sglang 0.5.2rc2__py3-none-any.whl → 0.5.3.post1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (396) hide show
  1. sglang/bench_one_batch.py +7 -11
  2. sglang/bench_one_batch_server.py +330 -31
  3. sglang/bench_serving.py +474 -142
  4. sglang/compile_deep_gemm.py +3 -0
  5. sglang/global_config.py +2 -2
  6. sglang/lang/backend/runtime_endpoint.py +1 -1
  7. sglang/profiler.py +2 -2
  8. sglang/srt/batch_invariant_ops/__init__.py +27 -0
  9. sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
  10. sglang/srt/configs/__init__.py +10 -0
  11. sglang/srt/configs/device_config.py +3 -1
  12. sglang/srt/configs/dots_ocr.py +64 -0
  13. sglang/srt/configs/dots_vlm.py +139 -0
  14. sglang/srt/configs/falcon_h1.py +314 -0
  15. sglang/srt/configs/load_config.py +9 -0
  16. sglang/srt/configs/mamba_utils.py +117 -0
  17. sglang/srt/configs/model_config.py +228 -92
  18. sglang/srt/configs/nemotron_h.py +286 -0
  19. sglang/srt/configs/qwen3_next.py +294 -0
  20. sglang/srt/configs/qwen3_vl.py +586 -0
  21. sglang/srt/connector/__init__.py +8 -1
  22. sglang/srt/connector/remote_instance.py +82 -0
  23. sglang/srt/constrained/base_grammar_backend.py +49 -12
  24. sglang/srt/constrained/llguidance_backend.py +0 -1
  25. sglang/srt/constrained/outlines_backend.py +0 -1
  26. sglang/srt/constrained/outlines_jump_forward.py +1 -1
  27. sglang/srt/constrained/xgrammar_backend.py +30 -9
  28. sglang/srt/custom_op.py +11 -1
  29. sglang/srt/debug_utils/dump_comparator.py +81 -44
  30. sglang/srt/debug_utils/dump_loader.py +97 -0
  31. sglang/srt/debug_utils/dumper.py +21 -6
  32. sglang/srt/debug_utils/text_comparator.py +73 -11
  33. sglang/srt/disaggregation/ascend/conn.py +2 -2
  34. sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
  35. sglang/srt/disaggregation/base/conn.py +1 -1
  36. sglang/srt/disaggregation/common/conn.py +279 -108
  37. sglang/srt/disaggregation/decode.py +78 -37
  38. sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
  39. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
  40. sglang/srt/disaggregation/fake/conn.py +1 -1
  41. sglang/srt/disaggregation/mini_lb.py +6 -445
  42. sglang/srt/disaggregation/mooncake/conn.py +55 -537
  43. sglang/srt/disaggregation/nixl/conn.py +373 -68
  44. sglang/srt/disaggregation/prefill.py +53 -49
  45. sglang/srt/disaggregation/utils.py +40 -54
  46. sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
  47. sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
  48. sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
  49. sglang/srt/distributed/parallel_state.py +156 -80
  50. sglang/srt/entrypoints/engine.py +59 -18
  51. sglang/srt/entrypoints/grpc_request_manager.py +842 -0
  52. sglang/srt/entrypoints/grpc_server.py +950 -0
  53. sglang/srt/entrypoints/http_server.py +179 -60
  54. sglang/srt/entrypoints/openai/protocol.py +265 -29
  55. sglang/srt/entrypoints/openai/serving_base.py +65 -3
  56. sglang/srt/entrypoints/openai/serving_chat.py +213 -122
  57. sglang/srt/entrypoints/openai/serving_completions.py +14 -3
  58. sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
  59. sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
  60. sglang/srt/entrypoints/openai/serving_responses.py +48 -3
  61. sglang/srt/entrypoints/openai/serving_score.py +1 -0
  62. sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
  63. sglang/srt/environ.py +289 -0
  64. sglang/srt/eplb/eplb_manager.py +2 -2
  65. sglang/srt/eplb/expert_distribution.py +26 -13
  66. sglang/srt/eplb/expert_location.py +38 -8
  67. sglang/srt/eplb/expert_location_updater.py +1 -1
  68. sglang/srt/function_call/base_format_detector.py +3 -6
  69. sglang/srt/function_call/ebnf_composer.py +11 -9
  70. sglang/srt/function_call/function_call_parser.py +17 -8
  71. sglang/srt/function_call/glm4_moe_detector.py +4 -4
  72. sglang/srt/function_call/gpt_oss_detector.py +23 -0
  73. sglang/srt/function_call/json_array_parser.py +63 -0
  74. sglang/srt/function_call/kimik2_detector.py +17 -4
  75. sglang/srt/function_call/qwen3_coder_detector.py +1 -1
  76. sglang/srt/function_call/utils.py +96 -5
  77. sglang/srt/grpc/__init__.py +1 -0
  78. sglang/srt/grpc/compile_proto.py +245 -0
  79. sglang/srt/grpc/sglang_scheduler_pb2.py +119 -0
  80. sglang/srt/grpc/sglang_scheduler_pb2.pyi +492 -0
  81. sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +327 -0
  82. sglang/srt/layers/activation.py +143 -9
  83. sglang/srt/layers/attention/aiter_backend.py +14 -15
  84. sglang/srt/layers/attention/ascend_backend.py +115 -9
  85. sglang/srt/layers/attention/attention_registry.py +215 -0
  86. sglang/srt/layers/attention/base_attn_backend.py +12 -3
  87. sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
  88. sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
  89. sglang/srt/layers/attention/fla/chunk.py +242 -0
  90. sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
  91. sglang/srt/layers/attention/fla/chunk_o.py +178 -0
  92. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
  93. sglang/srt/layers/attention/fla/cumsum.py +300 -0
  94. sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
  95. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
  96. sglang/srt/layers/attention/fla/index.py +37 -0
  97. sglang/srt/layers/attention/fla/l2norm.py +150 -0
  98. sglang/srt/layers/attention/fla/layernorm_gated.py +343 -0
  99. sglang/srt/layers/attention/fla/op.py +66 -0
  100. sglang/srt/layers/attention/fla/solve_tril.py +465 -0
  101. sglang/srt/layers/attention/fla/utils.py +331 -0
  102. sglang/srt/layers/attention/fla/wy_fast.py +158 -0
  103. sglang/srt/layers/attention/flashattention_backend.py +40 -8
  104. sglang/srt/layers/attention/flashinfer_backend.py +341 -204
  105. sglang/srt/layers/attention/flashinfer_mla_backend.py +28 -28
  106. sglang/srt/layers/attention/flashmla_backend.py +7 -5
  107. sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
  108. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +708 -0
  109. sglang/srt/layers/attention/intel_amx_backend.py +3 -0
  110. sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
  111. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +974 -0
  112. sglang/srt/layers/attention/mamba/mamba.py +577 -0
  113. sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
  114. sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
  115. sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
  116. sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
  117. sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
  118. sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
  119. sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
  120. sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
  121. sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
  122. sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
  123. sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
  124. sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
  125. sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
  126. sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
  127. sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
  128. sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
  129. sglang/srt/layers/attention/nsa/transform_index.py +144 -0
  130. sglang/srt/layers/attention/nsa/utils.py +24 -0
  131. sglang/srt/layers/attention/nsa_backend.py +887 -0
  132. sglang/srt/layers/attention/tbo_backend.py +6 -6
  133. sglang/srt/layers/attention/torch_flex_backend.py +325 -0
  134. sglang/srt/layers/attention/torch_native_backend.py +12 -6
  135. sglang/srt/layers/attention/triton_backend.py +57 -7
  136. sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
  137. sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
  138. sglang/srt/layers/attention/vision.py +58 -0
  139. sglang/srt/layers/attention/wave_backend.py +4 -4
  140. sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
  141. sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
  142. sglang/srt/layers/communicator.py +8 -0
  143. sglang/srt/layers/dp_attention.py +41 -2
  144. sglang/srt/layers/elementwise.py +3 -1
  145. sglang/srt/layers/layernorm.py +34 -15
  146. sglang/srt/layers/linear.py +55 -7
  147. sglang/srt/layers/logits_processor.py +180 -18
  148. sglang/srt/layers/modelopt_utils.py +11 -0
  149. sglang/srt/layers/moe/__init__.py +2 -1
  150. sglang/srt/layers/moe/cutlass_w4a8_moe.py +21 -24
  151. sglang/srt/layers/moe/ep_moe/kernels.py +33 -454
  152. sglang/srt/layers/moe/ep_moe/layer.py +248 -333
  153. sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
  154. sglang/srt/layers/moe/fused_moe_native.py +5 -3
  155. sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
  156. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
  157. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  158. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
  159. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  160. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  161. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  162. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  163. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  164. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  165. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  166. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  167. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  168. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
  169. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
  170. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
  171. sglang/srt/layers/moe/fused_moe_triton/layer.py +68 -72
  172. sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
  173. sglang/srt/layers/moe/moe_runner/base.py +274 -1
  174. sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
  175. sglang/srt/layers/moe/moe_runner/runner.py +83 -0
  176. sglang/srt/layers/moe/moe_runner/triton.py +448 -0
  177. sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
  178. sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
  179. sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
  180. sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
  181. sglang/srt/layers/moe/topk.py +30 -9
  182. sglang/srt/layers/moe/utils.py +29 -7
  183. sglang/srt/layers/parameter.py +23 -6
  184. sglang/srt/layers/quantization/__init__.py +1 -1
  185. sglang/srt/layers/quantization/awq.py +19 -7
  186. sglang/srt/layers/quantization/base_config.py +11 -6
  187. sglang/srt/layers/quantization/blockwise_int8.py +38 -27
  188. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
  189. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
  190. sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
  191. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
  192. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
  193. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
  194. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
  195. sglang/srt/layers/quantization/fp8.py +155 -60
  196. sglang/srt/layers/quantization/fp8_utils.py +51 -32
  197. sglang/srt/layers/quantization/gptq.py +25 -17
  198. sglang/srt/layers/quantization/modelopt_quant.py +191 -56
  199. sglang/srt/layers/quantization/moe_wna16.py +21 -18
  200. sglang/srt/layers/quantization/mxfp4.py +74 -42
  201. sglang/srt/layers/quantization/quark/quark.py +3 -1
  202. sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
  203. sglang/srt/layers/quantization/unquant.py +135 -47
  204. sglang/srt/layers/quantization/w4afp8.py +28 -33
  205. sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
  206. sglang/srt/layers/quantization/w8a8_int8.py +91 -41
  207. sglang/srt/layers/rotary_embedding.py +78 -31
  208. sglang/srt/layers/sampler.py +213 -21
  209. sglang/srt/layers/utils.py +23 -0
  210. sglang/srt/lora/backend/base_backend.py +50 -8
  211. sglang/srt/lora/backend/chunked_backend.py +348 -0
  212. sglang/srt/lora/backend/triton_backend.py +99 -5
  213. sglang/srt/lora/layers.py +32 -0
  214. sglang/srt/lora/lora.py +8 -3
  215. sglang/srt/lora/lora_manager.py +44 -118
  216. sglang/srt/lora/mem_pool.py +25 -11
  217. sglang/srt/lora/triton_ops/__init__.py +4 -0
  218. sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
  219. sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
  220. sglang/srt/lora/utils.py +22 -11
  221. sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
  222. sglang/srt/managers/cache_controller.py +199 -301
  223. sglang/srt/managers/data_parallel_controller.py +115 -80
  224. sglang/srt/managers/detokenizer_manager.py +19 -15
  225. sglang/srt/managers/disagg_service.py +46 -0
  226. sglang/srt/managers/io_struct.py +340 -109
  227. sglang/srt/managers/mm_utils.py +44 -6
  228. sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
  229. sglang/srt/managers/multimodal_processor.py +1 -2
  230. sglang/srt/managers/overlap_utils.py +55 -0
  231. sglang/srt/managers/schedule_batch.py +343 -212
  232. sglang/srt/managers/schedule_policy.py +145 -18
  233. sglang/srt/managers/scheduler.py +653 -273
  234. sglang/srt/managers/scheduler_input_blocker.py +1 -1
  235. sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
  236. sglang/srt/managers/scheduler_output_processor_mixin.py +255 -108
  237. sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
  238. sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
  239. sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
  240. sglang/srt/managers/tokenizer_manager.py +579 -674
  241. sglang/srt/managers/tp_worker.py +96 -26
  242. sglang/srt/managers/utils.py +1 -45
  243. sglang/srt/mem_cache/allocator.py +21 -22
  244. sglang/srt/mem_cache/allocator_ascend.py +41 -27
  245. sglang/srt/mem_cache/base_prefix_cache.py +1 -1
  246. sglang/srt/mem_cache/chunk_cache.py +9 -2
  247. sglang/srt/mem_cache/evict_policy.py +23 -0
  248. sglang/srt/mem_cache/hicache_storage.py +43 -24
  249. sglang/srt/mem_cache/hiradix_cache.py +222 -75
  250. sglang/srt/mem_cache/memory_pool.py +651 -80
  251. sglang/srt/mem_cache/memory_pool_host.py +239 -228
  252. sglang/srt/mem_cache/radix_cache.py +227 -73
  253. sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
  254. sglang/srt/mem_cache/storage/__init__.py +10 -0
  255. sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
  256. sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
  257. sglang/srt/mem_cache/storage/backend_factory.py +223 -0
  258. sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
  259. sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
  260. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
  261. sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
  262. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
  263. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
  264. sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
  265. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
  266. sglang/srt/mem_cache/swa_radix_cache.py +93 -48
  267. sglang/srt/metrics/collector.py +511 -132
  268. sglang/srt/metrics/func_timer.py +2 -7
  269. sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
  270. sglang/srt/metrics/utils.py +8 -1
  271. sglang/srt/model_executor/cpu_graph_runner.py +640 -0
  272. sglang/srt/model_executor/cuda_graph_runner.py +52 -37
  273. sglang/srt/model_executor/forward_batch_info.py +74 -46
  274. sglang/srt/model_executor/model_runner.py +455 -176
  275. sglang/srt/model_executor/npu_graph_runner.py +12 -5
  276. sglang/srt/model_loader/__init__.py +10 -4
  277. sglang/srt/model_loader/loader.py +319 -10
  278. sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
  279. sglang/srt/model_loader/weight_utils.py +161 -3
  280. sglang/srt/models/apertus.py +686 -0
  281. sglang/srt/models/bailing_moe.py +820 -217
  282. sglang/srt/models/bailing_moe_nextn.py +168 -0
  283. sglang/srt/models/deepseek_nextn.py +6 -1
  284. sglang/srt/models/deepseek_v2.py +607 -130
  285. sglang/srt/models/dots_ocr.py +173 -0
  286. sglang/srt/models/dots_vlm.py +174 -0
  287. sglang/srt/models/dots_vlm_vit.py +337 -0
  288. sglang/srt/models/ernie4.py +1 -1
  289. sglang/srt/models/falcon_h1.py +578 -0
  290. sglang/srt/models/gemma3_causal.py +0 -2
  291. sglang/srt/models/gemma3_mm.py +17 -1
  292. sglang/srt/models/gemma3n_mm.py +2 -2
  293. sglang/srt/models/glm4_moe.py +4 -4
  294. sglang/srt/models/glm4_moe_nextn.py +2 -2
  295. sglang/srt/models/glm4v.py +5 -3
  296. sglang/srt/models/glm4v_moe.py +4 -1
  297. sglang/srt/models/gpt_oss.py +8 -31
  298. sglang/srt/models/grok.py +5 -13
  299. sglang/srt/models/kimi_vl_moonvit.py +2 -2
  300. sglang/srt/models/llama.py +4 -0
  301. sglang/srt/models/llama4.py +9 -0
  302. sglang/srt/models/llama_eagle3.py +13 -0
  303. sglang/srt/models/longcat_flash.py +3 -3
  304. sglang/srt/models/longcat_flash_nextn.py +1 -1
  305. sglang/srt/models/mixtral.py +1 -3
  306. sglang/srt/models/mllama4.py +50 -4
  307. sglang/srt/models/nemotron_h.py +514 -0
  308. sglang/srt/models/opt.py +637 -0
  309. sglang/srt/models/qwen2_5_vl.py +29 -5
  310. sglang/srt/models/qwen2_audio.py +1 -1
  311. sglang/srt/models/qwen2_moe.py +120 -13
  312. sglang/srt/models/qwen2_vl.py +1 -1
  313. sglang/srt/models/qwen3.py +18 -3
  314. sglang/srt/models/qwen3_moe.py +32 -4
  315. sglang/srt/models/qwen3_next.py +1069 -0
  316. sglang/srt/models/qwen3_next_mtp.py +112 -0
  317. sglang/srt/models/qwen3_vl.py +787 -0
  318. sglang/srt/models/qwen3_vl_moe.py +471 -0
  319. sglang/srt/models/registry.py +15 -3
  320. sglang/srt/models/sarashina2_vision.py +269 -0
  321. sglang/srt/models/solar.py +505 -0
  322. sglang/srt/models/starcoder2.py +357 -0
  323. sglang/srt/models/step3_vl.py +1 -1
  324. sglang/srt/models/torch_native_llama.py +9 -2
  325. sglang/srt/models/utils.py +55 -0
  326. sglang/srt/multimodal/processors/base_processor.py +15 -7
  327. sglang/srt/multimodal/processors/dots_vlm.py +98 -0
  328. sglang/srt/multimodal/processors/glm4v.py +9 -9
  329. sglang/srt/multimodal/processors/internvl.py +153 -129
  330. sglang/srt/multimodal/processors/qwen_vl.py +23 -6
  331. sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
  332. sglang/srt/offloader.py +27 -3
  333. sglang/srt/parser/jinja_template_utils.py +6 -0
  334. sglang/srt/sampling/sampling_batch_info.py +49 -26
  335. sglang/srt/sampling/sampling_params.py +7 -0
  336. sglang/srt/server_args.py +1051 -285
  337. sglang/srt/server_args_config_parser.py +146 -0
  338. sglang/srt/single_batch_overlap.py +151 -0
  339. sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
  340. sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
  341. sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
  342. sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
  343. sglang/srt/speculative/cpp_ngram/param.h +125 -0
  344. sglang/srt/speculative/cpp_ngram/queue.h +71 -0
  345. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
  346. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
  347. sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
  348. sglang/srt/speculative/eagle_worker.py +98 -29
  349. sglang/srt/speculative/ngram_info.py +428 -0
  350. sglang/srt/speculative/ngram_worker.py +246 -0
  351. sglang/srt/speculative/spec_info.py +52 -0
  352. sglang/srt/speculative/spec_utils.py +605 -0
  353. sglang/srt/speculative/standalone_worker.py +109 -0
  354. sglang/srt/torch_memory_saver_adapter.py +5 -7
  355. sglang/srt/tracing/trace.py +578 -0
  356. sglang/srt/two_batch_overlap.py +9 -5
  357. sglang/srt/utils/__init__.py +2 -0
  358. sglang/srt/{utils.py → utils/common.py} +451 -77
  359. sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +55 -5
  360. sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
  361. sglang/srt/utils/rpd_utils.py +452 -0
  362. sglang/srt/utils/slow_rank_detector.py +71 -0
  363. sglang/srt/warmup.py +8 -4
  364. sglang/srt/weight_sync/utils.py +2 -2
  365. sglang/test/attention/test_trtllm_mla_backend.py +169 -5
  366. sglang/test/get_logits_ut.py +57 -0
  367. sglang/test/longbench_v2/__init__.py +1 -0
  368. sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
  369. sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
  370. sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
  371. sglang/test/run_eval.py +119 -11
  372. sglang/test/runners.py +5 -1
  373. sglang/test/simple_eval_common.py +5 -2
  374. sglang/test/simple_eval_longbench_v2.py +332 -0
  375. sglang/test/simple_eval_mmmu_vlm.py +441 -0
  376. sglang/test/test_block_fp8.py +2 -2
  377. sglang/test/test_cutlass_moe.py +24 -6
  378. sglang/test/test_cutlass_w4a8_moe.py +9 -19
  379. sglang/test/test_deterministic.py +313 -0
  380. sglang/test/test_deterministic_utils.py +81 -0
  381. sglang/test/test_disaggregation_utils.py +140 -0
  382. sglang/test/test_fp4_moe.py +370 -1
  383. sglang/test/test_programs.py +1 -1
  384. sglang/test/test_utils.py +407 -8
  385. sglang/utils.py +21 -1
  386. sglang/version.py +1 -1
  387. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/METADATA +69 -124
  388. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/RECORD +392 -251
  389. sglang/srt/disaggregation/launch_lb.py +0 -118
  390. sglang/srt/managers/tp_worker_overlap_thread.py +0 -296
  391. sglang/srt/mem_cache/lora_radix_cache.py +0 -421
  392. sglang/test/test_block_fp8_ep.py +0 -358
  393. /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
  394. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/WHEEL +0 -0
  395. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/licenses/LICENSE +0 -0
  396. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.post1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,646 @@
1
+ # Adapted from: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py
2
+
3
+ # SPDX-License-Identifier: Apache-2.0
4
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
5
+
6
+ # Copyright (c) 2024, Tri Dao, Albert Gu.
7
+ # Adapted from https://github.com/state-spaces/mamba/blob/v2.2.4/mamba_ssm/ops/triton/ssd_chunk_state.py
8
+
9
+ # ruff: noqa: E501
10
+
11
+ import math
12
+
13
+ import torch
14
+ import triton
15
+ import triton.language as tl
16
+
17
+ from .mamba_ssm import softplus
18
+
19
+
20
+ @triton.jit
21
+ def _chunk_cumsum_fwd_kernel(
22
+ # Pointers to matrices
23
+ dt_ptr,
24
+ A_ptr,
25
+ dt_bias_ptr,
26
+ dt_out_ptr,
27
+ dA_cumsum_ptr,
28
+ # Matrix dimension
29
+ batch,
30
+ seqlen,
31
+ nheads,
32
+ chunk_size,
33
+ dt_min,
34
+ dt_max,
35
+ # Strides
36
+ stride_dt_batch,
37
+ stride_dt_seqlen,
38
+ stride_dt_head,
39
+ stride_A_head,
40
+ stride_dt_bias_head,
41
+ stride_dt_out_batch,
42
+ stride_dt_out_chunk,
43
+ stride_dt_out_head,
44
+ stride_dt_out_csize,
45
+ stride_dA_cs_batch,
46
+ stride_dA_cs_chunk,
47
+ stride_dA_cs_head,
48
+ stride_dA_cs_csize,
49
+ # Meta-parameters
50
+ DT_SOFTPLUS: tl.constexpr,
51
+ HAS_DT_BIAS: tl.constexpr,
52
+ BLOCK_SIZE_CHUNK: tl.constexpr,
53
+ BLOCK_SIZE_H: tl.constexpr = 16,
54
+ ):
55
+ pid_b = tl.program_id(axis=0)
56
+
57
+ # if dt is long, may cause problems, so use 64 bit
58
+ # https://github.com/triton-lang/triton/issues/1058
59
+ pid_c = tl.program_id(axis=1).to(tl.int64)
60
+ pid_h = tl.program_id(axis=2)
61
+ dt_ptr += pid_b * stride_dt_batch + pid_c * chunk_size * stride_dt_seqlen
62
+ dt_out_ptr += pid_b * stride_dt_out_batch + pid_c * stride_dt_out_chunk
63
+ dA_cumsum_ptr += pid_b * stride_dA_cs_batch + pid_c * stride_dA_cs_chunk
64
+
65
+ offs_h = pid_h * BLOCK_SIZE_H + tl.arange(0, BLOCK_SIZE_H)
66
+ offs_c = tl.arange(0, BLOCK_SIZE_CHUNK)
67
+ dt_ptrs = dt_ptr + (
68
+ offs_h[:, None] * stride_dt_head + offs_c[None, :] * stride_dt_seqlen
69
+ )
70
+ A_ptrs = A_ptr + offs_h * stride_A_head
71
+ dt_out_ptrs = dt_out_ptr + (
72
+ offs_h[:, None] * stride_dt_out_head + offs_c[None, :] * stride_dt_out_csize
73
+ )
74
+ dA_cs_ptrs = dA_cumsum_ptr + (
75
+ offs_h[:, None] * stride_dA_cs_head + offs_c[None, :] * stride_dA_cs_csize
76
+ )
77
+ chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
78
+
79
+ dt = tl.load(
80
+ dt_ptrs,
81
+ mask=(offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size_limit),
82
+ other=0.0,
83
+ ).to(tl.float32)
84
+ if HAS_DT_BIAS:
85
+ dt_bias = tl.load(
86
+ dt_bias_ptr + offs_h * stride_dt_bias_head, mask=offs_h < nheads, other=0.0
87
+ ).to(tl.float32)
88
+ dt += dt_bias[:, None]
89
+ if DT_SOFTPLUS:
90
+ dt = tl.where(dt <= 20.0, softplus(dt), dt)
91
+ # As of Triton 2.2.0, tl.clamp is not available yet
92
+ # dt = tl.clamp(dt, dt_min, dt_max)
93
+ dt = tl.minimum(tl.maximum(dt, dt_min), dt_max)
94
+ dt = tl.where(
95
+ (offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size_limit), dt, 0.0
96
+ )
97
+ tl.store(
98
+ dt_out_ptrs,
99
+ dt,
100
+ mask=(offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size),
101
+ )
102
+ A = tl.load(A_ptrs, mask=offs_h < nheads, other=0.0).to(tl.float32)
103
+ dA = dt * A[:, None]
104
+ dA_cs = tl.cumsum(dA, axis=1)
105
+ tl.store(
106
+ dA_cs_ptrs,
107
+ dA_cs,
108
+ mask=(offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size),
109
+ )
110
+
111
+
112
+ @triton.jit
113
+ def _chunk_state_fwd_kernel(
114
+ # Pointers to matrices
115
+ x_ptr,
116
+ b_ptr,
117
+ states_ptr,
118
+ dt_ptr,
119
+ dA_cumsum_ptr,
120
+ seq_idx_ptr,
121
+ # Matrix dimensions
122
+ hdim,
123
+ dstate,
124
+ chunk_size,
125
+ batch,
126
+ seqlen,
127
+ nheads_ngroups_ratio,
128
+ # Strides
129
+ stride_x_batch,
130
+ stride_x_seqlen,
131
+ stride_x_head,
132
+ stride_x_hdim,
133
+ stride_b_batch,
134
+ stride_b_seqlen,
135
+ stride_b_head,
136
+ stride_b_dstate,
137
+ stride_states_batch,
138
+ stride_states_chunk,
139
+ stride_states_head,
140
+ stride_states_hdim,
141
+ stride_states_dstate,
142
+ stride_dt_batch,
143
+ stride_dt_chunk,
144
+ stride_dt_head,
145
+ stride_dt_csize,
146
+ stride_dA_cs_batch,
147
+ stride_dA_cs_chunk,
148
+ stride_dA_cs_head,
149
+ stride_dA_cs_csize,
150
+ stride_seq_idx_batch,
151
+ stride_seq_idx_seqlen,
152
+ # Meta-parameters
153
+ HAS_SEQ_IDX: tl.constexpr,
154
+ BLOCK_SIZE_M: tl.constexpr = 16,
155
+ BLOCK_SIZE_N: tl.constexpr = 16,
156
+ BLOCK_SIZE_K: tl.constexpr = 16,
157
+ ):
158
+ pid_bc = tl.program_id(axis=1).to(tl.int64)
159
+ pid_c = pid_bc // batch
160
+ pid_b = pid_bc - pid_c * batch
161
+ pid_h = tl.program_id(axis=2)
162
+ num_pid_n = tl.cdiv(dstate, BLOCK_SIZE_N)
163
+ pid_m = tl.program_id(axis=0) // num_pid_n
164
+ pid_n = tl.program_id(axis=0) % num_pid_n
165
+ b_ptr += (
166
+ pid_b * stride_b_batch
167
+ + pid_c * chunk_size * stride_b_seqlen
168
+ + (pid_h // nheads_ngroups_ratio) * stride_b_head
169
+ )
170
+ x_ptr += (
171
+ pid_b * stride_x_batch
172
+ + pid_c * chunk_size * stride_x_seqlen
173
+ + pid_h * stride_x_head
174
+ )
175
+ dt_ptr += pid_b * stride_dt_batch + pid_c * stride_dt_chunk + pid_h * stride_dt_head
176
+ dA_cumsum_ptr += (
177
+ pid_b * stride_dA_cs_batch
178
+ + pid_c * stride_dA_cs_chunk
179
+ + pid_h * stride_dA_cs_head
180
+ )
181
+ if HAS_SEQ_IDX:
182
+ seq_idx_ptr += (
183
+ pid_b * stride_seq_idx_batch + pid_c * chunk_size * stride_seq_idx_seqlen
184
+ )
185
+
186
+ offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
187
+ offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
188
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
189
+ x_ptrs = x_ptr + (
190
+ offs_m[:, None] * stride_x_hdim + offs_k[None, :] * stride_x_seqlen
191
+ )
192
+ b_ptrs = b_ptr + (
193
+ offs_n[None, :] * stride_b_dstate + offs_k[:, None] * stride_b_seqlen
194
+ )
195
+ dt_ptrs = dt_ptr + offs_k * stride_dt_csize
196
+ dA_cs_last = tl.load(dA_cumsum_ptr + (chunk_size - 1) * stride_dA_cs_csize).to(
197
+ tl.float32
198
+ )
199
+ dA_cumsum_ptrs = dA_cumsum_ptr + offs_k * stride_dA_cs_csize
200
+ if HAS_SEQ_IDX:
201
+ seq_idx_ptrs = seq_idx_ptr + offs_k * stride_seq_idx_seqlen
202
+
203
+ chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
204
+ if HAS_SEQ_IDX:
205
+ seq_idx_last = tl.load(
206
+ seq_idx_ptr + (chunk_size_limit - 1) * stride_seq_idx_seqlen
207
+ )
208
+
209
+ acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
210
+ for k in range(0, chunk_size_limit, BLOCK_SIZE_K):
211
+ x = tl.load(
212
+ x_ptrs,
213
+ mask=(offs_m[:, None] < hdim) & (offs_k[None, :] < chunk_size_limit - k),
214
+ other=0.0,
215
+ )
216
+ b = tl.load(
217
+ b_ptrs,
218
+ mask=(offs_k[:, None] < chunk_size_limit - k) & (offs_n[None, :] < dstate),
219
+ other=0.0,
220
+ ).to(tl.float32)
221
+ dA_cs_k = tl.load(
222
+ dA_cumsum_ptrs, mask=offs_k < chunk_size_limit - k, other=0.0
223
+ ).to(tl.float32)
224
+ if HAS_SEQ_IDX:
225
+ seq_idx_k = tl.load(
226
+ seq_idx_ptrs, mask=offs_k < chunk_size_limit - k, other=-1
227
+ )
228
+ dt_k = tl.load(dt_ptrs, mask=offs_k < chunk_size_limit - k, other=0.0).to(
229
+ tl.float32
230
+ )
231
+ if not HAS_SEQ_IDX:
232
+ scale = tl.exp(dA_cs_last - dA_cs_k) * dt_k
233
+ else:
234
+ scale = tl.where(
235
+ seq_idx_k == seq_idx_last, tl.exp(dA_cs_last - dA_cs_k) * dt_k, 0.0
236
+ )
237
+ b *= scale[:, None]
238
+ b = b.to(x_ptr.dtype.element_ty)
239
+ acc += tl.dot(x, b)
240
+ x_ptrs += BLOCK_SIZE_K * stride_x_seqlen
241
+ b_ptrs += BLOCK_SIZE_K * stride_b_seqlen
242
+ dt_ptrs += BLOCK_SIZE_K * stride_dt_csize
243
+ dA_cumsum_ptrs += BLOCK_SIZE_K * stride_dA_cs_csize
244
+ if HAS_SEQ_IDX:
245
+ seq_idx_ptrs += BLOCK_SIZE_K * stride_seq_idx_seqlen
246
+ states = acc.to(states_ptr.dtype.element_ty)
247
+
248
+ states_ptr += (
249
+ pid_b * stride_states_batch
250
+ + pid_c * stride_states_chunk
251
+ + pid_h * stride_states_head
252
+ )
253
+ offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
254
+ offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
255
+ states_ptrs = states_ptr + (
256
+ offs_m[:, None] * stride_states_hdim + offs_n[None, :] * stride_states_dstate
257
+ )
258
+ c_mask = (offs_m[:, None] < hdim) & (offs_n[None, :] < dstate)
259
+ tl.store(states_ptrs, states, mask=c_mask)
260
+
261
+
262
+ @triton.jit
263
+ def _chunk_state_varlen_kernel(
264
+ # Pointers to matrices
265
+ x_ptr,
266
+ b_ptr,
267
+ dt_ptr,
268
+ dA_cumsum_ptr,
269
+ chunk_states_ptr,
270
+ cu_seqlens_ptr,
271
+ states_ptr,
272
+ initstates_ptr,
273
+ # Matrix dimensions
274
+ hdim,
275
+ dstate,
276
+ chunk_size,
277
+ seqlen,
278
+ nheads_ngroups_ratio,
279
+ # Strides
280
+ stride_x_seqlen,
281
+ stride_x_head,
282
+ stride_x_hdim,
283
+ stride_b_seqlen,
284
+ stride_b_head,
285
+ stride_b_dstate,
286
+ stride_dt_chunk,
287
+ stride_dt_head,
288
+ stride_dt_csize,
289
+ stride_dA_cs_chunk,
290
+ stride_dA_cs_head,
291
+ stride_dA_cs_csize,
292
+ stride_chunk_states_chunk,
293
+ stride_chunk_states_head,
294
+ stride_chunk_states_hdim,
295
+ stride_chunk_states_dstate,
296
+ stride_states_batch,
297
+ stride_states_head,
298
+ stride_states_hdim,
299
+ stride_states_dstate,
300
+ stride_init_states_batch,
301
+ stride_init_states_head,
302
+ stride_init_states_hdim,
303
+ stride_init_states_dstate,
304
+ # Meta-parameters
305
+ HAS_INITSTATES: tl.constexpr,
306
+ BLOCK_SIZE_M: tl.constexpr = 16,
307
+ BLOCK_SIZE_N: tl.constexpr = 16,
308
+ BLOCK_SIZE_K: tl.constexpr = 16,
309
+ ):
310
+ pid_b = tl.program_id(axis=1)
311
+ pid_h = tl.program_id(axis=2)
312
+ num_pid_n = tl.cdiv(dstate, BLOCK_SIZE_N)
313
+ pid_m = tl.program_id(axis=0) // num_pid_n
314
+ pid_n = tl.program_id(axis=0) % num_pid_n
315
+ end_idx = tl.load(cu_seqlens_ptr + pid_b + 1)
316
+ pid_c = (end_idx - 1) // chunk_size
317
+ b_ptr += (
318
+ pid_c * chunk_size * stride_b_seqlen
319
+ + (pid_h // nheads_ngroups_ratio) * stride_b_head
320
+ )
321
+ x_ptr += pid_c * chunk_size * stride_x_seqlen + pid_h * stride_x_head
322
+ dt_ptr += pid_c * stride_dt_chunk + pid_h * stride_dt_head
323
+ dA_cumsum_ptr += pid_c * stride_dA_cs_chunk + pid_h * stride_dA_cs_head
324
+ chunk_states_ptr += (
325
+ pid_c * stride_chunk_states_chunk + pid_h * stride_chunk_states_head
326
+ )
327
+
328
+ if HAS_INITSTATES:
329
+ # if there are init states provided, we differentiate between states (which
330
+ # are boundary conditions at a chunk boundary) and initstates (which are boundary
331
+ # conditions when a new example in a cont batch starts)
332
+ initstates_ptr += pid_h * stride_init_states_head
333
+
334
+ offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
335
+ offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
336
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
337
+ x_ptrs = x_ptr + (
338
+ offs_m[:, None] * stride_x_hdim + offs_k[None, :] * stride_x_seqlen
339
+ )
340
+ b_ptrs = b_ptr + (
341
+ offs_n[None, :] * stride_b_dstate + offs_k[:, None] * stride_b_seqlen
342
+ )
343
+ dt_ptrs = dt_ptr + offs_k * stride_dt_csize
344
+ dA_cs_last = tl.load(
345
+ dA_cumsum_ptr + (end_idx - pid_c * chunk_size - 1) * stride_dA_cs_csize
346
+ ).to(tl.float32)
347
+ dA_cumsum_ptrs = dA_cumsum_ptr + offs_k * stride_dA_cs_csize
348
+
349
+ chunk_size_limit = end_idx - pid_c * chunk_size
350
+ start_idx = tl.load(cu_seqlens_ptr + pid_b)
351
+ start_idx_cur = tl.maximum(start_idx - pid_c * chunk_size, 0)
352
+
353
+ acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
354
+ for k in range(0, chunk_size_limit, BLOCK_SIZE_K):
355
+ x = tl.load(
356
+ x_ptrs,
357
+ mask=(offs_m[:, None] < hdim)
358
+ & (offs_k[None, :] < chunk_size_limit - k)
359
+ & (offs_k[None, :] >= start_idx_cur - k),
360
+ other=0.0,
361
+ )
362
+ b = tl.load(
363
+ b_ptrs,
364
+ mask=(offs_k[:, None] < chunk_size_limit - k)
365
+ & (offs_n[None, :] < dstate)
366
+ & (offs_k[:, None] >= start_idx_cur - k),
367
+ other=0.0,
368
+ ).to(tl.float32)
369
+ dA_cs_k = tl.load(
370
+ dA_cumsum_ptrs, mask=offs_k < chunk_size_limit - k, other=0.0
371
+ ).to(tl.float32)
372
+ dt_k = tl.load(dt_ptrs, mask=offs_k < chunk_size_limit - k, other=0.0).to(
373
+ tl.float32
374
+ )
375
+ scale = tl.where(
376
+ (offs_k >= start_idx_cur - k) & (offs_k < chunk_size_limit - k),
377
+ tl.exp(dA_cs_last - dA_cs_k) * dt_k,
378
+ 0.0,
379
+ )
380
+ b *= scale[:, None]
381
+ b = b.to(x_ptr.dtype.element_ty)
382
+ acc += tl.dot(x, b)
383
+ x_ptrs += BLOCK_SIZE_K * stride_x_seqlen
384
+ b_ptrs += BLOCK_SIZE_K * stride_b_seqlen
385
+ dt_ptrs += BLOCK_SIZE_K * stride_dt_csize
386
+ dA_cumsum_ptrs += BLOCK_SIZE_K * stride_dA_cs_csize
387
+
388
+ # If the sequence starts after the last chunk idx, we don't need to add the contribution from the last chunk
389
+ # If HAS_INITSTATES==True need to consider two possibilities
390
+ # - if start_idx < pid_c * chunk_size, then we need to take the past_states_ptrs
391
+ # - if state_idx >= pid * chunk_size, then we need to insert initstates
392
+ if (start_idx < pid_c * chunk_size) or (HAS_INITSTATES): # first chunk
393
+
394
+ dA_cs_boundary = 0.0 # default
395
+
396
+ if not HAS_INITSTATES:
397
+ past_states_ptrs = chunk_states_ptr + (
398
+ offs_m[:, None] * stride_chunk_states_hdim
399
+ + offs_n[None, :] * stride_chunk_states_dstate
400
+ )
401
+ else:
402
+
403
+ # - this seems repetitive, buts its to help the compiler
404
+ if start_idx < pid_c * chunk_size:
405
+ past_states_ptrs = chunk_states_ptr + (
406
+ offs_m[:, None] * stride_chunk_states_hdim
407
+ + offs_n[None, :] * stride_chunk_states_dstate
408
+ )
409
+ else:
410
+ past_states_ptrs = initstates_ptr + (
411
+ pid_b * stride_init_states_batch
412
+ + offs_m[:, None] * stride_init_states_hdim
413
+ + offs_n[None, :] * stride_init_states_dstate
414
+ )
415
+
416
+ # need to adjust the boundary
417
+ if start_idx > pid_c * chunk_size:
418
+ dA_cs_boundary = tl.load(
419
+ dA_cumsum_ptr
420
+ + (start_idx - pid_c * chunk_size - 1) * stride_dA_cs_csize
421
+ ).to(tl.float32)
422
+
423
+ past_states = tl.load(
424
+ past_states_ptrs,
425
+ mask=(offs_m[:, None] < hdim) & (offs_n[None, :] < dstate),
426
+ other=0.0,
427
+ ).to(tl.float32)
428
+
429
+ scale = tl.exp(dA_cs_last - dA_cs_boundary)
430
+ acc += past_states * scale
431
+
432
+ states = acc.to(states_ptr.dtype.element_ty)
433
+
434
+ states_ptr += pid_b * stride_states_batch + pid_h * stride_states_head
435
+ offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
436
+ offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
437
+ states_ptrs = states_ptr + (
438
+ offs_m[:, None] * stride_states_hdim + offs_n[None, :] * stride_states_dstate
439
+ )
440
+ c_mask = (offs_m[:, None] < hdim) & (offs_n[None, :] < dstate)
441
+ tl.store(states_ptrs, states, mask=c_mask)
442
+
443
+
444
+ def _chunk_cumsum_fwd(
445
+ dt, A, chunk_size, dt_bias=None, dt_softplus=False, dt_limit=(0.0, float("inf"))
446
+ ):
447
+ batch, seqlen, nheads = dt.shape
448
+ assert A.shape == (nheads,)
449
+ if dt_bias is not None:
450
+ assert dt_bias.shape == (nheads,)
451
+ nchunks = math.ceil(seqlen / chunk_size)
452
+ dt_out = torch.empty(
453
+ batch, nheads, nchunks, chunk_size, device=dt.device, dtype=torch.float32
454
+ )
455
+ dA_cumsum = torch.empty(
456
+ batch, nheads, nchunks, chunk_size, device=dt.device, dtype=torch.float32
457
+ )
458
+ grid_chunk_cs = lambda META: (
459
+ batch,
460
+ nchunks,
461
+ triton.cdiv(nheads, META["BLOCK_SIZE_H"]),
462
+ )
463
+ with torch.cuda.device(dt.device.index):
464
+ _chunk_cumsum_fwd_kernel[grid_chunk_cs](
465
+ dt,
466
+ A,
467
+ dt_bias,
468
+ dt_out,
469
+ dA_cumsum,
470
+ batch,
471
+ seqlen,
472
+ nheads,
473
+ chunk_size,
474
+ dt_limit[0],
475
+ dt_limit[1],
476
+ dt.stride(0),
477
+ dt.stride(1),
478
+ dt.stride(2),
479
+ A.stride(0),
480
+ dt_bias.stride(0) if dt_bias is not None else 0,
481
+ dt_out.stride(0),
482
+ dt_out.stride(2),
483
+ dt_out.stride(1),
484
+ dt_out.stride(3),
485
+ dA_cumsum.stride(0),
486
+ dA_cumsum.stride(2),
487
+ dA_cumsum.stride(1),
488
+ dA_cumsum.stride(3),
489
+ dt_softplus,
490
+ HAS_DT_BIAS=dt_bias is not None,
491
+ BLOCK_SIZE_CHUNK=triton.next_power_of_2(chunk_size),
492
+ )
493
+ return dA_cumsum, dt_out
494
+
495
+
496
+ def _chunk_state_fwd(
497
+ B, x, dt, dA_cumsum, seq_idx=None, states=None, states_in_fp32=True
498
+ ):
499
+ batch, seqlen, nheads, headdim = x.shape
500
+ _, _, nchunks, chunk_size = dt.shape
501
+ _, _, ngroups, dstate = B.shape
502
+ assert nheads % ngroups == 0
503
+ assert B.shape == (batch, seqlen, ngroups, dstate)
504
+ assert dt.shape == (batch, nheads, nchunks, chunk_size)
505
+ assert dA_cumsum.shape == dt.shape
506
+ if seq_idx is not None:
507
+ assert seq_idx.shape == (batch, seqlen)
508
+ if states is not None:
509
+ assert states.shape == (batch, nchunks, nheads, headdim, dstate)
510
+ else:
511
+ states_dtype = torch.float32 if states_in_fp32 else B.dtype
512
+ states = torch.empty(
513
+ (batch, nchunks, nheads, headdim, dstate),
514
+ device=x.device,
515
+ dtype=states_dtype,
516
+ )
517
+ grid = lambda META: (
518
+ triton.cdiv(headdim, META["BLOCK_SIZE_M"])
519
+ * triton.cdiv(dstate, META["BLOCK_SIZE_N"]),
520
+ batch * nchunks,
521
+ nheads,
522
+ )
523
+ with torch.cuda.device(x.device.index):
524
+ _chunk_state_fwd_kernel[grid](
525
+ x,
526
+ B,
527
+ states,
528
+ dt,
529
+ dA_cumsum,
530
+ seq_idx,
531
+ headdim,
532
+ dstate,
533
+ chunk_size,
534
+ batch,
535
+ seqlen,
536
+ nheads // ngroups,
537
+ x.stride(0),
538
+ x.stride(1),
539
+ x.stride(2),
540
+ x.stride(3),
541
+ B.stride(0),
542
+ B.stride(1),
543
+ B.stride(2),
544
+ B.stride(-1),
545
+ states.stride(0),
546
+ states.stride(1),
547
+ states.stride(2),
548
+ states.stride(3),
549
+ states.stride(4),
550
+ dt.stride(0),
551
+ dt.stride(2),
552
+ dt.stride(1),
553
+ dt.stride(3),
554
+ dA_cumsum.stride(0),
555
+ dA_cumsum.stride(2),
556
+ dA_cumsum.stride(1),
557
+ dA_cumsum.stride(3),
558
+ *(
559
+ (seq_idx.stride(0), seq_idx.stride(1))
560
+ if seq_idx is not None
561
+ else (0, 0)
562
+ ),
563
+ HAS_SEQ_IDX=seq_idx is not None,
564
+ )
565
+ return states
566
+
567
+
568
+ def chunk_state_varlen(
569
+ B, x, dt, dA_cumsum, cu_seqlens, chunk_states, initial_states=None
570
+ ):
571
+ total_seqlen, nheads, headdim = x.shape
572
+ _, nchunks, chunk_size = dt.shape
573
+ _, ngroups, dstate = B.shape
574
+ batch = cu_seqlens.shape[0] - 1
575
+ cu_seqlens = cu_seqlens.contiguous()
576
+ assert nheads % ngroups == 0
577
+ assert B.shape == (total_seqlen, ngroups, dstate)
578
+ assert dt.shape == (nheads, nchunks, chunk_size)
579
+ assert dA_cumsum.shape == dt.shape
580
+ assert chunk_states.shape == (nchunks, nheads, headdim, dstate)
581
+
582
+ if initial_states is not None:
583
+ assert initial_states.shape == (batch, nheads, headdim, dstate)
584
+
585
+ states = torch.empty(
586
+ batch,
587
+ nheads,
588
+ headdim,
589
+ dstate,
590
+ dtype=chunk_states.dtype,
591
+ device=chunk_states.device,
592
+ )
593
+ grid = lambda META: (
594
+ triton.cdiv(headdim, META["BLOCK_SIZE_M"])
595
+ * triton.cdiv(dstate, META["BLOCK_SIZE_N"]),
596
+ batch,
597
+ nheads,
598
+ )
599
+ with torch.cuda.device(x.device.index):
600
+ _chunk_state_varlen_kernel[grid](
601
+ x,
602
+ B,
603
+ dt,
604
+ dA_cumsum,
605
+ chunk_states,
606
+ cu_seqlens,
607
+ states,
608
+ initial_states,
609
+ headdim,
610
+ dstate,
611
+ chunk_size,
612
+ total_seqlen,
613
+ nheads // ngroups,
614
+ x.stride(0),
615
+ x.stride(1),
616
+ x.stride(2),
617
+ B.stride(0),
618
+ B.stride(1),
619
+ B.stride(2),
620
+ dt.stride(1),
621
+ dt.stride(0),
622
+ dt.stride(2),
623
+ dA_cumsum.stride(1),
624
+ dA_cumsum.stride(0),
625
+ dA_cumsum.stride(2),
626
+ chunk_states.stride(0),
627
+ chunk_states.stride(1),
628
+ chunk_states.stride(2),
629
+ chunk_states.stride(3),
630
+ states.stride(0),
631
+ states.stride(1),
632
+ states.stride(2),
633
+ states.stride(3),
634
+ *(
635
+ (
636
+ initial_states.stride(0),
637
+ initial_states.stride(1),
638
+ initial_states.stride(2),
639
+ initial_states.stride(3),
640
+ )
641
+ if initial_states is not None
642
+ else (0, 0, 0, 0)
643
+ ),
644
+ HAS_INITSTATES=initial_states is not None,
645
+ )
646
+ return states