sequenzo 0.1.18__cp312-cp312-win_amd64.whl → 0.1.20__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (399) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +154 -154
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cp312-win_amd64.pyd +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/clustering_c_code.cp312-win_amd64.pyd +0 -0
  6. sequenzo/clustering/hierarchical_clustering.py +108 -6
  7. sequenzo/define_sequence_data.py +10 -1
  8. sequenzo/dissimilarity_measures/c_code.cp312-win_amd64.pyd +0 -0
  9. sequenzo/dissimilarity_measures/get_distance_matrix.py +2 -3
  10. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  11. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +154 -154
  12. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cp312-win_amd64.pyd +0 -0
  13. sequenzo/dissimilarity_measures/utils/seqconc.c +154 -154
  14. sequenzo/dissimilarity_measures/utils/seqconc.cp312-win_amd64.pyd +0 -0
  15. sequenzo/dissimilarity_measures/utils/seqdss.c +154 -154
  16. sequenzo/dissimilarity_measures/utils/seqdss.cp312-win_amd64.pyd +0 -0
  17. sequenzo/dissimilarity_measures/utils/seqdur.c +154 -154
  18. sequenzo/dissimilarity_measures/utils/seqdur.cp312-win_amd64.pyd +0 -0
  19. sequenzo/dissimilarity_measures/utils/seqlength.c +154 -154
  20. sequenzo/dissimilarity_measures/utils/seqlength.cp312-win_amd64.pyd +0 -0
  21. sequenzo/multidomain/cat.py +0 -53
  22. sequenzo/multidomain/dat.py +11 -3
  23. sequenzo/multidomain/idcd.py +0 -3
  24. sequenzo/multidomain/linked_polyad.py +0 -1
  25. sequenzo/openmp_setup.py +233 -0
  26. sequenzo/visualization/plot_transition_matrix.py +21 -22
  27. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/METADATA +71 -10
  28. sequenzo-0.1.20.dist-info/RECORD +272 -0
  29. sequenzo/dissimilarity_measures/setup.py +0 -35
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  170. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  171. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  172. sequenzo/dissimilarity_measures/src/eigen/bench/BenchSparseUtil.h +0 -149
  173. sequenzo/dissimilarity_measures/src/eigen/bench/BenchTimer.h +0 -199
  174. sequenzo/dissimilarity_measures/src/eigen/bench/BenchUtil.h +0 -92
  175. sequenzo/dissimilarity_measures/src/eigen/bench/basicbenchmark.h +0 -63
  176. sequenzo/dissimilarity_measures/src/eigen/bench/btl/generic_bench/utils/utilities.h +0 -90
  177. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/blas.h +0 -675
  178. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/c_interface_base.h +0 -73
  179. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemm_common.h +0 -67
  180. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemv_common.h +0 -69
  181. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchsolver.h +0 -573
  182. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchstyle.h +0 -95
  183. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/benchmark.h +0 -49
  184. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/tensor_benchmarks.h +0 -597
  185. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  186. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  187. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  188. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  189. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  190. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  191. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  192. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  193. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  194. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  195. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  196. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  197. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  198. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  199. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  200. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  201. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  202. sequenzo/dissimilarity_measures/src/eigen/demos/mandelbrot/mandelbrot.h +0 -71
  203. sequenzo/dissimilarity_measures/src/eigen/demos/mix_eigen_and_c/binary_library.h +0 -71
  204. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/camera.h +0 -118
  205. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/gpuhelper.h +0 -207
  206. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/icosphere.h +0 -30
  207. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/quaternion_demo.h +0 -114
  208. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/trackball.h +0 -42
  209. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  210. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  211. sequenzo/dissimilarity_measures/src/eigen/test/AnnoyingScalar.h +0 -165
  212. sequenzo/dissimilarity_measures/src/eigen/test/MovableScalar.h +0 -35
  213. sequenzo/dissimilarity_measures/src/eigen/test/SafeScalar.h +0 -30
  214. sequenzo/dissimilarity_measures/src/eigen/test/bug1213.h +0 -8
  215. sequenzo/dissimilarity_measures/src/eigen/test/evaluator_common.h +0 -0
  216. sequenzo/dissimilarity_measures/src/eigen/test/gpu_common.h +0 -176
  217. sequenzo/dissimilarity_measures/src/eigen/test/main.h +0 -857
  218. sequenzo/dissimilarity_measures/src/eigen/test/packetmath_test_shared.h +0 -275
  219. sequenzo/dissimilarity_measures/src/eigen/test/product.h +0 -259
  220. sequenzo/dissimilarity_measures/src/eigen/test/random_without_cast_overflow.h +0 -152
  221. sequenzo/dissimilarity_measures/src/eigen/test/solverbase.h +0 -36
  222. sequenzo/dissimilarity_measures/src/eigen/test/sparse.h +0 -204
  223. sequenzo/dissimilarity_measures/src/eigen/test/sparse_solver.h +0 -699
  224. sequenzo/dissimilarity_measures/src/eigen/test/split_test_helper.h +0 -5994
  225. sequenzo/dissimilarity_measures/src/eigen/test/svd_common.h +0 -521
  226. sequenzo/dissimilarity_measures/src/eigen/test/svd_fill.h +0 -118
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  393. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  394. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  395. sequenzo/dissimilarity_measures/src/eigen/unsupported/test/matrix_functions.h +0 -67
  396. sequenzo-0.1.18.dist-info/RECORD +0 -638
  397. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/WHEEL +0 -0
  398. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/licenses/LICENSE +0 -0
  399. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/top_level.txt +0 -0
@@ -1,877 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_LU_H
11
- #define EIGEN_LU_H
12
-
13
- namespace Eigen {
14
-
15
- namespace internal {
16
- template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
17
- : traits<_MatrixType>
18
- {
19
- typedef MatrixXpr XprKind;
20
- typedef SolverStorage StorageKind;
21
- typedef int StorageIndex;
22
- enum { Flags = 0 };
23
- };
24
-
25
- } // end namespace internal
26
-
27
- /** \ingroup LU_Module
28
- *
29
- * \class FullPivLU
30
- *
31
- * \brief LU decomposition of a matrix with complete pivoting, and related features
32
- *
33
- * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
34
- *
35
- * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
36
- * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
37
- * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
38
- * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
39
- * zeros are at the end.
40
- *
41
- * This decomposition provides the generic approach to solving systems of linear equations, computing
42
- * the rank, invertibility, inverse, kernel, and determinant.
43
- *
44
- * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
45
- * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
46
- * working with the SVD allows to select the smallest singular values of the matrix, something that
47
- * the LU decomposition doesn't see.
48
- *
49
- * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
50
- * permutationP(), permutationQ().
51
- *
52
- * As an example, here is how the original matrix can be retrieved:
53
- * \include class_FullPivLU.cpp
54
- * Output: \verbinclude class_FullPivLU.out
55
- *
56
- * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
57
- *
58
- * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
59
- */
60
- template<typename _MatrixType> class FullPivLU
61
- : public SolverBase<FullPivLU<_MatrixType> >
62
- {
63
- public:
64
- typedef _MatrixType MatrixType;
65
- typedef SolverBase<FullPivLU> Base;
66
- friend class SolverBase<FullPivLU>;
67
-
68
- EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU)
69
- enum {
70
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
71
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
72
- };
73
- typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType;
74
- typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType;
75
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
76
- typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
77
- typedef typename MatrixType::PlainObject PlainObject;
78
-
79
- /**
80
- * \brief Default Constructor.
81
- *
82
- * The default constructor is useful in cases in which the user intends to
83
- * perform decompositions via LU::compute(const MatrixType&).
84
- */
85
- FullPivLU();
86
-
87
- /** \brief Default Constructor with memory preallocation
88
- *
89
- * Like the default constructor but with preallocation of the internal data
90
- * according to the specified problem \a size.
91
- * \sa FullPivLU()
92
- */
93
- FullPivLU(Index rows, Index cols);
94
-
95
- /** Constructor.
96
- *
97
- * \param matrix the matrix of which to compute the LU decomposition.
98
- * It is required to be nonzero.
99
- */
100
- template<typename InputType>
101
- explicit FullPivLU(const EigenBase<InputType>& matrix);
102
-
103
- /** \brief Constructs a LU factorization from a given matrix
104
- *
105
- * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
106
- *
107
- * \sa FullPivLU(const EigenBase&)
108
- */
109
- template<typename InputType>
110
- explicit FullPivLU(EigenBase<InputType>& matrix);
111
-
112
- /** Computes the LU decomposition of the given matrix.
113
- *
114
- * \param matrix the matrix of which to compute the LU decomposition.
115
- * It is required to be nonzero.
116
- *
117
- * \returns a reference to *this
118
- */
119
- template<typename InputType>
120
- FullPivLU& compute(const EigenBase<InputType>& matrix) {
121
- m_lu = matrix.derived();
122
- computeInPlace();
123
- return *this;
124
- }
125
-
126
- /** \returns the LU decomposition matrix: the upper-triangular part is U, the
127
- * unit-lower-triangular part is L (at least for square matrices; in the non-square
128
- * case, special care is needed, see the documentation of class FullPivLU).
129
- *
130
- * \sa matrixL(), matrixU()
131
- */
132
- inline const MatrixType& matrixLU() const
133
- {
134
- eigen_assert(m_isInitialized && "LU is not initialized.");
135
- return m_lu;
136
- }
137
-
138
- /** \returns the number of nonzero pivots in the LU decomposition.
139
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
140
- * So that notion isn't really intrinsically interesting, but it is
141
- * still useful when implementing algorithms.
142
- *
143
- * \sa rank()
144
- */
145
- inline Index nonzeroPivots() const
146
- {
147
- eigen_assert(m_isInitialized && "LU is not initialized.");
148
- return m_nonzero_pivots;
149
- }
150
-
151
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
152
- * diagonal coefficient of U.
153
- */
154
- RealScalar maxPivot() const { return m_maxpivot; }
155
-
156
- /** \returns the permutation matrix P
157
- *
158
- * \sa permutationQ()
159
- */
160
- EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const
161
- {
162
- eigen_assert(m_isInitialized && "LU is not initialized.");
163
- return m_p;
164
- }
165
-
166
- /** \returns the permutation matrix Q
167
- *
168
- * \sa permutationP()
169
- */
170
- inline const PermutationQType& permutationQ() const
171
- {
172
- eigen_assert(m_isInitialized && "LU is not initialized.");
173
- return m_q;
174
- }
175
-
176
- /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
177
- * will form a basis of the kernel.
178
- *
179
- * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
180
- *
181
- * \note This method has to determine which pivots should be considered nonzero.
182
- * For that, it uses the threshold value that you can control by calling
183
- * setThreshold(const RealScalar&).
184
- *
185
- * Example: \include FullPivLU_kernel.cpp
186
- * Output: \verbinclude FullPivLU_kernel.out
187
- *
188
- * \sa image()
189
- */
190
- inline const internal::kernel_retval<FullPivLU> kernel() const
191
- {
192
- eigen_assert(m_isInitialized && "LU is not initialized.");
193
- return internal::kernel_retval<FullPivLU>(*this);
194
- }
195
-
196
- /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
197
- * will form a basis of the image (column-space).
198
- *
199
- * \param originalMatrix the original matrix, of which *this is the LU decomposition.
200
- * The reason why it is needed to pass it here, is that this allows
201
- * a large optimization, as otherwise this method would need to reconstruct it
202
- * from the LU decomposition.
203
- *
204
- * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
205
- *
206
- * \note This method has to determine which pivots should be considered nonzero.
207
- * For that, it uses the threshold value that you can control by calling
208
- * setThreshold(const RealScalar&).
209
- *
210
- * Example: \include FullPivLU_image.cpp
211
- * Output: \verbinclude FullPivLU_image.out
212
- *
213
- * \sa kernel()
214
- */
215
- inline const internal::image_retval<FullPivLU>
216
- image(const MatrixType& originalMatrix) const
217
- {
218
- eigen_assert(m_isInitialized && "LU is not initialized.");
219
- return internal::image_retval<FullPivLU>(*this, originalMatrix);
220
- }
221
-
222
- #ifdef EIGEN_PARSED_BY_DOXYGEN
223
- /** \return a solution x to the equation Ax=b, where A is the matrix of which
224
- * *this is the LU decomposition.
225
- *
226
- * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
227
- * the only requirement in order for the equation to make sense is that
228
- * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
229
- *
230
- * \returns a solution.
231
- *
232
- * \note_about_checking_solutions
233
- *
234
- * \note_about_arbitrary_choice_of_solution
235
- * \note_about_using_kernel_to_study_multiple_solutions
236
- *
237
- * Example: \include FullPivLU_solve.cpp
238
- * Output: \verbinclude FullPivLU_solve.out
239
- *
240
- * \sa TriangularView::solve(), kernel(), inverse()
241
- */
242
- template<typename Rhs>
243
- inline const Solve<FullPivLU, Rhs>
244
- solve(const MatrixBase<Rhs>& b) const;
245
- #endif
246
-
247
- /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
248
- the LU decomposition.
249
- */
250
- inline RealScalar rcond() const
251
- {
252
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
253
- return internal::rcond_estimate_helper(m_l1_norm, *this);
254
- }
255
-
256
- /** \returns the determinant of the matrix of which
257
- * *this is the LU decomposition. It has only linear complexity
258
- * (that is, O(n) where n is the dimension of the square matrix)
259
- * as the LU decomposition has already been computed.
260
- *
261
- * \note This is only for square matrices.
262
- *
263
- * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
264
- * optimized paths.
265
- *
266
- * \warning a determinant can be very big or small, so for matrices
267
- * of large enough dimension, there is a risk of overflow/underflow.
268
- *
269
- * \sa MatrixBase::determinant()
270
- */
271
- typename internal::traits<MatrixType>::Scalar determinant() const;
272
-
273
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
274
- * who need to determine when pivots are to be considered nonzero. This is not used for the
275
- * LU decomposition itself.
276
- *
277
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
278
- * uses a formula to automatically determine a reasonable threshold.
279
- * Once you have called the present method setThreshold(const RealScalar&),
280
- * your value is used instead.
281
- *
282
- * \param threshold The new value to use as the threshold.
283
- *
284
- * A pivot will be considered nonzero if its absolute value is strictly greater than
285
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
286
- * where maxpivot is the biggest pivot.
287
- *
288
- * If you want to come back to the default behavior, call setThreshold(Default_t)
289
- */
290
- FullPivLU& setThreshold(const RealScalar& threshold)
291
- {
292
- m_usePrescribedThreshold = true;
293
- m_prescribedThreshold = threshold;
294
- return *this;
295
- }
296
-
297
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
298
- * determining the threshold.
299
- *
300
- * You should pass the special object Eigen::Default as parameter here.
301
- * \code lu.setThreshold(Eigen::Default); \endcode
302
- *
303
- * See the documentation of setThreshold(const RealScalar&).
304
- */
305
- FullPivLU& setThreshold(Default_t)
306
- {
307
- m_usePrescribedThreshold = false;
308
- return *this;
309
- }
310
-
311
- /** Returns the threshold that will be used by certain methods such as rank().
312
- *
313
- * See the documentation of setThreshold(const RealScalar&).
314
- */
315
- RealScalar threshold() const
316
- {
317
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
318
- return m_usePrescribedThreshold ? m_prescribedThreshold
319
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
320
- // and turns out to be identical to Higham's formula used already in LDLt.
321
- : NumTraits<Scalar>::epsilon() * RealScalar(m_lu.diagonalSize());
322
- }
323
-
324
- /** \returns the rank of the matrix of which *this is the LU decomposition.
325
- *
326
- * \note This method has to determine which pivots should be considered nonzero.
327
- * For that, it uses the threshold value that you can control by calling
328
- * setThreshold(const RealScalar&).
329
- */
330
- inline Index rank() const
331
- {
332
- using std::abs;
333
- eigen_assert(m_isInitialized && "LU is not initialized.");
334
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
335
- Index result = 0;
336
- for(Index i = 0; i < m_nonzero_pivots; ++i)
337
- result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
338
- return result;
339
- }
340
-
341
- /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
342
- *
343
- * \note This method has to determine which pivots should be considered nonzero.
344
- * For that, it uses the threshold value that you can control by calling
345
- * setThreshold(const RealScalar&).
346
- */
347
- inline Index dimensionOfKernel() const
348
- {
349
- eigen_assert(m_isInitialized && "LU is not initialized.");
350
- return cols() - rank();
351
- }
352
-
353
- /** \returns true if the matrix of which *this is the LU decomposition represents an injective
354
- * linear map, i.e. has trivial kernel; false otherwise.
355
- *
356
- * \note This method has to determine which pivots should be considered nonzero.
357
- * For that, it uses the threshold value that you can control by calling
358
- * setThreshold(const RealScalar&).
359
- */
360
- inline bool isInjective() const
361
- {
362
- eigen_assert(m_isInitialized && "LU is not initialized.");
363
- return rank() == cols();
364
- }
365
-
366
- /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
367
- * linear map; false otherwise.
368
- *
369
- * \note This method has to determine which pivots should be considered nonzero.
370
- * For that, it uses the threshold value that you can control by calling
371
- * setThreshold(const RealScalar&).
372
- */
373
- inline bool isSurjective() const
374
- {
375
- eigen_assert(m_isInitialized && "LU is not initialized.");
376
- return rank() == rows();
377
- }
378
-
379
- /** \returns true if the matrix of which *this is the LU decomposition is invertible.
380
- *
381
- * \note This method has to determine which pivots should be considered nonzero.
382
- * For that, it uses the threshold value that you can control by calling
383
- * setThreshold(const RealScalar&).
384
- */
385
- inline bool isInvertible() const
386
- {
387
- eigen_assert(m_isInitialized && "LU is not initialized.");
388
- return isInjective() && (m_lu.rows() == m_lu.cols());
389
- }
390
-
391
- /** \returns the inverse of the matrix of which *this is the LU decomposition.
392
- *
393
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
394
- * Use isInvertible() to first determine whether this matrix is invertible.
395
- *
396
- * \sa MatrixBase::inverse()
397
- */
398
- inline const Inverse<FullPivLU> inverse() const
399
- {
400
- eigen_assert(m_isInitialized && "LU is not initialized.");
401
- eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
402
- return Inverse<FullPivLU>(*this);
403
- }
404
-
405
- MatrixType reconstructedMatrix() const;
406
-
407
- EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
408
- inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
409
- EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
410
- inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }
411
-
412
- #ifndef EIGEN_PARSED_BY_DOXYGEN
413
- template<typename RhsType, typename DstType>
414
- void _solve_impl(const RhsType &rhs, DstType &dst) const;
415
-
416
- template<bool Conjugate, typename RhsType, typename DstType>
417
- void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
418
- #endif
419
-
420
- protected:
421
-
422
- static void check_template_parameters()
423
- {
424
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
425
- }
426
-
427
- void computeInPlace();
428
-
429
- MatrixType m_lu;
430
- PermutationPType m_p;
431
- PermutationQType m_q;
432
- IntColVectorType m_rowsTranspositions;
433
- IntRowVectorType m_colsTranspositions;
434
- Index m_nonzero_pivots;
435
- RealScalar m_l1_norm;
436
- RealScalar m_maxpivot, m_prescribedThreshold;
437
- signed char m_det_pq;
438
- bool m_isInitialized, m_usePrescribedThreshold;
439
- };
440
-
441
- template<typename MatrixType>
442
- FullPivLU<MatrixType>::FullPivLU()
443
- : m_isInitialized(false), m_usePrescribedThreshold(false)
444
- {
445
- }
446
-
447
- template<typename MatrixType>
448
- FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
449
- : m_lu(rows, cols),
450
- m_p(rows),
451
- m_q(cols),
452
- m_rowsTranspositions(rows),
453
- m_colsTranspositions(cols),
454
- m_isInitialized(false),
455
- m_usePrescribedThreshold(false)
456
- {
457
- }
458
-
459
- template<typename MatrixType>
460
- template<typename InputType>
461
- FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix)
462
- : m_lu(matrix.rows(), matrix.cols()),
463
- m_p(matrix.rows()),
464
- m_q(matrix.cols()),
465
- m_rowsTranspositions(matrix.rows()),
466
- m_colsTranspositions(matrix.cols()),
467
- m_isInitialized(false),
468
- m_usePrescribedThreshold(false)
469
- {
470
- compute(matrix.derived());
471
- }
472
-
473
- template<typename MatrixType>
474
- template<typename InputType>
475
- FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix)
476
- : m_lu(matrix.derived()),
477
- m_p(matrix.rows()),
478
- m_q(matrix.cols()),
479
- m_rowsTranspositions(matrix.rows()),
480
- m_colsTranspositions(matrix.cols()),
481
- m_isInitialized(false),
482
- m_usePrescribedThreshold(false)
483
- {
484
- computeInPlace();
485
- }
486
-
487
- template<typename MatrixType>
488
- void FullPivLU<MatrixType>::computeInPlace()
489
- {
490
- check_template_parameters();
491
-
492
- // the permutations are stored as int indices, so just to be sure:
493
- eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest());
494
-
495
- m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
496
-
497
- const Index size = m_lu.diagonalSize();
498
- const Index rows = m_lu.rows();
499
- const Index cols = m_lu.cols();
500
-
501
- // will store the transpositions, before we accumulate them at the end.
502
- // can't accumulate on-the-fly because that will be done in reverse order for the rows.
503
- m_rowsTranspositions.resize(m_lu.rows());
504
- m_colsTranspositions.resize(m_lu.cols());
505
- Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
506
-
507
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
508
- m_maxpivot = RealScalar(0);
509
-
510
- for(Index k = 0; k < size; ++k)
511
- {
512
- // First, we need to find the pivot.
513
-
514
- // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
515
- Index row_of_biggest_in_corner, col_of_biggest_in_corner;
516
- typedef internal::scalar_score_coeff_op<Scalar> Scoring;
517
- typedef typename Scoring::result_type Score;
518
- Score biggest_in_corner;
519
- biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
520
- .unaryExpr(Scoring())
521
- .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
522
- row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
523
- col_of_biggest_in_corner += k; // need to add k to them.
524
-
525
- if(biggest_in_corner==Score(0))
526
- {
527
- // before exiting, make sure to initialize the still uninitialized transpositions
528
- // in a sane state without destroying what we already have.
529
- m_nonzero_pivots = k;
530
- for(Index i = k; i < size; ++i)
531
- {
532
- m_rowsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
533
- m_colsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
534
- }
535
- break;
536
- }
537
-
538
- RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner);
539
- if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot;
540
-
541
- // Now that we've found the pivot, we need to apply the row/col swaps to
542
- // bring it to the location (k,k).
543
-
544
- m_rowsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(row_of_biggest_in_corner);
545
- m_colsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(col_of_biggest_in_corner);
546
- if(k != row_of_biggest_in_corner) {
547
- m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
548
- ++number_of_transpositions;
549
- }
550
- if(k != col_of_biggest_in_corner) {
551
- m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
552
- ++number_of_transpositions;
553
- }
554
-
555
- // Now that the pivot is at the right location, we update the remaining
556
- // bottom-right corner by Gaussian elimination.
557
-
558
- if(k<rows-1)
559
- m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
560
- if(k<size-1)
561
- m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
562
- }
563
-
564
- // the main loop is over, we still have to accumulate the transpositions to find the
565
- // permutations P and Q
566
-
567
- m_p.setIdentity(rows);
568
- for(Index k = size-1; k >= 0; --k)
569
- m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
570
-
571
- m_q.setIdentity(cols);
572
- for(Index k = 0; k < size; ++k)
573
- m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
574
-
575
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
576
-
577
- m_isInitialized = true;
578
- }
579
-
580
- template<typename MatrixType>
581
- typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
582
- {
583
- eigen_assert(m_isInitialized && "LU is not initialized.");
584
- eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
585
- return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
586
- }
587
-
588
- /** \returns the matrix represented by the decomposition,
589
- * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
590
- * This function is provided for debug purposes. */
591
- template<typename MatrixType>
592
- MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
593
- {
594
- eigen_assert(m_isInitialized && "LU is not initialized.");
595
- const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
596
- // LU
597
- MatrixType res(m_lu.rows(),m_lu.cols());
598
- // FIXME the .toDenseMatrix() should not be needed...
599
- res = m_lu.leftCols(smalldim)
600
- .template triangularView<UnitLower>().toDenseMatrix()
601
- * m_lu.topRows(smalldim)
602
- .template triangularView<Upper>().toDenseMatrix();
603
-
604
- // P^{-1}(LU)
605
- res = m_p.inverse() * res;
606
-
607
- // (P^{-1}LU)Q^{-1}
608
- res = res * m_q.inverse();
609
-
610
- return res;
611
- }
612
-
613
- /********* Implementation of kernel() **************************************************/
614
-
615
- namespace internal {
616
- template<typename _MatrixType>
617
- struct kernel_retval<FullPivLU<_MatrixType> >
618
- : kernel_retval_base<FullPivLU<_MatrixType> >
619
- {
620
- EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
621
-
622
- enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
623
- MatrixType::MaxColsAtCompileTime,
624
- MatrixType::MaxRowsAtCompileTime)
625
- };
626
-
627
- template<typename Dest> void evalTo(Dest& dst) const
628
- {
629
- using std::abs;
630
- const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
631
- if(dimker == 0)
632
- {
633
- // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
634
- // avoid crashing/asserting as that depends on floating point calculations. Let's
635
- // just return a single column vector filled with zeros.
636
- dst.setZero();
637
- return;
638
- }
639
-
640
- /* Let us use the following lemma:
641
- *
642
- * Lemma: If the matrix A has the LU decomposition PAQ = LU,
643
- * then Ker A = Q(Ker U).
644
- *
645
- * Proof: trivial: just keep in mind that P, Q, L are invertible.
646
- */
647
-
648
- /* Thus, all we need to do is to compute Ker U, and then apply Q.
649
- *
650
- * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
651
- * Thus, the diagonal of U ends with exactly
652
- * dimKer zero's. Let us use that to construct dimKer linearly
653
- * independent vectors in Ker U.
654
- */
655
-
656
- Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
657
- RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
658
- Index p = 0;
659
- for(Index i = 0; i < dec().nonzeroPivots(); ++i)
660
- if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
661
- pivots.coeffRef(p++) = i;
662
- eigen_internal_assert(p == rank());
663
-
664
- // we construct a temporaty trapezoid matrix m, by taking the U matrix and
665
- // permuting the rows and cols to bring the nonnegligible pivots to the top of
666
- // the main diagonal. We need that to be able to apply our triangular solvers.
667
- // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
668
- Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
669
- MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
670
- m(dec().matrixLU().block(0, 0, rank(), cols));
671
- for(Index i = 0; i < rank(); ++i)
672
- {
673
- if(i) m.row(i).head(i).setZero();
674
- m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
675
- }
676
- m.block(0, 0, rank(), rank());
677
- m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
678
- for(Index i = 0; i < rank(); ++i)
679
- m.col(i).swap(m.col(pivots.coeff(i)));
680
-
681
- // ok, we have our trapezoid matrix, we can apply the triangular solver.
682
- // notice that the math behind this suggests that we should apply this to the
683
- // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
684
- m.topLeftCorner(rank(), rank())
685
- .template triangularView<Upper>().solveInPlace(
686
- m.topRightCorner(rank(), dimker)
687
- );
688
-
689
- // now we must undo the column permutation that we had applied!
690
- for(Index i = rank()-1; i >= 0; --i)
691
- m.col(i).swap(m.col(pivots.coeff(i)));
692
-
693
- // see the negative sign in the next line, that's what we were talking about above.
694
- for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
695
- for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
696
- for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
697
- }
698
- };
699
-
700
- /***** Implementation of image() *****************************************************/
701
-
702
- template<typename _MatrixType>
703
- struct image_retval<FullPivLU<_MatrixType> >
704
- : image_retval_base<FullPivLU<_MatrixType> >
705
- {
706
- EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
707
-
708
- enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
709
- MatrixType::MaxColsAtCompileTime,
710
- MatrixType::MaxRowsAtCompileTime)
711
- };
712
-
713
- template<typename Dest> void evalTo(Dest& dst) const
714
- {
715
- using std::abs;
716
- if(rank() == 0)
717
- {
718
- // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
719
- // avoid crashing/asserting as that depends on floating point calculations. Let's
720
- // just return a single column vector filled with zeros.
721
- dst.setZero();
722
- return;
723
- }
724
-
725
- Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
726
- RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
727
- Index p = 0;
728
- for(Index i = 0; i < dec().nonzeroPivots(); ++i)
729
- if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
730
- pivots.coeffRef(p++) = i;
731
- eigen_internal_assert(p == rank());
732
-
733
- for(Index i = 0; i < rank(); ++i)
734
- dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
735
- }
736
- };
737
-
738
- /***** Implementation of solve() *****************************************************/
739
-
740
- } // end namespace internal
741
-
742
- #ifndef EIGEN_PARSED_BY_DOXYGEN
743
- template<typename _MatrixType>
744
- template<typename RhsType, typename DstType>
745
- void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
746
- {
747
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
748
- * So we proceed as follows:
749
- * Step 1: compute c = P * rhs.
750
- * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
751
- * Step 3: replace c by the solution x to Ux = c. May or may not exist.
752
- * Step 4: result = Q * c;
753
- */
754
-
755
- const Index rows = this->rows(),
756
- cols = this->cols(),
757
- nonzero_pivots = this->rank();
758
- const Index smalldim = (std::min)(rows, cols);
759
-
760
- if(nonzero_pivots == 0)
761
- {
762
- dst.setZero();
763
- return;
764
- }
765
-
766
- typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
767
-
768
- // Step 1
769
- c = permutationP() * rhs;
770
-
771
- // Step 2
772
- m_lu.topLeftCorner(smalldim,smalldim)
773
- .template triangularView<UnitLower>()
774
- .solveInPlace(c.topRows(smalldim));
775
- if(rows>cols)
776
- c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols);
777
-
778
- // Step 3
779
- m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
780
- .template triangularView<Upper>()
781
- .solveInPlace(c.topRows(nonzero_pivots));
782
-
783
- // Step 4
784
- for(Index i = 0; i < nonzero_pivots; ++i)
785
- dst.row(permutationQ().indices().coeff(i)) = c.row(i);
786
- for(Index i = nonzero_pivots; i < m_lu.cols(); ++i)
787
- dst.row(permutationQ().indices().coeff(i)).setZero();
788
- }
789
-
790
- template<typename _MatrixType>
791
- template<bool Conjugate, typename RhsType, typename DstType>
792
- void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
793
- {
794
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1},
795
- * and since permutations are real and unitary, we can write this
796
- * as A^T = Q U^T L^T P,
797
- * So we proceed as follows:
798
- * Step 1: compute c = Q^T rhs.
799
- * Step 2: replace c by the solution x to U^T x = c. May or may not exist.
800
- * Step 3: replace c by the solution x to L^T x = c.
801
- * Step 4: result = P^T c.
802
- * If Conjugate is true, replace "^T" by "^*" above.
803
- */
804
-
805
- const Index rows = this->rows(), cols = this->cols(),
806
- nonzero_pivots = this->rank();
807
- const Index smalldim = (std::min)(rows, cols);
808
-
809
- if(nonzero_pivots == 0)
810
- {
811
- dst.setZero();
812
- return;
813
- }
814
-
815
- typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
816
-
817
- // Step 1
818
- c = permutationQ().inverse() * rhs;
819
-
820
- // Step 2
821
- m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
822
- .template triangularView<Upper>()
823
- .transpose()
824
- .template conjugateIf<Conjugate>()
825
- .solveInPlace(c.topRows(nonzero_pivots));
826
-
827
- // Step 3
828
- m_lu.topLeftCorner(smalldim, smalldim)
829
- .template triangularView<UnitLower>()
830
- .transpose()
831
- .template conjugateIf<Conjugate>()
832
- .solveInPlace(c.topRows(smalldim));
833
-
834
- // Step 4
835
- PermutationPType invp = permutationP().inverse().eval();
836
- for(Index i = 0; i < smalldim; ++i)
837
- dst.row(invp.indices().coeff(i)) = c.row(i);
838
- for(Index i = smalldim; i < rows; ++i)
839
- dst.row(invp.indices().coeff(i)).setZero();
840
- }
841
-
842
- #endif
843
-
844
- namespace internal {
845
-
846
-
847
- /***** Implementation of inverse() *****************************************************/
848
- template<typename DstXprType, typename MatrixType>
849
- struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense>
850
- {
851
- typedef FullPivLU<MatrixType> LuType;
852
- typedef Inverse<LuType> SrcXprType;
853
- static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &)
854
- {
855
- dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
856
- }
857
- };
858
- } // end namespace internal
859
-
860
- /******* MatrixBase methods *****************************************************************/
861
-
862
- /** \lu_module
863
- *
864
- * \return the full-pivoting LU decomposition of \c *this.
865
- *
866
- * \sa class FullPivLU
867
- */
868
- template<typename Derived>
869
- inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
870
- MatrixBase<Derived>::fullPivLu() const
871
- {
872
- return FullPivLU<PlainObject>(eval());
873
- }
874
-
875
- } // end namespace Eigen
876
-
877
- #endif // EIGEN_LU_H