sglang 0.3.0__py3-none-any.whl → 0.3.1.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_latency.py +17 -8
- sglang/bench_serving.py +33 -38
- sglang/global_config.py +5 -17
- sglang/lang/backend/runtime_endpoint.py +5 -2
- sglang/lang/interpreter.py +1 -4
- sglang/launch_server.py +3 -6
- sglang/launch_server_llavavid.py +7 -8
- sglang/srt/{model_config.py → configs/model_config.py} +5 -0
- sglang/srt/constrained/__init__.py +2 -0
- sglang/srt/constrained/fsm_cache.py +33 -38
- sglang/srt/constrained/jump_forward.py +0 -1
- sglang/srt/conversation.py +4 -1
- sglang/srt/hf_transformers_utils.py +1 -3
- sglang/srt/layers/activation.py +12 -0
- sglang/srt/layers/attention_backend.py +480 -0
- sglang/srt/layers/flashinfer_utils.py +235 -0
- sglang/srt/layers/fused_moe/layer.py +27 -7
- sglang/srt/layers/layernorm.py +12 -0
- sglang/srt/layers/logits_processor.py +64 -77
- sglang/srt/layers/radix_attention.py +11 -161
- sglang/srt/layers/sampler.py +38 -122
- sglang/srt/layers/torchao_utils.py +75 -0
- sglang/srt/layers/{decode_attention.py → triton_attention/decode_attention.py} +67 -63
- sglang/srt/layers/{extend_attention.py → triton_attention/extend_attention.py} +40 -132
- sglang/srt/layers/{prefill_attention.py → triton_attention/prefill_attention.py} +13 -7
- sglang/srt/lora/lora.py +403 -0
- sglang/srt/lora/lora_config.py +43 -0
- sglang/srt/lora/lora_manager.py +259 -0
- sglang/srt/managers/controller_multi.py +1 -5
- sglang/srt/managers/controller_single.py +0 -5
- sglang/srt/managers/io_struct.py +16 -1
- sglang/srt/managers/policy_scheduler.py +122 -5
- sglang/srt/managers/schedule_batch.py +105 -71
- sglang/srt/managers/tokenizer_manager.py +17 -8
- sglang/srt/managers/tp_worker.py +188 -121
- sglang/srt/model_executor/cuda_graph_runner.py +69 -133
- sglang/srt/model_executor/forward_batch_info.py +35 -312
- sglang/srt/model_executor/model_runner.py +123 -154
- sglang/srt/models/baichuan.py +416 -0
- sglang/srt/models/chatglm.py +1 -5
- sglang/srt/models/commandr.py +1 -5
- sglang/srt/models/dbrx.py +1 -5
- sglang/srt/models/deepseek.py +1 -5
- sglang/srt/models/deepseek_v2.py +7 -6
- sglang/srt/models/exaone.py +1 -5
- sglang/srt/models/gemma.py +1 -5
- sglang/srt/models/gemma2.py +1 -5
- sglang/srt/models/gpt_bigcode.py +1 -5
- sglang/srt/models/grok.py +1 -5
- sglang/srt/models/internlm2.py +1 -5
- sglang/srt/models/llama.py +51 -5
- sglang/srt/models/llama_classification.py +1 -20
- sglang/srt/models/llava.py +30 -5
- sglang/srt/models/llavavid.py +2 -2
- sglang/srt/models/minicpm.py +1 -5
- sglang/srt/models/minicpm3.py +669 -0
- sglang/srt/models/mixtral.py +6 -5
- sglang/srt/models/mixtral_quant.py +1 -5
- sglang/srt/models/olmoe.py +415 -0
- sglang/srt/models/qwen.py +1 -5
- sglang/srt/models/qwen2.py +1 -5
- sglang/srt/models/qwen2_moe.py +6 -5
- sglang/srt/models/stablelm.py +1 -5
- sglang/srt/models/xverse.py +375 -0
- sglang/srt/models/xverse_moe.py +445 -0
- sglang/srt/openai_api/adapter.py +65 -46
- sglang/srt/openai_api/protocol.py +11 -3
- sglang/srt/sampling/sampling_batch_info.py +46 -80
- sglang/srt/server.py +30 -15
- sglang/srt/server_args.py +163 -28
- sglang/srt/utils.py +19 -51
- sglang/test/few_shot_gsm8k.py +132 -0
- sglang/test/runners.py +114 -22
- sglang/test/test_programs.py +7 -5
- sglang/test/test_utils.py +85 -2
- sglang/utils.py +32 -37
- sglang/version.py +1 -1
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/METADATA +30 -18
- sglang-0.3.1.post1.dist-info/RECORD +130 -0
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/WHEEL +1 -1
- sglang-0.3.0.dist-info/RECORD +0 -118
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/LICENSE +0 -0
- {sglang-0.3.0.dist-info → sglang-0.3.1.post1.dist-info}/top_level.txt +0 -0
sglang/srt/models/mixtral.py
CHANGED
@@ -41,7 +41,8 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
41
41
|
from sglang.srt.layers.layernorm import RMSNorm
|
42
42
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
43
43
|
from sglang.srt.layers.radix_attention import RadixAttention
|
44
|
-
from sglang.srt.layers.
|
44
|
+
from sglang.srt.layers.torchao_utils import apply_torchao_config_
|
45
|
+
from sglang.srt.managers.schedule_batch import global_server_args_dict
|
45
46
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
46
47
|
|
47
48
|
|
@@ -297,10 +298,10 @@ class MixtralForCausalLM(nn.Module):
|
|
297
298
|
super().__init__()
|
298
299
|
self.config = config
|
299
300
|
self.quant_config = quant_config
|
301
|
+
self.torchao_config = global_server_args_dict["torchao_config"]
|
300
302
|
self.model = MixtralModel(config, quant_config=quant_config, prefix="model")
|
301
303
|
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
302
304
|
self.logits_processor = LogitsProcessor(config)
|
303
|
-
self.sampler = Sampler()
|
304
305
|
|
305
306
|
def forward(
|
306
307
|
self,
|
@@ -310,11 +311,9 @@ class MixtralForCausalLM(nn.Module):
|
|
310
311
|
input_embeds: torch.Tensor = None,
|
311
312
|
) -> torch.Tensor:
|
312
313
|
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
313
|
-
|
314
|
+
return self.logits_processor(
|
314
315
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
315
316
|
)
|
316
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
317
|
-
return sample_output, logits_output
|
318
317
|
|
319
318
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
320
319
|
stacked_params_mapping = [
|
@@ -380,5 +379,7 @@ class MixtralForCausalLM(nn.Module):
|
|
380
379
|
)
|
381
380
|
weight_loader(param, loaded_weight)
|
382
381
|
|
382
|
+
apply_torchao_config_(self, params_dict, set(["proj.weight"]))
|
383
|
+
|
383
384
|
|
384
385
|
EntryClass = MixtralForCausalLM
|
@@ -45,7 +45,6 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
45
45
|
from sglang.srt.layers.layernorm import RMSNorm
|
46
46
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
47
47
|
from sglang.srt.layers.radix_attention import RadixAttention
|
48
|
-
from sglang.srt.layers.sampler import Sampler
|
49
48
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
50
49
|
|
51
50
|
|
@@ -334,7 +333,6 @@ class QuantMixtralForCausalLM(nn.Module):
|
|
334
333
|
self.model = MixtralModel(config, quant_config=quant_config)
|
335
334
|
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
336
335
|
self.logits_processor = LogitsProcessor(config)
|
337
|
-
self.sampler = Sampler()
|
338
336
|
|
339
337
|
@torch.no_grad()
|
340
338
|
def forward(
|
@@ -345,11 +343,9 @@ class QuantMixtralForCausalLM(nn.Module):
|
|
345
343
|
input_embeds: torch.Tensor = None,
|
346
344
|
) -> torch.Tensor:
|
347
345
|
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
348
|
-
|
346
|
+
return self.logits_processor(
|
349
347
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
350
348
|
)
|
351
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
352
|
-
return sample_output, logits_output
|
353
349
|
|
354
350
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
355
351
|
stacked_params_mapping = [
|
@@ -0,0 +1,415 @@
|
|
1
|
+
"""
|
2
|
+
Copyright 2023-2024 SGLang Team
|
3
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
you may not use this file except in compliance with the License.
|
5
|
+
You may obtain a copy of the License at
|
6
|
+
|
7
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
Unless required by applicable law or agreed to in writing, software
|
10
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
See the License for the specific language governing permissions and
|
13
|
+
limitations under the License.
|
14
|
+
"""
|
15
|
+
|
16
|
+
# Adapted from:
|
17
|
+
# https://github.com/vllm-project/vllm/pull/7922
|
18
|
+
|
19
|
+
"""Inference-only OLMoE model compatible with HuggingFace weights."""
|
20
|
+
from typing import Any, Dict, Iterable, List, Optional, Tuple
|
21
|
+
|
22
|
+
import torch
|
23
|
+
import torch.nn.functional as F
|
24
|
+
from torch import nn
|
25
|
+
from transformers import PretrainedConfig
|
26
|
+
from vllm.config import CacheConfig
|
27
|
+
from vllm.distributed import (
|
28
|
+
get_tensor_model_parallel_world_size,
|
29
|
+
tensor_model_parallel_all_reduce,
|
30
|
+
)
|
31
|
+
from vllm.model_executor.layers.fused_moe import FusedMoE
|
32
|
+
from vllm.model_executor.layers.linear import (
|
33
|
+
MergedColumnParallelLinear,
|
34
|
+
QKVParallelLinear,
|
35
|
+
ReplicatedLinear,
|
36
|
+
RowParallelLinear,
|
37
|
+
)
|
38
|
+
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
|
39
|
+
from vllm.model_executor.layers.rotary_embedding import get_rope
|
40
|
+
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
41
|
+
ParallelLMHead,
|
42
|
+
VocabParallelEmbedding,
|
43
|
+
)
|
44
|
+
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
45
|
+
from vllm.utils import print_warning_once
|
46
|
+
|
47
|
+
from sglang.srt.layers.activation import SiluAndMul
|
48
|
+
from sglang.srt.layers.layernorm import RMSNorm
|
49
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
|
50
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
51
|
+
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
52
|
+
|
53
|
+
|
54
|
+
class OlmoeMoE(nn.Module):
|
55
|
+
"""A tensor-parallel MoE implementation for Olmoe that shards each expert
|
56
|
+
across all ranks.
|
57
|
+
|
58
|
+
Each expert's weights are sharded across all ranks and a fused MoE
|
59
|
+
kernel is used for the forward pass, and finally we reduce the outputs
|
60
|
+
across ranks.
|
61
|
+
"""
|
62
|
+
|
63
|
+
def __init__(
|
64
|
+
self,
|
65
|
+
num_experts: int,
|
66
|
+
top_k: int,
|
67
|
+
hidden_size: int,
|
68
|
+
intermediate_size: int,
|
69
|
+
params_dtype: Optional[torch.dtype] = None,
|
70
|
+
quant_config: Optional[QuantizationConfig] = None,
|
71
|
+
tp_size: Optional[int] = None,
|
72
|
+
prefix: str = "",
|
73
|
+
):
|
74
|
+
super().__init__()
|
75
|
+
self.hidden_size = hidden_size
|
76
|
+
|
77
|
+
# Gate always runs at half / full precision for now.
|
78
|
+
self.gate = ReplicatedLinear(
|
79
|
+
hidden_size, num_experts, bias=False, quant_config=None
|
80
|
+
)
|
81
|
+
|
82
|
+
self.experts = FusedMoE(
|
83
|
+
num_experts=num_experts,
|
84
|
+
top_k=top_k,
|
85
|
+
hidden_size=hidden_size,
|
86
|
+
intermediate_size=intermediate_size,
|
87
|
+
reduce_results=True,
|
88
|
+
renormalize=False,
|
89
|
+
quant_config=quant_config,
|
90
|
+
tp_size=tp_size,
|
91
|
+
)
|
92
|
+
|
93
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
94
|
+
# NOTE: hidden_states can have either 1D or 2D shape.
|
95
|
+
orig_shape = hidden_states.shape
|
96
|
+
hidden_states = hidden_states.view(-1, self.hidden_size)
|
97
|
+
# router_logits: (num_tokens, n_experts)
|
98
|
+
router_logits, _ = self.gate(hidden_states)
|
99
|
+
final_hidden_states = self.experts(
|
100
|
+
hidden_states=hidden_states, router_logits=router_logits
|
101
|
+
)
|
102
|
+
return final_hidden_states.view(orig_shape)
|
103
|
+
|
104
|
+
|
105
|
+
class OlmoeAttention(nn.Module):
|
106
|
+
|
107
|
+
def __init__(
|
108
|
+
self,
|
109
|
+
layer_id: int,
|
110
|
+
hidden_size: int,
|
111
|
+
num_heads: int,
|
112
|
+
num_kv_heads: int,
|
113
|
+
rope_theta: float = 10000,
|
114
|
+
rope_scaling: Optional[Dict[str, Any]] = None,
|
115
|
+
max_position_embeddings: int = 4096,
|
116
|
+
quant_config: Optional[QuantizationConfig] = None,
|
117
|
+
) -> None:
|
118
|
+
super().__init__()
|
119
|
+
self.hidden_size = hidden_size
|
120
|
+
tp_size = get_tensor_model_parallel_world_size()
|
121
|
+
self.total_num_heads = num_heads
|
122
|
+
assert self.total_num_heads % tp_size == 0
|
123
|
+
self.num_heads = self.total_num_heads // tp_size
|
124
|
+
self.total_num_kv_heads = num_kv_heads
|
125
|
+
if self.total_num_kv_heads >= tp_size:
|
126
|
+
# Number of KV heads is greater than TP size, so we partition
|
127
|
+
# the KV heads across multiple tensor parallel GPUs.
|
128
|
+
assert self.total_num_kv_heads % tp_size == 0
|
129
|
+
else:
|
130
|
+
# Number of KV heads is less than TP size, so we replicate
|
131
|
+
# the KV heads across multiple tensor parallel GPUs.
|
132
|
+
assert tp_size % self.total_num_kv_heads == 0
|
133
|
+
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
134
|
+
self.head_dim = hidden_size // self.total_num_heads
|
135
|
+
self.q_size = self.num_heads * self.head_dim
|
136
|
+
self.kv_size = self.num_kv_heads * self.head_dim
|
137
|
+
self.scaling = self.head_dim**-0.5
|
138
|
+
self.rope_theta = rope_theta
|
139
|
+
self.max_position_embeddings = max_position_embeddings
|
140
|
+
|
141
|
+
self.qkv_proj = QKVParallelLinear(
|
142
|
+
hidden_size,
|
143
|
+
self.head_dim,
|
144
|
+
self.total_num_heads,
|
145
|
+
self.total_num_kv_heads,
|
146
|
+
bias=False,
|
147
|
+
quant_config=quant_config,
|
148
|
+
)
|
149
|
+
self.q_norm = RMSNorm(hidden_size, eps=1e-5)
|
150
|
+
self.k_norm = RMSNorm(hidden_size, eps=1e-5)
|
151
|
+
self.o_proj = RowParallelLinear(
|
152
|
+
self.total_num_heads * self.head_dim,
|
153
|
+
hidden_size,
|
154
|
+
bias=False,
|
155
|
+
quant_config=quant_config,
|
156
|
+
)
|
157
|
+
|
158
|
+
self.rotary_emb = get_rope(
|
159
|
+
self.head_dim,
|
160
|
+
rotary_dim=self.head_dim,
|
161
|
+
max_position=max_position_embeddings,
|
162
|
+
base=rope_theta,
|
163
|
+
rope_scaling=rope_scaling,
|
164
|
+
is_neox_style=True,
|
165
|
+
)
|
166
|
+
self.attn = RadixAttention(
|
167
|
+
self.num_heads,
|
168
|
+
self.head_dim,
|
169
|
+
self.scaling,
|
170
|
+
layer_id=layer_id,
|
171
|
+
num_kv_heads=self.num_kv_heads,
|
172
|
+
)
|
173
|
+
|
174
|
+
def forward(
|
175
|
+
self,
|
176
|
+
positions: torch.Tensor,
|
177
|
+
hidden_states: torch.Tensor,
|
178
|
+
input_metadata: InputMetadata,
|
179
|
+
) -> torch.Tensor:
|
180
|
+
qkv, _ = self.qkv_proj(hidden_states)
|
181
|
+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
182
|
+
q, k = self.q_norm(q.contiguous()), self.k_norm(k.contiguous())
|
183
|
+
q, k = self.rotary_emb(positions, q, k)
|
184
|
+
attn_output = self.attn(q, k, v, input_metadata)
|
185
|
+
output, _ = self.o_proj(attn_output)
|
186
|
+
return output
|
187
|
+
|
188
|
+
|
189
|
+
class OlmoeDecoderLayer(nn.Module):
|
190
|
+
|
191
|
+
def __init__(
|
192
|
+
self,
|
193
|
+
config: PretrainedConfig,
|
194
|
+
layer_id: int = 0,
|
195
|
+
quant_config: Optional[QuantizationConfig] = None,
|
196
|
+
) -> None:
|
197
|
+
super().__init__()
|
198
|
+
self.hidden_size = config.hidden_size
|
199
|
+
rope_theta = getattr(config, "rope_theta", 10000)
|
200
|
+
rope_scaling = getattr(config, "rope_scaling", None)
|
201
|
+
max_position_embeddings = getattr(config, "max_position_embeddings", 4096)
|
202
|
+
|
203
|
+
self.self_attn = OlmoeAttention(
|
204
|
+
layer_id,
|
205
|
+
hidden_size=self.hidden_size,
|
206
|
+
num_heads=config.num_attention_heads,
|
207
|
+
num_kv_heads=config.num_key_value_heads,
|
208
|
+
rope_theta=rope_theta,
|
209
|
+
rope_scaling=rope_scaling,
|
210
|
+
max_position_embeddings=max_position_embeddings,
|
211
|
+
quant_config=quant_config,
|
212
|
+
)
|
213
|
+
|
214
|
+
self.mlp = OlmoeMoE(
|
215
|
+
num_experts=config.num_experts,
|
216
|
+
top_k=config.num_experts_per_tok,
|
217
|
+
hidden_size=config.hidden_size,
|
218
|
+
intermediate_size=config.intermediate_size,
|
219
|
+
quant_config=quant_config,
|
220
|
+
)
|
221
|
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=1e-5)
|
222
|
+
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=1e-5)
|
223
|
+
|
224
|
+
def forward(
|
225
|
+
self,
|
226
|
+
positions: torch.Tensor,
|
227
|
+
hidden_states: torch.Tensor,
|
228
|
+
input_metadata: InputMetadata,
|
229
|
+
residual: Optional[torch.Tensor],
|
230
|
+
) -> torch.Tensor:
|
231
|
+
# Self Attention
|
232
|
+
if residual is None:
|
233
|
+
residual = hidden_states
|
234
|
+
hidden_states = self.input_layernorm(hidden_states)
|
235
|
+
else:
|
236
|
+
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
237
|
+
|
238
|
+
hidden_states = self.self_attn(
|
239
|
+
positions=positions,
|
240
|
+
hidden_states=hidden_states,
|
241
|
+
input_metadata=input_metadata,
|
242
|
+
)
|
243
|
+
|
244
|
+
# Fully Connected
|
245
|
+
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
246
|
+
hidden_states = self.mlp(hidden_states)
|
247
|
+
return hidden_states, residual
|
248
|
+
|
249
|
+
|
250
|
+
class OlmoeModel(nn.Module):
|
251
|
+
|
252
|
+
def __init__(
|
253
|
+
self,
|
254
|
+
config: PretrainedConfig,
|
255
|
+
quant_config: Optional[QuantizationConfig] = None,
|
256
|
+
) -> None:
|
257
|
+
super().__init__()
|
258
|
+
self.padding_idx = config.pad_token_id
|
259
|
+
self.vocab_size = config.vocab_size
|
260
|
+
|
261
|
+
self.embed_tokens = VocabParallelEmbedding(
|
262
|
+
config.vocab_size,
|
263
|
+
config.hidden_size,
|
264
|
+
)
|
265
|
+
self.layers = nn.ModuleList(
|
266
|
+
[
|
267
|
+
OlmoeDecoderLayer(config, layer_id, quant_config=quant_config)
|
268
|
+
for layer_id in range(config.num_hidden_layers)
|
269
|
+
]
|
270
|
+
)
|
271
|
+
self.norm = RMSNorm(config.hidden_size, eps=1e-5)
|
272
|
+
|
273
|
+
def forward(
|
274
|
+
self,
|
275
|
+
input_ids: torch.Tensor,
|
276
|
+
positions: torch.Tensor,
|
277
|
+
input_metadata: InputMetadata,
|
278
|
+
input_embeds: torch.Tensor = None,
|
279
|
+
) -> torch.Tensor:
|
280
|
+
if input_embeds is None:
|
281
|
+
hidden_states = self.embed_tokens(input_ids)
|
282
|
+
else:
|
283
|
+
hidden_states = input_embeds
|
284
|
+
residual = None
|
285
|
+
for i in range(len(self.layers)):
|
286
|
+
layer = self.layers[i]
|
287
|
+
hidden_states, residual = layer(
|
288
|
+
positions, hidden_states, input_metadata, residual
|
289
|
+
)
|
290
|
+
hidden_states, _ = self.norm(hidden_states, residual)
|
291
|
+
return hidden_states
|
292
|
+
|
293
|
+
|
294
|
+
class OlmoeForCausalLM(nn.Module):
|
295
|
+
|
296
|
+
fall_back_to_pt_during_load = False
|
297
|
+
|
298
|
+
def __init__(
|
299
|
+
self,
|
300
|
+
config: PretrainedConfig,
|
301
|
+
cache_config: Optional[CacheConfig] = None,
|
302
|
+
quant_config: Optional[QuantizationConfig] = None,
|
303
|
+
) -> None:
|
304
|
+
super().__init__()
|
305
|
+
self.config = config
|
306
|
+
self.quant_config = quant_config
|
307
|
+
self.model = OlmoeModel(config, quant_config)
|
308
|
+
self.lm_head = ParallelLMHead(
|
309
|
+
config.vocab_size, config.hidden_size, quant_config=quant_config
|
310
|
+
)
|
311
|
+
self.logits_processor = LogitsProcessor(config)
|
312
|
+
|
313
|
+
def forward(
|
314
|
+
self,
|
315
|
+
input_ids: torch.Tensor,
|
316
|
+
positions: torch.Tensor,
|
317
|
+
input_metadata: InputMetadata,
|
318
|
+
input_embeds: torch.Tensor = None,
|
319
|
+
) -> torch.Tensor:
|
320
|
+
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
321
|
+
return self.logits_processor(
|
322
|
+
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
323
|
+
)
|
324
|
+
|
325
|
+
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
326
|
+
stacked_params_mapping = [
|
327
|
+
# (param_name, shard_name, shard_id)
|
328
|
+
("qkv_proj", "q_proj", "q"),
|
329
|
+
("qkv_proj", "k_proj", "k"),
|
330
|
+
("qkv_proj", "v_proj", "v"),
|
331
|
+
("gate_up_proj", "gate_proj", 0),
|
332
|
+
("gate_up_proj", "up_proj", 1),
|
333
|
+
]
|
334
|
+
|
335
|
+
# Params for weights, fp8 weight scales, fp8 activation scales
|
336
|
+
# (param_name, weight_name, expert_id, shard_id)
|
337
|
+
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
338
|
+
ckpt_gate_proj_name="gate_proj",
|
339
|
+
ckpt_down_proj_name="down_proj",
|
340
|
+
ckpt_up_proj_name="up_proj",
|
341
|
+
num_experts=self.config.num_experts,
|
342
|
+
)
|
343
|
+
|
344
|
+
params_dict = dict(self.named_parameters())
|
345
|
+
for name, loaded_weight in weights:
|
346
|
+
if "rotary_emb.inv_freq" in name:
|
347
|
+
continue
|
348
|
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
349
|
+
# Skip non-stacked layers and experts (experts handled below).
|
350
|
+
if weight_name not in name:
|
351
|
+
continue
|
352
|
+
# We have mlp.experts[0].gate_proj in the checkpoint.
|
353
|
+
# Since we handle the experts below in expert_params_mapping,
|
354
|
+
# we need to skip here BEFORE we update the name, otherwise
|
355
|
+
# name will be updated to mlp.experts[0].gate_up_proj, which
|
356
|
+
# will then be updated below in expert_params_mapping
|
357
|
+
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
358
|
+
if "mlp.experts" in name:
|
359
|
+
continue
|
360
|
+
name = name.replace(weight_name, param_name)
|
361
|
+
# Skip loading extra bias for GPTQ models.
|
362
|
+
if name.endswith(".bias") and name not in params_dict:
|
363
|
+
continue
|
364
|
+
if name not in params_dict:
|
365
|
+
continue
|
366
|
+
|
367
|
+
param = params_dict[name]
|
368
|
+
weight_loader = param.weight_loader
|
369
|
+
weight_loader(param, loaded_weight, shard_id)
|
370
|
+
break
|
371
|
+
else:
|
372
|
+
for mapping in expert_params_mapping:
|
373
|
+
param_name, weight_name, expert_id, shard_id = mapping
|
374
|
+
if weight_name not in name:
|
375
|
+
continue
|
376
|
+
name = name.replace(weight_name, param_name)
|
377
|
+
param = params_dict[name]
|
378
|
+
weight_loader = param.weight_loader
|
379
|
+
weight_loader(
|
380
|
+
param,
|
381
|
+
loaded_weight,
|
382
|
+
name,
|
383
|
+
shard_id=shard_id,
|
384
|
+
expert_id=expert_id,
|
385
|
+
)
|
386
|
+
break
|
387
|
+
else:
|
388
|
+
# Skip loading extra bias for GPTQ models.
|
389
|
+
if name.endswith(".bias") and name not in params_dict:
|
390
|
+
continue
|
391
|
+
# Remapping the name of FP8 kv-scale.
|
392
|
+
if name.endswith("kv_scale"):
|
393
|
+
remapped_kv_scale_name = name.replace(
|
394
|
+
".kv_scale", ".attn.kv_scale"
|
395
|
+
)
|
396
|
+
if remapped_kv_scale_name not in params_dict:
|
397
|
+
print_warning_once(
|
398
|
+
"Found kv scale in the checkpoint "
|
399
|
+
f"(e.g. {name}), but not found the expected "
|
400
|
+
f"name in the model "
|
401
|
+
f"(e.g. {remapped_kv_scale_name}). "
|
402
|
+
"kv-scale is not loaded."
|
403
|
+
)
|
404
|
+
continue
|
405
|
+
else:
|
406
|
+
name = remapped_kv_scale_name
|
407
|
+
|
408
|
+
param = params_dict[name]
|
409
|
+
weight_loader = getattr(
|
410
|
+
param, "weight_loader", default_weight_loader
|
411
|
+
)
|
412
|
+
weight_loader(param, loaded_weight)
|
413
|
+
|
414
|
+
|
415
|
+
EntryClass = OlmoeForCausalLM
|
sglang/srt/models/qwen.py
CHANGED
@@ -39,7 +39,6 @@ from sglang.srt.layers.activation import SiluAndMul
|
|
39
39
|
from sglang.srt.layers.layernorm import RMSNorm
|
40
40
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
41
41
|
from sglang.srt.layers.radix_attention import RadixAttention
|
42
|
-
from sglang.srt.layers.sampler import Sampler
|
43
42
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
44
43
|
|
45
44
|
|
@@ -252,7 +251,6 @@ class QWenLMHeadModel(nn.Module):
|
|
252
251
|
vocab_size = ((config.vocab_size + 63) // 64) * 64
|
253
252
|
self.lm_head = ParallelLMHead(vocab_size, config.hidden_size)
|
254
253
|
self.logits_processor = LogitsProcessor(config)
|
255
|
-
self.sampler = Sampler()
|
256
254
|
|
257
255
|
@torch.no_grad()
|
258
256
|
def forward(
|
@@ -262,11 +260,9 @@ class QWenLMHeadModel(nn.Module):
|
|
262
260
|
input_metadata: InputMetadata,
|
263
261
|
):
|
264
262
|
hidden_states = self.transformer(input_ids, positions, input_metadata)
|
265
|
-
|
263
|
+
return self.logits_processor(
|
266
264
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
267
265
|
)
|
268
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
269
|
-
return sample_output, logits_output
|
270
266
|
|
271
267
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
272
268
|
stacked_params_mapping = [
|
sglang/srt/models/qwen2.py
CHANGED
@@ -40,7 +40,6 @@ from sglang.srt.layers.layernorm import RMSNorm
|
|
40
40
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
41
41
|
from sglang.srt.layers.pooler import Pooler, PoolingType
|
42
42
|
from sglang.srt.layers.radix_attention import RadixAttention
|
43
|
-
from sglang.srt.layers.sampler import Sampler
|
44
43
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
45
44
|
|
46
45
|
Qwen2Config = None
|
@@ -277,7 +276,6 @@ class Qwen2ForCausalLM(nn.Module):
|
|
277
276
|
self.model = Qwen2Model(config, quant_config=quant_config)
|
278
277
|
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
279
278
|
self.logits_processor = LogitsProcessor(config)
|
280
|
-
self.sampler = Sampler()
|
281
279
|
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
|
282
280
|
|
283
281
|
@torch.no_grad()
|
@@ -291,11 +289,9 @@ class Qwen2ForCausalLM(nn.Module):
|
|
291
289
|
) -> torch.Tensor:
|
292
290
|
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
293
291
|
if not get_embedding:
|
294
|
-
|
292
|
+
return self.logits_processor(
|
295
293
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
296
294
|
)
|
297
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
298
|
-
return sample_output, logits_output
|
299
295
|
else:
|
300
296
|
return self.pooler(hidden_states, input_metadata)
|
301
297
|
|
sglang/srt/models/qwen2_moe.py
CHANGED
@@ -47,7 +47,8 @@ from sglang.srt.layers.activation import SiluAndMul
|
|
47
47
|
from sglang.srt.layers.layernorm import RMSNorm
|
48
48
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
49
49
|
from sglang.srt.layers.radix_attention import RadixAttention
|
50
|
-
from sglang.srt.layers.
|
50
|
+
from sglang.srt.layers.torchao_utils import apply_torchao_config_
|
51
|
+
from sglang.srt.managers.schedule_batch import global_server_args_dict
|
51
52
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
52
53
|
|
53
54
|
|
@@ -360,12 +361,12 @@ class Qwen2MoeForCausalLM(nn.Module):
|
|
360
361
|
super().__init__()
|
361
362
|
self.config = config
|
362
363
|
self.quant_config = quant_config
|
364
|
+
self.torchao_config = global_server_args_dict["torchao_config"]
|
363
365
|
self.model = Qwen2MoeModel(config, cache_config, quant_config)
|
364
366
|
self.lm_head = ParallelLMHead(
|
365
367
|
config.vocab_size, config.hidden_size, quant_config=quant_config
|
366
368
|
)
|
367
369
|
self.logits_processor = LogitsProcessor(config)
|
368
|
-
self.sampler = Sampler()
|
369
370
|
|
370
371
|
@torch.no_grad()
|
371
372
|
def forward(
|
@@ -376,11 +377,9 @@ class Qwen2MoeForCausalLM(nn.Module):
|
|
376
377
|
input_embeds: torch.Tensor = None,
|
377
378
|
) -> torch.Tensor:
|
378
379
|
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
379
|
-
|
380
|
+
return self.logits_processor(
|
380
381
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
381
382
|
)
|
382
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
383
|
-
return sample_output, logits_output
|
384
383
|
|
385
384
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
386
385
|
stacked_params_mapping = [
|
@@ -455,5 +454,7 @@ class Qwen2MoeForCausalLM(nn.Module):
|
|
455
454
|
)
|
456
455
|
weight_loader(param, loaded_weight)
|
457
456
|
|
457
|
+
apply_torchao_config_(self, params_dict, set(["proj.weight"]))
|
458
|
+
|
458
459
|
|
459
460
|
EntryClass = Qwen2MoeForCausalLM
|
sglang/srt/models/stablelm.py
CHANGED
@@ -40,7 +40,6 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
40
40
|
from sglang.srt.layers.activation import SiluAndMul
|
41
41
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
42
42
|
from sglang.srt.layers.radix_attention import RadixAttention
|
43
|
-
from sglang.srt.layers.sampler import Sampler
|
44
43
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
45
44
|
|
46
45
|
|
@@ -250,7 +249,6 @@ class StableLmForCausalLM(nn.Module):
|
|
250
249
|
self.model = StableLMEpochModel(config, quant_config=quant_config)
|
251
250
|
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
252
251
|
self.logits_processor = LogitsProcessor(config)
|
253
|
-
self.sampler = Sampler()
|
254
252
|
|
255
253
|
@torch.no_grad()
|
256
254
|
def forward(
|
@@ -261,11 +259,9 @@ class StableLmForCausalLM(nn.Module):
|
|
261
259
|
input_embeds: torch.Tensor = None,
|
262
260
|
) -> torch.Tensor:
|
263
261
|
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
264
|
-
|
262
|
+
return self.logits_processor(
|
265
263
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
266
264
|
)
|
267
|
-
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
268
|
-
return sample_output, logits_output
|
269
265
|
|
270
266
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
271
267
|
stacked_params_mapping = [
|