_split_dim = key_dim // attn_tp_size
|
392
|
+
value_split_dim = value_dim // attn_tp_size
|
393
|
+
|
394
|
+
query, key, value = torch.split(
|
395
|
+
mixed_qkv,
|
396
|
+
[key_split_dim, key_split_dim, value_split_dim],
|
397
|
+
dim=-1,
|
398
|
+
)
|
399
|
+
|
400
|
+
actual_seq_len = query.shape[0]
|
401
|
+
num_heads = query.shape[1] // head_k_dim
|
402
|
+
num_value_heads = value.shape[1] // head_v_dim
|
403
|
+
|
404
|
+
query = query.view(1, actual_seq_len, num_heads, head_k_dim)
|
405
|
+
key = key.view(1, actual_seq_len, num_heads, head_k_dim)
|
406
|
+
value = value.view(1, actual_seq_len, num_value_heads, head_v_dim)
|
407
|
+
|
408
|
+
beta = b.sigmoid()
|
409
|
+
g = fused_gdn_gating(A_log, a, dt_bias)
|
410
|
+
|
411
|
+
g = g.unsqueeze(0)
|
412
|
+
beta = beta.unsqueeze(0)
|
413
|
+
|
414
|
+
if is_target_verify:
|
415
|
+
core_attn_out = fused_recurrent_gated_delta_rule_update(
|
416
|
+
q=query,
|
417
|
+
k=key,
|
418
|
+
v=value,
|
419
|
+
g=g,
|
420
|
+
beta=beta,
|
421
|
+
initial_state_source=ssm_states,
|
422
|
+
initial_state_indices=cache_indices,
|
423
|
+
cu_seqlens=query_start_loc,
|
424
|
+
use_qk_l2norm_in_kernel=True,
|
425
|
+
disable_state_update=True,
|
426
|
+
intermediate_states_buffer=intermediate_state_cache,
|
427
|
+
cache_steps=forward_batch.spec_info.draft_token_num,
|
428
|
+
)
|
429
|
+
else:
|
430
|
+
recurrent_state = ssm_states[cache_indices]
|
431
|
+
core_attn_out, last_recurrent_state = chunk_gated_delta_rule(
|
432
|
+
q=query,
|
433
|
+
k=key,
|
434
|
+
v=value,
|
435
|
+
g=g,
|
436
|
+
beta=beta,
|
437
|
+
initial_state=recurrent_state,
|
438
|
+
output_final_state=True,
|
439
|
+
cu_seqlens=query_start_loc,
|
440
|
+
head_first=False,
|
441
|
+
use_qk_l2norm_in_kernel=True,
|
442
|
+
)
|
443
|
+
last_recurrent_state = last_recurrent_state.to(ssm_states.dtype, copy=False)
|
444
|
+
ssm_states[cache_indices] = last_recurrent_state
|
445
|
+
|
446
|
+
return core_attn_out
|
447
|
+
|
448
|
+
|
449
|
+
class Mamba2AttnBackend(MambaAttnBackendBase):
|
450
|
+
"""Attention backend wrapper for Mamba2Mixer kernels."""
|
451
|
+
|
452
|
+
def __init__(self, model_runner: ModelRunner):
|
453
|
+
super().__init__(model_runner)
|
454
|
+
config = model_runner.mamba2_config
|
455
|
+
assert config is not None
|
456
|
+
self.mamba_chunk_size = config.mamba_chunk_size
|
457
|
+
|
458
|
+
def init_forward_metadata(self, forward_batch: ForwardBatch):
|
459
|
+
metadata = self._forward_metadata(forward_batch)
|
460
|
+
self.forward_metadata = Mamba2Metadata.prepare_mixed(
|
461
|
+
metadata.query_start_loc,
|
462
|
+
metadata.mamba_cache_indices,
|
463
|
+
self.mamba_chunk_size,
|
464
|
+
forward_batch,
|
465
|
+
)
|
466
|
+
|
467
|
+
def init_forward_metadata_capture_cuda_graph(
|
468
|
+
self,
|
469
|
+
bs: int,
|
470
|
+
num_tokens: int,
|
471
|
+
req_pool_indices: torch.Tensor,
|
472
|
+
seq_lens: torch.Tensor,
|
473
|
+
encoder_lens: Optional[torch.Tensor],
|
474
|
+
forward_mode: ForwardMode,
|
475
|
+
spec_info: Optional[Union[EagleDraftInput, EagleVerifyInput]],
|
476
|
+
):
|
477
|
+
metadata = self._capture_metadata(bs, req_pool_indices, forward_mode)
|
478
|
+
self.forward_metadata = Mamba2Metadata.prepare_decode(
|
479
|
+
metadata.query_start_loc, metadata.mamba_cache_indices, seq_lens
|
480
|
+
)
|
481
|
+
|
482
|
+
def init_forward_metadata_replay_cuda_graph(
|
483
|
+
self,
|
484
|
+
bs: int,
|
485
|
+
req_pool_indices: torch.Tensor,
|
486
|
+
seq_lens: torch.Tensor,
|
487
|
+
seq_lens_sum: int,
|
488
|
+
encoder_lens: Optional[torch.Tensor],
|
489
|
+
forward_mode: ForwardMode,
|
490
|
+
spec_info: Optional[Union[EagleDraftInput, EagleVerifyInput]],
|
491
|
+
seq_lens_cpu: Optional[torch.Tensor],
|
492
|
+
):
|
493
|
+
metadata = self._replay_metadata(
|
494
|
+
bs, req_pool_indices, forward_mode, spec_info, seq_lens_cpu
|
495
|
+
)
|
496
|
+
self.forward_metadata = Mamba2Metadata.prepare_decode(
|
497
|
+
metadata.query_start_loc, metadata.mamba_cache_indices, seq_lens
|
498
|
+
)
|
499
|
+
|
500
|
+
def forward(
|
501
|
+
self,
|
502
|
+
mixer: MambaMixer2,
|
503
|
+
hidden_states: torch.Tensor,
|
504
|
+
output: torch.Tensor,
|
505
|
+
layer_id: int,
|
506
|
+
mup_vector: Optional[torch.Tensor] = None,
|
507
|
+
use_triton_causal_conv: bool = False,
|
508
|
+
):
|
509
|
+
assert isinstance(self.forward_metadata, Mamba2Metadata)
|
510
|
+
layer_cache = self.req_to_token_pool.mamba2_layer_cache(layer_id)
|
511
|
+
return mixer.forward(
|
512
|
+
hidden_states=hidden_states,
|
513
|
+
output=output,
|
514
|
+
layer_cache=layer_cache,
|
515
|
+
metadata=self.forward_metadata,
|
516
|
+
mup_vector=mup_vector,
|
517
|
+
use_triton_causal_conv=use_triton_causal_conv,
|
518
|
+
)
|
519
|
+
|
520
|
+
def forward_decode(self, *args, **kwargs):
|
521
|
+
raise NotImplementedError(
|
522
|
+
"Mamba2AttnBackend's forward is called directly instead of through HybridLinearAttnBackend, as it supports mixed prefill and decode"
|
523
|
+
)
|
524
|
+
|
525
|
+
def forward_extend(self, *args, **kwargs):
|
526
|
+
raise NotImplementedError(
|
527
|
+
"Mamba2AttnBackend's forward is called directly instead of through HybridLinearAttnBackend, as it supports mixed prefill and decode"
|
528
|
+
)
|
529
|
+
|
530
|
+
|
531
|
+
class HybridLinearAttnBackend(AttentionBackend):
|
532
|
+
"""Manages a full and linear attention backend"""
|
533
|
+
|
534
|
+
def __init__(
|
535
|
+
self,
|
536
|
+
full_attn_backend: AttentionBackend,
|
537
|
+
linear_attn_backend: MambaAttnBackendBase,
|
538
|
+
full_attn_layers: list[int],
|
539
|
+
):
|
540
|
+
self.full_attn_layers = full_attn_layers
|
541
|
+
self.full_attn_backend = full_attn_backend
|
542
|
+
self.linear_attn_backend = linear_attn_backend
|
543
|
+
self.attn_backend_list = [full_attn_backend, linear_attn_backend]
|
544
|
+
|
545
|
+
def init_forward_metadata(self, forward_batch: ForwardBatch):
|
546
|
+
for attn_backend in self.attn_backend_list:
|
547
|
+
attn_backend.init_forward_metadata(forward_batch)
|
548
|
+
|
549
|
+
def init_cuda_graph_state(self, max_bs: int, max_num_tokens: int):
|
550
|
+
for attn_backend in self.attn_backend_list:
|
551
|
+
attn_backend.init_cuda_graph_state(max_bs, max_num_tokens)
|
552
|
+
|
553
|
+
def init_forward_metadata_capture_cuda_graph(
|
554
|
+
self,
|
555
|
+
bs: int,
|
556
|
+
num_tokens: int,
|
557
|
+
req_pool_indices: torch.Tensor,
|
558
|
+
seq_lens: torch.Tensor,
|
559
|
+
encoder_lens: Optional[torch.Tensor],
|
560
|
+
forward_mode: ForwardMode,
|
561
|
+
spec_info: Optional[SpecInput],
|
562
|
+
):
|
563
|
+
for attn_backend in self.attn_backend_list:
|
564
|
+
attn_backend.init_forward_metadata_capture_cuda_graph(
|
565
|
+
bs,
|
566
|
+
num_tokens,
|
567
|
+
req_pool_indices,
|
568
|
+
seq_lens,
|
569
|
+
encoder_lens,
|
570
|
+
forward_mode,
|
571
|
+
spec_info,
|
572
|
+
)
|
573
|
+
|
574
|
+
def init_forward_metadata_replay_cuda_graph(
|
575
|
+
self,
|
576
|
+
bs: int,
|
577
|
+
req_pool_indices: torch.Tensor,
|
578
|
+
seq_lens: torch.Tensor,
|
579
|
+
seq_lens_sum: int,
|
580
|
+
encoder_lens: Optional[torch.Tensor],
|
581
|
+
forward_mode: ForwardMode,
|
582
|
+
spec_info: Optional[SpecInput],
|
583
|
+
seq_lens_cpu: Optional[torch.Tensor],
|
584
|
+
):
|
585
|
+
for attn_backend in self.attn_backend_list:
|
586
|
+
attn_backend.init_forward_metadata_replay_cuda_graph(
|
587
|
+
bs,
|
588
|
+
req_pool_indices,
|
589
|
+
seq_lens,
|
590
|
+
seq_lens_sum,
|
591
|
+
encoder_lens,
|
592
|
+
forward_mode,
|
593
|
+
spec_info,
|
594
|
+
seq_lens_cpu,
|
595
|
+
)
|
596
|
+
|
597
|
+
def get_cuda_graph_seq_len_fill_value(self):
|
598
|
+
return self.full_attn_backend.get_cuda_graph_seq_len_fill_value()
|
599
|
+
|
600
|
+
def forward_decode(
|
601
|
+
self,
|
602
|
+
q: torch.Tensor,
|
603
|
+
k: torch.Tensor,
|
604
|
+
v: torch.Tensor,
|
605
|
+
layer: RadixAttention,
|
606
|
+
forward_batch: ForwardBatch,
|
607
|
+
save_kv_cache: bool = True,
|
608
|
+
**kwargs,
|
609
|
+
):
|
610
|
+
layer_id = layer.layer_id if layer else kwargs["layer_id"]
|
611
|
+
if layer_id in self.full_attn_layers:
|
612
|
+
return self.full_attn_backend.forward_decode(
|
613
|
+
q, k, v, layer, forward_batch, save_kv_cache, **kwargs
|
614
|
+
)
|
615
|
+
return self.linear_attn_backend.forward_decode(
|
616
|
+
q, k, v, layer, forward_batch, save_kv_cache, **kwargs
|
617
|
+
)
|
618
|
+
|
619
|
+
def forward_extend(
|
620
|
+
self,
|
621
|
+
q: torch.Tensor,
|
622
|
+
k: torch.Tensor,
|
623
|
+
v: torch.Tensor,
|
624
|
+
layer: RadixAttention,
|
625
|
+
forward_batch: ForwardBatch,
|
626
|
+
save_kv_cache: bool = True,
|
627
|
+
**kwargs,
|
628
|
+
):
|
629
|
+
layer_id = layer.layer_id if layer else kwargs["layer_id"]
|
630
|
+
if layer_id in self.full_attn_layers:
|
631
|
+
return self.full_attn_backend.forward_extend(
|
632
|
+
q, k, v, layer, forward_batch, save_kv_cache, **kwargs
|
633
|
+
)
|
634
|
+
return self.linear_attn_backend.forward_extend(
|
635
|
+
q, k, v, layer, forward_batch, save_kv_cache, **kwargs
|
636
|
+
)
|
637
|
+
|
638
|
+
def forward(
|
639
|
+
self,
|
640
|
+
q: torch.Tensor,
|
641
|
+
k: torch.Tensor,
|
642
|
+
v: torch.Tensor,
|
643
|
+
layer: RadixAttention,
|
644
|
+
forward_batch: ForwardBatch,
|
645
|
+
save_kv_cache: bool = True,
|
646
|
+
**kwargs,
|
647
|
+
):
|
648
|
+
"""Run forward on an attention layer."""
|
649
|
+
if forward_batch.forward_mode.is_idle():
|
650
|
+
if layer is None:
|
651
|
+
return torch.empty_like(kwargs["z"])
|
652
|
+
return q.new_empty(q.shape[0], layer.tp_q_head_num * layer.v_head_dim)
|
653
|
+
elif forward_batch.forward_mode.is_decode():
|
654
|
+
return self.forward_decode(
|
655
|
+
q,
|
656
|
+
k,
|
657
|
+
v,
|
658
|
+
layer,
|
659
|
+
forward_batch,
|
660
|
+
save_kv_cache=save_kv_cache,
|
661
|
+
**kwargs,
|
662
|
+
)
|
663
|
+
else:
|
664
|
+
return self.forward_extend(
|
665
|
+
q,
|
666
|
+
k,
|
667
|
+
v,
|
668
|
+
layer,
|
669
|
+
forward_batch,
|
670
|
+
save_kv_cache=save_kv_cache,
|
671
|
+
**kwargs,
|
672
|
+
)
|
673
|
+
|
674
|
+
def update_mamba_state_after_mtp_verify(self, accepted_length, model):
|
675
|
+
request_number = accepted_length.shape[0]
|
676
|
+
|
677
|
+
state_indices_tensor = (
|
678
|
+
self.linear_attn_backend.forward_metadata.mamba_cache_indices[
|
679
|
+
:request_number
|
680
|
+
]
|
681
|
+
)
|
682
|
+
|
683
|
+
mamba_caches = (
|
684
|
+
self.linear_attn_backend.req_to_token_pool.get_speculative_mamba2_params_all_layers()
|
685
|
+
)
|
686
|
+
|
687
|
+
conv_states = mamba_caches.conv
|
688
|
+
ssm_states = mamba_caches.temporal
|
689
|
+
intermediate_state_cache = mamba_caches.intermediate_ssm
|
690
|
+
intermediate_conv_window_cache = mamba_caches.intermediate_conv_window
|
691
|
+
|
692
|
+
# SSM state updates (chunked to reduce peak memory)
|
693
|
+
valid_mask = accepted_length > 0
|
694
|
+
|
695
|
+
# Compute common indices once to avoid duplication
|
696
|
+
last_steps_all = (accepted_length - 1).to(torch.int64)
|
697
|
+
valid_state_indices = state_indices_tensor[valid_mask].to(torch.int64) # [N]
|
698
|
+
last_steps = last_steps_all[valid_mask].to(torch.int64) # [N]
|
699
|
+
|
700
|
+
# scatter into ssm_states at the chosen cache lines
|
701
|
+
ssm_states[:, valid_state_indices, :] = intermediate_state_cache[
|
702
|
+
:, valid_state_indices, last_steps
|
703
|
+
].to(ssm_states.dtype, copy=False)
|
704
|
+
|
705
|
+
# Scatter into conv_states at the chosen cache lines
|
706
|
+
conv_states[:, valid_state_indices, :, :] = intermediate_conv_window_cache[
|
707
|
+
:, valid_state_indices, last_steps
|
708
|
+
].to(conv_states.dtype, copy=False)
|