sglang 0.3.0__py3-none-any.whl → 0.3.1.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_latency.py +17 -8
- sglang/bench_serving.py +33 -38
- sglang/global_config.py +5 -17
- sglang/lang/backend/runtime_endpoint.py +5 -2
- sglang/lang/interpreter.py +1 -4
- sglang/launch_server.py +3 -6
- sglang/launch_server_llavavid.py +7 -8
- sglang/srt/{model_config.py → configs/model_config.py} +5 -0
- sglang/srt/constrained/__init__.py +2 -0
- sglang/srt/constrained/fsm_cache.py +33 -38
- sglang/srt/constrained/jump_forward.py +0 -1
- sglang/srt/conversation.py +4 -1
- sglang/srt/hf_transformers_utils.py +1 -3
- sglang/srt/layers/activation.py +12 -0
- sglang/srt/layers/attention_backend.py +480 -0
- sglang/srt/layers/flashinfer_utils.py +235 -0
- sglang/srt/layers/fused_moe/layer.py +27 -7
- sglang/srt/layers/layernorm.py +12 -0
- sglang/srt/layers/logits_processor.py +64 -77
- sglang/srt/layers/radix_attention.py +11 -161
- sglang/srt/layers/sampler.py +38 -122
- sglang/srt/layers/torchao_utils.py +75 -0
- sglang/srt/layers/{decode_attention.py → triton_attention/decode_attention.py} +67 -63
- sglang/srt/layers/{extend_attention.py → triton_attention/extend_attention.py} +40 -132
- sglang/srt/layers/{prefill_attention.py → triton_attention/prefill_attention.py} +13 -7
- sglang/srt/lora/lora.py +403 -0
- sglang/srt/lora/lora_config.py +43 -0
- sglang/srt/lora/lora_manager.py +259 -0
- sglang/srt/managers/controller_multi.py +1 -5
- sglang/srt/managers/controller_single.py +0 -5
- sglang/srt/managers/io_struct.py +16 -1
- sglang/srt/managers/policy_scheduler.py +122 -5
- sglang/srt/managers/schedule_batch.py +105 -71
- sglang/srt/managers/tokenizer_manager.py +17 -8
- sglang/srt/managers/tp_worker.py +188 -121
- sglang/srt/model_executor/cuda_graph_runner.py +69 -133
- sglang/srt/model_executor/forward_batch_info.py +35 -312
- sglang/srt/model_executor/model_runner.py +123 -154
- sglang/srt/models/baichuan.py +416 -0
- sglang/srt/models/chatglm.py +1 -5
- sglang/srt/models/commandr.py +1 -5
- sglang/srt/models/dbrx.py +1 -5
- sglang/srt/models/deepseek.py +1 -5
- sglang/srt/models/deepseek_v2.py +7 -6
- sglang/srt/models/exaone.py +1 -5
- sglang/srt/models/gemma.py +1 -5
- sglang/srt/models/gemma2.py +1 -5
- sglang/srt/models/gpt_bigcode.py +1 -5
- sglang/srt/models/grok.py +1 -5
- sglang/srt/models/internlm2.py +1 -5
- sglang/srt/models/llama.py +51 -5
- sglang/srt/models/llama_classification.py +1 -20
- sglang/srt/models/llava.py +30 -5
- sglang/srt/models/llavavid.py +2 -2
- sglang/srt/models/minicpm.py +1 -5
- sglang/srt/models/minicpm3.py +669 -0
- sglang/srt/models/mixtral.py +6 -5
- sglang/srt/models/mixtral_quant.py +1 -5
- sglang/srt/models/olmoe.py +415 -0
- sglang/srt/models/qwen.py +1 -5
- sglang/srt/models/qwen2.py +1 -5
- sglang/srt/models/qwen2_moe.py +6 -5
- sglang/srt/models/stablelm.py +1 -5
- sglang/srt/models/xverse.py +375 -0
- sglang/srt/models/xverse_moe.py +445 -0
- sglang/srt/openai_api/adapter.py +65 -46
- sglang/srt/openai_api/protocol.py +11 -3
- sglang/srt/sampling/sampling_batch_info.py +46 -80
- sglang/srt/server.py +30 -15
- sglang/srt/server_args.py +163 -28
- sglang/srt/utils.py +19 -51
- sglang/test/few_shot_gsm8k.py +132 -0
- sglang/test/runners.py +114 -22
- sglang/test/test_programs.py +7 -5
- sglang/test/test_utils.py +85 -2
- sglang/utils.py +32 -37
- sglang/version.py +1 -1
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/METADATA +30 -18
- sglang-0.3.1.post1.dist-info/RECORD +130 -0
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/WHEEL +1 -1
- sglang-0.3.0.dist-info/RECORD +0 -118
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/LICENSE +0 -0
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,669 @@
|
|
1
|
+
"""
|
2
|
+
Copyright 2023-2024 SGLang Team
|
3
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
you may not use this file except in compliance with the License.
|
5
|
+
You may obtain a copy of the License at
|
6
|
+
|
7
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
Unless required by applicable law or agreed to in writing, software
|
10
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
See the License for the specific language governing permissions and
|
13
|
+
limitations under the License.
|
14
|
+
"""
|
15
|
+
|
16
|
+
"""Inference-only MiniCPM3 model compatible with HuggingFace weights."""
|
17
|
+
|
18
|
+
import math
|
19
|
+
from typing import Any, Dict, Iterable, Optional, Tuple
|
20
|
+
|
21
|
+
import torch
|
22
|
+
from torch import nn
|
23
|
+
from transformers import PretrainedConfig
|
24
|
+
from vllm.config import CacheConfig
|
25
|
+
from vllm.distributed import get_tensor_model_parallel_world_size
|
26
|
+
from vllm.model_executor.layers.linear import (
|
27
|
+
ColumnParallelLinear,
|
28
|
+
MergedColumnParallelLinear,
|
29
|
+
ReplicatedLinear,
|
30
|
+
RowParallelLinear,
|
31
|
+
)
|
32
|
+
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
|
33
|
+
from vllm.model_executor.layers.rotary_embedding import get_rope
|
34
|
+
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
35
|
+
ParallelLMHead,
|
36
|
+
VocabParallelEmbedding,
|
37
|
+
)
|
38
|
+
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
39
|
+
|
40
|
+
from sglang.srt.layers.activation import SiluAndMul
|
41
|
+
from sglang.srt.layers.layernorm import RMSNorm
|
42
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor
|
43
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
44
|
+
from sglang.srt.managers.schedule_batch import global_server_args_dict
|
45
|
+
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
46
|
+
from sglang.srt.utils import is_hip
|
47
|
+
|
48
|
+
# ROCm: flashinfer available later
|
49
|
+
if not is_hip():
|
50
|
+
from flashinfer import bmm_fp8
|
51
|
+
|
52
|
+
|
53
|
+
class MiniCPM3MLP(nn.Module):
|
54
|
+
def __init__(
|
55
|
+
self,
|
56
|
+
hidden_size: int,
|
57
|
+
intermediate_size: int,
|
58
|
+
hidden_act: str,
|
59
|
+
quant_config: Optional[QuantizationConfig] = None,
|
60
|
+
) -> None:
|
61
|
+
super().__init__()
|
62
|
+
self.gate_up_proj = MergedColumnParallelLinear(
|
63
|
+
hidden_size,
|
64
|
+
[intermediate_size] * 2,
|
65
|
+
bias=False,
|
66
|
+
quant_config=quant_config,
|
67
|
+
)
|
68
|
+
self.down_proj = RowParallelLinear(
|
69
|
+
intermediate_size,
|
70
|
+
hidden_size,
|
71
|
+
bias=False,
|
72
|
+
quant_config=quant_config,
|
73
|
+
)
|
74
|
+
if hidden_act != "silu":
|
75
|
+
raise ValueError(
|
76
|
+
f"Unsupported activation: {hidden_act}. "
|
77
|
+
"Only silu is supported for now."
|
78
|
+
)
|
79
|
+
self.act_fn = SiluAndMul()
|
80
|
+
|
81
|
+
def forward(self, x):
|
82
|
+
gate_up, _ = self.gate_up_proj(x)
|
83
|
+
x = self.act_fn(gate_up)
|
84
|
+
x, _ = self.down_proj(x)
|
85
|
+
return x
|
86
|
+
|
87
|
+
|
88
|
+
def input_to_float8(x, dtype=torch.float8_e4m3fn):
|
89
|
+
finfo = torch.finfo(dtype)
|
90
|
+
min_val, max_val = x.aminmax()
|
91
|
+
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
|
92
|
+
scale = finfo.max / amax
|
93
|
+
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
|
94
|
+
return x_scl_sat.to(dtype).contiguous(), scale.float().reciprocal()
|
95
|
+
|
96
|
+
|
97
|
+
class MiniCPM3Attention(nn.Module):
|
98
|
+
|
99
|
+
def __init__(
|
100
|
+
self,
|
101
|
+
config: PretrainedConfig,
|
102
|
+
hidden_size: int,
|
103
|
+
num_heads: int,
|
104
|
+
qk_nope_head_dim: int,
|
105
|
+
qk_rope_head_dim: int,
|
106
|
+
v_head_dim: int,
|
107
|
+
q_lora_rank: int,
|
108
|
+
kv_lora_rank: int,
|
109
|
+
rope_theta: float = 10000,
|
110
|
+
rope_scaling: Optional[Dict[str, Any]] = None,
|
111
|
+
max_position_embeddings: int = 8192,
|
112
|
+
cache_config: Optional[CacheConfig] = None,
|
113
|
+
quant_config: Optional[QuantizationConfig] = None,
|
114
|
+
layer_id=None,
|
115
|
+
) -> None:
|
116
|
+
super().__init__()
|
117
|
+
self.layer_id = layer_id
|
118
|
+
self.hidden_size = hidden_size
|
119
|
+
self.qk_nope_head_dim = qk_nope_head_dim
|
120
|
+
self.qk_rope_head_dim = qk_rope_head_dim
|
121
|
+
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
122
|
+
self.v_head_dim = v_head_dim
|
123
|
+
self.q_lora_rank = q_lora_rank
|
124
|
+
self.kv_lora_rank = kv_lora_rank
|
125
|
+
self.num_heads = num_heads
|
126
|
+
tp_size = get_tensor_model_parallel_world_size()
|
127
|
+
assert num_heads % tp_size == 0
|
128
|
+
self.num_local_heads = num_heads // tp_size
|
129
|
+
self.scaling = self.qk_head_dim**-0.5
|
130
|
+
self.rope_theta = rope_theta
|
131
|
+
self.max_position_embeddings = max_position_embeddings
|
132
|
+
|
133
|
+
if self.q_lora_rank is not None:
|
134
|
+
self.q_a_proj = ReplicatedLinear(
|
135
|
+
self.hidden_size,
|
136
|
+
self.q_lora_rank,
|
137
|
+
bias=False,
|
138
|
+
quant_config=quant_config,
|
139
|
+
)
|
140
|
+
self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
|
141
|
+
self.q_b_proj = ColumnParallelLinear(
|
142
|
+
q_lora_rank,
|
143
|
+
self.num_heads * self.qk_head_dim,
|
144
|
+
bias=False,
|
145
|
+
quant_config=quant_config,
|
146
|
+
)
|
147
|
+
else:
|
148
|
+
self.q_proj = ColumnParallelLinear(
|
149
|
+
self.hidden_size,
|
150
|
+
self.num_heads * self.qk_head_dim,
|
151
|
+
bias=False,
|
152
|
+
quant_config=quant_config,
|
153
|
+
)
|
154
|
+
|
155
|
+
self.kv_a_proj_with_mqa = ReplicatedLinear(
|
156
|
+
self.hidden_size,
|
157
|
+
self.kv_lora_rank + self.qk_rope_head_dim,
|
158
|
+
bias=False,
|
159
|
+
quant_config=quant_config,
|
160
|
+
)
|
161
|
+
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
|
162
|
+
self.kv_b_proj = ColumnParallelLinear(
|
163
|
+
self.kv_lora_rank,
|
164
|
+
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
|
165
|
+
bias=False,
|
166
|
+
quant_config=quant_config,
|
167
|
+
)
|
168
|
+
# O projection.
|
169
|
+
self.o_proj = RowParallelLinear(
|
170
|
+
self.num_heads * self.v_head_dim,
|
171
|
+
self.hidden_size,
|
172
|
+
bias=False,
|
173
|
+
quant_config=quant_config,
|
174
|
+
)
|
175
|
+
self.rotary_emb = get_rope(
|
176
|
+
qk_rope_head_dim,
|
177
|
+
rotary_dim=qk_rope_head_dim,
|
178
|
+
max_position=max_position_embeddings,
|
179
|
+
base=rope_theta,
|
180
|
+
rope_scaling=rope_scaling,
|
181
|
+
)
|
182
|
+
|
183
|
+
# TODO support head_size 96
|
184
|
+
self.attn = RadixAttention(
|
185
|
+
self.num_local_heads,
|
186
|
+
128,
|
187
|
+
self.scaling,
|
188
|
+
num_kv_heads=self.num_local_heads,
|
189
|
+
layer_id=layer_id,
|
190
|
+
)
|
191
|
+
|
192
|
+
def forward(
|
193
|
+
self,
|
194
|
+
positions: torch.Tensor,
|
195
|
+
hidden_states: torch.Tensor,
|
196
|
+
input_metadata: InputMetadata,
|
197
|
+
) -> torch.Tensor:
|
198
|
+
if self.q_lora_rank is not None:
|
199
|
+
q = self.q_a_proj(hidden_states)[0]
|
200
|
+
q = self.q_a_layernorm(q)
|
201
|
+
q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
|
202
|
+
else:
|
203
|
+
q = self.q_proj(hidden_states)[0].view(
|
204
|
+
-1, self.num_local_heads, self.qk_head_dim
|
205
|
+
)
|
206
|
+
_, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
207
|
+
latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
|
208
|
+
kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
|
209
|
+
latent_cache = latent_cache.unsqueeze(1)
|
210
|
+
kv_a = self.kv_a_layernorm(kv_a.contiguous())
|
211
|
+
kv = self.kv_b_proj(kv_a)[0]
|
212
|
+
kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
|
213
|
+
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
214
|
+
k_pe = latent_cache[:, :, self.kv_lora_rank :]
|
215
|
+
original_shapes = [q_pe.shape, k_pe.shape]
|
216
|
+
q_pe, k_pe = self.rotary_emb(
|
217
|
+
positions, q_pe.reshape(q_pe.shape[0], -1), k_pe.reshape(k_pe.shape[0], -1)
|
218
|
+
)
|
219
|
+
q_pe, k_pe = q_pe.view(original_shapes[0]), k_pe.view(original_shapes[1])
|
220
|
+
q[..., self.qk_nope_head_dim :] = q_pe
|
221
|
+
k = torch.empty_like(q)
|
222
|
+
k[..., : self.qk_nope_head_dim] = k_nope
|
223
|
+
k[..., self.qk_nope_head_dim :] = k_pe
|
224
|
+
q = torch.nn.functional.pad(q, [0, 128 - self.qk_head_dim], value=0).view(
|
225
|
+
-1, self.num_local_heads * 128
|
226
|
+
)
|
227
|
+
k = torch.nn.functional.pad(k, [0, 128 - self.qk_head_dim], value=0).view(
|
228
|
+
-1, self.num_local_heads * 128
|
229
|
+
)
|
230
|
+
v = torch.nn.functional.pad(v, [0, 128 - self.v_head_dim], value=0).view(
|
231
|
+
-1, self.num_local_heads * 128
|
232
|
+
)
|
233
|
+
attn_output = self.attn(q, k, v, input_metadata)
|
234
|
+
attn_output = attn_output.view(-1, self.num_local_heads, 128)[
|
235
|
+
..., : self.v_head_dim
|
236
|
+
].reshape(-1, self.num_local_heads * self.v_head_dim)
|
237
|
+
output, _ = self.o_proj(attn_output)
|
238
|
+
return output
|
239
|
+
|
240
|
+
|
241
|
+
class MiniCPM3AttentionMLA(nn.Module):
|
242
|
+
|
243
|
+
def __init__(
|
244
|
+
self,
|
245
|
+
config: PretrainedConfig,
|
246
|
+
hidden_size: int,
|
247
|
+
num_heads: int,
|
248
|
+
qk_nope_head_dim: int,
|
249
|
+
qk_rope_head_dim: int,
|
250
|
+
v_head_dim: int,
|
251
|
+
q_lora_rank: int,
|
252
|
+
kv_lora_rank: int,
|
253
|
+
rope_theta: float = 10000,
|
254
|
+
rope_scaling: Optional[Dict[str, Any]] = None,
|
255
|
+
max_position_embeddings: int = 8192,
|
256
|
+
cache_config: Optional[CacheConfig] = None,
|
257
|
+
quant_config: Optional[QuantizationConfig] = None,
|
258
|
+
layer_id=None,
|
259
|
+
) -> None:
|
260
|
+
super().__init__()
|
261
|
+
self.layer_id = layer_id
|
262
|
+
self.hidden_size = hidden_size
|
263
|
+
self.qk_nope_head_dim = qk_nope_head_dim
|
264
|
+
self.qk_rope_head_dim = qk_rope_head_dim
|
265
|
+
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
266
|
+
self.v_head_dim = v_head_dim
|
267
|
+
self.q_lora_rank = q_lora_rank
|
268
|
+
self.kv_lora_rank = kv_lora_rank
|
269
|
+
self.num_heads = num_heads
|
270
|
+
tp_size = get_tensor_model_parallel_world_size()
|
271
|
+
assert num_heads % tp_size == 0
|
272
|
+
self.num_local_heads = num_heads // tp_size
|
273
|
+
self.scaling = self.qk_head_dim**-0.5
|
274
|
+
self.rope_theta = rope_theta
|
275
|
+
self.max_position_embeddings = max_position_embeddings
|
276
|
+
|
277
|
+
if self.q_lora_rank is not None:
|
278
|
+
self.q_a_proj = ReplicatedLinear(
|
279
|
+
self.hidden_size,
|
280
|
+
self.q_lora_rank,
|
281
|
+
bias=False,
|
282
|
+
quant_config=quant_config,
|
283
|
+
)
|
284
|
+
self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
|
285
|
+
self.q_b_proj = ColumnParallelLinear(
|
286
|
+
q_lora_rank,
|
287
|
+
self.num_heads * self.qk_head_dim,
|
288
|
+
bias=False,
|
289
|
+
quant_config=quant_config,
|
290
|
+
)
|
291
|
+
else:
|
292
|
+
self.q_proj = ColumnParallelLinear(
|
293
|
+
self.hidden_size,
|
294
|
+
self.num_heads * self.qk_head_dim,
|
295
|
+
bias=False,
|
296
|
+
quant_config=quant_config,
|
297
|
+
)
|
298
|
+
|
299
|
+
self.kv_a_proj_with_mqa = ReplicatedLinear(
|
300
|
+
self.hidden_size,
|
301
|
+
self.kv_lora_rank + self.qk_rope_head_dim,
|
302
|
+
bias=False,
|
303
|
+
quant_config=quant_config,
|
304
|
+
)
|
305
|
+
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
|
306
|
+
self.kv_b_proj = ColumnParallelLinear(
|
307
|
+
self.kv_lora_rank,
|
308
|
+
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
|
309
|
+
bias=False,
|
310
|
+
quant_config=quant_config,
|
311
|
+
)
|
312
|
+
# O projection.
|
313
|
+
self.o_proj = RowParallelLinear(
|
314
|
+
self.num_heads * self.v_head_dim,
|
315
|
+
self.hidden_size,
|
316
|
+
bias=False,
|
317
|
+
quant_config=quant_config,
|
318
|
+
)
|
319
|
+
self.rotary_emb = get_rope(
|
320
|
+
qk_rope_head_dim,
|
321
|
+
rotary_dim=qk_rope_head_dim,
|
322
|
+
max_position=max_position_embeddings,
|
323
|
+
base=rope_theta,
|
324
|
+
rope_scaling=rope_scaling,
|
325
|
+
)
|
326
|
+
|
327
|
+
self.attn = RadixAttention(
|
328
|
+
self.num_local_heads,
|
329
|
+
self.kv_lora_rank + self.qk_rope_head_dim,
|
330
|
+
self.scaling,
|
331
|
+
num_kv_heads=1,
|
332
|
+
layer_id=layer_id,
|
333
|
+
v_head_dim=self.kv_lora_rank,
|
334
|
+
)
|
335
|
+
|
336
|
+
self.w_kc = None
|
337
|
+
self.w_vc = None
|
338
|
+
self.w_scale = None
|
339
|
+
|
340
|
+
def forward(
|
341
|
+
self,
|
342
|
+
positions: torch.Tensor,
|
343
|
+
hidden_states: torch.Tensor,
|
344
|
+
input_metadata: InputMetadata,
|
345
|
+
) -> torch.Tensor:
|
346
|
+
q_len = hidden_states.shape[0]
|
347
|
+
q_input = hidden_states.new_empty(
|
348
|
+
q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
|
349
|
+
)
|
350
|
+
if self.q_lora_rank is not None:
|
351
|
+
q = self.q_a_proj(hidden_states)[0]
|
352
|
+
q = self.q_a_layernorm(q)
|
353
|
+
q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
|
354
|
+
else:
|
355
|
+
q = self.q_proj(hidden_states)[0].view(
|
356
|
+
-1, self.num_local_heads, self.qk_head_dim
|
357
|
+
)
|
358
|
+
q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
359
|
+
|
360
|
+
if self.w_kc.dtype == torch.float8_e4m3fn:
|
361
|
+
q_nope_val, q_nope_scale = input_to_float8(
|
362
|
+
q_nope.transpose(0, 1), torch.float8_e4m3fn
|
363
|
+
)
|
364
|
+
q_nope_out = bmm_fp8(
|
365
|
+
q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
|
366
|
+
)
|
367
|
+
else:
|
368
|
+
q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
|
369
|
+
q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
|
370
|
+
|
371
|
+
latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
|
372
|
+
v_input = latent_cache[..., : self.kv_lora_rank]
|
373
|
+
v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
|
374
|
+
k_input = latent_cache.unsqueeze(1)
|
375
|
+
k_input[..., : self.kv_lora_rank] = v_input
|
376
|
+
k_pe = k_input[..., self.kv_lora_rank :]
|
377
|
+
|
378
|
+
original_shapes = [q_pe.shape, k_pe.shape]
|
379
|
+
q_pe, k_pe = self.rotary_emb(
|
380
|
+
positions, q_pe.reshape(q_pe.shape[0], -1), k_pe.reshape(k_pe.shape[0], -1)
|
381
|
+
)
|
382
|
+
q_pe, k_pe = q_pe.view(original_shapes[0]), k_pe.view(original_shapes[1])
|
383
|
+
q_input[..., self.kv_lora_rank :] = q_pe
|
384
|
+
k_input[..., self.kv_lora_rank :] = k_pe
|
385
|
+
|
386
|
+
attn_output = self.attn(q_input, k_input, v_input, input_metadata)
|
387
|
+
attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)
|
388
|
+
|
389
|
+
if self.w_vc.dtype == torch.float8_e4m3fn:
|
390
|
+
attn_output_val, attn_output_scale = input_to_float8(
|
391
|
+
attn_output.transpose(0, 1), torch.float8_e4m3fn
|
392
|
+
)
|
393
|
+
attn_bmm_output = bmm_fp8(
|
394
|
+
attn_output_val,
|
395
|
+
self.w_vc,
|
396
|
+
attn_output_scale,
|
397
|
+
self.w_scale,
|
398
|
+
torch.bfloat16,
|
399
|
+
)
|
400
|
+
else:
|
401
|
+
attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
|
402
|
+
attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
|
403
|
+
output, _ = self.o_proj(attn_output)
|
404
|
+
|
405
|
+
return output
|
406
|
+
|
407
|
+
|
408
|
+
class MiniCPM3DecoderLayer(nn.Module):
|
409
|
+
def __init__(
|
410
|
+
self,
|
411
|
+
config: PretrainedConfig,
|
412
|
+
layer_id: int,
|
413
|
+
cache_config: Optional[CacheConfig] = None,
|
414
|
+
quant_config: Optional[QuantizationConfig] = None,
|
415
|
+
) -> None:
|
416
|
+
super().__init__()
|
417
|
+
self.config = config
|
418
|
+
self.hidden_size = config.hidden_size
|
419
|
+
rope_theta = getattr(config, "rope_theta", 10000)
|
420
|
+
rope_scaling = getattr(config, "rope_scaling", None)
|
421
|
+
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
422
|
+
if global_server_args_dict["enable_mla"]:
|
423
|
+
self.self_attn = MiniCPM3AttentionMLA(
|
424
|
+
config=config,
|
425
|
+
hidden_size=self.hidden_size,
|
426
|
+
num_heads=config.num_attention_heads,
|
427
|
+
qk_nope_head_dim=config.qk_nope_head_dim,
|
428
|
+
qk_rope_head_dim=config.qk_rope_head_dim,
|
429
|
+
v_head_dim=self.hidden_size // config.num_attention_heads,
|
430
|
+
q_lora_rank=(
|
431
|
+
config.q_lora_rank if hasattr(config, "q_lora_rank") else None
|
432
|
+
),
|
433
|
+
kv_lora_rank=config.kv_lora_rank,
|
434
|
+
rope_theta=rope_theta,
|
435
|
+
rope_scaling=rope_scaling,
|
436
|
+
max_position_embeddings=max_position_embeddings,
|
437
|
+
cache_config=cache_config,
|
438
|
+
quant_config=quant_config,
|
439
|
+
layer_id=layer_id,
|
440
|
+
)
|
441
|
+
else:
|
442
|
+
self.self_attn = MiniCPM3Attention(
|
443
|
+
config=config,
|
444
|
+
hidden_size=self.hidden_size,
|
445
|
+
num_heads=config.num_attention_heads,
|
446
|
+
qk_nope_head_dim=config.qk_nope_head_dim,
|
447
|
+
qk_rope_head_dim=config.qk_rope_head_dim,
|
448
|
+
v_head_dim=self.hidden_size // config.num_attention_heads,
|
449
|
+
q_lora_rank=(
|
450
|
+
config.q_lora_rank if hasattr(config, "q_lora_rank") else None
|
451
|
+
),
|
452
|
+
kv_lora_rank=config.kv_lora_rank,
|
453
|
+
rope_theta=rope_theta,
|
454
|
+
rope_scaling=rope_scaling,
|
455
|
+
max_position_embeddings=max_position_embeddings,
|
456
|
+
cache_config=cache_config,
|
457
|
+
quant_config=quant_config,
|
458
|
+
layer_id=layer_id,
|
459
|
+
)
|
460
|
+
self.mlp = MiniCPM3MLP(
|
461
|
+
hidden_size=self.hidden_size,
|
462
|
+
intermediate_size=config.intermediate_size,
|
463
|
+
hidden_act=config.hidden_act,
|
464
|
+
quant_config=quant_config,
|
465
|
+
)
|
466
|
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
467
|
+
self.post_attention_layernorm = RMSNorm(
|
468
|
+
config.hidden_size, eps=config.rms_norm_eps
|
469
|
+
)
|
470
|
+
|
471
|
+
def forward(
|
472
|
+
self,
|
473
|
+
positions: torch.Tensor,
|
474
|
+
hidden_states: torch.Tensor,
|
475
|
+
input_metadata: InputMetadata,
|
476
|
+
residual: Optional[torch.Tensor],
|
477
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
478
|
+
# Self Attention
|
479
|
+
residual = hidden_states
|
480
|
+
hidden_states = self.input_layernorm(hidden_states)
|
481
|
+
hidden_states = self.self_attn(
|
482
|
+
positions=positions,
|
483
|
+
hidden_states=hidden_states,
|
484
|
+
input_metadata=input_metadata,
|
485
|
+
)
|
486
|
+
hidden_states = residual + hidden_states * (
|
487
|
+
self.config.scale_depth / math.sqrt(self.config.num_hidden_layers)
|
488
|
+
)
|
489
|
+
|
490
|
+
# Fully Connected
|
491
|
+
residual = hidden_states
|
492
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
493
|
+
hidden_states = self.mlp(hidden_states)
|
494
|
+
hidden_states = residual + hidden_states * (
|
495
|
+
self.config.scale_depth / math.sqrt(self.config.num_hidden_layers)
|
496
|
+
)
|
497
|
+
|
498
|
+
return hidden_states, None
|
499
|
+
|
500
|
+
|
501
|
+
class MiniCPM3Model(nn.Module):
|
502
|
+
def __init__(
|
503
|
+
self,
|
504
|
+
config: PretrainedConfig,
|
505
|
+
cache_config: Optional[CacheConfig] = None,
|
506
|
+
quant_config: Optional[QuantizationConfig] = None,
|
507
|
+
) -> None:
|
508
|
+
super().__init__()
|
509
|
+
self.config = config
|
510
|
+
self.padding_idx = config.pad_token_id
|
511
|
+
self.vocab_size = config.vocab_size
|
512
|
+
self.embed_tokens = VocabParallelEmbedding(
|
513
|
+
self.vocab_size,
|
514
|
+
config.hidden_size,
|
515
|
+
org_num_embeddings=config.vocab_size,
|
516
|
+
)
|
517
|
+
self.layers = nn.ModuleList(
|
518
|
+
[
|
519
|
+
MiniCPM3DecoderLayer(
|
520
|
+
config, i, cache_config=cache_config, quant_config=quant_config
|
521
|
+
)
|
522
|
+
for i in range(config.num_hidden_layers)
|
523
|
+
]
|
524
|
+
)
|
525
|
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
526
|
+
|
527
|
+
def forward(
|
528
|
+
self,
|
529
|
+
input_ids: torch.Tensor,
|
530
|
+
positions: torch.Tensor,
|
531
|
+
input_metadata: InputMetadata,
|
532
|
+
input_embeds: torch.Tensor = None,
|
533
|
+
) -> torch.Tensor:
|
534
|
+
if input_embeds is None:
|
535
|
+
hidden_states = self.embed_tokens(input_ids) * self.config.scale_emb
|
536
|
+
else:
|
537
|
+
hidden_states = input_embeds
|
538
|
+
residual = None
|
539
|
+
|
540
|
+
for i in range(len(self.layers)):
|
541
|
+
layer = self.layers[i]
|
542
|
+
hidden_states, residual = layer(
|
543
|
+
positions,
|
544
|
+
hidden_states,
|
545
|
+
input_metadata,
|
546
|
+
residual,
|
547
|
+
)
|
548
|
+
hidden_states = self.norm(hidden_states)
|
549
|
+
return hidden_states
|
550
|
+
|
551
|
+
|
552
|
+
class MiniCPM3ForCausalLM(nn.Module):
|
553
|
+
def __init__(
|
554
|
+
self,
|
555
|
+
config: PretrainedConfig,
|
556
|
+
cache_config: Optional[CacheConfig] = None,
|
557
|
+
quant_config: Optional[QuantizationConfig] = None,
|
558
|
+
) -> None:
|
559
|
+
super().__init__()
|
560
|
+
self.config = config
|
561
|
+
|
562
|
+
self.num_experts = getattr(self.config, "num_experts", 0)
|
563
|
+
self.quant_config = quant_config
|
564
|
+
self.model = MiniCPM3Model(
|
565
|
+
config, cache_config=cache_config, quant_config=quant_config
|
566
|
+
)
|
567
|
+
# self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
568
|
+
if not self.config.tie_word_embeddings:
|
569
|
+
self.lm_head = ParallelLMHead(
|
570
|
+
config.vocab_size,
|
571
|
+
config.hidden_size,
|
572
|
+
org_num_embeddings=config.vocab_size,
|
573
|
+
)
|
574
|
+
|
575
|
+
self.scale_width = self.config.hidden_size / self.config.dim_model_base
|
576
|
+
|
577
|
+
self.logits_processor = LogitsProcessor(config)
|
578
|
+
|
579
|
+
@torch.no_grad()
|
580
|
+
def forward(
|
581
|
+
self,
|
582
|
+
input_ids: torch.Tensor,
|
583
|
+
positions: torch.Tensor,
|
584
|
+
input_metadata: InputMetadata,
|
585
|
+
input_embeds: torch.Tensor = None,
|
586
|
+
) -> torch.Tensor:
|
587
|
+
if input_embeds is not None:
|
588
|
+
input_embeds = input_embeds * self.config.scale_emb
|
589
|
+
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
590
|
+
hidden_states = hidden_states / self.scale_width
|
591
|
+
if self.config.tie_word_embeddings:
|
592
|
+
lm_head_weight = self.model.embed_tokens.weight
|
593
|
+
else:
|
594
|
+
lm_head_weight = self.lm_head.weight
|
595
|
+
return self.logits_processor(
|
596
|
+
input_ids, hidden_states, lm_head_weight, input_metadata
|
597
|
+
)
|
598
|
+
|
599
|
+
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
600
|
+
stacked_params_mapping = [
|
601
|
+
# (param_name, shard_name, shard_id)
|
602
|
+
("gate_up_proj", "gate_proj", 0),
|
603
|
+
("gate_up_proj", "up_proj", 1),
|
604
|
+
]
|
605
|
+
expert_params_mapping = [
|
606
|
+
# (param_name, weight_name, expert_id)
|
607
|
+
(
|
608
|
+
"ws" if weight_name in ["w1", "w3"] else "w2s",
|
609
|
+
f"experts.{expert_id}.{weight_name}.weight",
|
610
|
+
expert_id,
|
611
|
+
)
|
612
|
+
for expert_id in range(self.num_experts)
|
613
|
+
for weight_name in ["w1", "w2", "w3"]
|
614
|
+
]
|
615
|
+
params_dict = dict(self.named_parameters())
|
616
|
+
for name, loaded_weight in weights:
|
617
|
+
if "rotary_emb.inv_freq" in name:
|
618
|
+
continue
|
619
|
+
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
620
|
+
# Models trained using ColossalAI may include these tensors in
|
621
|
+
# the checkpoint. Skip them.
|
622
|
+
continue
|
623
|
+
|
624
|
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
625
|
+
if weight_name not in name:
|
626
|
+
continue
|
627
|
+
name = name.replace(weight_name, param_name)
|
628
|
+
# Skip loading extra bias for GPTQ models.
|
629
|
+
if name.endswith(".bias") and name not in params_dict:
|
630
|
+
continue
|
631
|
+
param = params_dict[name]
|
632
|
+
weight_loader = param.weight_loader
|
633
|
+
weight_loader(param, loaded_weight, shard_id)
|
634
|
+
break
|
635
|
+
else:
|
636
|
+
for param_name, weight_name, expert_id in expert_params_mapping:
|
637
|
+
if weight_name not in name:
|
638
|
+
continue
|
639
|
+
name = name.replace(weight_name, param_name)
|
640
|
+
param = params_dict[name]
|
641
|
+
weight_loader = param.weight_loader
|
642
|
+
weight_loader(
|
643
|
+
param, loaded_weight, weight_name, expert_id=expert_id
|
644
|
+
)
|
645
|
+
break
|
646
|
+
else:
|
647
|
+
# Skip loading extra bias for GPTQ models.
|
648
|
+
if name.endswith(".bias") and name not in params_dict:
|
649
|
+
continue
|
650
|
+
param = params_dict[name]
|
651
|
+
weight_loader = getattr(
|
652
|
+
param, "weight_loader", default_weight_loader
|
653
|
+
)
|
654
|
+
weight_loader(param, loaded_weight)
|
655
|
+
|
656
|
+
if global_server_args_dict["enable_mla"]:
|
657
|
+
for layer_id in range(self.config.num_hidden_layers):
|
658
|
+
self_attn = self.model.layers[layer_id].self_attn
|
659
|
+
w_kc, w_vc = self_attn.kv_b_proj.weight.unflatten(
|
660
|
+
0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
|
661
|
+
).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
|
662
|
+
self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
|
663
|
+
self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
|
664
|
+
if hasattr(self_attn.kv_b_proj, "weight_scale"):
|
665
|
+
self_attn.w_scale = self_attn.kv_b_proj.weight_scale
|
666
|
+
del self_attn.kv_b_proj
|
667
|
+
|
668
|
+
|
669
|
+
EntryClass = MiniCPM3ForCausalLM
|