sequenzo 0.1.18__cp39-cp39-macosx_10_9_universal2.whl → 0.1.19__cp39-cp39-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (357) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +157 -157
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-39-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +107 -5
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  8. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +157 -157
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-39-darwin.so +0 -0
  10. sequenzo/dissimilarity_measures/utils/seqconc.c +157 -157
  11. sequenzo/dissimilarity_measures/utils/seqconc.cpython-39-darwin.so +0 -0
  12. sequenzo/dissimilarity_measures/utils/seqdss.c +157 -157
  13. sequenzo/dissimilarity_measures/utils/seqdss.cpython-39-darwin.so +0 -0
  14. sequenzo/dissimilarity_measures/utils/seqdur.c +157 -157
  15. sequenzo/dissimilarity_measures/utils/seqdur.cpython-39-darwin.so +0 -0
  16. sequenzo/dissimilarity_measures/utils/seqlength.c +157 -157
  17. sequenzo/dissimilarity_measures/utils/seqlength.cpython-39-darwin.so +0 -0
  18. sequenzo/multidomain/cat.py +0 -53
  19. sequenzo/multidomain/idcd.py +0 -1
  20. sequenzo/openmp_setup.py +233 -0
  21. sequenzo/visualization/plot_transition_matrix.py +21 -22
  22. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/METADATA +43 -10
  23. sequenzo-0.1.19.dist-info/RECORD +215 -0
  24. sequenzo/dissimilarity_measures/setup.py +0 -35
  25. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  26. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  27. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  167. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  168. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  169. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  170. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  171. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  172. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  173. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  174. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  175. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  176. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  177. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  182. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  183. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  184. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  185. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  186. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  187. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  188. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  354. sequenzo-0.1.18.dist-info/RECORD +0 -544
  355. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  356. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  357. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,998 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5
- // Copyright (C) 2016 Mehdi Goli, Codeplay Software Ltd <eigen@codeplay.com>
6
- //
7
- // This Source Code Form is subject to the terms of the Mozilla
8
- // Public License v. 2.0. If a copy of the MPL was not distributed
9
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
-
11
- #ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
12
- #define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
13
-
14
- // clang is incompatible with the CUDA syntax wrt making a kernel a class friend,
15
- // so we'll use a macro to make clang happy.
16
- #ifndef KERNEL_FRIEND
17
- #if defined(__clang__) && (defined(__CUDA__) || defined(__HIP__))
18
- #define KERNEL_FRIEND friend __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024
19
- #else
20
- #define KERNEL_FRIEND friend
21
- #endif
22
- #endif
23
-
24
-
25
- namespace Eigen {
26
-
27
-
28
- /** \class TensorReduction
29
- * \ingroup CXX11_Tensor_Module
30
- *
31
- * \brief Tensor reduction class.
32
- *
33
- */
34
-
35
- namespace internal {
36
- template<typename Op, typename Dims, typename XprType,template <class> class MakePointer_ >
37
- struct traits<TensorReductionOp<Op, Dims, XprType, MakePointer_> >
38
- : traits<XprType>
39
- {
40
- typedef traits<XprType> XprTraits;
41
- typedef typename XprTraits::Scalar Scalar;
42
- typedef typename XprTraits::StorageKind StorageKind;
43
- typedef typename XprTraits::Index Index;
44
- typedef typename XprType::Nested Nested;
45
- static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value;
46
- static const int Layout = XprTraits::Layout;
47
- typedef typename XprTraits::PointerType PointerType;
48
-
49
- template <class T> struct MakePointer {
50
- // Intermediate typedef to workaround MSVC issue.
51
- typedef MakePointer_<T> MakePointerT;
52
- typedef typename MakePointerT::Type Type;
53
- };
54
- };
55
-
56
- template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
57
- struct eval<TensorReductionOp<Op, Dims, XprType, MakePointer_>, Eigen::Dense>
58
- {
59
- typedef const TensorReductionOp<Op, Dims, XprType, MakePointer_>& type;
60
- };
61
-
62
- template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
63
- struct nested<TensorReductionOp<Op, Dims, XprType, MakePointer_>, 1, typename eval<TensorReductionOp<Op, Dims, XprType, MakePointer_> >::type>
64
- {
65
- typedef TensorReductionOp<Op, Dims, XprType, MakePointer_> type;
66
- };
67
-
68
-
69
- template <typename OutputDims> struct DimInitializer {
70
- template <typename InputDims, typename ReducedDims> EIGEN_DEVICE_FUNC
71
- static void run(const InputDims& input_dims,
72
- const array<bool, internal::array_size<InputDims>::value>& reduced,
73
- OutputDims* output_dims, ReducedDims* reduced_dims) {
74
- const int NumInputDims = internal::array_size<InputDims>::value;
75
- int outputIndex = 0;
76
- int reduceIndex = 0;
77
- for (int i = 0; i < NumInputDims; ++i) {
78
- if (reduced[i]) {
79
- (*reduced_dims)[reduceIndex] = input_dims[i];
80
- ++reduceIndex;
81
- } else {
82
- (*output_dims)[outputIndex] = input_dims[i];
83
- ++outputIndex;
84
- }
85
- }
86
- }
87
- };
88
-
89
- template <> struct DimInitializer<Sizes<> > {
90
- template <typename InputDims, typename Index, size_t Rank> EIGEN_DEVICE_FUNC
91
- static void run(const InputDims& input_dims, const array<bool, Rank>&,
92
- Sizes<>*, array<Index, Rank>* reduced_dims) {
93
- const int NumInputDims = internal::array_size<InputDims>::value;
94
- for (int i = 0; i < NumInputDims; ++i) {
95
- (*reduced_dims)[i] = input_dims[i];
96
- }
97
- }
98
- };
99
-
100
-
101
- template <typename ReducedDims, int NumTensorDims, int Layout>
102
- struct are_inner_most_dims {
103
- static const bool value = false;
104
- };
105
- template <typename ReducedDims, int NumTensorDims, int Layout>
106
- struct preserve_inner_most_dims {
107
- static const bool value = false;
108
- };
109
-
110
- #if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES
111
- template <typename ReducedDims, int NumTensorDims>
112
- struct are_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
113
- static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
114
- static const bool tmp2 = index_statically_eq<ReducedDims>(0, 0);
115
- static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value-1, array_size<ReducedDims>::value-1);
116
- static const bool value = tmp1 & tmp2 & tmp3;
117
- };
118
- template <typename ReducedDims, int NumTensorDims>
119
- struct are_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
120
- static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
121
- static const bool tmp2 = index_statically_eq<ReducedDims>(0, NumTensorDims - array_size<ReducedDims>::value);
122
- static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
123
- static const bool value = tmp1 & tmp2 & tmp3;
124
-
125
- };
126
- template <typename ReducedDims, int NumTensorDims>
127
- struct preserve_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
128
- static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
129
- static const bool tmp2 = index_statically_gt<ReducedDims>(0, 0);
130
- static const bool value = tmp1 & tmp2;
131
-
132
- };
133
- template <typename ReducedDims, int NumTensorDims>
134
- struct preserve_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
135
- static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
136
- static const bool tmp2 = index_statically_lt<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
137
- static const bool value = tmp1 & tmp2;
138
- };
139
- #endif
140
-
141
-
142
- template <int DimIndex, typename Self, typename Op>
143
- struct GenericDimReducer {
144
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
145
- EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
146
- for (int j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
147
- const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
148
- GenericDimReducer<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
149
- }
150
- }
151
- };
152
- template <typename Self, typename Op>
153
- struct GenericDimReducer<0, Self, Op> {
154
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
155
- for (int j = 0; j < self.m_reducedDims[0]; ++j) {
156
- const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
157
- reducer.reduce(self.m_impl.coeff(input), accum);
158
- }
159
- }
160
- };
161
- template <typename Self, typename Op>
162
- struct GenericDimReducer<-1, Self, Op> {
163
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index index, Op& reducer, typename Self::CoeffReturnType* accum) {
164
- reducer.reduce(self.m_impl.coeff(index), accum);
165
- }
166
- };
167
-
168
- template <typename Self, typename Op, bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess),
169
- bool UseTreeReduction = (!Self::ReducerTraits::IsStateful &&
170
- !Self::ReducerTraits::IsExactlyAssociative)>
171
- struct InnerMostDimReducer {
172
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
173
- typename Self::CoeffReturnType accum = reducer.initialize();
174
- for (typename Self::Index j = 0; j < numValuesToReduce; ++j) {
175
- reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
176
- }
177
- return reducer.finalize(accum);
178
- }
179
- };
180
-
181
- template <typename Self, typename Op>
182
- struct InnerMostDimReducer<Self, Op, true, false> {
183
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
184
- const typename Self::Index packetSize = internal::unpacket_traits<typename Self::PacketReturnType>::size;
185
- const typename Self::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize;
186
- typename Self::PacketReturnType paccum = reducer.template initializePacket<typename Self::PacketReturnType>();
187
- for (typename Self::Index j = 0; j < VectorizedSize; j += packetSize) {
188
- reducer.reducePacket(self.m_impl.template packet<Unaligned>(firstIndex + j), &paccum);
189
- }
190
- typename Self::CoeffReturnType accum = reducer.initialize();
191
- for (typename Self::Index j = VectorizedSize; j < numValuesToReduce; ++j) {
192
- reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
193
- }
194
- return reducer.finalizeBoth(accum, paccum);
195
- }
196
- };
197
-
198
- #if !defined(EIGEN_HIPCC)
199
- static const int kLeafSize = 1024;
200
-
201
- template <typename Self, typename Op>
202
- struct InnerMostDimReducer<Self, Op, false, true> {
203
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType
204
- reduce(const Self& self, typename Self::Index firstIndex,
205
- typename Self::Index numValuesToReduce, Op& reducer) {
206
- typename Self::CoeffReturnType accum = reducer.initialize();
207
- if (numValuesToReduce > kLeafSize) {
208
- const typename Self::Index half = numValuesToReduce / 2;
209
- reducer.reduce(reduce(self, firstIndex, half, reducer), &accum);
210
- reducer.reduce(
211
- reduce(self, firstIndex + half, numValuesToReduce - half, reducer),
212
- &accum);
213
- } else {
214
- for (typename Self::Index j = 0; j < numValuesToReduce; ++j) {
215
- reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
216
- }
217
- }
218
- return reducer.finalize(accum);
219
- }
220
- };
221
-
222
- template <typename Self, typename Op>
223
- struct InnerMostDimReducer<Self, Op, true, true> {
224
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType
225
- reduce(const Self& self, typename Self::Index firstIndex,
226
- typename Self::Index numValuesToReduce, Op& reducer) {
227
- const typename Self::Index packetSize =
228
- internal::unpacket_traits<typename Self::PacketReturnType>::size;
229
- typename Self::CoeffReturnType accum = reducer.initialize();
230
- if (numValuesToReduce > packetSize * kLeafSize) {
231
- // Make sure the split point is aligned on a packet boundary.
232
- const typename Self::Index split =
233
- packetSize *
234
- divup(firstIndex + divup(numValuesToReduce, typename Self::Index(2)),
235
- packetSize);
236
- const typename Self::Index num_left =
237
- numext::mini(split - firstIndex, numValuesToReduce);
238
- reducer.reduce(reduce(self, firstIndex, num_left, reducer), &accum);
239
- if (num_left < numValuesToReduce) {
240
- reducer.reduce(
241
- reduce(self, split, numValuesToReduce - num_left, reducer), &accum);
242
- }
243
- return reducer.finalize(accum);
244
- } else {
245
- const typename Self::Index UnrollSize =
246
- (numValuesToReduce / (2*packetSize)) * 2*packetSize;
247
- const typename Self::Index VectorizedSize =
248
- (numValuesToReduce / packetSize) * packetSize;
249
- typename Self::PacketReturnType paccum =
250
- reducer.template initializePacket<typename Self::PacketReturnType>();
251
- typename Self::PacketReturnType paccum2 =
252
- reducer.template initializePacket<typename Self::PacketReturnType>();
253
- for (typename Self::Index j = 0; j < UnrollSize; j += packetSize * 2) {
254
- reducer.reducePacket(
255
- self.m_impl.template packet<Unaligned>(firstIndex + j), &paccum);
256
- reducer.reducePacket(
257
- self.m_impl.template packet<Unaligned>(firstIndex + j + packetSize),
258
- &paccum2);
259
- }
260
- for (typename Self::Index j = UnrollSize; j < VectorizedSize; j+= packetSize) {
261
- reducer.reducePacket(self.m_impl.template packet<Unaligned>(
262
- firstIndex + j), &paccum);
263
- }
264
- reducer.reducePacket(paccum2, &paccum);
265
- for (typename Self::Index j = VectorizedSize; j < numValuesToReduce;
266
- ++j) {
267
- reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
268
- }
269
- return reducer.finalizeBoth(accum, paccum);
270
- }
271
- }
272
- };
273
- #endif
274
-
275
- template <int DimIndex, typename Self, typename Op, bool vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
276
- struct InnerMostDimPreserver {
277
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
278
- eigen_assert(false && "should never be called");
279
- }
280
- };
281
-
282
- template <int DimIndex, typename Self, typename Op>
283
- struct InnerMostDimPreserver<DimIndex, Self, Op, true> {
284
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
285
- EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
286
- for (typename Self::Index j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
287
- const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
288
- InnerMostDimPreserver<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
289
- }
290
- }
291
- };
292
-
293
- template <typename Self, typename Op>
294
- struct InnerMostDimPreserver<0, Self, Op, true> {
295
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
296
- for (typename Self::Index j = 0; j < self.m_reducedDims[0]; ++j) {
297
- const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
298
- reducer.reducePacket(self.m_impl.template packet<Unaligned>(input), accum);
299
- }
300
- }
301
- };
302
- template <typename Self, typename Op>
303
- struct InnerMostDimPreserver<-1, Self, Op, true> {
304
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
305
- eigen_assert(false && "should never be called");
306
- }
307
- };
308
-
309
- // Default full reducer
310
- template <typename Self, typename Op, typename Device, bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
311
- struct FullReducer {
312
- static const bool HasOptimizedImplementation = false;
313
-
314
- static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::EvaluatorPointerType output) {
315
- const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions());
316
- *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
317
- }
318
- };
319
-
320
-
321
- #ifdef EIGEN_USE_THREADS
322
- // Multithreaded full reducers
323
- template <typename Self, typename Op,
324
- bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
325
- struct FullReducerShard {
326
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Self& self, typename Self::Index firstIndex,
327
- typename Self::Index numValuesToReduce, Op& reducer,
328
- typename Self::CoeffReturnType* output) {
329
- *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
330
- self, firstIndex, numValuesToReduce, reducer);
331
- }
332
- };
333
-
334
- // Multithreaded full reducer
335
- template <typename Self, typename Op, bool Vectorizable>
336
- struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> {
337
- static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful;
338
- static const Index PacketSize =
339
- unpacket_traits<typename Self::PacketReturnType>::size;
340
-
341
- // launch one reducer per thread and accumulate the result.
342
- static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device,
343
- typename Self::CoeffReturnType* output) {
344
- typedef typename Self::Index Index;
345
- const Index num_coeffs = array_prod(self.m_impl.dimensions());
346
- if (num_coeffs == 0) {
347
- *output = reducer.finalize(reducer.initialize());
348
- return;
349
- }
350
- const TensorOpCost cost =
351
- self.m_impl.costPerCoeff(Vectorizable) +
352
- TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable,
353
- PacketSize);
354
- const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
355
- num_coeffs, cost, device.numThreads());
356
- if (num_threads == 1) {
357
- *output =
358
- InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
359
- return;
360
- }
361
- const Index blocksize =
362
- std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
363
- const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0;
364
- eigen_assert(num_coeffs >= numblocks * blocksize);
365
-
366
- Barrier barrier(internal::convert_index<unsigned int>(numblocks));
367
- MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize());
368
- for (Index i = 0; i < numblocks; ++i) {
369
- device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, Vectorizable>::run,
370
- self, i * blocksize, blocksize, reducer,
371
- &shards[i]);
372
- }
373
- typename Self::CoeffReturnType finalShard;
374
- if (numblocks * blocksize < num_coeffs) {
375
- finalShard = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
376
- self, numblocks * blocksize, num_coeffs - numblocks * blocksize,
377
- reducer);
378
- } else {
379
- finalShard = reducer.initialize();
380
- }
381
- barrier.Wait();
382
-
383
- for (Index i = 0; i < numblocks; ++i) {
384
- reducer.reduce(shards[i], &finalShard);
385
- }
386
- *output = reducer.finalize(finalShard);
387
- }
388
- };
389
-
390
- #endif
391
-
392
-
393
- // Default inner reducer
394
- template <typename Self, typename Op, typename Device>
395
- struct InnerReducer {
396
- static const bool HasOptimizedImplementation = false;
397
-
398
- EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
399
- eigen_assert(false && "Not implemented");
400
- return true;
401
- }
402
- };
403
-
404
- // Default outer reducer
405
- template <typename Self, typename Op, typename Device>
406
- struct OuterReducer {
407
- static const bool HasOptimizedImplementation = false;
408
-
409
- EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
410
- eigen_assert(false && "Not implemented");
411
- return true;
412
- }
413
- };
414
-
415
- #ifdef EIGEN_USE_SYCL
416
- // Default Generic reducer
417
- template <typename Self, typename Op, typename Device>
418
- struct GenericReducer {
419
- static const bool HasOptimizedImplementation = false;
420
-
421
- EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
422
- eigen_assert(false && "Not implemented");
423
- return true;
424
- }
425
- };
426
- #endif
427
-
428
- #if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
429
- template <int B, int N, typename S, typename R, typename I_>
430
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernel(R, const S, I_, typename S::CoeffReturnType*, unsigned int*);
431
-
432
-
433
- #if defined(EIGEN_HAS_GPU_FP16)
434
- template <typename S, typename R, typename I_>
435
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionInitFullReduxKernelHalfFloat(R, const S, I_, internal::packet_traits<half>::type*);
436
- template <int B, int N, typename S, typename R, typename I_>
437
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernelHalfFloat(R, const S, I_, half*, internal::packet_traits<half>::type*);
438
- template <int NPT, typename S, typename R, typename I_>
439
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernelHalfFloat(R, const S, I_, I_, half*);
440
-
441
- #endif
442
-
443
- template <int NPT, typename S, typename R, typename I_>
444
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
445
-
446
- template <int NPT, typename S, typename R, typename I_>
447
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void OuterReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
448
- #endif
449
-
450
- /**
451
- * For SYCL, the return type of the reduction is deduced from the initialize method of the given Op.
452
- * This allows the reduction to have a different type for the accumulator than the input data type.
453
- * If this is the case, the functor needs to have two reduce method: one for reducing an element of the input
454
- * with the accumulator and the other for reducing two accumulators.
455
- * Such a reducer can be useful for instance when the accumulator is a boolean or a bitset that checks for
456
- * some properties of the input.
457
- */
458
- template <typename Op, typename CoeffReturnType>
459
- struct ReductionReturnType {
460
- #if defined(EIGEN_USE_SYCL)
461
- typedef typename remove_const<decltype(std::declval<Op>().initialize())>::type type;
462
- #else
463
- typedef typename remove_const<CoeffReturnType>::type type;
464
- #endif
465
- };
466
-
467
- } // end namespace internal
468
-
469
-
470
- template <typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
471
- class TensorReductionOp : public TensorBase<TensorReductionOp<Op, Dims, XprType, MakePointer_>, ReadOnlyAccessors> {
472
- public:
473
- typedef typename Eigen::internal::traits<TensorReductionOp>::Scalar Scalar;
474
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
475
- typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
476
- typedef typename Eigen::internal::nested<TensorReductionOp>::type Nested;
477
- typedef typename Eigen::internal::traits<TensorReductionOp>::StorageKind StorageKind;
478
- typedef typename Eigen::internal::traits<TensorReductionOp>::Index Index;
479
-
480
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
481
- TensorReductionOp(const XprType& expr, const Dims& dims) : m_expr(expr), m_dims(dims)
482
- { }
483
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
484
- TensorReductionOp(const XprType& expr, const Dims& dims, const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer)
485
- { }
486
-
487
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
488
- const XprType& expression() const { return m_expr; }
489
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
490
- const Dims& dims() const { return m_dims; }
491
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
492
- const Op& reducer() const { return m_reducer; }
493
-
494
- protected:
495
- typename XprType::Nested m_expr;
496
- const Dims m_dims;
497
- const Op m_reducer;
498
- };
499
-
500
- template<typename ArgType, typename Device>
501
- struct TensorReductionEvaluatorBase;
502
-
503
- // Eval as rvalue
504
- template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
505
- struct TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>
506
- {
507
- typedef internal::reducer_traits<Op, Device> ReducerTraits;
508
- typedef Dims ReducedDims;
509
- typedef TensorReductionOp<Op, Dims, ArgType, MakePointer_> XprType;
510
- typedef typename XprType::Index Index;
511
- typedef ArgType ChildType;
512
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
513
- static const int NumInputDims = internal::array_size<InputDimensions>::value;
514
- static const int NumReducedDims = internal::array_size<Dims>::value;
515
- static const int NumOutputDims = NumInputDims - NumReducedDims;
516
- typedef typename internal::conditional<NumOutputDims==0, Sizes<>, DSizes<Index, NumOutputDims> >::type Dimensions;
517
- typedef typename XprType::Scalar Scalar;
518
- typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Self;
519
- static const bool InputPacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess;
520
- typedef typename internal::ReductionReturnType<Op, typename XprType::CoeffReturnType>::type CoeffReturnType;
521
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
522
- static const Index PacketSize = PacketType<CoeffReturnType, Device>::size;
523
-
524
- typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType;
525
- typedef StorageMemory<CoeffReturnType, Device> Storage;
526
- typedef typename Storage::Type EvaluatorPointerType;
527
-
528
- // Subset of strides of the input tensor for the non-reduced dimensions.
529
- // Indexed by output dimensions.
530
- static const int NumPreservedStrides = max_n_1<NumOutputDims>::size;
531
-
532
- enum {
533
- IsAligned = false,
534
- PacketAccess = Self::InputPacketAccess && ReducerTraits::PacketAccess,
535
- BlockAccess = false,
536
- PreferBlockAccess = true,
537
- Layout = TensorEvaluator<ArgType, Device>::Layout,
538
- CoordAccess = false, // to be implemented
539
- RawAccess = false
540
- };
541
-
542
- typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
543
-
544
- //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
545
- typedef internal::TensorBlockNotImplemented TensorBlock;
546
- //===--------------------------------------------------------------------===//
547
-
548
- static const bool ReducingInnerMostDims = internal::are_inner_most_dims<Dims, NumInputDims, Layout>::value;
549
- static const bool PreservingInnerMostDims = internal::preserve_inner_most_dims<Dims, NumInputDims, Layout>::value;
550
- static const bool RunningFullReduction = (NumOutputDims==0);
551
-
552
- EIGEN_STRONG_INLINE TensorReductionEvaluatorBase(const XprType& op, const Device& device)
553
- : m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device)
554
- {
555
- EIGEN_STATIC_ASSERT((NumInputDims >= NumReducedDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
556
- EIGEN_STATIC_ASSERT((!ReducingInnerMostDims | !PreservingInnerMostDims | (NumReducedDims == NumInputDims)),
557
- YOU_MADE_A_PROGRAMMING_MISTAKE);
558
-
559
- // Build the bitmap indicating if an input dimension is reduced or not.
560
- for (int i = 0; i < NumInputDims; ++i) {
561
- m_reduced[i] = false;
562
- }
563
- for (int i = 0; i < NumReducedDims; ++i) {
564
- eigen_assert(op.dims()[i] >= 0);
565
- eigen_assert(op.dims()[i] < NumInputDims);
566
- m_reduced[op.dims()[i]] = true;
567
- }
568
-
569
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
570
- internal::DimInitializer<Dimensions>::run(input_dims, m_reduced, &m_dimensions, &m_reducedDims);
571
-
572
- // Precompute output strides.
573
- if (NumOutputDims > 0) {
574
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
575
- m_outputStrides[0] = 1;
576
- for (int i = 1; i < NumOutputDims; ++i) {
577
- m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
578
- m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
579
- }
580
- } else {
581
- m_outputStrides[NumOutputDims - 1] = 1;
582
- for (int i = NumOutputDims - 2; i >= 0; --i) {
583
- m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
584
- m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
585
- }
586
- }
587
- }
588
-
589
- // Precompute input strides.
590
- if (NumInputDims > 0) {
591
- array<Index, NumInputDims> input_strides;
592
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
593
- input_strides[0] = 1;
594
- for (int i = 1; i < NumInputDims; ++i) {
595
- input_strides[i] = input_strides[i-1] * input_dims[i-1];
596
- }
597
- } else {
598
- input_strides.back() = 1;
599
- for (int i = NumInputDims - 2; i >= 0; --i) {
600
- input_strides[i] = input_strides[i + 1] * input_dims[i + 1];
601
- }
602
- }
603
-
604
- int outputIndex = 0;
605
- int reduceIndex = 0;
606
- for (int i = 0; i < NumInputDims; ++i) {
607
- if (m_reduced[i]) {
608
- m_reducedStrides[reduceIndex] = input_strides[i];
609
- ++reduceIndex;
610
- } else {
611
- m_preservedStrides[outputIndex] = input_strides[i];
612
- m_output_to_input_dim_map[outputIndex] = i;
613
- ++outputIndex;
614
- }
615
- }
616
- }
617
-
618
- // Special case for full reductions
619
- if (NumOutputDims == 0) {
620
- m_preservedStrides[0] = internal::array_prod(input_dims);
621
- }
622
-
623
- m_numValuesToReduce =
624
- NumOutputDims == 0
625
- ? internal::array_prod(input_dims)
626
- : (static_cast<int>(Layout) == static_cast<int>(ColMajor))
627
- ? m_preservedStrides[0]
628
- : m_preservedStrides[NumOutputDims - 1];
629
- }
630
-
631
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
632
-
633
- EIGEN_STRONG_INLINE
634
- bool evalSubExprsIfNeededCommon(EvaluatorPointerType data) {
635
- // Use the FullReducer if possible.
636
- if ((RunningFullReduction && RunningOnSycl) ||(RunningFullReduction &&
637
- internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
638
- ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) ||
639
- !RunningOnGPU))) {
640
- bool need_assign = false;
641
- if (!data) {
642
- m_result = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType))));
643
- data = m_result;
644
- need_assign = true;
645
- }
646
- Op reducer(m_reducer);
647
- internal::FullReducer<Self, Op, Device>::run(*this, reducer, m_device, data);
648
- return need_assign;
649
- }
650
-
651
- // Attempt to use an optimized reduction.
652
- else if ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) || (RunningOnSycl)) {
653
- bool reducing_inner_dims = true;
654
- for (int i = 0; i < NumReducedDims; ++i) {
655
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
656
- reducing_inner_dims &= m_reduced[i];
657
- } else {
658
- reducing_inner_dims &= m_reduced[NumInputDims - 1 - i];
659
- }
660
- }
661
- if (internal::InnerReducer<Self, Op, Device>::HasOptimizedImplementation &&
662
- (reducing_inner_dims || ReducingInnerMostDims)) {
663
- const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
664
- const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
665
- if (!data) {
666
- if ((num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 128) || (RunningOnSycl)) {
667
- data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
668
- m_result = data;
669
- }
670
- else {
671
- return true;
672
- }
673
- }
674
- Op reducer(m_reducer);
675
- // For SYCL this if always return false
676
- if (internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
677
- if (m_result) {
678
- m_device.deallocate_temp(m_result);
679
- m_result = NULL;
680
- }
681
- return true;
682
- } else {
683
- return (m_result != NULL);
684
- }
685
- }
686
-
687
- bool preserving_inner_dims = true;
688
- for (int i = 0; i < NumReducedDims; ++i) {
689
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
690
- preserving_inner_dims &= m_reduced[NumInputDims - 1 - i];
691
- } else {
692
- preserving_inner_dims &= m_reduced[i];
693
- }
694
- }
695
- if (internal::OuterReducer<Self, Op, Device>::HasOptimizedImplementation &&
696
- preserving_inner_dims) {
697
- const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
698
- const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
699
- if (!data) {
700
- if ((num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 32) || (RunningOnSycl)) {
701
- data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
702
- m_result = data;
703
- }
704
- else {
705
- return true;
706
- }
707
- }
708
- Op reducer(m_reducer);
709
- // For SYCL this if always return false
710
- if (internal::OuterReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
711
- if (m_result) {
712
- m_device.deallocate_temp(m_result);
713
- m_result = NULL;
714
- }
715
- return true;
716
- } else {
717
- return (m_result != NULL);
718
- }
719
- }
720
- #if defined(EIGEN_USE_SYCL)
721
- // If there is no Optimised version for SYCL, the reduction expression
722
- // must break into two subexpression and use the SYCL generic Reducer on the device.
723
- if(RunningOnSycl) {
724
- const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
725
- const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
726
- if (!data) {
727
- data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
728
- m_result = data;
729
- }
730
- Op reducer(m_reducer);
731
- internal::GenericReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve);
732
- return (m_result != NULL);
733
- }
734
- #endif
735
- }
736
- return true;
737
- }
738
-
739
- #ifdef EIGEN_USE_THREADS
740
- template <typename EvalSubExprsCallback>
741
- EIGEN_STRONG_INLINE
742
- void
743
- evalSubExprsIfNeededAsync(EvaluatorPointerType data,
744
- EvalSubExprsCallback done) {
745
- m_impl.evalSubExprsIfNeededAsync(NULL, [this, data, done](bool) {
746
- done(evalSubExprsIfNeededCommon(data));
747
- });
748
- }
749
- #endif
750
-
751
- EIGEN_STRONG_INLINE
752
- bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
753
- m_impl.evalSubExprsIfNeeded(NULL);
754
- return evalSubExprsIfNeededCommon(data);
755
- }
756
-
757
- EIGEN_STRONG_INLINE void cleanup() {
758
- m_impl.cleanup();
759
- if (m_result) {
760
- m_device.deallocate_temp(m_result);
761
- m_result = NULL;
762
- }
763
- }
764
-
765
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
766
- {
767
- if (( RunningFullReduction || RunningOnGPU) && m_result ) {
768
- return *(m_result + index);
769
- }
770
- Op reducer(m_reducer);
771
- if (ReducingInnerMostDims || RunningFullReduction) {
772
- const Index num_values_to_reduce =
773
- (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
774
- return internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstInput(index),
775
- num_values_to_reduce, reducer);
776
- } else {
777
- typename Self::CoeffReturnType accum = reducer.initialize();
778
- internal::GenericDimReducer<NumReducedDims-1, Self, Op>::reduce(*this, firstInput(index), reducer, &accum);
779
- return reducer.finalize(accum);
780
- }
781
- }
782
-
783
- // TODO(bsteiner): provide a more efficient implementation.
784
- template<int LoadMode>
785
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
786
- {
787
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
788
- eigen_assert(index + PacketSize - 1 < Index(internal::array_prod(dimensions())));
789
-
790
- if (RunningOnGPU && m_result) {
791
- return internal::pload<PacketReturnType>(m_result + index);
792
- }
793
-
794
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
795
- if (ReducingInnerMostDims) {
796
- const Index num_values_to_reduce =
797
- (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
798
- const Index firstIndex = firstInput(index);
799
- for (Index i = 0; i < PacketSize; ++i) {
800
- Op reducer(m_reducer);
801
- values[i] = internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstIndex + i * num_values_to_reduce,
802
- num_values_to_reduce, reducer);
803
- }
804
- } else if (PreservingInnerMostDims) {
805
- const Index firstIndex = firstInput(index);
806
- const int innermost_dim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : NumOutputDims - 1;
807
- // TBD: extend this the the n innermost dimensions that we preserve.
808
- if (((firstIndex % m_dimensions[innermost_dim]) + PacketSize - 1) < m_dimensions[innermost_dim]) {
809
- Op reducer(m_reducer);
810
- typename Self::PacketReturnType accum = reducer.template initializePacket<typename Self::PacketReturnType>();
811
- internal::InnerMostDimPreserver<NumReducedDims-1, Self, Op>::reduce(*this, firstIndex, reducer, &accum);
812
- return reducer.finalizePacket(accum);
813
- } else {
814
- for (int i = 0; i < PacketSize; ++i) {
815
- values[i] = coeff(index + i);
816
- }
817
- }
818
- } else {
819
- for (int i = 0; i < PacketSize; ++i) {
820
- values[i] = coeff(index + i);
821
- }
822
- }
823
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
824
- return rslt;
825
- }
826
-
827
- // Must be called after evalSubExprsIfNeeded().
828
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
829
- if (RunningFullReduction && m_result) {
830
- return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
831
- } else {
832
- const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
833
- const double compute_cost = num_values_to_reduce * internal::functor_traits<Op>::Cost;
834
- return m_impl.costPerCoeff(vectorized) * num_values_to_reduce +
835
- TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
836
- }
837
- }
838
-
839
- EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_result; }
840
- EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
841
- EIGEN_DEVICE_FUNC const Device& device() const { return m_device; }
842
- #ifdef EIGEN_USE_SYCL
843
- // binding placeholder accessors to a command group handler for SYCL
844
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
845
- m_impl.bind(cgh);
846
- m_result.bind(cgh);
847
- }
848
- #endif
849
-
850
- private:
851
- template <int, typename, typename> friend struct internal::GenericDimReducer;
852
- template <typename, typename, bool, bool> friend struct internal::InnerMostDimReducer;
853
- template <int, typename, typename, bool> friend struct internal::InnerMostDimPreserver;
854
- template <typename S, typename O, typename D, bool V> friend struct internal::FullReducer;
855
- #ifdef EIGEN_USE_THREADS
856
- template <typename S, typename O, bool V> friend struct internal::FullReducerShard;
857
- #endif
858
- #if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
859
- template <int B, int N, typename S, typename R, typename I_> KERNEL_FRIEND void internal::FullReductionKernel(R, const S, I_, typename S::CoeffReturnType*, unsigned int*);
860
- #if defined(EIGEN_HAS_GPU_FP16)
861
- template <typename S, typename R, typename I_> KERNEL_FRIEND void internal::ReductionInitFullReduxKernelHalfFloat(R, const S, I_, internal::packet_traits<Eigen::half>::type*);
862
- template <int B, int N, typename S, typename R, typename I_> KERNEL_FRIEND void internal::FullReductionKernelHalfFloat(R, const S, I_, half*, internal::packet_traits<Eigen::half>::type*);
863
- template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::InnerReductionKernelHalfFloat(R, const S, I_, I_, half*);
864
- #endif
865
- template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::InnerReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
866
-
867
- template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::OuterReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
868
- #endif
869
-
870
- #if defined(EIGEN_USE_SYCL)
871
- template < typename Evaluator_, typename Op__> friend class TensorSycl::internal::GenericNondeterministicReducer;
872
- // SYCL need the Generic reducer for the case the recution algorithm is neither inner, outer, and full reducer
873
- template <typename, typename, typename> friend struct internal::GenericReducer;
874
- #endif
875
-
876
-
877
- template <typename S, typename O, typename D> friend struct internal::InnerReducer;
878
-
879
- struct BlockIteratorState {
880
- Index input_dim;
881
- Index output_size;
882
- Index output_count;
883
- };
884
-
885
- // Returns the Index in the input tensor of the first value that needs to be
886
- // used to compute the reduction at output index "index".
887
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
888
- if (ReducingInnerMostDims) {
889
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
890
- return index * m_preservedStrides[0];
891
- } else {
892
- return index * m_preservedStrides[NumPreservedStrides - 1];
893
- }
894
- }
895
- // TBD: optimize the case where we preserve the innermost dimensions.
896
- Index startInput = 0;
897
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
898
- for (int i = NumOutputDims - 1; i > 0; --i) {
899
- // This is index_i in the output tensor.
900
- const Index idx = index / m_outputStrides[i];
901
- startInput += idx * m_preservedStrides[i];
902
- index -= idx * m_outputStrides[i];
903
- }
904
- if (PreservingInnerMostDims) {
905
- eigen_assert(m_preservedStrides[0] == 1);
906
- startInput += index;
907
- } else {
908
- startInput += index * m_preservedStrides[0];
909
- }
910
- } else {
911
- for (int i = 0; i < NumOutputDims - 1; ++i) {
912
- // This is index_i in the output tensor.
913
- const Index idx = index / m_outputStrides[i];
914
- startInput += idx * m_preservedStrides[i];
915
- index -= idx * m_outputStrides[i];
916
- }
917
- if (PreservingInnerMostDims) {
918
- eigen_assert(m_preservedStrides[NumPreservedStrides - 1] == 1);
919
- startInput += index;
920
- } else {
921
- startInput += index * m_preservedStrides[NumPreservedStrides - 1];
922
- }
923
- }
924
- return startInput;
925
- }
926
-
927
- // Bitmap indicating if an input dimension is reduced or not.
928
- array<bool, NumInputDims> m_reduced;
929
- // Dimensions of the output of the operation.
930
- Dimensions m_dimensions;
931
- // Precomputed strides for the output tensor.
932
- array<Index, NumOutputDims> m_outputStrides;
933
- array<internal::TensorIntDivisor<Index>, NumOutputDims> m_fastOutputStrides;
934
- array<Index, NumPreservedStrides> m_preservedStrides;
935
- // Map from output to input dimension index.
936
- array<Index, NumOutputDims> m_output_to_input_dim_map;
937
- // How many values go into each reduction
938
- Index m_numValuesToReduce;
939
-
940
- // Subset of strides of the input tensor for the reduced dimensions.
941
- // Indexed by reduced dimensions.
942
- array<Index, NumReducedDims> m_reducedStrides;
943
- // Size of the input dimensions that are reduced.
944
- // Indexed by reduced dimensions.
945
- array<Index, NumReducedDims> m_reducedDims;
946
-
947
- // Evaluator for the input expression.
948
- TensorEvaluator<ArgType, Device> m_impl;
949
-
950
- // Operation to apply for computing the reduction.
951
- Op m_reducer;
952
-
953
- // For full reductions
954
- #if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
955
- static const bool RunningOnGPU = internal::is_same<Device, Eigen::GpuDevice>::value;
956
- static const bool RunningOnSycl = false;
957
- #elif defined(EIGEN_USE_SYCL)
958
- static const bool RunningOnSycl = internal::is_same<typename internal::remove_all<Device>::type, Eigen::SyclDevice>::value;
959
- static const bool RunningOnGPU = false;
960
- #else
961
- static const bool RunningOnGPU = false;
962
- static const bool RunningOnSycl = false;
963
- #endif
964
- EvaluatorPointerType m_result;
965
-
966
- const Device EIGEN_DEVICE_REF m_device;
967
- };
968
-
969
- template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
970
- struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>
971
- : public TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> {
972
- typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Base;
973
- EIGEN_STRONG_INLINE TensorEvaluator(const typename Base::XprType& op, const Device& device) : Base(op, device){}
974
- };
975
-
976
-
977
- template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_>
978
- struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice>
979
- : public TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice> {
980
-
981
- typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice> Base;
982
- EIGEN_STRONG_INLINE TensorEvaluator(const typename Base::XprType& op, const Eigen::SyclDevice& device) : Base(op, device){}
983
- // The coeff function in the base the recursive method which is not an standard layout and cannot be used in the SYCL kernel
984
- //Therefore the coeff function should be overridden by for SYCL kernel
985
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Base::CoeffReturnType coeff(typename Base::Index index) const {
986
- return *(this->data() + index);
987
- }
988
- // The packet function in the base the recursive method which is not an standard layout and cannot be used in the SYCL kernel
989
- //Therefore the packet function should be overridden by for SYCL kernel
990
- template<int LoadMode>
991
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Base::PacketReturnType packet(typename Base::Index index) const {
992
- return internal::pload<typename Base::PacketReturnType>(this->data() + index);
993
- }
994
- };
995
-
996
- } // end namespace Eigen
997
-
998
- #endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H