sglang 0.3.0__py3-none-any.whl → 0.3.1.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_latency.py +17 -8
- sglang/bench_serving.py +33 -38
- sglang/global_config.py +5 -17
- sglang/lang/backend/runtime_endpoint.py +5 -2
- sglang/lang/interpreter.py +1 -4
- sglang/launch_server.py +3 -6
- sglang/launch_server_llavavid.py +7 -8
- sglang/srt/{model_config.py → configs/model_config.py} +5 -0
- sglang/srt/constrained/__init__.py +2 -0
- sglang/srt/constrained/fsm_cache.py +33 -38
- sglang/srt/constrained/jump_forward.py +0 -1
- sglang/srt/conversation.py +4 -1
- sglang/srt/hf_transformers_utils.py +1 -3
- sglang/srt/layers/activation.py +12 -0
- sglang/srt/layers/attention_backend.py +480 -0
- sglang/srt/layers/flashinfer_utils.py +235 -0
- sglang/srt/layers/fused_moe/layer.py +27 -7
- sglang/srt/layers/layernorm.py +12 -0
- sglang/srt/layers/logits_processor.py +64 -77
- sglang/srt/layers/radix_attention.py +11 -161
- sglang/srt/layers/sampler.py +38 -122
- sglang/srt/layers/torchao_utils.py +75 -0
- sglang/srt/layers/{decode_attention.py → triton_attention/decode_attention.py} +67 -63
- sglang/srt/layers/{extend_attention.py → triton_attention/extend_attention.py} +40 -132
- sglang/srt/layers/{prefill_attention.py → triton_attention/prefill_attention.py} +13 -7
- sglang/srt/lora/lora.py +403 -0
- sglang/srt/lora/lora_config.py +43 -0
- sglang/srt/lora/lora_manager.py +259 -0
- sglang/srt/managers/controller_multi.py +1 -5
- sglang/srt/managers/controller_single.py +0 -5
- sglang/srt/managers/io_struct.py +16 -1
- sglang/srt/managers/policy_scheduler.py +122 -5
- sglang/srt/managers/schedule_batch.py +105 -71
- sglang/srt/managers/tokenizer_manager.py +17 -8
- sglang/srt/managers/tp_worker.py +188 -121
- sglang/srt/model_executor/cuda_graph_runner.py +69 -133
- sglang/srt/model_executor/forward_batch_info.py +35 -312
- sglang/srt/model_executor/model_runner.py +123 -154
- sglang/srt/models/baichuan.py +416 -0
- sglang/srt/models/chatglm.py +1 -5
- sglang/srt/models/commandr.py +1 -5
- sglang/srt/models/dbrx.py +1 -5
- sglang/srt/models/deepseek.py +1 -5
- sglang/srt/models/deepseek_v2.py +7 -6
- sglang/srt/models/exaone.py +1 -5
- sglang/srt/models/gemma.py +1 -5
- sglang/srt/models/gemma2.py +1 -5
- sglang/srt/models/gpt_bigcode.py +1 -5
- sglang/srt/models/grok.py +1 -5
- sglang/srt/models/internlm2.py +1 -5
- sglang/srt/models/llama.py +51 -5
- sglang/srt/models/llama_classification.py +1 -20
- sglang/srt/models/llava.py +30 -5
- sglang/srt/models/llavavid.py +2 -2
- sglang/srt/models/minicpm.py +1 -5
- sglang/srt/models/minicpm3.py +669 -0
- sglang/srt/models/mixtral.py +6 -5
- sglang/srt/models/mixtral_quant.py +1 -5
- sglang/srt/models/olmoe.py +415 -0
- sglang/srt/models/qwen.py +1 -5
- sglang/srt/models/qwen2.py +1 -5
- sglang/srt/models/qwen2_moe.py +6 -5
- sglang/srt/models/stablelm.py +1 -5
- sglang/srt/models/xverse.py +375 -0
- sglang/srt/models/xverse_moe.py +445 -0
- sglang/srt/openai_api/adapter.py +65 -46
- sglang/srt/openai_api/protocol.py +11 -3
- sglang/srt/sampling/sampling_batch_info.py +46 -80
- sglang/srt/server.py +30 -15
- sglang/srt/server_args.py +163 -28
- sglang/srt/utils.py +19 -51
- sglang/test/few_shot_gsm8k.py +132 -0
- sglang/test/runners.py +114 -22
- sglang/test/test_programs.py +7 -5
- sglang/test/test_utils.py +85 -2
- sglang/utils.py +32 -37
- sglang/version.py +1 -1
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/METADATA +30 -18
- sglang-0.3.1.post1.dist-info/RECORD +130 -0
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/WHEEL +1 -1
- sglang-0.3.0.dist-info/RECORD +0 -118
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/LICENSE +0 -0
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,416 @@
|
|
1
|
+
# coding=utf-8
|
2
|
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3
|
+
#
|
4
|
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5
|
+
# and OPT implementations in this library. It has been modified from its
|
6
|
+
# original forms to accommodate minor architectural differences compared
|
7
|
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8
|
+
#
|
9
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10
|
+
# you may not use this file except in compliance with the License.
|
11
|
+
# You may obtain a copy of the License at
|
12
|
+
#
|
13
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14
|
+
#
|
15
|
+
# Unless required by applicable law or agreed to in writing, software
|
16
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18
|
+
# See the License for the specific language governing permissions and
|
19
|
+
# limitations under the License.
|
20
|
+
"""Inference-only BaiChuan model compatible with HuggingFace weights."""
|
21
|
+
import math
|
22
|
+
from typing import Iterable, Optional, Tuple
|
23
|
+
|
24
|
+
import torch
|
25
|
+
from torch import nn
|
26
|
+
from transformers import PretrainedConfig
|
27
|
+
from vllm.config import CacheConfig
|
28
|
+
from vllm.distributed import (
|
29
|
+
get_tensor_model_parallel_rank,
|
30
|
+
get_tensor_model_parallel_world_size,
|
31
|
+
)
|
32
|
+
from vllm.model_executor.layers.linear import (
|
33
|
+
MergedColumnParallelLinear,
|
34
|
+
QKVParallelLinear,
|
35
|
+
RowParallelLinear,
|
36
|
+
)
|
37
|
+
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
|
38
|
+
from vllm.model_executor.layers.rotary_embedding import get_rope
|
39
|
+
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
40
|
+
ParallelLMHead,
|
41
|
+
VocabParallelEmbedding,
|
42
|
+
)
|
43
|
+
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
44
|
+
|
45
|
+
from sglang.srt.layers.activation import SiluAndMul
|
46
|
+
from sglang.srt.layers.layernorm import RMSNorm
|
47
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor
|
48
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
49
|
+
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
50
|
+
|
51
|
+
|
52
|
+
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
|
53
|
+
closest_power_of_2 = 2 ** math.floor(math.log2(total_num_heads))
|
54
|
+
base = torch.tensor(
|
55
|
+
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))),
|
56
|
+
dtype=torch.float32,
|
57
|
+
)
|
58
|
+
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
|
59
|
+
slopes = torch.pow(base, powers)
|
60
|
+
|
61
|
+
if closest_power_of_2 != total_num_heads:
|
62
|
+
extra_base = torch.tensor(
|
63
|
+
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))),
|
64
|
+
dtype=torch.float32,
|
65
|
+
)
|
66
|
+
num_remaining_heads = min(
|
67
|
+
closest_power_of_2, total_num_heads - closest_power_of_2
|
68
|
+
)
|
69
|
+
extra_powers = torch.arange(
|
70
|
+
start=1, end=1 + 2 * num_remaining_heads, step=2, dtype=torch.int32
|
71
|
+
)
|
72
|
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
73
|
+
return slopes
|
74
|
+
|
75
|
+
|
76
|
+
class BaiChuanMLP(nn.Module):
|
77
|
+
|
78
|
+
def __init__(
|
79
|
+
self,
|
80
|
+
hidden_size: int,
|
81
|
+
intermediate_size: int,
|
82
|
+
hidden_act: str,
|
83
|
+
quant_config: Optional[QuantizationConfig] = None,
|
84
|
+
):
|
85
|
+
super().__init__()
|
86
|
+
self.gate_up_proj = MergedColumnParallelLinear(
|
87
|
+
hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config
|
88
|
+
)
|
89
|
+
self.down_proj = RowParallelLinear(
|
90
|
+
intermediate_size, hidden_size, bias=False, quant_config=quant_config
|
91
|
+
)
|
92
|
+
if hidden_act != "silu":
|
93
|
+
raise ValueError(
|
94
|
+
f"Unsupported activation: {hidden_act}. "
|
95
|
+
"Only silu is supported for now."
|
96
|
+
)
|
97
|
+
self.act_fn = SiluAndMul()
|
98
|
+
|
99
|
+
def forward(self, x):
|
100
|
+
gate_up, _ = self.gate_up_proj(x)
|
101
|
+
x = self.act_fn(gate_up)
|
102
|
+
x, _ = self.down_proj(x)
|
103
|
+
return x
|
104
|
+
|
105
|
+
|
106
|
+
class BaiChuanAttention(nn.Module):
|
107
|
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
108
|
+
|
109
|
+
def __init__(
|
110
|
+
self,
|
111
|
+
hidden_size: int,
|
112
|
+
num_heads: int,
|
113
|
+
position_embedding: str,
|
114
|
+
rope_theta: float = 10000,
|
115
|
+
max_position_embeddings: int = 8192,
|
116
|
+
quant_config: Optional[QuantizationConfig] = None,
|
117
|
+
layer_id: int = 0,
|
118
|
+
):
|
119
|
+
super().__init__()
|
120
|
+
self.hidden_size = hidden_size
|
121
|
+
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
|
122
|
+
tp_size = get_tensor_model_parallel_world_size()
|
123
|
+
self.total_num_heads = num_heads
|
124
|
+
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
125
|
+
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
|
126
|
+
self.head_dim = hidden_size // self.total_num_heads
|
127
|
+
self.postion_embedding = position_embedding
|
128
|
+
self.rope_theta = rope_theta
|
129
|
+
self.max_position_embeddings = max_position_embeddings
|
130
|
+
self.total_num_kv_heads = self.num_heads
|
131
|
+
if self.total_num_kv_heads >= tp_size:
|
132
|
+
# Number of KV heads is greater than TP size, so we partition
|
133
|
+
# the KV heads across multiple tensor parallel GPUs.
|
134
|
+
assert self.total_num_kv_heads % tp_size == 0
|
135
|
+
else:
|
136
|
+
# Number of KV heads is less than TP size, so we replicate
|
137
|
+
# the KV heads across multiple tensor parallel GPUs.
|
138
|
+
assert tp_size % self.total_num_kv_heads == 0
|
139
|
+
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
140
|
+
|
141
|
+
# pylint: disable=invalid-name
|
142
|
+
self.W_pack = QKVParallelLinear(
|
143
|
+
hidden_size,
|
144
|
+
self.head_dim,
|
145
|
+
self.total_num_heads,
|
146
|
+
self.total_num_heads,
|
147
|
+
bias=False,
|
148
|
+
quant_config=quant_config,
|
149
|
+
)
|
150
|
+
self.o_proj = RowParallelLinear(
|
151
|
+
self.total_num_heads * self.head_dim,
|
152
|
+
hidden_size,
|
153
|
+
bias=False,
|
154
|
+
quant_config=quant_config,
|
155
|
+
)
|
156
|
+
# Create the alibi slopes and slice them.
|
157
|
+
if self.postion_embedding == "ALIBI":
|
158
|
+
tp_rank = get_tensor_model_parallel_rank()
|
159
|
+
head_start = tp_rank * self.num_heads
|
160
|
+
head_end = (tp_rank + 1) * self.num_heads
|
161
|
+
alibi_slopes = _get_alibi_slopes(self.total_num_heads)
|
162
|
+
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
|
163
|
+
|
164
|
+
scaling = self.head_dim**-0.5
|
165
|
+
self.attn = RadixAttention(
|
166
|
+
self.num_heads,
|
167
|
+
self.head_dim,
|
168
|
+
scaling,
|
169
|
+
num_kv_heads=self.num_kv_heads,
|
170
|
+
layer_id=layer_id,
|
171
|
+
)
|
172
|
+
else:
|
173
|
+
self.rotary_emb = get_rope(
|
174
|
+
self.head_dim,
|
175
|
+
rotary_dim=self.head_dim,
|
176
|
+
max_position=self.max_position_embeddings,
|
177
|
+
base=self.rope_theta,
|
178
|
+
)
|
179
|
+
self.scaling = self.head_dim**-0.5
|
180
|
+
self.attn = RadixAttention(
|
181
|
+
self.num_heads,
|
182
|
+
self.head_dim,
|
183
|
+
self.scaling,
|
184
|
+
num_kv_heads=self.num_kv_heads,
|
185
|
+
layer_id=layer_id,
|
186
|
+
)
|
187
|
+
|
188
|
+
def forward(
|
189
|
+
self,
|
190
|
+
positions: torch.Tensor,
|
191
|
+
hidden_states: torch.Tensor,
|
192
|
+
input_metadata: InputMetadata,
|
193
|
+
) -> torch.Tensor:
|
194
|
+
qkv, _ = self.W_pack(hidden_states)
|
195
|
+
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
196
|
+
if self.postion_embedding != "ALIBI":
|
197
|
+
q, k = self.rotary_emb(positions, q, k)
|
198
|
+
attn_output = self.attn(q, k, v, input_metadata)
|
199
|
+
output, _ = self.o_proj(attn_output)
|
200
|
+
return output
|
201
|
+
|
202
|
+
|
203
|
+
class BaiChuanDecoderLayer(nn.Module):
|
204
|
+
|
205
|
+
def __init__(
|
206
|
+
self,
|
207
|
+
config: PretrainedConfig,
|
208
|
+
position_embedding: str,
|
209
|
+
layer_id: int = 0,
|
210
|
+
quant_config: Optional[QuantizationConfig] = None,
|
211
|
+
):
|
212
|
+
super().__init__()
|
213
|
+
self.hidden_size = config.hidden_size
|
214
|
+
rope_theta = getattr(config, "rope_theta", 10000)
|
215
|
+
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
216
|
+
self.self_attn = BaiChuanAttention(
|
217
|
+
hidden_size=self.hidden_size,
|
218
|
+
num_heads=config.num_attention_heads,
|
219
|
+
position_embedding=position_embedding,
|
220
|
+
rope_theta=rope_theta,
|
221
|
+
layer_id=layer_id,
|
222
|
+
max_position_embeddings=max_position_embeddings,
|
223
|
+
quant_config=quant_config,
|
224
|
+
)
|
225
|
+
self.mlp = BaiChuanMLP(
|
226
|
+
hidden_size=self.hidden_size,
|
227
|
+
intermediate_size=config.intermediate_size,
|
228
|
+
hidden_act=config.hidden_act,
|
229
|
+
quant_config=quant_config,
|
230
|
+
)
|
231
|
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
232
|
+
self.post_attention_layernorm = RMSNorm(
|
233
|
+
config.hidden_size, eps=config.rms_norm_eps
|
234
|
+
)
|
235
|
+
|
236
|
+
def forward(
|
237
|
+
self,
|
238
|
+
positions: torch.Tensor,
|
239
|
+
hidden_states: torch.Tensor,
|
240
|
+
input_metadata: InputMetadata,
|
241
|
+
residual: Optional[torch.Tensor],
|
242
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
243
|
+
# Self Attention
|
244
|
+
if residual is None:
|
245
|
+
residual = hidden_states
|
246
|
+
hidden_states = self.input_layernorm(hidden_states)
|
247
|
+
else:
|
248
|
+
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
249
|
+
hidden_states = self.self_attn(
|
250
|
+
positions=positions,
|
251
|
+
hidden_states=hidden_states,
|
252
|
+
input_metadata=input_metadata,
|
253
|
+
)
|
254
|
+
|
255
|
+
# Fully Connected
|
256
|
+
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
257
|
+
hidden_states = self.mlp(hidden_states)
|
258
|
+
return hidden_states, residual
|
259
|
+
|
260
|
+
|
261
|
+
class BaiChuanModel(nn.Module):
|
262
|
+
|
263
|
+
def __init__(
|
264
|
+
self,
|
265
|
+
config: PretrainedConfig,
|
266
|
+
position_embedding: str,
|
267
|
+
quant_config: Optional[QuantizationConfig] = None,
|
268
|
+
):
|
269
|
+
super().__init__()
|
270
|
+
self.config = config
|
271
|
+
self.padding_idx = config.pad_token_id
|
272
|
+
self.vocab_size = config.vocab_size
|
273
|
+
|
274
|
+
self.embed_tokens = VocabParallelEmbedding(
|
275
|
+
config.vocab_size,
|
276
|
+
config.hidden_size,
|
277
|
+
)
|
278
|
+
self.layers = nn.ModuleList(
|
279
|
+
[
|
280
|
+
BaiChuanDecoderLayer(
|
281
|
+
config,
|
282
|
+
layer_id=i,
|
283
|
+
position_embedding=position_embedding,
|
284
|
+
quant_config=quant_config,
|
285
|
+
)
|
286
|
+
for i in range(config.num_hidden_layers)
|
287
|
+
]
|
288
|
+
)
|
289
|
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
290
|
+
|
291
|
+
def forward(
|
292
|
+
self,
|
293
|
+
input_ids: torch.Tensor,
|
294
|
+
positions: torch.Tensor,
|
295
|
+
input_metadata: InputMetadata,
|
296
|
+
) -> torch.Tensor:
|
297
|
+
hidden_states = self.embed_tokens(input_ids)
|
298
|
+
residual = None
|
299
|
+
for i in range(len(self.layers)):
|
300
|
+
layer = self.layers[i]
|
301
|
+
hidden_states, residual = layer(
|
302
|
+
positions,
|
303
|
+
hidden_states,
|
304
|
+
input_metadata,
|
305
|
+
residual,
|
306
|
+
)
|
307
|
+
hidden_states, _ = self.norm(hidden_states, residual)
|
308
|
+
return hidden_states
|
309
|
+
|
310
|
+
|
311
|
+
class BaiChuanBaseForCausalLM(nn.Module):
|
312
|
+
packed_modules_mapping = {
|
313
|
+
"W_pack": ["W_pack"],
|
314
|
+
"gate_up_proj": [
|
315
|
+
"gate_proj",
|
316
|
+
"up_proj",
|
317
|
+
],
|
318
|
+
}
|
319
|
+
# LoRA specific attributes
|
320
|
+
supported_lora_modules = [
|
321
|
+
"W_pack",
|
322
|
+
"o_proj",
|
323
|
+
"gate_up_proj",
|
324
|
+
"down_proj",
|
325
|
+
]
|
326
|
+
embedding_modules = {}
|
327
|
+
embedding_padding_modules = []
|
328
|
+
|
329
|
+
def __init__(
|
330
|
+
self,
|
331
|
+
config: PretrainedConfig,
|
332
|
+
position_embedding: str,
|
333
|
+
cache_config: Optional[CacheConfig] = None,
|
334
|
+
quant_config: Optional[QuantizationConfig] = None,
|
335
|
+
):
|
336
|
+
super().__init__()
|
337
|
+
|
338
|
+
self.config = config
|
339
|
+
|
340
|
+
self.quant_config = quant_config
|
341
|
+
self.model = BaiChuanModel(config, position_embedding, quant_config)
|
342
|
+
self.lm_head = ParallelLMHead(
|
343
|
+
config.vocab_size, config.hidden_size, quant_config=quant_config
|
344
|
+
)
|
345
|
+
if self.config.tie_word_embeddings:
|
346
|
+
self.lm_head.weight = self.model.embed_tokens.weight
|
347
|
+
self.logits_processor = LogitsProcessor(config)
|
348
|
+
|
349
|
+
def forward(
|
350
|
+
self,
|
351
|
+
input_ids: torch.Tensor,
|
352
|
+
positions: torch.Tensor,
|
353
|
+
input_metadata: InputMetadata,
|
354
|
+
) -> torch.Tensor:
|
355
|
+
hidden_states = self.model(input_ids, positions, input_metadata)
|
356
|
+
return self.logits_processor(
|
357
|
+
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
358
|
+
)
|
359
|
+
|
360
|
+
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
361
|
+
stacked_params_mapping = [
|
362
|
+
# (param_name, shard_name, shard_id)
|
363
|
+
("gate_up_proj", "gate_proj", 0),
|
364
|
+
("gate_up_proj", "up_proj", 1),
|
365
|
+
]
|
366
|
+
params_dict = dict(self.named_parameters())
|
367
|
+
for name, loaded_weight in weights:
|
368
|
+
if "rotary_emb.inv_freq" in name:
|
369
|
+
continue
|
370
|
+
if name == "lm_head.weight":
|
371
|
+
# Unlike Baichuan, Baichuan2 normalizes the head weights.
|
372
|
+
# Refer to:
|
373
|
+
# https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/blob/84603cde5ebffb6084e476cfaeceaf0b8b91fe54/modeling_baichuan.py#L508
|
374
|
+
# Distinguish between Baichuan and Baichuan2 by checking the
|
375
|
+
# vocab size. This is suggested by
|
376
|
+
# https://github.com/vllm-project/vllm/pull/1022#discussion_r1325652704
|
377
|
+
is_baichuan2 = self.config.vocab_size == 125696
|
378
|
+
if is_baichuan2:
|
379
|
+
loaded_weight = torch.nn.functional.normalize(loaded_weight)
|
380
|
+
|
381
|
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
382
|
+
if weight_name not in name:
|
383
|
+
continue
|
384
|
+
name = name.replace(weight_name, param_name)
|
385
|
+
# Skip loading extra bias for GPTQ models.
|
386
|
+
if name.endswith(".bias") and name not in params_dict:
|
387
|
+
continue
|
388
|
+
param = params_dict[name]
|
389
|
+
weight_loader = param.weight_loader
|
390
|
+
weight_loader(param, loaded_weight, shard_id)
|
391
|
+
break
|
392
|
+
else:
|
393
|
+
# Skip loading extra bias for GPTQ models.
|
394
|
+
if name.endswith(".bias") and name not in params_dict:
|
395
|
+
continue
|
396
|
+
param = params_dict[name]
|
397
|
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
398
|
+
weight_loader(param, loaded_weight)
|
399
|
+
|
400
|
+
|
401
|
+
class BaichuanForCausalLM(BaiChuanBaseForCausalLM):
|
402
|
+
"""Baichuan 13B and Baichuan2 7B/13B."""
|
403
|
+
|
404
|
+
def __init__(
|
405
|
+
self,
|
406
|
+
config,
|
407
|
+
cache_config: Optional[CacheConfig] = None,
|
408
|
+
quant_config: Optional[QuantizationConfig] = None,
|
409
|
+
):
|
410
|
+
if config.hidden_size == 4096: # baichuan2 7b
|
411
|
+
super().__init__(config, "ROPE", cache_config, quant_config)
|
412
|
+
else: # baichuan 13b, baichuan2 13b
|
413
|
+
super().__init__(config, "ALIBI", cache_config, quant_config)
|
414
|
+
|
415
|
+
|
416
|
+
EntryClass = [BaichuanForCausalLM]
|
sglang/srt/models/chatglm.py
CHANGED
@@ -42,7 +42,6 @@ from sglang.srt.layers.activation import SiluAndMul
|
|
42
42
|
from sglang.srt.layers.layernorm import RMSNorm
|
43
43
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
44
44
|
from sglang.srt.layers.radix_attention import RadixAttention
|
45
|
-
from sglang.srt.layers.sampler import Sampler
|
46
45
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
47
46
|
|
48
47
|
LoraConfig = None
|
@@ -371,7 +370,6 @@ class ChatGLMForCausalLM(nn.Module):
|
|
371
370
|
self.transformer = ChatGLMModel(config, cache_config, quant_config)
|
372
371
|
self.lm_head = self.transformer.output_layer
|
373
372
|
self.logits_processor = LogitsProcessor(config)
|
374
|
-
self.sampler = Sampler()
|
375
373
|
|
376
374
|
@torch.no_grad()
|
377
375
|
def forward(
|
@@ -381,11 +379,9 @@ class ChatGLMForCausalLM(nn.Module):
|
|
381
379
|
input_metadata: InputMetadata,
|
382
380
|
) -> torch.Tensor:
|
383
381
|
hidden_states = self.transformer(input_ids, positions, input_metadata)
|
384
|
-
|
382
|
+
return self.logits_processor(
|
385
383
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
386
384
|
)
|
387
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
388
|
-
return sample_output, logits_output
|
389
385
|
|
390
386
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
391
387
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
sglang/srt/models/commandr.py
CHANGED
@@ -64,7 +64,6 @@ from vllm.model_executor.utils import set_weight_attrs
|
|
64
64
|
from sglang.srt.layers.activation import SiluAndMul
|
65
65
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
66
66
|
from sglang.srt.layers.radix_attention import RadixAttention
|
67
|
-
from sglang.srt.layers.sampler import Sampler
|
68
67
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
69
68
|
|
70
69
|
|
@@ -327,7 +326,6 @@ class CohereForCausalLM(nn.Module):
|
|
327
326
|
self.config = config
|
328
327
|
self.quant_config = quant_config
|
329
328
|
self.logits_processor = LogitsProcessor(config)
|
330
|
-
self.sampler = Sampler()
|
331
329
|
self.model = CohereModel(config, quant_config)
|
332
330
|
|
333
331
|
@torch.no_grad()
|
@@ -342,11 +340,9 @@ class CohereForCausalLM(nn.Module):
|
|
342
340
|
positions,
|
343
341
|
input_metadata,
|
344
342
|
)
|
345
|
-
|
343
|
+
return self.logits_processor(
|
346
344
|
input_ids, hidden_states, self.model.embed_tokens.weight, input_metadata
|
347
345
|
)
|
348
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
349
|
-
return sample_output, logits_output
|
350
346
|
|
351
347
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
352
348
|
stacked_params_mapping = [
|
sglang/srt/models/dbrx.py
CHANGED
@@ -45,7 +45,6 @@ from vllm.transformers_utils.configs.dbrx import DbrxConfig
|
|
45
45
|
|
46
46
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
47
47
|
from sglang.srt.layers.radix_attention import RadixAttention
|
48
|
-
from sglang.srt.layers.sampler import Sampler
|
49
48
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
50
49
|
|
51
50
|
|
@@ -383,7 +382,6 @@ class DbrxForCausalLM(nn.Module):
|
|
383
382
|
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
|
384
383
|
)
|
385
384
|
self.logits_processor = LogitsProcessor(config)
|
386
|
-
self.sampler = Sampler()
|
387
385
|
|
388
386
|
@torch.no_grad()
|
389
387
|
def forward(
|
@@ -393,11 +391,9 @@ class DbrxForCausalLM(nn.Module):
|
|
393
391
|
input_metadata: InputMetadata,
|
394
392
|
) -> torch.Tensor:
|
395
393
|
hidden_states = self.transformer(input_ids, positions, input_metadata)
|
396
|
-
|
394
|
+
return self.logits_processor(
|
397
395
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
398
396
|
)
|
399
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
400
|
-
return sample_output, logits_output
|
401
397
|
|
402
398
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
403
399
|
expert_params_mapping = [
|
sglang/srt/models/deepseek.py
CHANGED
@@ -46,7 +46,6 @@ from sglang.srt.layers.activation import SiluAndMul
|
|
46
46
|
from sglang.srt.layers.layernorm import RMSNorm
|
47
47
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
48
48
|
from sglang.srt.layers.radix_attention import RadixAttention
|
49
|
-
from sglang.srt.layers.sampler import Sampler
|
50
49
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
51
50
|
|
52
51
|
|
@@ -386,7 +385,6 @@ class DeepseekForCausalLM(nn.Module):
|
|
386
385
|
config.vocab_size, config.hidden_size, quant_config=quant_config
|
387
386
|
)
|
388
387
|
self.logits_processor = LogitsProcessor(config)
|
389
|
-
self.sampler = Sampler()
|
390
388
|
|
391
389
|
@torch.no_grad()
|
392
390
|
def forward(
|
@@ -396,11 +394,9 @@ class DeepseekForCausalLM(nn.Module):
|
|
396
394
|
input_metadata: InputMetadata,
|
397
395
|
) -> torch.Tensor:
|
398
396
|
hidden_states = self.model(input_ids, positions, input_metadata)
|
399
|
-
|
397
|
+
return self.logits_processor(
|
400
398
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
401
399
|
)
|
402
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
403
|
-
return sample_output, logits_output
|
404
400
|
|
405
401
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
406
402
|
stacked_params_mapping = [
|
sglang/srt/models/deepseek_v2.py
CHANGED
@@ -19,7 +19,6 @@ limitations under the License.
|
|
19
19
|
from typing import Any, Dict, Iterable, Optional, Tuple
|
20
20
|
|
21
21
|
import torch
|
22
|
-
from flashinfer import bmm_fp8
|
23
22
|
from torch import nn
|
24
23
|
from transformers import PretrainedConfig
|
25
24
|
from vllm.config import CacheConfig
|
@@ -46,9 +45,13 @@ from sglang.srt.layers.activation import SiluAndMul
|
|
46
45
|
from sglang.srt.layers.layernorm import RMSNorm
|
47
46
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
48
47
|
from sglang.srt.layers.radix_attention import RadixAttention
|
49
|
-
from sglang.srt.layers.sampler import Sampler
|
50
48
|
from sglang.srt.managers.schedule_batch import global_server_args_dict
|
51
49
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
50
|
+
from sglang.srt.utils import is_hip
|
51
|
+
|
52
|
+
# ROCm: flashinfer available later
|
53
|
+
if not is_hip():
|
54
|
+
from flashinfer import bmm_fp8
|
52
55
|
|
53
56
|
|
54
57
|
class DeepseekV2MLP(nn.Module):
|
@@ -649,8 +652,8 @@ class DeepseekV2ForCausalLM(nn.Module):
|
|
649
652
|
config.vocab_size, config.hidden_size, quant_config=quant_config
|
650
653
|
)
|
651
654
|
self.logits_processor = LogitsProcessor(config)
|
652
|
-
self.sampler = Sampler()
|
653
655
|
|
656
|
+
@torch.no_grad()
|
654
657
|
def forward(
|
655
658
|
self,
|
656
659
|
input_ids: torch.Tensor,
|
@@ -658,11 +661,9 @@ class DeepseekV2ForCausalLM(nn.Module):
|
|
658
661
|
input_metadata: InputMetadata,
|
659
662
|
) -> torch.Tensor:
|
660
663
|
hidden_states = self.model(input_ids, positions, input_metadata)
|
661
|
-
|
664
|
+
return self.logits_processor(
|
662
665
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
663
666
|
)
|
664
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
665
|
-
return sample_output, logits_output
|
666
667
|
|
667
668
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
668
669
|
stacked_params_mapping = [
|
sglang/srt/models/exaone.py
CHANGED
@@ -40,7 +40,6 @@ from sglang.srt.layers.activation import SiluAndMul
|
|
40
40
|
from sglang.srt.layers.layernorm import RMSNorm
|
41
41
|
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
|
42
42
|
from sglang.srt.layers.radix_attention import RadixAttention
|
43
|
-
from sglang.srt.layers.sampler import Sampler
|
44
43
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
45
44
|
|
46
45
|
|
@@ -304,7 +303,6 @@ class ExaoneForCausalLM(nn.Module):
|
|
304
303
|
self.transformer = ExaoneModel(config, quant_config=quant_config)
|
305
304
|
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
306
305
|
self.logits_processor = LogitsProcessor(config)
|
307
|
-
self.sampler = Sampler()
|
308
306
|
|
309
307
|
@torch.no_grad()
|
310
308
|
def forward(
|
@@ -317,11 +315,9 @@ class ExaoneForCausalLM(nn.Module):
|
|
317
315
|
hidden_states = self.transformer(
|
318
316
|
input_ids, positions, input_metadata, input_embeds
|
319
317
|
)
|
320
|
-
|
318
|
+
return self.logits_processor(
|
321
319
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
322
320
|
)
|
323
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
324
|
-
return sample_output, logits_output
|
325
321
|
|
326
322
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
327
323
|
stacked_params_mapping = [
|
sglang/srt/models/gemma.py
CHANGED
@@ -37,7 +37,6 @@ from sglang.srt.layers.activation import GeluAndMul
|
|
37
37
|
from sglang.srt.layers.layernorm import RMSNorm
|
38
38
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
39
39
|
from sglang.srt.layers.radix_attention import RadixAttention
|
40
|
-
from sglang.srt.layers.sampler import Sampler
|
41
40
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
42
41
|
|
43
42
|
|
@@ -288,7 +287,6 @@ class GemmaForCausalLM(nn.Module):
|
|
288
287
|
self.quant_config = quant_config
|
289
288
|
self.model = GemmaModel(config, quant_config=quant_config)
|
290
289
|
self.logits_processor = LogitsProcessor(config)
|
291
|
-
self.sampler = Sampler()
|
292
290
|
|
293
291
|
@torch.no_grad()
|
294
292
|
def forward(
|
@@ -299,11 +297,9 @@ class GemmaForCausalLM(nn.Module):
|
|
299
297
|
input_embeds: torch.Tensor = None,
|
300
298
|
) -> torch.Tensor:
|
301
299
|
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
302
|
-
|
300
|
+
return self.logits_processor(
|
303
301
|
input_ids, hidden_states, self.model.embed_tokens.weight, input_metadata
|
304
302
|
)
|
305
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
306
|
-
return (sample_output, logits_output)
|
307
303
|
|
308
304
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
309
305
|
stacked_params_mapping = [
|
sglang/srt/models/gemma2.py
CHANGED
@@ -37,7 +37,6 @@ from sglang.srt.layers.activation import GeluAndMul
|
|
37
37
|
from sglang.srt.layers.layernorm import GemmaRMSNorm
|
38
38
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
39
39
|
from sglang.srt.layers.radix_attention import RadixAttention
|
40
|
-
from sglang.srt.layers.sampler import Sampler
|
41
40
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
42
41
|
|
43
42
|
|
@@ -347,7 +346,6 @@ class Gemma2ForCausalLM(nn.Module):
|
|
347
346
|
self.quant_config = quant_config
|
348
347
|
self.model = Gemma2Model(config, cache_config, quant_config)
|
349
348
|
self.logits_processor = LogitsProcessor(config)
|
350
|
-
self.sampler = Sampler()
|
351
349
|
|
352
350
|
@torch.no_grad()
|
353
351
|
def forward(
|
@@ -358,11 +356,9 @@ class Gemma2ForCausalLM(nn.Module):
|
|
358
356
|
input_embeds: torch.Tensor = None,
|
359
357
|
) -> torch.Tensor:
|
360
358
|
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
361
|
-
|
359
|
+
return self.logits_processor(
|
362
360
|
input_ids, hidden_states, self.model.embed_tokens.weight, input_metadata
|
363
361
|
)
|
364
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
365
|
-
return sample_output, logits_output
|
366
362
|
|
367
363
|
def get_attention_sliding_window_size(self):
|
368
364
|
return get_attention_sliding_window_size(self.config)
|
sglang/srt/models/gpt_bigcode.py
CHANGED
@@ -35,7 +35,6 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
35
35
|
from sglang.srt.layers.activation import get_act_fn
|
36
36
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
37
37
|
from sglang.srt.layers.radix_attention import RadixAttention
|
38
|
-
from sglang.srt.layers.sampler import Sampler
|
39
38
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
40
39
|
|
41
40
|
|
@@ -262,7 +261,6 @@ class GPTBigCodeForCausalLM(nn.Module):
|
|
262
261
|
if lora_config:
|
263
262
|
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
264
263
|
self.logits_processor = LogitsProcessor(config)
|
265
|
-
self.sampler = Sampler()
|
266
264
|
|
267
265
|
@torch.no_grad()
|
268
266
|
def forward(
|
@@ -272,11 +270,9 @@ class GPTBigCodeForCausalLM(nn.Module):
|
|
272
270
|
input_metadata: InputMetadata,
|
273
271
|
) -> torch.Tensor:
|
274
272
|
hidden_states = self.transformer(input_ids, positions, input_metadata)
|
275
|
-
|
273
|
+
return self.logits_processor(
|
276
274
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
277
275
|
)
|
278
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
279
|
-
return sample_output, logits_output
|
280
276
|
|
281
277
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
282
278
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|