sglang 0.3.0__py3-none-any.whl → 0.3.1.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_latency.py +17 -8
- sglang/bench_serving.py +33 -38
- sglang/global_config.py +5 -17
- sglang/lang/backend/runtime_endpoint.py +5 -2
- sglang/lang/interpreter.py +1 -4
- sglang/launch_server.py +3 -6
- sglang/launch_server_llavavid.py +7 -8
- sglang/srt/{model_config.py → configs/model_config.py} +5 -0
- sglang/srt/constrained/__init__.py +2 -0
- sglang/srt/constrained/fsm_cache.py +33 -38
- sglang/srt/constrained/jump_forward.py +0 -1
- sglang/srt/conversation.py +4 -1
- sglang/srt/hf_transformers_utils.py +1 -3
- sglang/srt/layers/activation.py +12 -0
- sglang/srt/layers/attention_backend.py +480 -0
- sglang/srt/layers/flashinfer_utils.py +235 -0
- sglang/srt/layers/fused_moe/layer.py +27 -7
- sglang/srt/layers/layernorm.py +12 -0
- sglang/srt/layers/logits_processor.py +64 -77
- sglang/srt/layers/radix_attention.py +11 -161
- sglang/srt/layers/sampler.py +38 -122
- sglang/srt/layers/torchao_utils.py +75 -0
- sglang/srt/layers/{decode_attention.py → triton_attention/decode_attention.py} +67 -63
- sglang/srt/layers/{extend_attention.py → triton_attention/extend_attention.py} +40 -132
- sglang/srt/layers/{prefill_attention.py → triton_attention/prefill_attention.py} +13 -7
- sglang/srt/lora/lora.py +403 -0
- sglang/srt/lora/lora_config.py +43 -0
- sglang/srt/lora/lora_manager.py +259 -0
- sglang/srt/managers/controller_multi.py +1 -5
- sglang/srt/managers/controller_single.py +0 -5
- sglang/srt/managers/io_struct.py +16 -1
- sglang/srt/managers/policy_scheduler.py +122 -5
- sglang/srt/managers/schedule_batch.py +105 -71
- sglang/srt/managers/tokenizer_manager.py +17 -8
- sglang/srt/managers/tp_worker.py +188 -121
- sglang/srt/model_executor/cuda_graph_runner.py +69 -133
- sglang/srt/model_executor/forward_batch_info.py +35 -312
- sglang/srt/model_executor/model_runner.py +123 -154
- sglang/srt/models/baichuan.py +416 -0
- sglang/srt/models/chatglm.py +1 -5
- sglang/srt/models/commandr.py +1 -5
- sglang/srt/models/dbrx.py +1 -5
- sglang/srt/models/deepseek.py +1 -5
- sglang/srt/models/deepseek_v2.py +7 -6
- sglang/srt/models/exaone.py +1 -5
- sglang/srt/models/gemma.py +1 -5
- sglang/srt/models/gemma2.py +1 -5
- sglang/srt/models/gpt_bigcode.py +1 -5
- sglang/srt/models/grok.py +1 -5
- sglang/srt/models/internlm2.py +1 -5
- sglang/srt/models/llama.py +51 -5
- sglang/srt/models/llama_classification.py +1 -20
- sglang/srt/models/llava.py +30 -5
- sglang/srt/models/llavavid.py +2 -2
- sglang/srt/models/minicpm.py +1 -5
- sglang/srt/models/minicpm3.py +669 -0
- sglang/srt/models/mixtral.py +6 -5
- sglang/srt/models/mixtral_quant.py +1 -5
- sglang/srt/models/olmoe.py +415 -0
- sglang/srt/models/qwen.py +1 -5
- sglang/srt/models/qwen2.py +1 -5
- sglang/srt/models/qwen2_moe.py +6 -5
- sglang/srt/models/stablelm.py +1 -5
- sglang/srt/models/xverse.py +375 -0
- sglang/srt/models/xverse_moe.py +445 -0
- sglang/srt/openai_api/adapter.py +65 -46
- sglang/srt/openai_api/protocol.py +11 -3
- sglang/srt/sampling/sampling_batch_info.py +46 -80
- sglang/srt/server.py +30 -15
- sglang/srt/server_args.py +163 -28
- sglang/srt/utils.py +19 -51
- sglang/test/few_shot_gsm8k.py +132 -0
- sglang/test/runners.py +114 -22
- sglang/test/test_programs.py +7 -5
- sglang/test/test_utils.py +85 -2
- sglang/utils.py +32 -37
- sglang/version.py +1 -1
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/METADATA +30 -18
- sglang-0.3.1.post1.dist-info/RECORD +130 -0
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/WHEEL +1 -1
- sglang-0.3.0.dist-info/RECORD +0 -118
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/LICENSE +0 -0
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,375 @@
|
|
1
|
+
"""
|
2
|
+
Copyright 2023-2024 SGLang Team
|
3
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
you may not use this file except in compliance with the License.
|
5
|
+
You may obtain a copy of the License at
|
6
|
+
|
7
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
Unless required by applicable law or agreed to in writing, software
|
10
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
See the License for the specific language governing permissions and
|
13
|
+
limitations under the License.
|
14
|
+
"""
|
15
|
+
|
16
|
+
# Adapted from
|
17
|
+
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/xverse.py#L1
|
18
|
+
"""Inference-only XVERSE model compatible with HuggingFace weights."""
|
19
|
+
|
20
|
+
from typing import Any, Dict, Iterable, Optional, Tuple
|
21
|
+
|
22
|
+
import torch
|
23
|
+
from torch import nn
|
24
|
+
from transformers import LlamaConfig
|
25
|
+
from vllm.config import CacheConfig
|
26
|
+
from vllm.distributed import get_tensor_model_parallel_world_size
|
27
|
+
from vllm.model_executor.layers.activation import SiluAndMul
|
28
|
+
from vllm.model_executor.layers.layernorm import RMSNorm
|
29
|
+
from vllm.model_executor.layers.linear import (
|
30
|
+
MergedColumnParallelLinear,
|
31
|
+
QKVParallelLinear,
|
32
|
+
RowParallelLinear,
|
33
|
+
)
|
34
|
+
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
|
35
|
+
from vllm.model_executor.layers.rotary_embedding import get_rope
|
36
|
+
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
37
|
+
ParallelLMHead,
|
38
|
+
VocabParallelEmbedding,
|
39
|
+
)
|
40
|
+
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
41
|
+
|
42
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor
|
43
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
44
|
+
from sglang.srt.model_executor.model_runner import InputMetadata
|
45
|
+
|
46
|
+
|
47
|
+
class XverseMLP(nn.Module):
|
48
|
+
def __init__(
|
49
|
+
self,
|
50
|
+
hidden_size: int,
|
51
|
+
intermediate_size: int,
|
52
|
+
hidden_act: str,
|
53
|
+
quant_config: Optional[QuantizationConfig] = None,
|
54
|
+
prefix: str = "",
|
55
|
+
) -> None:
|
56
|
+
super().__init__()
|
57
|
+
self.gate_up_proj = MergedColumnParallelLinear(
|
58
|
+
hidden_size,
|
59
|
+
[intermediate_size] * 2,
|
60
|
+
bias=False,
|
61
|
+
quant_config=quant_config,
|
62
|
+
prefix=f"{prefix}.gate_up_proj",
|
63
|
+
)
|
64
|
+
self.down_proj = RowParallelLinear(
|
65
|
+
intermediate_size,
|
66
|
+
hidden_size,
|
67
|
+
bias=False,
|
68
|
+
quant_config=quant_config,
|
69
|
+
prefix=f"{prefix}.down_proj",
|
70
|
+
)
|
71
|
+
if hidden_act != "silu":
|
72
|
+
raise ValueError(
|
73
|
+
f"Unsupported activation: {hidden_act}. "
|
74
|
+
"Only silu is supported for now."
|
75
|
+
)
|
76
|
+
self.act_fn = SiluAndMul()
|
77
|
+
|
78
|
+
def forward(self, x):
|
79
|
+
gate_up, _ = self.gate_up_proj(x)
|
80
|
+
x = self.act_fn(gate_up)
|
81
|
+
x, _ = self.down_proj(x)
|
82
|
+
return x
|
83
|
+
|
84
|
+
|
85
|
+
class XverseAttention(nn.Module):
|
86
|
+
def __init__(
|
87
|
+
self,
|
88
|
+
config: LlamaConfig,
|
89
|
+
hidden_size: int,
|
90
|
+
num_heads: int,
|
91
|
+
num_kv_heads: int,
|
92
|
+
layer_id: int = 0,
|
93
|
+
rope_theta: float = 10000,
|
94
|
+
rope_scaling: Optional[Dict[str, Any]] = None,
|
95
|
+
rope_is_neox_style: bool = True,
|
96
|
+
max_position_embeddings: int = 8192,
|
97
|
+
quant_config: Optional[QuantizationConfig] = None,
|
98
|
+
prefix: str = "",
|
99
|
+
) -> None:
|
100
|
+
super().__init__()
|
101
|
+
self.hidden_size = hidden_size
|
102
|
+
tp_size = get_tensor_model_parallel_world_size()
|
103
|
+
self.total_num_heads = num_heads
|
104
|
+
assert self.total_num_heads % tp_size == 0
|
105
|
+
self.num_heads = self.total_num_heads // tp_size
|
106
|
+
self.total_num_kv_heads = num_kv_heads
|
107
|
+
if self.total_num_kv_heads >= tp_size:
|
108
|
+
# Number of KV heads is greater than TP size, so we partition
|
109
|
+
# the KV heads across multiple tensor parallel GPUs.
|
110
|
+
assert self.total_num_kv_heads % tp_size == 0
|
111
|
+
else:
|
112
|
+
# Number of KV heads is less than TP size, so we replicate
|
113
|
+
# the KV heads across multiple tensor parallel GPUs.
|
114
|
+
assert tp_size % self.total_num_kv_heads == 0
|
115
|
+
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
116
|
+
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
|
117
|
+
self.head_dim = getattr(
|
118
|
+
config, "head_dim", self.hidden_size // self.total_num_heads
|
119
|
+
)
|
120
|
+
self.q_size = self.num_heads * self.head_dim
|
121
|
+
self.kv_size = self.num_kv_heads * self.head_dim
|
122
|
+
self.scaling = self.head_dim**-0.5
|
123
|
+
self.rope_theta = rope_theta
|
124
|
+
self.max_position_embeddings = max_position_embeddings
|
125
|
+
|
126
|
+
self.qkv_proj = QKVParallelLinear(
|
127
|
+
hidden_size,
|
128
|
+
self.head_dim,
|
129
|
+
self.total_num_heads,
|
130
|
+
self.total_num_kv_heads,
|
131
|
+
bias=False,
|
132
|
+
quant_config=quant_config,
|
133
|
+
prefix=f"{prefix}.qkv_proj",
|
134
|
+
)
|
135
|
+
self.o_proj = RowParallelLinear(
|
136
|
+
self.total_num_heads * self.head_dim,
|
137
|
+
hidden_size,
|
138
|
+
bias=False,
|
139
|
+
quant_config=quant_config,
|
140
|
+
prefix=f"{prefix}.o_proj",
|
141
|
+
)
|
142
|
+
|
143
|
+
self.rotary_emb = get_rope(
|
144
|
+
self.head_dim,
|
145
|
+
rotary_dim=self.head_dim,
|
146
|
+
max_position=max_position_embeddings,
|
147
|
+
base=rope_theta,
|
148
|
+
rope_scaling=rope_scaling,
|
149
|
+
is_neox_style=rope_is_neox_style,
|
150
|
+
)
|
151
|
+
self.attn = RadixAttention(
|
152
|
+
self.num_heads,
|
153
|
+
self.head_dim,
|
154
|
+
self.scaling,
|
155
|
+
num_kv_heads=self.num_kv_heads,
|
156
|
+
layer_id=layer_id,
|
157
|
+
)
|
158
|
+
|
159
|
+
def forward(
|
160
|
+
self,
|
161
|
+
positions: torch.Tensor,
|
162
|
+
hidden_states: torch.Tensor,
|
163
|
+
input_metadata: InputMetadata,
|
164
|
+
) -> torch.Tensor:
|
165
|
+
qkv, _ = self.qkv_proj(hidden_states)
|
166
|
+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
167
|
+
q, k = self.rotary_emb(positions, q, k)
|
168
|
+
attn_output = self.attn(q, k, v, input_metadata)
|
169
|
+
output, _ = self.o_proj(attn_output)
|
170
|
+
return output
|
171
|
+
|
172
|
+
|
173
|
+
class XverseDecoderLayer(nn.Module):
|
174
|
+
def __init__(
|
175
|
+
self,
|
176
|
+
config: LlamaConfig,
|
177
|
+
layer_id: int = 0,
|
178
|
+
quant_config: Optional[QuantizationConfig] = None,
|
179
|
+
prefix: str = "",
|
180
|
+
) -> None:
|
181
|
+
super().__init__()
|
182
|
+
self.hidden_size = config.hidden_size
|
183
|
+
rope_theta = getattr(config, "rope_theta", 10000)
|
184
|
+
rope_scaling = getattr(config, "rope_scaling", None)
|
185
|
+
if rope_scaling is not None and getattr(
|
186
|
+
config, "original_max_position_embeddings", None
|
187
|
+
):
|
188
|
+
rope_scaling["original_max_position_embeddings"] = (
|
189
|
+
config.original_max_position_embeddings
|
190
|
+
)
|
191
|
+
rope_is_neox_style = getattr(config, "rope_is_neox_style", True)
|
192
|
+
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
193
|
+
num_kv_heads = getattr(
|
194
|
+
config, "num_key_value_heads", config.num_attention_heads
|
195
|
+
)
|
196
|
+
self.self_attn = XverseAttention(
|
197
|
+
config=config,
|
198
|
+
hidden_size=self.hidden_size,
|
199
|
+
num_heads=config.num_attention_heads,
|
200
|
+
num_kv_heads=num_kv_heads,
|
201
|
+
layer_id=layer_id,
|
202
|
+
rope_theta=rope_theta,
|
203
|
+
rope_scaling=rope_scaling,
|
204
|
+
rope_is_neox_style=rope_is_neox_style,
|
205
|
+
max_position_embeddings=max_position_embeddings,
|
206
|
+
quant_config=quant_config,
|
207
|
+
prefix=f"{prefix}.self_attn",
|
208
|
+
)
|
209
|
+
self.mlp = XverseMLP(
|
210
|
+
hidden_size=self.hidden_size,
|
211
|
+
intermediate_size=config.intermediate_size,
|
212
|
+
hidden_act=config.hidden_act,
|
213
|
+
quant_config=quant_config,
|
214
|
+
prefix=f"{prefix}.mlp",
|
215
|
+
)
|
216
|
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
217
|
+
self.post_attention_layernorm = RMSNorm(
|
218
|
+
config.hidden_size, eps=config.rms_norm_eps
|
219
|
+
)
|
220
|
+
|
221
|
+
def forward(
|
222
|
+
self,
|
223
|
+
positions: torch.Tensor,
|
224
|
+
hidden_states: torch.Tensor,
|
225
|
+
input_metadata: InputMetadata,
|
226
|
+
residual: Optional[torch.Tensor],
|
227
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
228
|
+
# Self Attention
|
229
|
+
if residual is None:
|
230
|
+
residual = hidden_states
|
231
|
+
hidden_states = self.input_layernorm(hidden_states)
|
232
|
+
else:
|
233
|
+
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
234
|
+
hidden_states = self.self_attn(
|
235
|
+
positions=positions,
|
236
|
+
hidden_states=hidden_states,
|
237
|
+
input_metadata=input_metadata,
|
238
|
+
)
|
239
|
+
|
240
|
+
# Fully Connected
|
241
|
+
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
242
|
+
hidden_states = self.mlp(hidden_states)
|
243
|
+
return hidden_states, residual
|
244
|
+
|
245
|
+
|
246
|
+
class XverseModel(nn.Module):
|
247
|
+
def __init__(
|
248
|
+
self,
|
249
|
+
config: LlamaConfig,
|
250
|
+
quant_config: Optional[QuantizationConfig] = None,
|
251
|
+
) -> None:
|
252
|
+
super().__init__()
|
253
|
+
self.config = config
|
254
|
+
self.padding_idx = config.pad_token_id
|
255
|
+
self.vocab_size = config.vocab_size
|
256
|
+
self.embed_tokens = VocabParallelEmbedding(
|
257
|
+
config.vocab_size,
|
258
|
+
config.hidden_size,
|
259
|
+
)
|
260
|
+
self.layers = nn.ModuleList(
|
261
|
+
[
|
262
|
+
XverseDecoderLayer(
|
263
|
+
config, i, quant_config=quant_config, prefix=f"model.layers.{i}"
|
264
|
+
)
|
265
|
+
for i in range(config.num_hidden_layers)
|
266
|
+
]
|
267
|
+
)
|
268
|
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
269
|
+
|
270
|
+
def forward(
|
271
|
+
self,
|
272
|
+
input_ids: torch.Tensor,
|
273
|
+
positions: torch.Tensor,
|
274
|
+
input_metadata: InputMetadata,
|
275
|
+
input_embeds: torch.Tensor = None,
|
276
|
+
) -> torch.Tensor:
|
277
|
+
if input_embeds is None:
|
278
|
+
hidden_states = self.embed_tokens(input_ids)
|
279
|
+
else:
|
280
|
+
hidden_states = input_embeds
|
281
|
+
residual = None
|
282
|
+
for i in range(len(self.layers)):
|
283
|
+
layer = self.layers[i]
|
284
|
+
hidden_states, residual = layer(
|
285
|
+
positions,
|
286
|
+
hidden_states,
|
287
|
+
input_metadata,
|
288
|
+
residual,
|
289
|
+
)
|
290
|
+
# print(f"layer[{i}].hidden_states: {hidden_states}")
|
291
|
+
hidden_states, _ = self.norm(hidden_states, residual)
|
292
|
+
return hidden_states
|
293
|
+
|
294
|
+
|
295
|
+
class XverseForCausalLM(nn.Module):
|
296
|
+
def __init__(
|
297
|
+
self,
|
298
|
+
config: LlamaConfig,
|
299
|
+
quant_config: Optional[QuantizationConfig] = None,
|
300
|
+
cache_config: Optional[CacheConfig] = None,
|
301
|
+
efficient_weight_load=False,
|
302
|
+
) -> None:
|
303
|
+
super().__init__()
|
304
|
+
self.config = config
|
305
|
+
self.quant_config = quant_config
|
306
|
+
self.model = XverseModel(config, quant_config=quant_config)
|
307
|
+
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
308
|
+
self.logits_processor = LogitsProcessor(config)
|
309
|
+
|
310
|
+
self.param_dict = dict(self.named_parameters())
|
311
|
+
|
312
|
+
@torch.no_grad()
|
313
|
+
def forward(
|
314
|
+
self,
|
315
|
+
input_ids: torch.Tensor,
|
316
|
+
positions: torch.Tensor,
|
317
|
+
input_metadata: InputMetadata,
|
318
|
+
input_embeds: torch.Tensor = None,
|
319
|
+
) -> torch.Tensor:
|
320
|
+
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
321
|
+
return self.logits_processor(
|
322
|
+
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
323
|
+
)
|
324
|
+
|
325
|
+
def load_weights(
|
326
|
+
self, weights: Iterable[Tuple[str, torch.Tensor]], name=None, loaded_weight=None
|
327
|
+
):
|
328
|
+
stacked_params_mapping = [
|
329
|
+
# (param_name, shard_name, shard_id)
|
330
|
+
("qkv_proj", "q_proj", "q"),
|
331
|
+
("qkv_proj", "k_proj", "k"),
|
332
|
+
("qkv_proj", "v_proj", "v"),
|
333
|
+
("gate_up_proj", "gate_proj", 0),
|
334
|
+
("gate_up_proj", "up_proj", 1),
|
335
|
+
]
|
336
|
+
params_dict = self.param_dict
|
337
|
+
|
338
|
+
def load_weights_per_param(name, loaded_weight):
|
339
|
+
if "rotary_emb.inv_freq" in name or "projector" in name:
|
340
|
+
return
|
341
|
+
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
342
|
+
# Models trained using ColossalAI may include these tensors in
|
343
|
+
# the checkpoint. Skip them.
|
344
|
+
return
|
345
|
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
346
|
+
if weight_name not in name:
|
347
|
+
continue
|
348
|
+
name = name.replace(weight_name, param_name)
|
349
|
+
# Skip loading extra bias for GPTQ models.
|
350
|
+
if name.endswith(".bias") and name not in params_dict:
|
351
|
+
continue
|
352
|
+
if name.startswith("model.vision_tower") and name not in params_dict:
|
353
|
+
continue
|
354
|
+
param = params_dict[name]
|
355
|
+
weight_loader = param.weight_loader
|
356
|
+
weight_loader(param, loaded_weight, shard_id)
|
357
|
+
break
|
358
|
+
else:
|
359
|
+
# Skip loading extra bias for GPTQ models.
|
360
|
+
if name.endswith(".bias") and name not in params_dict:
|
361
|
+
return
|
362
|
+
if name.startswith("model.vision_tower") and name not in params_dict:
|
363
|
+
return
|
364
|
+
param = params_dict[name]
|
365
|
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
366
|
+
weight_loader(param, loaded_weight)
|
367
|
+
|
368
|
+
if name is None or loaded_weight is None:
|
369
|
+
for name, loaded_weight in weights:
|
370
|
+
load_weights_per_param(name, loaded_weight)
|
371
|
+
else:
|
372
|
+
load_weights_per_param(name, loaded_weight)
|
373
|
+
|
374
|
+
|
375
|
+
EntryClass = XverseForCausalLM
|