sglang 0.5.2rc2__py3-none-any.whl → 0.5.3.post1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (396) hide show
  1. sglang/bench_one_batch.py +7 -11
  2. sglang/bench_one_batch_server.py +330 -31
  3. sglang/bench_serving.py +474 -142
  4. sglang/compile_deep_gemm.py +3 -0
  5. sglang/global_config.py +2 -2
  6. sglang/lang/backend/runtime_endpoint.py +1 -1
  7. sglang/profiler.py +2 -2
  8. sglang/srt/batch_invariant_ops/__init__.py +27 -0
  9. sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
  10. sglang/srt/configs/__init__.py +10 -0
  11. sglang/srt/configs/device_config.py +3 -1
  12. sglang/srt/configs/dots_ocr.py +64 -0
  13. sglang/srt/configs/dots_vlm.py +139 -0
  14. sglang/srt/configs/falcon_h1.py +314 -0
  15. sglang/srt/configs/load_config.py +9 -0
  16. sglang/srt/configs/mamba_utils.py +117 -0
  17. sglang/srt/configs/model_config.py +228 -92
  18. sglang/srt/configs/nemotron_h.py +286 -0
  19. sglang/srt/configs/qwen3_next.py +294 -0
  20. sglang/srt/configs/qwen3_vl.py +586 -0
  21. sglang/srt/connector/__init__.py +8 -1
  22. sglang/srt/connector/remote_instance.py +82 -0
  23. sglang/srt/constrained/base_grammar_backend.py +49 -12
  24. sglang/srt/constrained/llguidance_backend.py +0 -1
  25. sglang/srt/constrained/outlines_backend.py +0 -1
  26. sglang/srt/constrained/outlines_jump_forward.py +1 -1
  27. sglang/srt/constrained/xgrammar_backend.py +30 -9
  28. sglang/srt/custom_op.py +11 -1
  29. sglang/srt/debug_utils/dump_comparator.py +81 -44
  30. sglang/srt/debug_utils/dump_loader.py +97 -0
  31. sglang/srt/debug_utils/dumper.py +21 -6
  32. sglang/srt/debug_utils/text_comparator.py +73 -11
  33. sglang/srt/disaggregation/ascend/conn.py +2 -2
  34. sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
  35. sglang/srt/disaggregation/base/conn.py +1 -1
  36. sglang/srt/disaggregation/common/conn.py +279 -108
  37. sglang/srt/disaggregation/decode.py +78 -37
  38. sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
  39. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
  40. sglang/srt/disaggregation/fake/conn.py +1 -1
  41. sglang/srt/disaggregation/mini_lb.py +6 -445
  42. sglang/srt/disaggregation/mooncake/conn.py +55 -537
  43. sglang/srt/disaggregation/nixl/conn.py +373 -68
  44. sglang/srt/disaggregation/prefill.py +53 -49
  45. sglang/srt/disaggregation/utils.py +40 -54
  46. sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
  47. sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
  48. sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
  49. sglang/srt/distributed/parallel_state.py +156 -80
  50. sglang/srt/entrypoints/engine.py +59 -18
  51. sglang/srt/entrypoints/grpc_request_manager.py +842 -0
  52. sglang/srt/entrypoints/grpc_server.py +950 -0
  53. sglang/srt/entrypoints/http_server.py +179 -60
  54. sglang/srt/entrypoints/openai/protocol.py +265 -29
  55. sglang/srt/entrypoints/openai/serving_base.py +65 -3
  56. sglang/srt/entrypoints/openai/serving_chat.py +213 -122
  57. sglang/srt/entrypoints/openai/serving_completions.py +14 -3
  58. sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
  59. sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
  60. sglang/srt/entrypoints/openai/serving_responses.py +48 -3
  61. sglang/srt/entrypoints/openai/serving_score.py +1 -0
  62. sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
  63. sglang/srt/environ.py +289 -0
  64. sglang/srt/eplb/eplb_manager.py +2 -2
  65. sglang/srt/eplb/expert_distribution.py +26 -13
  66. sglang/srt/eplb/expert_location.py +38 -8
  67. sglang/srt/eplb/expert_location_updater.py +1 -1
  68. sglang/srt/function_call/base_format_detector.py +3 -6
  69. sglang/srt/function_call/ebnf_composer.py +11 -9
  70. sglang/srt/function_call/function_call_parser.py +17 -8
  71. sglang/srt/function_call/glm4_moe_detector.py +4 -4
  72. sglang/srt/function_call/gpt_oss_detector.py +23 -0
  73. sglang/srt/function_call/json_array_parser.py +63 -0
  74. sglang/srt/function_call/kimik2_detector.py +17 -4
  75. sglang/srt/function_call/qwen3_coder_detector.py +1 -1
  76. sglang/srt/function_call/utils.py +96 -5
  77. sglang/srt/grpc/__init__.py +1 -0
  78. sglang/srt/grpc/compile_proto.py +245 -0
  79. sglang/srt/grpc/sglang_scheduler_pb2.py +119 -0
  80. sglang/srt/grpc/sglang_scheduler_pb2.pyi +492 -0
  81. sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +327 -0
  82. sglang/srt/layers/activation.py +143 -9
  83. sglang/srt/layers/attention/aiter_backend.py +14 -15
  84. sglang/srt/layers/attention/ascend_backend.py +115 -9
  85. sglang/srt/layers/attention/attention_registry.py +215 -0
  86. sglang/srt/layers/attention/base_attn_backend.py +12 -3
  87. sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
  88. sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
  89. sglang/srt/layers/attention/fla/chunk.py +242 -0
  90. sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
  91. sglang/srt/layers/attention/fla/chunk_o.py +178 -0
  92. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
  93. sglang/srt/layers/attention/fla/cumsum.py +300 -0
  94. sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
  95. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
  96. sglang/srt/layers/attention/fla/index.py +37 -0
  97. sglang/srt/layers/attention/fla/l2norm.py +150 -0
  98. sglang/srt/layers/attention/fla/layernorm_gated.py +343 -0
  99. sglang/srt/layers/attention/fla/op.py +66 -0
  100. sglang/srt/layers/attention/fla/solve_tril.py +465 -0
  101. sglang/srt/layers/attention/fla/utils.py +331 -0
  102. sglang/srt/layers/attention/fla/wy_fast.py +158 -0
  103. sglang/srt/layers/attention/flashattention_backend.py +40 -8
  104. sglang/srt/layers/attention/flashinfer_backend.py +341 -204
  105. sglang/srt/layers/attention/flashinfer_mla_backend.py +28 -28
  106. sglang/srt/layers/attention/flashmla_backend.py +7 -5
  107. sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
  108. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +708 -0
  109. sglang/srt/layers/attention/intel_amx_backend.py +3 -0
  110. sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
  111. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +974 -0
  112. sglang/srt/layers/attention/mamba/mamba.py +577 -0
  113. sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
  114. sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
  115. sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
  116. sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
  117. sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
  118. sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
  119. sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
  120. sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
  121. sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
  122. sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
  123. sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
  124. sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
  125. sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
  126. sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
  127. sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
  128. sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
  129. sglang/srt/layers/attention/nsa/transform_index.py +144 -0
  130. sglang/srt/layers/attention/nsa/utils.py +24 -0
  131. sglang/srt/layers/attention/nsa_backend.py +887 -0
  132. sglang/srt/layers/attention/tbo_backend.py +6 -6
  133. sglang/srt/layers/attention/torch_flex_backend.py +325 -0
  134. sglang/srt/layers/attention/torch_native_backend.py +12 -6
  135. sglang/srt/layers/attention/triton_backend.py +57 -7
  136. sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
  137. sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
  138. sglang/srt/layers/attention/vision.py +58 -0
  139. sglang/srt/layers/attention/wave_backend.py +4 -4
  140. sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
  141. sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
  142. sglang/srt/layers/communicator.py +8 -0
  143. sglang/srt/layers/dp_attention.py +41 -2
  144. sglang/srt/layers/elementwise.py +3 -1
  145. sglang/srt/layers/layernorm.py +34 -15
  146. sglang/srt/layers/linear.py +55 -7
  147. sglang/srt/layers/logits_processor.py +180 -18
  148. sglang/srt/layers/modelopt_utils.py +11 -0
  149. sglang/srt/layers/moe/__init__.py +2 -1
  150. sglang/srt/layers/moe/cutlass_w4a8_moe.py +21 -24
  151. sglang/srt/layers/moe/ep_moe/kernels.py +33 -454
  152. sglang/srt/layers/moe/ep_moe/layer.py +248 -333
  153. sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
  154. sglang/srt/layers/moe/fused_moe_native.py +5 -3
  155. sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
  156. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
  157. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  158. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
  159. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  160. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  161. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  162. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  163. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  164. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  165. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  166. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  167. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  168. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
  169. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
  170. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
  171. sglang/srt/layers/moe/fused_moe_triton/layer.py +68 -72
  172. sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
  173. sglang/srt/layers/moe/moe_runner/base.py +274 -1
  174. sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
  175. sglang/srt/layers/moe/moe_runner/runner.py +83 -0
  176. sglang/srt/layers/moe/moe_runner/triton.py +448 -0
  177. sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
  178. sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
  179. sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
  180. sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
  181. sglang/srt/layers/moe/topk.py +30 -9
  182. sglang/srt/layers/moe/utils.py +29 -7
  183. sglang/srt/layers/parameter.py +23 -6
  184. sglang/srt/layers/quantization/__init__.py +1 -1
  185. sglang/srt/layers/quantization/awq.py +19 -7
  186. sglang/srt/layers/quantization/base_config.py +11 -6
  187. sglang/srt/layers/quantization/blockwise_int8.py +38 -27
  188. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
  189. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
  190. sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
  191. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
  192. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
  193. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
  194. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
  195. sglang/srt/layers/quantization/fp8.py +155 -60
  196. sglang/srt/layers/quantization/fp8_utils.py +51 -32
  197. sglang/srt/layers/quantization/gptq.py +25 -17
  198. sglang/srt/layers/quantization/modelopt_quant.py +191 -56
  199. sglang/srt/layers/quantization/moe_wna16.py +21 -18
  200. sglang/srt/layers/quantization/mxfp4.py +74 -42
  201. sglang/srt/layers/quantization/quark/quark.py +3 -1
  202. sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
  203. sglang/srt/layers/quantization/unquant.py +135 -47
  204. sglang/srt/layers/quantization/w4afp8.py +28 -33
  205. sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
  206. sglang/srt/layers/quantization/w8a8_int8.py +91 -41
  207. sglang/srt/layers/rotary_embedding.py +78 -31
  208. sglang/srt/layers/sampler.py +213 -21
  209. sglang/srt/layers/utils.py +23 -0
  210. sglang/srt/lora/backend/base_backend.py +50 -8
  211. sglang/srt/lora/backend/chunked_backend.py +348 -0
  212. sglang/srt/lora/backend/triton_backend.py +99 -5
  213. sglang/srt/lora/layers.py +32 -0
  214. sglang/srt/lora/lora.py +8 -3
  215. sglang/srt/lora/lora_manager.py +44 -118
  216. sglang/srt/lora/mem_pool.py +25 -11
  217. sglang/srt/lora/triton_ops/__init__.py +4 -0
  218. sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
  219. sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
  220. sglang/srt/lora/utils.py +22 -11
  221. sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
  222. sglang/srt/managers/cache_controller.py +199 -301
  223. sglang/srt/managers/data_parallel_controller.py +115 -80
  224. sglang/srt/managers/detokenizer_manager.py +19 -15
  225. sglang/srt/managers/disagg_service.py +46 -0
  226. sglang/srt/managers/io_struct.py +340 -109
  227. sglang/srt/managers/mm_utils.py +44 -6
  228. sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
  229. sglang/srt/managers/multimodal_processor.py +1 -2
  230. sglang/srt/managers/overlap_utils.py +55 -0
  231. sglang/srt/managers/schedule_batch.py +343 -212
  232. sglang/srt/managers/schedule_policy.py +145 -18
  233. sglang/srt/managers/scheduler.py +653 -273
  234. sglang/srt/managers/scheduler_input_blocker.py +1 -1
  235. sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
  236. sglang/srt/managers/scheduler_output_processor_mixin.py +255 -108
  237. sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
  238. sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
  239. sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
  240. sglang/srt/managers/tokenizer_manager.py +579 -674
  241. sglang/srt/managers/tp_worker.py +96 -26
  242. sglang/srt/managers/utils.py +1 -45
  243. sglang/srt/mem_cache/allocator.py +21 -22
  244. sglang/srt/mem_cache/allocator_ascend.py +41 -27
  245. sglang/srt/mem_cache/base_prefix_cache.py +1 -1
  246. sglang/srt/mem_cache/chunk_cache.py +9 -2
  247. sglang/srt/mem_cache/evict_policy.py +23 -0
  248. sglang/srt/mem_cache/hicache_storage.py +43 -24
  249. sglang/srt/mem_cache/hiradix_cache.py +222 -75
  250. sglang/srt/mem_cache/memory_pool.py +651 -80
  251. sglang/srt/mem_cache/memory_pool_host.py +239 -228
  252. sglang/srt/mem_cache/radix_cache.py +227 -73
  253. sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
  254. sglang/srt/mem_cache/storage/__init__.py +10 -0
  255. sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
  256. sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
  257. sglang/srt/mem_cache/storage/backend_factory.py +223 -0
  258. sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
  259. sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
  260. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
  261. sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
  262. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
  263. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
  264. sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
  265. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
  266. sglang/srt/mem_cache/swa_radix_cache.py +93 -48
  267. sglang/srt/metrics/collector.py +511 -132
  268. sglang/srt/metrics/func_timer.py +2 -7
  269. sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
  270. sglang/srt/metrics/utils.py +8 -1
  271. sglang/srt/model_executor/cpu_graph_runner.py +640 -0
  272. sglang/srt/model_executor/cuda_graph_runner.py +52 -37
  273. sglang/srt/model_executor/forward_batch_info.py +74 -46
  274. sglang/srt/model_executor/model_runner.py +455 -176
  275. sglang/srt/model_executor/npu_graph_runner.py +12 -5
  276. sglang/srt/model_loader/__init__.py +10 -4
  277. sglang/srt/model_loader/loader.py +319 -10
  278. sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
  279. sglang/srt/model_loader/weight_utils.py +161 -3
  280. sglang/srt/models/apertus.py +686 -0
  281. sglang/srt/models/bailing_moe.py +820 -217
  282. sglang/srt/models/bailing_moe_nextn.py +168 -0
  283. sglang/srt/models/deepseek_nextn.py +6 -1
  284. sglang/srt/models/deepseek_v2.py +607 -130
  285. sglang/srt/models/dots_ocr.py +173 -0
  286. sglang/srt/models/dots_vlm.py +174 -0
  287. sglang/srt/models/dots_vlm_vit.py +337 -0
  288. sglang/srt/models/ernie4.py +1 -1
  289. sglang/srt/models/falcon_h1.py +578 -0
  290. sglang/srt/models/gemma3_causal.py +0 -2
  291. sglang/srt/models/gemma3_mm.py +17 -1
  292. sglang/srt/models/gemma3n_mm.py +2 -2
  293. sglang/srt/models/glm4_moe.py +4 -4
  294. sglang/srt/models/glm4_moe_nextn.py +2 -2
  295. sglang/srt/models/glm4v.py +5 -3
  296. sglang/srt/models/glm4v_moe.py +4 -1
  297. sglang/srt/models/gpt_oss.py +8 -31
  298. sglang/srt/models/grok.py +5 -13
  299. sglang/srt/models/kimi_vl_moonvit.py +2 -2
  300. sglang/srt/models/llama.py +4 -0
  301. sglang/srt/models/llama4.py +9 -0
  302. sglang/srt/models/llama_eagle3.py +13 -0
  303. sglang/srt/models/longcat_flash.py +3 -3
  304. sglang/srt/models/longcat_flash_nextn.py +1 -1
  305. sglang/srt/models/mixtral.py +1 -3
  306. sglang/srt/models/mllama4.py +50 -4
  307. sglang/srt/models/nemotron_h.py +514 -0
  308. sglang/srt/models/opt.py +637 -0
  309. sglang/srt/models/qwen2_5_vl.py +29 -5
  310. sglang/srt/models/qwen2_audio.py +1 -1
  311. sglang/srt/models/qwen2_moe.py +120 -13
  312. sglang/srt/models/qwen2_vl.py +1 -1
  313. sglang/srt/models/qwen3.py +18 -3
  314. sglang/srt/models/qwen3_moe.py +32 -4
  315. sglang/srt/models/qwen3_next.py +1069 -0
  316. sglang/srt/models/qwen3_next_mtp.py +112 -0
  317. sglang/srt/models/qwen3_vl.py +787 -0
  318. sglang/srt/models/qwen3_vl_moe.py +471 -0
  319. sglang/srt/models/registry.py +15 -3
  320. sglang/srt/models/sarashina2_vision.py +269 -0
  321. sglang/srt/models/solar.py +505 -0
  322. sglang/srt/models/starcoder2.py +357 -0
  323. sglang/srt/models/step3_vl.py +1 -1
  324. sglang/srt/models/torch_native_llama.py +9 -2
  325. sglang/srt/models/utils.py +55 -0
  326. sglang/srt/multimodal/processors/base_processor.py +15 -7
  327. sglang/srt/multimodal/processors/dots_vlm.py +98 -0
  328. sglang/srt/multimodal/processors/glm4v.py +9 -9
  329. sglang/srt/multimodal/processors/internvl.py +153 -129
  330. sglang/srt/multimodal/processors/qwen_vl.py +23 -6
  331. sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
  332. sglang/srt/offloader.py +27 -3
  333. sglang/srt/parser/jinja_template_utils.py +6 -0
  334. sglang/srt/sampling/sampling_batch_info.py +49 -26
  335. sglang/srt/sampling/sampling_params.py +7 -0
  336. sglang/srt/server_args.py +1051 -285
  337. sglang/srt/server_args_config_parser.py +146 -0
  338. sglang/srt/single_batch_overlap.py +151 -0
  339. sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
  340. sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
  341. sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
  342. sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
  343. sglang/srt/speculative/cpp_ngram/param.h +125 -0
  344. sglang/srt/speculative/cpp_ngram/queue.h +71 -0
  345. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
  346. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
  347. sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
  348. sglang/srt/speculative/eagle_worker.py +98 -29
  349. sglang/srt/speculative/ngram_info.py +428 -0
  350. sglang/srt/speculative/ngram_worker.py +246 -0
  351. sglang/srt/speculative/spec_info.py +52 -0
  352. sglang/srt/speculative/spec_utils.py +605 -0
  353. sglang/srt/speculative/standalone_worker.py +109 -0
  354. sglang/srt/torch_memory_saver_adapter.py +5 -7
  355. sglang/srt/tracing/trace.py +578 -0
  356. sglang/srt/two_batch_overlap.py +9 -5
  357. sglang/srt/utils/__init__.py +2 -0
  358. sglang/srt/{utils.py → utils/common.py} +451 -77
  359. sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +55 -5
  360. sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
  361. sglang/srt/utils/rpd_utils.py +452 -0
  362. sglang/srt/utils/slow_rank_detector.py +71 -0
  363. sglang/srt/warmup.py +8 -4
  364. sglang/srt/weight_sync/utils.py +2 -2
  365. sglang/test/attention/test_trtllm_mla_backend.py +169 -5
  366. sglang/test/get_logits_ut.py +57 -0
  367. sglang/test/longbench_v2/__init__.py +1 -0
  368. sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
  369. sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
  370. sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
  371. sglang/test/run_eval.py +119 -11
  372. sglang/test/runners.py +5 -1
  373. sglang/test/simple_eval_common.py +5 -2
  374. sglang/test/simple_eval_longbench_v2.py +332 -0
  375. sglang/test/simple_eval_mmmu_vlm.py +441 -0
  376. sglang/test/test_block_fp8.py +2 -2
  377. sglang/test/test_cutlass_moe.py +24 -6
  378. sglang/test/test_cutlass_w4a8_moe.py +9 -19
  379. sglang/test/test_deterministic.py +313 -0
  380. sglang/test/test_deterministic_utils.py +81 -0
  381. sglang/test/test_disaggregation_utils.py +140 -0
  382. sglang/test/test_fp4_moe.py +370 -1
  383. sglang/test/test_programs.py +1 -1
  384. sglang/test/test_utils.py +407 -8
  385. sglang/utils.py +21 -1
  386. sglang/version.py +1 -1
  387. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/METADATA +69 -124
  388. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/RECORD +392 -251
  389. sglang/srt/disaggregation/launch_lb.py +0 -118
  390. sglang/srt/managers/tp_worker_overlap_thread.py +0 -296
  391. sglang/srt/mem_cache/lora_radix_cache.py +0 -421
  392. sglang/test/test_block_fp8_ep.py +0 -358
  393. /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
  394. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/WHEEL +0 -0
  395. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/licenses/LICENSE +0 -0
  396. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,64 @@
1
+ from typing import Optional
2
+
3
+ from transformers import AutoProcessor, Qwen2_5_VLProcessor
4
+ from transformers.image_processing_utils import BaseImageProcessor
5
+ from transformers.models.qwen2 import Qwen2Config
6
+
7
+ from sglang.srt.configs.dots_vlm import DotsVisionConfig
8
+
9
+
10
+ class DotsOCRConfig(Qwen2Config):
11
+ model_type = "dots_ocr"
12
+
13
+ def __init__(
14
+ self,
15
+ image_token_id=151665,
16
+ video_token_id=151656,
17
+ vision_config: Optional[dict] = None,
18
+ *args,
19
+ **kwargs
20
+ ):
21
+ super().__init__(*args, **kwargs)
22
+ self.image_token_id = image_token_id
23
+ self.video_token_id = video_token_id
24
+ self.vision_config = DotsVisionConfig(**(vision_config or {}))
25
+
26
+ def save_pretrained(self, save_directory, **kwargs):
27
+ self._auto_class = None
28
+ super().save_pretrained(save_directory, **kwargs)
29
+
30
+
31
+ class DummyVideoProcessor(BaseImageProcessor):
32
+ model_input_names = ["pixel_values"]
33
+
34
+ def __call__(self, *args, **kwargs):
35
+ return None
36
+
37
+
38
+ class DotsVLProcessor(Qwen2_5_VLProcessor):
39
+ def __init__(
40
+ self,
41
+ image_processor=None,
42
+ tokenizer=None,
43
+ video_processor=None,
44
+ chat_template=None,
45
+ **kwargs
46
+ ):
47
+ if video_processor is None:
48
+ video_processor = DummyVideoProcessor()
49
+ super().__init__(
50
+ image_processor, tokenizer, video_processor, chat_template=chat_template
51
+ )
52
+ self.image_token = (
53
+ "<|imgpad|>"
54
+ if not hasattr(tokenizer, "image_token")
55
+ else tokenizer.image_token
56
+ )
57
+ self.image_token_id = (
58
+ tokenizer.image_token_id
59
+ if getattr(tokenizer, "image_token_id", None) is not None
60
+ else tokenizer.convert_tokens_to_ids(self.image_token)
61
+ )
62
+
63
+
64
+ AutoProcessor.register(DotsOCRConfig, DotsVLProcessor)
@@ -0,0 +1,139 @@
1
+ from typing import Any, List, Optional, Union
2
+
3
+ from transformers import AutoProcessor, LlamaTokenizerFast, PretrainedConfig
4
+ from transformers.feature_extraction_utils import BatchFeature
5
+ from transformers.image_utils import ImageInput
6
+ from transformers.processing_utils import ProcessingKwargs, Unpack
7
+ from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
8
+
9
+ try:
10
+ from transformers import Qwen2_5_VLProcessor
11
+ except ImportError:
12
+ raise ImportError(
13
+ "Qwen2_5_VLProcessor can not be found. Please upgrade your transformers version."
14
+ )
15
+
16
+ from sglang.srt.configs.deepseekvl2 import DeepseekV2Config
17
+
18
+
19
+ class DotsVisionConfig(PretrainedConfig):
20
+ model_type: str = "dots_vit"
21
+
22
+ def __init__(
23
+ self,
24
+ embed_dim: int = 1536, # vision encoder embed size
25
+ hidden_size: int = 1536, # after merger hidden size
26
+ intermediate_size: int = 4224,
27
+ num_hidden_layers: int = 42,
28
+ num_attention_heads: int = 12,
29
+ num_channels: int = 3,
30
+ patch_size: int = 14,
31
+ spatial_merge_size: int = 2,
32
+ temporal_patch_size: int = 1,
33
+ rms_norm_eps: float = 1e-5,
34
+ use_bias: bool = False,
35
+ attn_implementation="flash_attention_2", # "eager","sdpa","flash_attention_2"
36
+ initializer_range=0.02,
37
+ init_merger_std=0.02,
38
+ is_causal=False, # ve causal forward
39
+ post_norm=True,
40
+ gradient_checkpointing=False,
41
+ **kwargs,
42
+ ):
43
+ super().__init__(**kwargs)
44
+ self.embed_dim = embed_dim
45
+ self.hidden_size = hidden_size
46
+ self.intermediate_size = intermediate_size
47
+ self.num_hidden_layers = num_hidden_layers
48
+ self.num_attention_heads = num_attention_heads
49
+ self.num_channels = num_channels
50
+ self.patch_size = patch_size
51
+ self.spatial_merge_size = spatial_merge_size
52
+ self.temporal_patch_size = temporal_patch_size
53
+ self.rms_norm_eps = rms_norm_eps
54
+ self.use_bias = use_bias
55
+ self.attn_implementation = attn_implementation
56
+ self.initializer_range = initializer_range
57
+ self.init_merger_std = init_merger_std
58
+ self.is_causal = is_causal
59
+ self.post_norm = post_norm
60
+ self.gradient_checkpointing = gradient_checkpointing
61
+
62
+
63
+ class DotsVLMConfig(PretrainedConfig):
64
+ model_type = "dots_vlm"
65
+
66
+ def __init__(self, **kwargs):
67
+ super().__init__(**kwargs)
68
+ vision_config = kwargs.get("vision_config", {})
69
+ self.im_span_id = kwargs.get("image_token_id", 128815)
70
+ self.video_span_id = kwargs.get("video_token_id", 128836)
71
+ self.vision_config = DotsVisionConfig(**vision_config)
72
+ self.language_config = DeepseekV2Config(**kwargs)
73
+ self.architectures = ["DotsVLMForCausalLM"]
74
+
75
+
76
+ class DotsVLMProcessorKwargs(ProcessingKwargs, total=False):
77
+ _defaults = {
78
+ "text_kwargs": {
79
+ "padding": False,
80
+ },
81
+ }
82
+
83
+
84
+ class DotsVLMProcessor(Qwen2_5_VLProcessor):
85
+ r"""
86
+ Constructs a DotsVLM processor which derives from Qwen2_5_VLProcessor, but overrides the image and video token ids.
87
+ Besides, its tokenizer is a LlamaTokenizerFast instead of Qwen2TokenizerFast.
88
+ [`DotsVLMProcessor`] offers all the functionalities of [`DotsVisionConfig`] and [`LlamaTokenizerFast`]. See the
89
+ [`~DotsVLMProcessor.__call__`] and [`~DotsVLMProcessor.decode`] for more information.
90
+ Args:
91
+ image_processor ([`Qwen2VLImageProcessor`], *optional*):
92
+ The image processor is a required input.
93
+ tokenizer ([`LlamaTokenizerFast`], *optional*):
94
+ The tokenizer is a required input.
95
+ chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
96
+ in a chat into a tokenizable string.
97
+ """
98
+
99
+ attributes = ["image_processor", "tokenizer"]
100
+
101
+ valid_kwargs = ["chat_template"]
102
+
103
+ tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
104
+
105
+ def __init__(
106
+ self, image_processor=None, tokenizer=None, chat_template=None, **kwargs
107
+ ):
108
+ super().__init__(image_processor, tokenizer, chat_template=chat_template)
109
+ self.image_token = (
110
+ "<|imgpad|>"
111
+ if not hasattr(tokenizer, "image_token")
112
+ else tokenizer.image_token
113
+ )
114
+ self.video_token = (
115
+ "<|video_pad|>"
116
+ if not hasattr(tokenizer, "video_token")
117
+ else tokenizer.video_token
118
+ )
119
+ self.img_token = (
120
+ "<|img|>" if not hasattr(tokenizer, "img_token") else tokenizer.img_token
121
+ )
122
+ self.endofimg_token = (
123
+ "<|endofimg|>"
124
+ if not hasattr(tokenizer, "endofimg_token")
125
+ else tokenizer.endofimg_token
126
+ )
127
+ self.image_token_id = (
128
+ tokenizer.image_token_id
129
+ if getattr(tokenizer, "image_token_id", None)
130
+ else tokenizer.encode(self.image_token)[0]
131
+ )
132
+ self.video_token_id = (
133
+ tokenizer.video_token_id
134
+ if getattr(tokenizer, "video_token_id", None)
135
+ else tokenizer.encode(self.video_token)[0]
136
+ )
137
+
138
+
139
+ AutoProcessor.register(DotsVLMConfig, DotsVLMProcessor)
@@ -0,0 +1,314 @@
1
+ # coding=utf-8
2
+ # Copyright 2024 TII and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Falcon-H1 model configuration"""
16
+
17
+ import enum
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.modeling_rope_utils import rope_config_validation
21
+ from transformers.utils import logging
22
+
23
+ from sglang.srt.configs.mamba_utils import Mamba2CacheParams, Mamba2StateShape
24
+ from sglang.srt.layers.dp_attention import (
25
+ get_attention_tp_size,
26
+ get_tensor_model_parallel_world_size,
27
+ )
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+
32
+ class FalconH1Config(PretrainedConfig):
33
+ r"""
34
+ This is the configuration class to store the configuration of a [`FalconH1Model`]. It is used to instantiate a
35
+ FalconH1Model model according to the specified arguments, defining the model architecture. Instantiating a configuration
36
+ with defaults taken from [ibm-fms/FalconH1-9.8b-2.2T-hf](https://huggingface.co/ibm-fms/FalconH1-9.8b-2.2T-hf).
37
+ The FalconH1Model is a hybrid [mamba2](https://github.com/state-spaces/mamba) architecture with SwiGLU.
38
+ The checkpoints are jointly trained by IBM, Princeton, and UIUC.
39
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
40
+ documentation from [`PretrainedConfig`] for more information.
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 128000):
43
+ Vocabulary size of the FalconH1 model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`FalconH1Model`]
45
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
46
+ Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
47
+ model has a output word embedding layer.
48
+ hidden_size (`int`, *optional*, defaults to 4096):
49
+ Dimension of the hidden representations.
50
+ intermediate_size (`int`, *optional*, defaults to 14336):
51
+ Dimension of the MLP representations.
52
+ num_hidden_layers (`int`, *optional*, defaults to 32):
53
+ Number of hidden layers in the Transformer encoder.
54
+ num_attention_heads (`int`, *optional*, defaults to 32):
55
+ Number of attention heads for each attention layer in the Transformer encoder.
56
+ num_key_value_heads (`int`, *optional*, defaults to 8):
57
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
58
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
59
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
60
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
61
+ by meanpooling all the original heads within that group. For more details, check out [this
62
+ paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`.
63
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
64
+ The non-linear activation function (function or string) in the decoder.
65
+ initializer_range (`float`, *optional*, defaults to 0.02):
66
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
68
+ The epsilon used by the rms normalization layers.
69
+ use_cache (`bool`, *optional*, defaults to `True`):
70
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
71
+ relevant if `config.is_decoder=True`.
72
+ num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
73
+ Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
74
+ integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the
75
+ logits of the last prompt token are needed for generation. For long sequences, the logits for the entire
76
+ sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint
77
+ significantly.
78
+ pad_token_id (`int`, *optional*, defaults to 0):
79
+ The id of the padding token.
80
+ bos_token_id (`int`, *optional*, defaults to 1):
81
+ The id of the "beginning-of-sequence" token.
82
+ eos_token_id (`int`, *optional*, defaults to 2):
83
+ The id of the "end-of-sequence" token.
84
+ max_position_embeddings (`int`, *optional*, defaults to 8192):
85
+ Max cached sequence length for the model
86
+ attention_dropout (`float`, *optional*, defaults to 0.0):
87
+ The dropout ratio for the attention probabilities.
88
+ mamba_d_ssm (`int`, *optional*, defaults to 1024):
89
+ The dimension of the SSM state space latents.
90
+ mamba_n_heads (`int`, *optional*, defaults to 128):
91
+ The number of mamba heads used in the v2 implementation.
92
+ mamba_d_head (`int`, *optional*, defaults to `"auto"`):
93
+ Head embedding dimension size
94
+ mamba_n_groups (`int`, *optional*, defaults to 1):
95
+ The number of the mamba groups used in the v2 implementation.
96
+ mamba_d_state (`int`, *optional*, defaults to 256):
97
+ The dimension the mamba state space latents
98
+ mamba_d_conv (`int`, *optional*, defaults to 4):
99
+ The size of the mamba convolution kernel
100
+ mamba_expand (`int`, *optional*, defaults to 2):
101
+ Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
102
+ mamba_chunk_size (`int`, *optional*, defaults to 256):
103
+ The chunks in which to break the sequence when doing prefill/training
104
+ mamba_conv_bias (`bool`, *optional*, defaults to `True`):
105
+ Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
106
+ mamba_proj_bias (`bool`, *optional*, defaults to `False`):
107
+ Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
108
+ mamba_norm_before_gate (`bool`, *optional*, defaults to `True`):
109
+ Whether to use RMSNorm before the gate in the Mamba block
110
+ mamba_rms_norm (`bool`, *optional*, defaults to `False`):
111
+ Whether to use RMSNorm instead of LayerNorm in the Mamba block
112
+ projectors_bias (`bool`, *optional*, defaults to `False`):
113
+ Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the attention block
114
+ rope_theta (`float`, *optional*, defaults to 100000.0):
115
+ The theta value used for the RoPE embeddings.
116
+ rope_scaling (`float`, *optional*):
117
+ The scaling value used for the RoPE embeddings. If `None`, no scaling is applied.
118
+ lm_head_multiplier (`float`, *optional*, defaults to 1.0):
119
+ The multiplier for the LM head. This is used to scale the output of the LM head.
120
+ embedding_multiplier (`float`, *optional*, defaults to 1.0):
121
+ The multiplier for the embedding layer. This is used to scale the output of the embedding layer.
122
+ mlp_multipliers (`list[float]`, *optional*):
123
+ The multipliers for the MLP layers. This is used to scale the output of the MLP layers. The first value is
124
+ the multiplier of gate layer, the second value is the multiplier of the down_proj layer.
125
+ key_multiplier (`float`, *optional*):
126
+ The multiplier for the key layer. This is used to scale the output of the key layer.
127
+ attention_out_multiplier (`float`, *optional*):
128
+ The multiplier for the attention output layer. This is used to scale the output of the attention output
129
+ attention_in_multiplier (`float`, *optional*):
130
+ The multiplier for the attention input layer. This is used to scale the output of the attention input layer.
131
+ ssm_multipliers (`list[float]`, *optional*):
132
+ The multipliers for the SSM layers. This is used to scale the output of the SSM layers.
133
+ ssm_in_multiplier (`float`, *optional*):
134
+ The multiplier for the SSM input layer. This is used to scale the output of the SSM input layer.
135
+ ssm_out_multiplier (`float`, *optional*):
136
+ The multiplier for the SSM output layer. This is used to scale the output of the SSM output layer.
137
+ """
138
+
139
+ model_type = "falcon_h1"
140
+ keys_to_ignore_at_inference = ["past_key_values"]
141
+
142
+ def __init__(
143
+ self,
144
+ vocab_size=128000,
145
+ tie_word_embeddings=False,
146
+ hidden_size=4096,
147
+ intermediate_size=14336,
148
+ num_hidden_layers=32,
149
+ num_attention_heads=32,
150
+ num_key_value_heads=8,
151
+ hidden_act="silu",
152
+ initializer_range=0.02,
153
+ rms_norm_eps=1e-5,
154
+ use_cache=True,
155
+ num_logits_to_keep=1,
156
+ pad_token_id=0,
157
+ bos_token_id=1,
158
+ eos_token_id=2,
159
+ max_position_embeddings=8192,
160
+ attention_dropout=0.0,
161
+ mamba_d_ssm=1024,
162
+ mamba_n_heads=128,
163
+ mamba_d_head="auto",
164
+ mamba_n_groups=1,
165
+ mamba_d_state=256,
166
+ mamba_d_conv=4,
167
+ mamba_expand=2,
168
+ mamba_chunk_size=256,
169
+ mamba_conv_bias=True,
170
+ mamba_proj_bias=False,
171
+ mamba_norm_before_gate=True,
172
+ mamba_rms_norm=False,
173
+ projectors_bias=False,
174
+ rope_theta=100000.0,
175
+ rope_scaling=None,
176
+ lm_head_multiplier=1.0,
177
+ embedding_multiplier=1.0,
178
+ mlp_multipliers=None,
179
+ key_multiplier=None,
180
+ attention_out_multiplier=None,
181
+ attention_in_multiplier=None,
182
+ ssm_multipliers=None,
183
+ ssm_in_multiplier=None,
184
+ ssm_out_multiplier=None,
185
+ **kwargs,
186
+ ):
187
+ self.vocab_size = vocab_size
188
+ self.hidden_size = hidden_size
189
+ self.intermediate_size = intermediate_size
190
+ self.num_hidden_layers = num_hidden_layers
191
+ self.num_attention_heads = num_attention_heads
192
+ self.max_position_embeddings = max_position_embeddings
193
+ self.attention_dropout = attention_dropout
194
+ self.attention_bias = False
195
+ self.mlp_bias = False
196
+
197
+ # for backward compatibility
198
+ if num_key_value_heads is None:
199
+ num_key_value_heads = num_attention_heads
200
+
201
+ self.num_key_value_heads = num_key_value_heads
202
+ self.hidden_act = hidden_act
203
+ self.initializer_range = initializer_range
204
+ self.rms_norm_eps = rms_norm_eps
205
+
206
+ self.use_cache = use_cache
207
+ self.num_logits_to_keep = num_logits_to_keep
208
+
209
+ self.rope_theta = rope_theta
210
+ self.rope_scaling = None
211
+ self.rope_scaling = rope_scaling
212
+ self.projectors_bias = projectors_bias
213
+ self.mamba_intermediate = mamba_intermediate = (
214
+ mamba_expand * hidden_size if mamba_d_ssm is None else mamba_d_ssm
215
+ )
216
+
217
+ if mamba_intermediate % mamba_n_heads != 0:
218
+ raise ValueError("mamba_n_heads must divide mamba_expand * hidden_size")
219
+
220
+ # for the mamba_v2, must satisfy the following
221
+ if mamba_d_head == "auto":
222
+ mamba_d_head = mamba_intermediate // mamba_n_heads
223
+
224
+ if mamba_d_head * mamba_n_heads != mamba_intermediate:
225
+ raise ValueError(
226
+ "The dimensions for the Mamba head state do not match the model intermediate_size"
227
+ )
228
+
229
+ self.mamba_d_ssm = mamba_d_ssm
230
+ self.mamba_n_heads = mamba_n_heads
231
+ self.mamba_d_head = mamba_d_head
232
+ self.mamba_n_groups = mamba_n_groups
233
+ self.mamba_d_state = mamba_d_state
234
+ self.mamba_d_conv = mamba_d_conv
235
+ self.mamba_expand = mamba_expand
236
+ self.mamba_chunk_size = mamba_chunk_size
237
+ self.mamba_conv_bias = mamba_conv_bias
238
+ self.mamba_proj_bias = mamba_proj_bias
239
+
240
+ self.mamba_norm_before_gate = mamba_norm_before_gate
241
+ self.mamba_rms_norm = mamba_rms_norm
242
+
243
+ self.lm_head_multiplier = lm_head_multiplier
244
+ self.embedding_multiplier = embedding_multiplier
245
+
246
+ if mlp_multipliers is not None:
247
+ self.mlp_multipliers = mlp_multipliers
248
+ else:
249
+ self.mlp_multipliers = [1.0, 1.0]
250
+
251
+ if attention_out_multiplier is not None:
252
+ self.attention_out_multiplier = attention_out_multiplier
253
+ else:
254
+ self.attention_out_multiplier = 1.0
255
+
256
+ if attention_in_multiplier is not None:
257
+ self.attention_in_multiplier = attention_in_multiplier
258
+ else:
259
+ self.attention_in_multiplier = 1.0
260
+
261
+ if key_multiplier is not None:
262
+ self.key_multiplier = key_multiplier
263
+ else:
264
+ self.key_multiplier = 1.0
265
+
266
+ if ssm_multipliers is not None:
267
+ self.ssm_multipliers = ssm_multipliers
268
+ else:
269
+ self.ssm_multipliers = [1.0, 1.0, 1.0, 1.0, 1.0]
270
+
271
+ if ssm_in_multiplier is not None:
272
+ self.ssm_in_multiplier = ssm_in_multiplier
273
+ else:
274
+ self.ssm_in_multiplier = 1.0
275
+
276
+ if ssm_out_multiplier is not None:
277
+ self.ssm_out_multiplier = ssm_out_multiplier
278
+ else:
279
+ self.ssm_out_multiplier = 1.0
280
+
281
+ super().__init__(
282
+ pad_token_id=pad_token_id,
283
+ bos_token_id=bos_token_id,
284
+ eos_token_id=eos_token_id,
285
+ tie_word_embeddings=tie_word_embeddings,
286
+ **kwargs,
287
+ )
288
+
289
+ @property
290
+ def layers_block_type(self):
291
+ return ["falcon_h1" for i in range(self.num_hidden_layers)]
292
+
293
+ @property
294
+ def full_attention_layer_ids(self):
295
+ # For Falcon-H1, we do have attention on all layers
296
+ return range(self.num_hidden_layers)
297
+
298
+ @property
299
+ def linear_layer_ids(self):
300
+ # For Falcon-H1, we do have mamba on all layers
301
+ return range(self.num_hidden_layers)
302
+
303
+ @property
304
+ def mamba2_cache_params(self):
305
+ shape = Mamba2StateShape.create(
306
+ tp_world_size=get_tensor_model_parallel_world_size(),
307
+ intermediate_size=self.mamba_intermediate,
308
+ n_groups=self.mamba_n_groups,
309
+ num_heads=self.mamba_n_heads,
310
+ head_dim=self.mamba_d_head,
311
+ state_size=self.mamba_d_state,
312
+ conv_kernel=self.mamba_d_conv,
313
+ )
314
+ return Mamba2CacheParams(shape=shape, layers=self.linear_layer_ids)
@@ -23,6 +23,9 @@ class LoadFormat(str, enum.Enum):
23
23
  LAYERED = "layered"
24
24
  JAX = "jax"
25
25
  REMOTE = "remote"
26
+ REMOTE_INSTANCE = "remote_instance"
27
+ RDMA = "rdma"
28
+ LOCAL_CACHED = "local_cached"
26
29
 
27
30
 
28
31
  @dataclass
@@ -46,6 +49,7 @@ class LoadConfig:
46
49
  checkpoints.
47
50
  decryption_key_file: If set, decrypts the output files with a password read
48
51
  from this file (after PBKDF2).
52
+ decrypt_max_concurrency: The maximum number of concurrent processes to decrypt the safetensor files. -1 means no limit.
49
53
  """
50
54
 
51
55
  load_format: Union[str, LoadFormat] = LoadFormat.AUTO
@@ -53,6 +57,11 @@ class LoadConfig:
53
57
  model_loader_extra_config: Optional[Union[str, dict]] = field(default_factory=dict)
54
58
  ignore_patterns: Optional[Union[List[str], str]] = None
55
59
  decryption_key_file: Optional[str] = None
60
+ decrypt_max_concurrency: int = -1
61
+ tp_rank: Optional[int] = None
62
+ remote_instance_weight_loader_seed_instance_ip: Optional[str] = None
63
+ remote_instance_weight_loader_seed_instance_service_port: Optional[int] = None
64
+ remote_instance_weight_loader_send_weights_group_ports: Optional[List[int]] = None
56
65
 
57
66
  def __post_init__(self):
58
67
  model_loader_extra_config = self.model_loader_extra_config or {}
@@ -0,0 +1,117 @@
1
+ # Copyright 2025 SGLang Team
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ """Common config utils for mamba2 - NemotronH, FalconH1, Qwen3Next, etc."""
14
+
15
+ import os
16
+ from dataclasses import dataclass, field
17
+
18
+ import numpy as np
19
+ import torch
20
+
21
+ from sglang.srt.distributed.utils import divide
22
+
23
+
24
+ def extra_groups_for_head_shards(ngroups: int, tp_size: int):
25
+ """Compute the increase in group numbers to account for
26
+ replication in order to accompany the head shards."""
27
+
28
+ # in the case ngoups % tp_size == 0, this will be zero
29
+ if ngroups % tp_size == 0:
30
+ return 0
31
+
32
+ # for n_groups == 1, this is exactly tp_size - n_groups
33
+ return tp_size - ngroups
34
+
35
+
36
+ @dataclass(kw_only=True, frozen=True)
37
+ class Mamba2StateShape:
38
+ conv: tuple[int, int]
39
+ temporal: tuple[int, int, int]
40
+
41
+ intermediate_size: int
42
+ conv_dim: int
43
+ ssm_state_size: int
44
+ num_heads: int
45
+ head_dim: int
46
+ state_size: int
47
+ conv_kernel: int
48
+
49
+ @staticmethod
50
+ def create(
51
+ *,
52
+ tp_world_size: int,
53
+ intermediate_size: int,
54
+ n_groups: int,
55
+ num_heads: int,
56
+ head_dim: int,
57
+ state_size: int,
58
+ conv_kernel: int,
59
+ ) -> "Mamba2StateShape":
60
+ # if n_groups is not divisible by world_size, need to extend the shards
61
+ # to ensure all groups needed by a head is sharded along with it
62
+ if n_groups % tp_world_size != 0:
63
+ extra_groups = extra_groups_for_head_shards(n_groups, tp_world_size)
64
+ n_groups += extra_groups
65
+ # heads and n_groups are TP-ed
66
+ conv_dim = intermediate_size + 2 * n_groups * state_size
67
+
68
+ # contiguous along 'dim' axis
69
+ conv_state_shape = divide(conv_dim, tp_world_size), conv_kernel - 1
70
+
71
+ # These are not TP-ed as they depend on A, dt_bias, D
72
+ # - they are typically small
73
+ # e.g., (h_heads, head_dim, state_size) = (128, 64, 128)
74
+ temporal_state_shape = (divide(num_heads, tp_world_size), head_dim, state_size)
75
+ return Mamba2StateShape(
76
+ conv=conv_state_shape,
77
+ temporal=temporal_state_shape,
78
+ intermediate_size=intermediate_size,
79
+ conv_dim=conv_dim,
80
+ ssm_state_size=state_size,
81
+ num_heads=num_heads,
82
+ head_dim=head_dim,
83
+ state_size=state_size,
84
+ conv_kernel=conv_kernel,
85
+ )
86
+
87
+
88
+ @dataclass(kw_only=True, frozen=True)
89
+ class Mamba2StateDType:
90
+ conv: torch.dtype
91
+ temporal: torch.dtype
92
+
93
+
94
+ CONV_DTYPE = torch.bfloat16
95
+
96
+
97
+ def mamba2_state_dtype() -> Mamba2StateDType:
98
+ dtype_map = {
99
+ "float32": torch.float32,
100
+ "bfloat16": torch.bfloat16,
101
+ }
102
+ ssm_dtype = dtype_map[os.environ["SGLANG_MAMBA_SSM_DTYPE"]]
103
+ return Mamba2StateDType(conv=CONV_DTYPE, temporal=ssm_dtype)
104
+
105
+
106
+ @dataclass(kw_only=True, frozen=True)
107
+ class Mamba2CacheParams:
108
+ shape: Mamba2StateShape
109
+ dtype: Mamba2StateDType = field(default_factory=mamba2_state_dtype)
110
+ layers: list[int]
111
+
112
+ @property
113
+ def mamba_cache_per_req(self) -> int:
114
+ return (
115
+ int(np.prod(self.shape.conv)) * self.dtype.conv.itemsize
116
+ + int(np.prod(self.shape.temporal)) * self.dtype.temporal.itemsize
117
+ ) * len(self.layers)