sequenzo 0.1.18__cp39-cp39-macosx_10_9_universal2.whl → 0.1.19__cp39-cp39-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (357) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +157 -157
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-39-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +107 -5
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  8. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +157 -157
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-39-darwin.so +0 -0
  10. sequenzo/dissimilarity_measures/utils/seqconc.c +157 -157
  11. sequenzo/dissimilarity_measures/utils/seqconc.cpython-39-darwin.so +0 -0
  12. sequenzo/dissimilarity_measures/utils/seqdss.c +157 -157
  13. sequenzo/dissimilarity_measures/utils/seqdss.cpython-39-darwin.so +0 -0
  14. sequenzo/dissimilarity_measures/utils/seqdur.c +157 -157
  15. sequenzo/dissimilarity_measures/utils/seqdur.cpython-39-darwin.so +0 -0
  16. sequenzo/dissimilarity_measures/utils/seqlength.c +157 -157
  17. sequenzo/dissimilarity_measures/utils/seqlength.cpython-39-darwin.so +0 -0
  18. sequenzo/multidomain/cat.py +0 -53
  19. sequenzo/multidomain/idcd.py +0 -1
  20. sequenzo/openmp_setup.py +233 -0
  21. sequenzo/visualization/plot_transition_matrix.py +21 -22
  22. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/METADATA +43 -10
  23. sequenzo-0.1.19.dist-info/RECORD +215 -0
  24. sequenzo/dissimilarity_measures/setup.py +0 -35
  25. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  26. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  27. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  167. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  168. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  169. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  170. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  171. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  172. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  173. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  174. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  175. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  176. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  177. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  182. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  183. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  184. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  185. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  186. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  187. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  188. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  354. sequenzo-0.1.18.dist-info/RECORD +0 -544
  355. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  356. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  357. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,790 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2012 David Harmon <dharmon@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
11
- #define EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
12
-
13
- #include "../../../../Eigen/Dense"
14
-
15
- namespace Eigen {
16
-
17
- namespace internal {
18
- template<typename Scalar, typename RealScalar> struct arpack_wrapper;
19
- template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> struct OP;
20
- }
21
-
22
-
23
-
24
- template<typename MatrixType, typename MatrixSolver=SimplicialLLT<MatrixType>, bool BisSPD=false>
25
- class ArpackGeneralizedSelfAdjointEigenSolver
26
- {
27
- public:
28
- //typedef typename MatrixSolver::MatrixType MatrixType;
29
-
30
- /** \brief Scalar type for matrices of type \p MatrixType. */
31
- typedef typename MatrixType::Scalar Scalar;
32
- typedef typename MatrixType::Index Index;
33
-
34
- /** \brief Real scalar type for \p MatrixType.
35
- *
36
- * This is just \c Scalar if #Scalar is real (e.g., \c float or
37
- * \c Scalar), and the type of the real part of \c Scalar if #Scalar is
38
- * complex.
39
- */
40
- typedef typename NumTraits<Scalar>::Real RealScalar;
41
-
42
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
43
- *
44
- * This is a column vector with entries of type #RealScalar.
45
- * The length of the vector is the size of \p nbrEigenvalues.
46
- */
47
- typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
48
-
49
- /** \brief Default constructor.
50
- *
51
- * The default constructor is for cases in which the user intends to
52
- * perform decompositions via compute().
53
- *
54
- */
55
- ArpackGeneralizedSelfAdjointEigenSolver()
56
- : m_eivec(),
57
- m_eivalues(),
58
- m_isInitialized(false),
59
- m_eigenvectorsOk(false),
60
- m_nbrConverged(0),
61
- m_nbrIterations(0)
62
- { }
63
-
64
- /** \brief Constructor; computes generalized eigenvalues of given matrix with respect to another matrix.
65
- *
66
- * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
67
- * computed. By default, the upper triangular part is used, but can be changed
68
- * through the template parameter.
69
- * \param[in] B Self-adjoint matrix for the generalized eigenvalue problem.
70
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
71
- * Must be less than the size of the input matrix, or an error is returned.
72
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
73
- * respective meanings to find the largest magnitude , smallest magnitude,
74
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
75
- * value can contain floating point value in string form, in which case the
76
- * eigenvalues closest to this value will be found.
77
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
78
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
79
- * means machine precision.
80
- *
81
- * This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar)
82
- * to compute the eigenvalues of the matrix \p A with respect to \p B. The eigenvectors are computed if
83
- * \p options equals #ComputeEigenvectors.
84
- *
85
- */
86
- ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A, const MatrixType& B,
87
- Index nbrEigenvalues, std::string eigs_sigma="LM",
88
- int options=ComputeEigenvectors, RealScalar tol=0.0)
89
- : m_eivec(),
90
- m_eivalues(),
91
- m_isInitialized(false),
92
- m_eigenvectorsOk(false),
93
- m_nbrConverged(0),
94
- m_nbrIterations(0)
95
- {
96
- compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
97
- }
98
-
99
- /** \brief Constructor; computes eigenvalues of given matrix.
100
- *
101
- * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
102
- * computed. By default, the upper triangular part is used, but can be changed
103
- * through the template parameter.
104
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
105
- * Must be less than the size of the input matrix, or an error is returned.
106
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
107
- * respective meanings to find the largest magnitude , smallest magnitude,
108
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
109
- * value can contain floating point value in string form, in which case the
110
- * eigenvalues closest to this value will be found.
111
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
112
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
113
- * means machine precision.
114
- *
115
- * This constructor calls compute(const MatrixType&, Index, string, int, RealScalar)
116
- * to compute the eigenvalues of the matrix \p A. The eigenvectors are computed if
117
- * \p options equals #ComputeEigenvectors.
118
- *
119
- */
120
-
121
- ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A,
122
- Index nbrEigenvalues, std::string eigs_sigma="LM",
123
- int options=ComputeEigenvectors, RealScalar tol=0.0)
124
- : m_eivec(),
125
- m_eivalues(),
126
- m_isInitialized(false),
127
- m_eigenvectorsOk(false),
128
- m_nbrConverged(0),
129
- m_nbrIterations(0)
130
- {
131
- compute(A, nbrEigenvalues, eigs_sigma, options, tol);
132
- }
133
-
134
-
135
- /** \brief Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library.
136
- *
137
- * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed.
138
- * \param[in] B Selfadjoint matrix for generalized eigenvalues.
139
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
140
- * Must be less than the size of the input matrix, or an error is returned.
141
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
142
- * respective meanings to find the largest magnitude , smallest magnitude,
143
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
144
- * value can contain floating point value in string form, in which case the
145
- * eigenvalues closest to this value will be found.
146
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
147
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
148
- * means machine precision.
149
- *
150
- * \returns Reference to \c *this
151
- *
152
- * This function computes the generalized eigenvalues of \p A with respect to \p B using ARPACK. The eigenvalues()
153
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
154
- * then the eigenvectors are also computed and can be retrieved by
155
- * calling eigenvectors().
156
- *
157
- */
158
- ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A, const MatrixType& B,
159
- Index nbrEigenvalues, std::string eigs_sigma="LM",
160
- int options=ComputeEigenvectors, RealScalar tol=0.0);
161
-
162
- /** \brief Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library.
163
- *
164
- * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed.
165
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
166
- * Must be less than the size of the input matrix, or an error is returned.
167
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
168
- * respective meanings to find the largest magnitude , smallest magnitude,
169
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
170
- * value can contain floating point value in string form, in which case the
171
- * eigenvalues closest to this value will be found.
172
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
173
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
174
- * means machine precision.
175
- *
176
- * \returns Reference to \c *this
177
- *
178
- * This function computes the eigenvalues of \p A using ARPACK. The eigenvalues()
179
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
180
- * then the eigenvectors are also computed and can be retrieved by
181
- * calling eigenvectors().
182
- *
183
- */
184
- ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A,
185
- Index nbrEigenvalues, std::string eigs_sigma="LM",
186
- int options=ComputeEigenvectors, RealScalar tol=0.0);
187
-
188
-
189
- /** \brief Returns the eigenvectors of given matrix.
190
- *
191
- * \returns A const reference to the matrix whose columns are the eigenvectors.
192
- *
193
- * \pre The eigenvectors have been computed before.
194
- *
195
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
196
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
197
- * eigenvectors are normalized to have (Euclidean) norm equal to one. If
198
- * this object was used to solve the eigenproblem for the selfadjoint
199
- * matrix \f$ A \f$, then the matrix returned by this function is the
200
- * matrix \f$ V \f$ in the eigendecomposition \f$ A V = D V \f$.
201
- * For the generalized eigenproblem, the matrix returned is the solution \f$ A V = D B V \f$
202
- *
203
- * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
204
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
205
- *
206
- * \sa eigenvalues()
207
- */
208
- const Matrix<Scalar, Dynamic, Dynamic>& eigenvectors() const
209
- {
210
- eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
211
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
212
- return m_eivec;
213
- }
214
-
215
- /** \brief Returns the eigenvalues of given matrix.
216
- *
217
- * \returns A const reference to the column vector containing the eigenvalues.
218
- *
219
- * \pre The eigenvalues have been computed before.
220
- *
221
- * The eigenvalues are repeated according to their algebraic multiplicity,
222
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
223
- * are sorted in increasing order.
224
- *
225
- * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
226
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
227
- *
228
- * \sa eigenvectors(), MatrixBase::eigenvalues()
229
- */
230
- const Matrix<Scalar, Dynamic, 1>& eigenvalues() const
231
- {
232
- eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
233
- return m_eivalues;
234
- }
235
-
236
- /** \brief Computes the positive-definite square root of the matrix.
237
- *
238
- * \returns the positive-definite square root of the matrix
239
- *
240
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
241
- * have been computed before.
242
- *
243
- * The square root of a positive-definite matrix \f$ A \f$ is the
244
- * positive-definite matrix whose square equals \f$ A \f$. This function
245
- * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
246
- * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
247
- *
248
- * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
249
- * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
250
- *
251
- * \sa operatorInverseSqrt(),
252
- * \ref MatrixFunctions_Module "MatrixFunctions Module"
253
- */
254
- Matrix<Scalar, Dynamic, Dynamic> operatorSqrt() const
255
- {
256
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
257
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
258
- return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
259
- }
260
-
261
- /** \brief Computes the inverse square root of the matrix.
262
- *
263
- * \returns the inverse positive-definite square root of the matrix
264
- *
265
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
266
- * have been computed before.
267
- *
268
- * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
269
- * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
270
- * cheaper than first computing the square root with operatorSqrt() and
271
- * then its inverse with MatrixBase::inverse().
272
- *
273
- * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
274
- * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
275
- *
276
- * \sa operatorSqrt(), MatrixBase::inverse(),
277
- * \ref MatrixFunctions_Module "MatrixFunctions Module"
278
- */
279
- Matrix<Scalar, Dynamic, Dynamic> operatorInverseSqrt() const
280
- {
281
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
282
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
283
- return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
284
- }
285
-
286
- /** \brief Reports whether previous computation was successful.
287
- *
288
- * \returns \c Success if computation was successful, \c NoConvergence otherwise.
289
- */
290
- ComputationInfo info() const
291
- {
292
- eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
293
- return m_info;
294
- }
295
-
296
- size_t getNbrConvergedEigenValues() const
297
- { return m_nbrConverged; }
298
-
299
- size_t getNbrIterations() const
300
- { return m_nbrIterations; }
301
-
302
- protected:
303
- Matrix<Scalar, Dynamic, Dynamic> m_eivec;
304
- Matrix<Scalar, Dynamic, 1> m_eivalues;
305
- ComputationInfo m_info;
306
- bool m_isInitialized;
307
- bool m_eigenvectorsOk;
308
-
309
- size_t m_nbrConverged;
310
- size_t m_nbrIterations;
311
- };
312
-
313
-
314
-
315
-
316
-
317
- template<typename MatrixType, typename MatrixSolver, bool BisSPD>
318
- ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
319
- ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
320
- ::compute(const MatrixType& A, Index nbrEigenvalues,
321
- std::string eigs_sigma, int options, RealScalar tol)
322
- {
323
- MatrixType B(0,0);
324
- compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
325
-
326
- return *this;
327
- }
328
-
329
-
330
- template<typename MatrixType, typename MatrixSolver, bool BisSPD>
331
- ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
332
- ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
333
- ::compute(const MatrixType& A, const MatrixType& B, Index nbrEigenvalues,
334
- std::string eigs_sigma, int options, RealScalar tol)
335
- {
336
- eigen_assert(A.cols() == A.rows());
337
- eigen_assert(B.cols() == B.rows());
338
- eigen_assert(B.rows() == 0 || A.cols() == B.rows());
339
- eigen_assert((options &~ (EigVecMask | GenEigMask)) == 0
340
- && (options & EigVecMask) != EigVecMask
341
- && "invalid option parameter");
342
-
343
- bool isBempty = (B.rows() == 0) || (B.cols() == 0);
344
-
345
- // For clarity, all parameters match their ARPACK name
346
- //
347
- // Always 0 on the first call
348
- //
349
- int ido = 0;
350
-
351
- int n = (int)A.cols();
352
-
353
- // User options: "LA", "SA", "SM", "LM", "BE"
354
- //
355
- char whch[3] = "LM";
356
-
357
- // Specifies the shift if iparam[6] = { 3, 4, 5 }, not used if iparam[6] = { 1, 2 }
358
- //
359
- RealScalar sigma = 0.0;
360
-
361
- if (eigs_sigma.length() >= 2 && isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1]))
362
- {
363
- eigs_sigma[0] = toupper(eigs_sigma[0]);
364
- eigs_sigma[1] = toupper(eigs_sigma[1]);
365
-
366
- // In the following special case we're going to invert the problem, since solving
367
- // for larger magnitude is much much faster
368
- // i.e., if 'SM' is specified, we're going to really use 'LM', the default
369
- //
370
- if (eigs_sigma.substr(0,2) != "SM")
371
- {
372
- whch[0] = eigs_sigma[0];
373
- whch[1] = eigs_sigma[1];
374
- }
375
- }
376
- else
377
- {
378
- eigen_assert(false && "Specifying clustered eigenvalues is not yet supported!");
379
-
380
- // If it's not scalar values, then the user may be explicitly
381
- // specifying the sigma value to cluster the evs around
382
- //
383
- sigma = atof(eigs_sigma.c_str());
384
-
385
- // If atof fails, it returns 0.0, which is a fine default
386
- //
387
- }
388
-
389
- // "I" means normal eigenvalue problem, "G" means generalized
390
- //
391
- char bmat[2] = "I";
392
- if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) || (!isBempty && !BisSPD))
393
- bmat[0] = 'G';
394
-
395
- // Now we determine the mode to use
396
- //
397
- int mode = (bmat[0] == 'G') + 1;
398
- if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])))
399
- {
400
- // We're going to use shift-and-invert mode, and basically find
401
- // the largest eigenvalues of the inverse operator
402
- //
403
- mode = 3;
404
- }
405
-
406
- // The user-specified number of eigenvalues/vectors to compute
407
- //
408
- int nev = (int)nbrEigenvalues;
409
-
410
- // Allocate space for ARPACK to store the residual
411
- //
412
- Scalar *resid = new Scalar[n];
413
-
414
- // Number of Lanczos vectors, must satisfy nev < ncv <= n
415
- // Note that this indicates that nev != n, and we cannot compute
416
- // all eigenvalues of a mtrix
417
- //
418
- int ncv = std::min(std::max(2*nev, 20), n);
419
-
420
- // The working n x ncv matrix, also store the final eigenvectors (if computed)
421
- //
422
- Scalar *v = new Scalar[n*ncv];
423
- int ldv = n;
424
-
425
- // Working space
426
- //
427
- Scalar *workd = new Scalar[3*n];
428
- int lworkl = ncv*ncv+8*ncv; // Must be at least this length
429
- Scalar *workl = new Scalar[lworkl];
430
-
431
- int *iparam= new int[11];
432
- iparam[0] = 1; // 1 means we let ARPACK perform the shifts, 0 means we'd have to do it
433
- iparam[2] = std::max(300, (int)std::ceil(2*n/std::max(ncv,1)));
434
- iparam[6] = mode; // The mode, 1 is standard ev problem, 2 for generalized ev, 3 for shift-and-invert
435
-
436
- // Used during reverse communicate to notify where arrays start
437
- //
438
- int *ipntr = new int[11];
439
-
440
- // Error codes are returned in here, initial value of 0 indicates a random initial
441
- // residual vector is used, any other values means resid contains the initial residual
442
- // vector, possibly from a previous run
443
- //
444
- int info = 0;
445
-
446
- Scalar scale = 1.0;
447
- //if (!isBempty)
448
- //{
449
- //Scalar scale = B.norm() / std::sqrt(n);
450
- //scale = std::pow(2, std::floor(std::log(scale+1)));
451
- ////M /= scale;
452
- //for (size_t i=0; i<(size_t)B.outerSize(); i++)
453
- // for (typename MatrixType::InnerIterator it(B, i); it; ++it)
454
- // it.valueRef() /= scale;
455
- //}
456
-
457
- MatrixSolver OP;
458
- if (mode == 1 || mode == 2)
459
- {
460
- if (!isBempty)
461
- OP.compute(B);
462
- }
463
- else if (mode == 3)
464
- {
465
- if (sigma == 0.0)
466
- {
467
- OP.compute(A);
468
- }
469
- else
470
- {
471
- // Note: We will never enter here because sigma must be 0.0
472
- //
473
- if (isBempty)
474
- {
475
- MatrixType AminusSigmaB(A);
476
- for (Index i=0; i<A.rows(); ++i)
477
- AminusSigmaB.coeffRef(i,i) -= sigma;
478
-
479
- OP.compute(AminusSigmaB);
480
- }
481
- else
482
- {
483
- MatrixType AminusSigmaB = A - sigma * B;
484
- OP.compute(AminusSigmaB);
485
- }
486
- }
487
- }
488
-
489
- if (!(mode == 1 && isBempty) && !(mode == 2 && isBempty) && OP.info() != Success)
490
- std::cout << "Error factoring matrix" << std::endl;
491
-
492
- do
493
- {
494
- internal::arpack_wrapper<Scalar, RealScalar>::saupd(&ido, bmat, &n, whch, &nev, &tol, resid,
495
- &ncv, v, &ldv, iparam, ipntr, workd, workl,
496
- &lworkl, &info);
497
-
498
- if (ido == -1 || ido == 1)
499
- {
500
- Scalar *in = workd + ipntr[0] - 1;
501
- Scalar *out = workd + ipntr[1] - 1;
502
-
503
- if (ido == 1 && mode != 2)
504
- {
505
- Scalar *out2 = workd + ipntr[2] - 1;
506
- if (isBempty || mode == 1)
507
- Matrix<Scalar, Dynamic, 1>::Map(out2, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
508
- else
509
- Matrix<Scalar, Dynamic, 1>::Map(out2, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
510
-
511
- in = workd + ipntr[2] - 1;
512
- }
513
-
514
- if (mode == 1)
515
- {
516
- if (isBempty)
517
- {
518
- // OP = A
519
- //
520
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
521
- }
522
- else
523
- {
524
- // OP = L^{-1}AL^{-T}
525
- //
526
- internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::applyOP(OP, A, n, in, out);
527
- }
528
- }
529
- else if (mode == 2)
530
- {
531
- if (ido == 1)
532
- Matrix<Scalar, Dynamic, 1>::Map(in, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
533
-
534
- // OP = B^{-1} A
535
- //
536
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
537
- }
538
- else if (mode == 3)
539
- {
540
- // OP = (A-\sigmaB)B (\sigma could be 0, and B could be I)
541
- // The B * in is already computed and stored at in if ido == 1
542
- //
543
- if (ido == 1 || isBempty)
544
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
545
- else
546
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(B * Matrix<Scalar, Dynamic, 1>::Map(in, n));
547
- }
548
- }
549
- else if (ido == 2)
550
- {
551
- Scalar *in = workd + ipntr[0] - 1;
552
- Scalar *out = workd + ipntr[1] - 1;
553
-
554
- if (isBempty || mode == 1)
555
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
556
- else
557
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
558
- }
559
- } while (ido != 99);
560
-
561
- if (info == 1)
562
- m_info = NoConvergence;
563
- else if (info == 3)
564
- m_info = NumericalIssue;
565
- else if (info < 0)
566
- m_info = InvalidInput;
567
- else if (info != 0)
568
- eigen_assert(false && "Unknown ARPACK return value!");
569
- else
570
- {
571
- // Do we compute eigenvectors or not?
572
- //
573
- int rvec = (options & ComputeEigenvectors) == ComputeEigenvectors;
574
-
575
- // "A" means "All", use "S" to choose specific eigenvalues (not yet supported in ARPACK))
576
- //
577
- char howmny[2] = "A";
578
-
579
- // if howmny == "S", specifies the eigenvalues to compute (not implemented in ARPACK)
580
- //
581
- int *select = new int[ncv];
582
-
583
- // Final eigenvalues
584
- //
585
- m_eivalues.resize(nev, 1);
586
-
587
- internal::arpack_wrapper<Scalar, RealScalar>::seupd(&rvec, howmny, select, m_eivalues.data(), v, &ldv,
588
- &sigma, bmat, &n, whch, &nev, &tol, resid, &ncv,
589
- v, &ldv, iparam, ipntr, workd, workl, &lworkl, &info);
590
-
591
- if (info == -14)
592
- m_info = NoConvergence;
593
- else if (info != 0)
594
- m_info = InvalidInput;
595
- else
596
- {
597
- if (rvec)
598
- {
599
- m_eivec.resize(A.rows(), nev);
600
- for (int i=0; i<nev; i++)
601
- for (int j=0; j<n; j++)
602
- m_eivec(j,i) = v[i*n+j] / scale;
603
-
604
- if (mode == 1 && !isBempty && BisSPD)
605
- internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::project(OP, n, nev, m_eivec.data());
606
-
607
- m_eigenvectorsOk = true;
608
- }
609
-
610
- m_nbrIterations = iparam[2];
611
- m_nbrConverged = iparam[4];
612
-
613
- m_info = Success;
614
- }
615
-
616
- delete[] select;
617
- }
618
-
619
- delete[] v;
620
- delete[] iparam;
621
- delete[] ipntr;
622
- delete[] workd;
623
- delete[] workl;
624
- delete[] resid;
625
-
626
- m_isInitialized = true;
627
-
628
- return *this;
629
- }
630
-
631
-
632
- // Single precision
633
- //
634
- extern "C" void ssaupd_(int *ido, char *bmat, int *n, char *which,
635
- int *nev, float *tol, float *resid, int *ncv,
636
- float *v, int *ldv, int *iparam, int *ipntr,
637
- float *workd, float *workl, int *lworkl,
638
- int *info);
639
-
640
- extern "C" void sseupd_(int *rvec, char *All, int *select, float *d,
641
- float *z, int *ldz, float *sigma,
642
- char *bmat, int *n, char *which, int *nev,
643
- float *tol, float *resid, int *ncv, float *v,
644
- int *ldv, int *iparam, int *ipntr, float *workd,
645
- float *workl, int *lworkl, int *ierr);
646
-
647
- // Double precision
648
- //
649
- extern "C" void dsaupd_(int *ido, char *bmat, int *n, char *which,
650
- int *nev, double *tol, double *resid, int *ncv,
651
- double *v, int *ldv, int *iparam, int *ipntr,
652
- double *workd, double *workl, int *lworkl,
653
- int *info);
654
-
655
- extern "C" void dseupd_(int *rvec, char *All, int *select, double *d,
656
- double *z, int *ldz, double *sigma,
657
- char *bmat, int *n, char *which, int *nev,
658
- double *tol, double *resid, int *ncv, double *v,
659
- int *ldv, int *iparam, int *ipntr, double *workd,
660
- double *workl, int *lworkl, int *ierr);
661
-
662
-
663
- namespace internal {
664
-
665
- template<typename Scalar, typename RealScalar> struct arpack_wrapper
666
- {
667
- static inline void saupd(int *ido, char *bmat, int *n, char *which,
668
- int *nev, RealScalar *tol, Scalar *resid, int *ncv,
669
- Scalar *v, int *ldv, int *iparam, int *ipntr,
670
- Scalar *workd, Scalar *workl, int *lworkl, int *info)
671
- {
672
- EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
673
- }
674
-
675
- static inline void seupd(int *rvec, char *All, int *select, Scalar *d,
676
- Scalar *z, int *ldz, RealScalar *sigma,
677
- char *bmat, int *n, char *which, int *nev,
678
- RealScalar *tol, Scalar *resid, int *ncv, Scalar *v,
679
- int *ldv, int *iparam, int *ipntr, Scalar *workd,
680
- Scalar *workl, int *lworkl, int *ierr)
681
- {
682
- EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
683
- }
684
- };
685
-
686
- template <> struct arpack_wrapper<float, float>
687
- {
688
- static inline void saupd(int *ido, char *bmat, int *n, char *which,
689
- int *nev, float *tol, float *resid, int *ncv,
690
- float *v, int *ldv, int *iparam, int *ipntr,
691
- float *workd, float *workl, int *lworkl, int *info)
692
- {
693
- ssaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
694
- }
695
-
696
- static inline void seupd(int *rvec, char *All, int *select, float *d,
697
- float *z, int *ldz, float *sigma,
698
- char *bmat, int *n, char *which, int *nev,
699
- float *tol, float *resid, int *ncv, float *v,
700
- int *ldv, int *iparam, int *ipntr, float *workd,
701
- float *workl, int *lworkl, int *ierr)
702
- {
703
- sseupd_(rvec, All, select, d, z, ldz, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
704
- workd, workl, lworkl, ierr);
705
- }
706
- };
707
-
708
- template <> struct arpack_wrapper<double, double>
709
- {
710
- static inline void saupd(int *ido, char *bmat, int *n, char *which,
711
- int *nev, double *tol, double *resid, int *ncv,
712
- double *v, int *ldv, int *iparam, int *ipntr,
713
- double *workd, double *workl, int *lworkl, int *info)
714
- {
715
- dsaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
716
- }
717
-
718
- static inline void seupd(int *rvec, char *All, int *select, double *d,
719
- double *z, int *ldz, double *sigma,
720
- char *bmat, int *n, char *which, int *nev,
721
- double *tol, double *resid, int *ncv, double *v,
722
- int *ldv, int *iparam, int *ipntr, double *workd,
723
- double *workl, int *lworkl, int *ierr)
724
- {
725
- dseupd_(rvec, All, select, d, v, ldv, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
726
- workd, workl, lworkl, ierr);
727
- }
728
- };
729
-
730
-
731
- template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD>
732
- struct OP
733
- {
734
- static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out);
735
- static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs);
736
- };
737
-
738
- template<typename MatrixSolver, typename MatrixType, typename Scalar>
739
- struct OP<MatrixSolver, MatrixType, Scalar, true>
740
- {
741
- static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
742
- {
743
- // OP = L^{-1} A L^{-T} (B = LL^T)
744
- //
745
- // First solve L^T out = in
746
- //
747
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixU().solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
748
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationPinv() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
749
-
750
- // Then compute out = A out
751
- //
752
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(out, n);
753
-
754
- // Then solve L out = out
755
- //
756
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationP() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
757
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixL().solve(Matrix<Scalar, Dynamic, 1>::Map(out, n));
758
- }
759
-
760
- static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
761
- {
762
- // Solve L^T out = in
763
- //
764
- Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.matrixU().solve(Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k));
765
- Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.permutationPinv() * Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k);
766
- }
767
-
768
- };
769
-
770
- template<typename MatrixSolver, typename MatrixType, typename Scalar>
771
- struct OP<MatrixSolver, MatrixType, Scalar, false>
772
- {
773
- static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
774
- {
775
- eigen_assert(false && "Should never be in here...");
776
- }
777
-
778
- static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
779
- {
780
- eigen_assert(false && "Should never be in here...");
781
- }
782
-
783
- };
784
-
785
- } // end namespace internal
786
-
787
- } // end namespace Eigen
788
-
789
- #endif // EIGEN_ARPACKSELFADJOINTEIGENSOLVER_H
790
-